JP7153432B2 - 電極、および蓄電装置 - Google Patents

電極、および蓄電装置 Download PDF

Info

Publication number
JP7153432B2
JP7153432B2 JP2017173930A JP2017173930A JP7153432B2 JP 7153432 B2 JP7153432 B2 JP 7153432B2 JP 2017173930 A JP2017173930 A JP 2017173930A JP 2017173930 A JP2017173930 A JP 2017173930A JP 7153432 B2 JP7153432 B2 JP 7153432B2
Authority
JP
Japan
Prior art keywords
active material
graphene
electrode
layer
power storage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017173930A
Other languages
English (en)
Other versions
JP2018046011A (ja
Inventor
真弓 三上
洋平 門馬
実 高橋
裕史 門間
哲平 小國
哲史 瀬尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Energy Laboratory Co Ltd
Original Assignee
Semiconductor Energy Laboratory Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Energy Laboratory Co Ltd filed Critical Semiconductor Energy Laboratory Co Ltd
Publication of JP2018046011A publication Critical patent/JP2018046011A/ja
Priority to JP2022159559A priority Critical patent/JP2022191321A/ja
Application granted granted Critical
Publication of JP7153432B2 publication Critical patent/JP7153432B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4235Safety or regulating additives or arrangements in electrodes, separators or electrolyte
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic System
    • C07F7/02Silicon compounds
    • C07F7/08Compounds having one or more C—Si linkages
    • C07F7/12Organo silicon halides
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic System
    • C07F7/02Silicon compounds
    • C07F7/08Compounds having one or more C—Si linkages
    • C07F7/18Compounds having one or more C—Si linkages as well as one or more C—O—Si linkages
    • C07F7/1804Compounds having Si-O-C linkages
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/26Electrodes characterised by their structure, e.g. multi-layered, porosity or surface features
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/36Nanostructures, e.g. nanofibres, nanotubes or fullerenes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/38Carbon pastes or blends; Binders or additives therein
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/46Metal oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/50Electrodes characterised by their material specially adapted for lithium-ion capacitors, e.g. for lithium-doping or for intercalation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/04Hybrid capacitors
    • H01G11/06Hybrid capacitors with one of the electrodes allowing ions to be reversibly doped thereinto, e.g. lithium ion capacitors [LIC]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/42Powders or particles, e.g. composition thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/52Separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/54Electrolytes
    • H01G11/58Liquid electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

本発明は、物、方法、または、製造方法に関する。または、本発明は、プロセス、マシン、マニュファクチャ、または、組成物(コンポジション・オブ・マター)に関する。特に、本発明の一態様は、蓄電装置、蓄電池、電極、正極、半導体装置、表示装置、発光装置、記憶装置、それらの駆動方法、または、それらの製造方法に関する。特に、本発明の一態様は、電極およびその作製方法に関する。
なお、本明細書中において蓄電装置とは、蓄電機能を有する素子及び装置全般を指すものである。
近年、リチウムイオン電池等の蓄電池、リチウムイオンキャパシタ、空気電池等、種々の蓄電装置の開発が盛んに行われている。特に高出力、高エネルギー密度であるリチウムイオン電池は、携帯電話やスマートフォン、ノート型パーソナルコンピュータ等の携帯情報端末、携帯音楽プレーヤ、デジタルカメラ等の電子機器、あるいは医療機器、ハイブリッド車(HEV)、電気自動車(EV)、又はプラグインハイブリッド車(PHEV)等の次世代クリーンエネルギー自動車など、半導体産業の発展に伴い急速にその需要が拡大し、充電可能なエネルギーの供給源として現代の情報化社会に不可欠なものとなっている。
リチウムイオン電池の充放電に伴い、活物質が有する元素が電解液中へ溶出する場合がある。この溶出により、蓄電装置の容量が低下する場合がある。特許文献1ではマンガンイオンの電解液中への溶出について述べられている。
特開2010-192428号公報
本発明の一態様は、新規な電極を提供することを課題の一とする。または、本発明の一態様は、新規な蓄電装置を提供することを課題の一とする。
または、本発明の一態様は、劣化の少ない電極を提供することを課題の一とする。または、本発明の一態様は、容量の大きい電極を提供することを課題の一とする。または、本発明の一態様は、寿命の長い蓄電装置を提供することを課題の一とする。または、本発明の一態様は、劣化の少ない蓄電装置を提供することを課題の一とする。または、本発明の一態様は、エネルギー密度の高い蓄電装置を提供することを課題の一とする。または、本発明の一態様は、信頼性の高い蓄電装置を提供することを課題の一とする。
なお、これらの課題の記載は、他の課題の存在を妨げるものではない。なお、本発明の一態様は、必ずしも、これらの課題の全てを解決する必要はない。なお、これら以外の課題は、明細書、図面、請求項などの記載から、自ずと明らかとなるものであり、明細書、図面、請求項などの記載から、これら以外の課題を抽出することが可能である。
本発明の一態様は、活物質と、グラフェン化合物と、を有し、グラフェン化合物は、グラフェン層と、置換または無置換の鎖状の基と、を有し、グラフェン層はシリコンを有する置換基を介して鎖状の基に結合され、活物質は粒子状であり、グラフェン化合物は、活物質に接する領域を有し、活物質は、元素Aと、元素Mと、を有し、元素Aは、第1族の元素および第2族の元素から選ばれる一以上であり、元素Mは、マンガンおよびニッケルから選ばれる一以上を有し、鎖状の基は、カルボニル基、エステル基、カルボキシル基、エーテル基、エポキシ基、から選ばれる一以上を有する電極である。
または、本発明の一態様は、活物質と、グラフェン化合物と、を有し、活物質は、粒子状であり、グラフェン化合物は、活物質の表面に接する領域を有し、活物質は、元素Aと、元素Mと、を有し、元素Aは、第1族の元素および第2族の元素から選ばれる一以上であり、元素Mは、マンガンおよびニッケルから選ばれる一以上を有し、グラフェン化合物は、下記式(G1)で表される構造を有する電極である。
Figure 0007153432000001

(一般式(G1)中において、G layerはグラフェン層を表し、Rは置換又は無置換のアルキレン基を表し、Rは水素、又は置換若しくは無置換のアルキル基を表す。)
または、本発明の一態様は、活物質と、グラフェン化合物と、を有し、活物質は、粒子状であり、グラフェン化合物は、活物質の表面に接する領域を有し、活物質は、元素Aと、元素Mと、を有し、元素Aは、第1族の元素および第2族の元素から選ばれる一以上であり、元素Mは、マンガンおよびニッケルから選ばれる一以上を有し、グラフェン化合物は、下記式(G2)で表される構造を有する電極である。
Figure 0007153432000002

(一般式(G2)中において、G layerはグラフェン層を表し、Rは置換又は無置換のアルキレン基を表し、Rは水素、又は置換若しくは無置換のアルキル基を表す。)
または、本発明の一態様は、活物質と、グラフェン化合物と、を有し、活物質は、粒子状であり、グラフェン化合物は、活物質の表面に接する領域を有し、活物質は、元素Aと、元素Mと、を有し、元素Aは、第1族の元素および第2族の元素から選ばれる一以上であり、元素Mは、マンガンおよびニッケルから選ばれる一以上を有し、グラフェン化合物は、下記式(G3)で表される構造を有する電極である。
Figure 0007153432000003

(一般式(G3)中において、G layerはグラフェン層を表し、Rは少なくとも2つ以上のエーテル結合を有する置換または無置換の鎖状の基を表す。)
また、上記形態において、グラフェン化合物は元素Mをトラップする機能を有することが好ましい。
または、本発明の一態様は、上記のいずれか一に記載の電極を有し、外装体と、電解液と、セパレータと、負極と、を有する蓄電装置である。
本発明の一態様により、新規な電極を提供することができる。また、本発明の一態様により、新規な蓄電装置を提供することができる。
また、本発明の一態様により、劣化の少ない電極を提供することができる。また、本発明の一態様により、容量の大きい電極を提供することができる。また、本発明の一態様により、寿命の長い蓄電装置を提供することができる。また、本発明の一態様により、劣化の少ない蓄電装置を提供することができる。また、本発明の一態様により、エネルギー密度の高い蓄電装置を提供することができる。また、本発明の一態様により、信頼性の高い蓄電装置を提供することができる。
なお、これらの効果の記載は、他の効果の存在を妨げるものではない。なお、本発明の一態様は、必ずしも、これらの効果の全てを有する必要はない。なお、これら以外の効果は、明細書、図面、請求項などの記載から、自ずと明らかとなるものであり、明細書、図面、請求項などの記載から、これら以外の効果を抽出することが可能である。
本発明の一態様の電極の断面、および電極の断面の一部の領域を示す図。 本発明の一態様の電極の断面の一部の領域を示す図。 蓄電装置の動作を説明する図。 蓄電装置の動作を説明する図。 活物質の断面を示す図。 電極の断面の一部を説明する図。 蓄電池を説明する図。 蓄電池の断面図を説明する図。 蓄電池の作製方法を説明する図。 蓄電池の作製方法を説明する図。 蓄電池を説明する図。 面の曲率半径を説明する図。 フィルムの曲率半径を説明する図。 コイン型蓄電池を説明する図。 円筒型蓄電池を説明する図。 蓄電池の断面図の一部を説明する図。 蓄電池の断面図の一部を説明する図。 蓄電池の断面図の一部を説明する図。 蓄電池の一例を示す図。 蓄電池の一例を示す図。 蓄電システムの例を説明するための図。 蓄電システムの例を説明するための図。 蓄電システムの例を説明するための図。 電子機器の一例を説明する図。 電子機器の一例を説明する図。 電子機器の一例を説明する図。 電子機器の一例を説明する図。 蓄電池のサイクル特性を示す図。 蓄電池のサイクル特性を示す図。
本発明の実施の形態について、図面を用いて以下、詳細に説明する。ただし、本発明はこれらの説明に限定されず、その形態及び詳細を様々に変更し得ることは、当業者であれば容易に理解される。従って、本発明は以下に示す実施の形態の記載内容に限定して解釈されるものではない。
なお、本明細書で説明する各図において、膜、層、基板、領域などの各要素の大きさや厚さ等は、個々に説明の明瞭化のために誇張されている場合がある。よって、必ずしも各構成要素はその大きさに限定されず、また各構成要素間での相対的な大きさに限定されない。
なお、本明細書等において、第1、第2などとして付される序数詞は、便宜上用いるものであって工程の順番や積層の順番などを示すものではない。そのため、例えば、「第1の」を「第2の」又は「第3の」などと適宜置き換えて説明することができる。また、本明細書等に記載されている序数詞と、本発明の一態様を特定するために用いられる序数詞は一致しない場合がある。
なお、本明細書等で説明する本発明の構成において、同一部分又は同様の機能を有する部分には同一の符号を異なる図面間で共通して用い、その繰り返しの説明は省略する。また、同様の機能を有する部分を指す場合には、ハッチパターンを同じくし、特に符号を付さない場合がある。
なお、本明細書等において、蓄電装置用の正極及び負極の双方を併せて電極とよぶことがあるが、この場合、電極は正極及び負極のうち少なくともいずれか一方を示すものとする。
ここで蓄電装置の充電および放電におけるレートについて説明する。例えば、容量X[Ah]の二次電池を定電流充電する際に、充電レート1Cとは、ちょうど1時間で充電終了となる電流値I[A]のことであり、充電レート0.2Cとは、I/5[A](すなわち、ちょうど5時間で充電終了となる電流値)のことである。同様に、放電レート1Cとは、ちょうど1時間で放電終了となる電流値I[A]のことであり、放電レート0.2Cとは、I/5[A](すなわち、ちょうど5時間で放電終了となる電流値)のことである。
(実施の形態1)
本発明の一態様の蓄電装置は、グラフェン化合物を有する層と、正極と、負極と、を有する。正極および負極はそれぞれ、活物質を有する。グラフェン化合物を有する層を蓄電装置内に設けることにより、例えば活物質より放出される金属を該層に捕獲することができる。また該層は、活物質の近傍に、例えばその一部が活物質と接するように、設けられることが好ましい。
<構造例>
図1(A)は本発明の一態様の電極の断面の一例を示す。電極210は、活物質層212と、活物質層212上の層213と、を有する。
活物質層212は活物質221を有する。活物質221は元素Mを有する。元素Mはマンガン、ニッケル、コバルト、クロム、アルミニウム、鉄、モリブデン、亜鉛、インジウム、ガリウム、銅、チタン、ニオブ、バナジウムより一以上選ばれ、特にマンガンまたはニッケルであることが好ましい。
また、活物質221は元素Mの他に、キャリアイオンとして機能する元素Aを有する。元素Aは、第1族の元素および第2族の元素から選ばれる一以上であることが好ましい。第1族の元素として例えば、リチウム、ナトリウム、カリウム等のアルカリ金属を用いることができる。また、第2族の元素として例えば、カルシウム、ベリリウム、マグネシウム等を用いることができる。
活物質221は正極活物質および負極活物質のいずれであってもよい。
層213はグラフェン化合物を有する。グラフェン化合物は、グラフェン層と、置換または無置換の鎖状の基と、を有し、グラフェン層は、例えば、シリコンを有する置換基を介して鎖状の基と結合される。
ここでグラフェン化合物は、鎖状の基として例えば極性の大きい官能基を有することにより、グラフェン化合物がカチオン252をトラップする機能が向上する場合がある。鎖状の基としては、カルボニル基、エステル基、カルボキシル基、エーテル基、エポキシ基、等から選ばれる一以上であることが好ましく、エステル基またはカルボキシ基であることがより好ましい。
ここで、グラフェン化合物が電子伝導性が低い場合に、セパレータとして機能する場合がある。グラフェン化合物が鎖状の基を有することにより、負極と接する場合に、負極の電位での還元が抑制される場合がある。
また層213は例えば、グラフェン化合物シートである。
グラフェン化合物を構成するグラフェンおよびマルチグラフェンの長手方向、あるいは面における長軸の長さは50nm以上100μm以下、又は800nm以上50μm以下である。グラフェン化合物、グラフェン化合物シート、グラフェンおよびマルチグラフェンについての詳細は後述する。また、グラフェンおよびマルチグラフェンは小さいことが好ましい場合がある。
また電極210は集電体211を有してもよく、活物質層212は集電体211上に設けられることが好ましい。
層213は活物質層212上に設けられる。層213は、活物質層212が有する活物質221と接する領域を有する。
図1(B)は、図1(A)に示す領域230の拡大図である。図1(B)に示す例では、活物質221として、複数の粒子が層213と接する。層213は活物質221と接する領域を複数有する、と言い換えることもできる。
図1(B)において、層213はひと続きの層、あるいはシート、として表したが、図1(C)に示すように層213が複数枚のシートで構成されていてもよい。また、層213が活物質層212の内部に入り込んでもよい。
図2は層213として複数のシートが重なる例を示す。重なるシート同士は、一部が接することが好ましい。
<蓄電装置の動作>
次に、図3および図4を用いて、本発明の一態様の蓄電装置の動作について説明する。ここでは電極210が正極として機能し、活物質221が正極活物質である場合について説明する。
本発明の一態様の蓄電装置は正極として機能する電極210と、負極として機能する電極220と、を有する。元素Aのイオンをカチオン251、元素Mのイオンをカチオン252とする。
まず充電について図3(A)を用いて説明する。充電では、活物質層212が有する活物質221から元素Aがカチオン化し、カチオン251と電子253が放出される。カチオン251は、負極である電極220に到達して還元される。なお、図3および図4においては、活物質221は図示しない。
また充電において、活物質221からカチオン252が放出される場合がある。このカチオン252の放出を、元素Mの溶出、と表現する場合がある。カチオン252は電極220に到達し還元される。ここでカチオン252が負極活物質と反応しづらい場合、還元反応に伴い元素Mが析出物254を形成する場合がある。あるいは、カチオン252と負極活物質との反応が可逆ではない場合、放電において、元素Mがイオン化しづらい場合がある。
負極の反応電位が電解液の還元分解が生じる電位よりも低い場合、電解液の分解により被膜が堆積する。このような被膜は不可逆な反応により生じるため、容量の低下を招く場合がある。充電において元素Mの析出物254が電極220の表面に形成されると、該被膜が析出物254上に堆積しやすくなる場合があり、容量の低下がより顕著となる。
また充電において活物質221からカチオン252が放出した場合(すなわち元素Mが溶出した場合)、活物質221の結晶構造が変化し、不安定となる場合がある。
次に、放電について図3(B)を用いて説明する。放電においては、電極220からカチオン251が放出され、電極210に到達して還元される。
一方、カチオン252のイオン半径は、カチオン251のイオン半径に比べて大きい。また、カチオン252の放出により活物質221の結晶構造が変化する場合がある。よって、充電において活物質221から脱離したカチオン252が、放電において再び活物質221内に入ることは難しい。
図4は、電極210が層213を有する例を示す。層213は例えば、カチオン252をトラップする機能を有する。
充電において元素Mがカチオン化し、カチオン252と電子253が発生する場合には、層213はカチオン252をトラップする機能を有するため、カチオン252の電極220への到達を抑制することができる。一方、カチオン251は層213を拡散して電極220に到達することが好ましい。
カチオン252が電解液中に存在し、その濃度が平衡に達したときには、元素Mの溶出(カチオン化)は抑制される。カチオン252が層213に捕獲されることにより、活物質層212において、層213との界面近傍のカチオン252の濃度が高くなる。カチオン252の濃度が高いため、活物質層212の表面におけるカチオン252の放出を抑制することができる。すなわち層213を設けることにより元素Mの溶出を抑制することができる。
また、本発明の一態様のグラフェン化合物は、鎖状の基を有することにより電気伝導性が低くなる場合がある。層213を設けることにより、電極220の表面において元素Aが析出した場合においても、電極210が有する活物質221、あるいは集電体211と、電極220の表面に析出された元素Aとのショートが抑制される場合があり好ましい。
充電を行った後には例えば、層213は元素Mを有する。
<電極の作製方法>
本発明の一態様の電極の作製方法について説明する。
電極210は、活物質と、グラフェン化合物と、を有する。また、電極210は、活物質として正極活物質を有することが好ましい。
まず活物質層212を作製する。活物質層212は、活物質を有する。また活物質層212は結着剤および導電助剤を有することが好ましい。結着剤および導電助剤については後述の実施の形態で説明する。
活物質と、その他の構成要素、ここでは例えば結着剤および導電助剤と、溶媒と、を混練してスラリーを作製する。スラリーの作製に用いる溶媒は、極性溶媒であることが好ましい。例えば、水、メタノール、エタノール、アセトン、テトラヒドロフラン(THF)、ジメチルホルムアミド(DMF)、N-メチルピロリドン(NMP)及びジメチルスルホキシド(DMSO)のいずれか一種又は二種以上の混合液を用いることができる。
次に、集電体上にスラリーを塗布する。集電体については後述の実施の形態で説明する。
次に熱処理を行い、集電体上に塗布したスラリーから溶媒を揮発させる。その後、プレスを行ってもよい。
以上の工程により、集電体上に活物質層212が作製される。
次に、層213を作製する。まず溶媒にグラフェン化合物を分散させる。ここで溶媒として例えば水、メタノール、エタノール、アセトン、テトラヒドロフラン(THF)、ジメチルホルムアミド(DMF)、1-メチル-2-ピロリドン(NMP)およびジメチルスルホキシド(DMSO)、エチレングリコール、ジエチレングリコール、グリセリン、のいずれか一種又は二種以上の混合液を用いることができる。
次に、作製した分散液を、活物質層212上に滴下する。あるいは、活物質層212を分散液に含浸させてもよい。
次に、熱処理を行い分散液から溶媒を揮発させる。減圧雰囲気において処理を行うことにより、溶媒が揮発しやすくなる。
以上の工程により、活物質層212上に層213が作製される。層213が有するグラフェン化合物の担持量は例えば0.2mg/cm以上10mg/cm以下、あるいは例えば0.5mg/cm以上3mg/cm以下である。
<正極活物質>
活物質221の一例として、元素Mを有する正極活物質について説明する。
正極活物質として、LiMの一般式で表されるスピネル型の結晶構造を有する材料を用いることができる。ここで元素Mは金属であることが好ましく、例えばマンガンを用いることができる。また、元素Mは複数の金属より選ばれる二以上でもよく、例えばマンガンと、マンガン以外の金属から選ばれる一以上と、であればよい。マンガン以外の金属として例えば、ニッケル、コバルト、アルミニウム、鉄、バナジウム等が挙げられる。例えばマンガン以外の金属として元素Mがニッケルを有することにより、放電電圧を向上させることができる場合があり、エネルギー密度が向上するため好ましい。また、LiM等のスピネル型の結晶構造を有するリチウム含有材料に、少量のニッケル酸リチウム(LiNiOやLiNi(1-x)XO)を混合してもよい。ここで元素Xとして例えばコバルト、アルミニウムなどを用いることができる。
正極活物質として例えば、層状岩塩型の結晶構造、またはスピネル型の結晶構造を有する複合酸化物等を用いることができる。また、正極活物質として例えば、ポリアニオン系の正極材料を用いることができる。ポリアニオン系の正極材料として例えば、オリビン型の結晶構造を有する材料、ナシコン型の材料、等が挙げられる。
正極活物質として、様々な複合酸化物を用いることができる。例えば、LiFeO、LiCoO、LiNiO、LiMn、V、Cr、MnO等の化合物を用いることができる。
層状岩塩型の結晶構造を有する材料として例えば、LiMOで表される複合酸化物を用いることができる。元素Mは、コバルトまたはニッケルより選ばれる一以上であることが好ましい。LiCoOは、容量が大きいこと、大気中で安定であること、熱的に安定であること等の利点があるため、好ましい。また、元素Mとして、コバルトおよびニッケルより選ばれる一以上に加えて、アルミニウムおよびマンガンより選ばれる一以上を有してもよい。例えばLiCoMnNi(x、y、zおよびwはそれぞれ例えばx=y=z=1/3またはその近傍、w=2またはその近傍)を用いることができる。
近傍とは例えば、その値の0.9倍より大きく1.1倍より小さい値である。
また、正極活物質として例えば、複合酸化物を複数組み合わせた固溶体を用いることができる。例えば、LiCo1/3Mn1/3Ni1/3とLiMnOの固溶体を正極活物質として用いることができる。
スピネル型の結晶構造を有する材料として例えば、LiMで表される複合酸化物を用いることができる。元素Mとしてマンガンを有することが好ましい。例えば、LiMnを用いることができる。また元素Mとして、マンガンに加えてニッケルを有することにより、二次電池の放電電圧が向上し、エネルギー密度が向上する場合があり、好ましい。また、LiMn等のマンガンを含むスピネル型の結晶構造を有するリチウム含有材料に、少量のニッケル酸リチウム(LiNiOやLiNi1-x(M=Co、Al等))を混合することにより、二次電池の特性を向上させることができ好ましい。
正極活物質は例えば、一次粒子の平均粒子径が、5nm以上100μm以下であることが好ましく、50nm以上50μm以下であることがより好ましく、100nm以上500nm以下であることがより好ましい。また比表面積が5m/g以上15m/g以下であることが好ましい。また、二次粒子の平均粒子径は、5μm以上50μm以下であることが好ましい。なお平均粒子径は、SEM(走査型電子顕微鏡)またはTEMによる観察、またはレーザ回折・散乱法を用いた粒度分布計等によって測定することができる。また比表面積は、ガス吸着法により測定することができる。
正極活物質の表面に炭素層などの導電性材料を設けてもよい。炭素層などの導電性材料を設けることで、電極の導電性を向上させることができる。例えば、正極活物質への炭素層の被覆は、正極活物質の焼成時にグルコース等の炭水化物を混合することで形成することができる。
ポリアニオン系の正極材料として例えば、酸素と、元素Xと、金属Aと、金属Mと、を有するポリアニオン系の正極材料を用いることができる。金属Mは鉄、マンガン、コバルト、ニッケル、チタン、バナジウム、ニオブの一以上であり、金属Aはリチウム、ナトリウム、マグネシウムの一以上であり、元素Xは硫黄、リン、モリブデン、タングステン、砒素、シリコンの一以上である。
また、複合材料(一般式LiMPO(Mは、Fe(II)、Mn(II)、Co(II)、Ni(II)の一以上))を用いることができる。一般式LiMPOの代表例としては、LiFePO、LiNiPO、LiCoPO、LiMnPO、LiFeNiPO、LiFeCoPO、LiFeMnPO、LiNiCoPO、LiNiMnPO(a+bは1以下、0<a<1、0<b<1)、LiFeNiCoPO、LiFeNiMnPO、LiNiCoMnPO(c+d+eは1以下、0<c<1、0<d<1、0<e<1)、LiFeNiCoMnPO(f+g+h+iは1以下、0<f<1、0<g<1、0<h<1、0<i<1)等のリチウム化合物を用いることができる。
特にLiFePOは、安全性、安定性、高容量密度、初期酸化(充電)時に引き抜けるリチウムイオンの存在等、正極活物質に求められる事項をバランスよく満たしているため、好ましい。
また、一般式Li(2-j)MSiO(Mは、Fe(II)、Mn(II)、Co(II)、Ni(II)の一以上、0≦j≦2)等の複合材料を用いることができる。一般式Li(2-j)MSiOの代表例としては、Li(2-j)FeSiO、Li(2-j)NiSiO、Li(2-j)CoSiO、Li(2-j)MnSiO、Li(2-j)FeNiSiO、Li(2-j)FeCoSiO、Li(2-j)FeMnSiO、Li(2-j)NiCoSiO、Li(2-j)NiMnSiO(k+lは1以下、0<k<1、0<l<1)、Li(2-j)FeNiCoSiO、Li(2-j)FeNiMnSiO、Li(2-j)NiCoMnSiO(m+n+qは1以下、0<m<1、0<n<1、0<q<1)、Li(2-j)FeNiCoMnSiO(r+s+t+uは1以下、0<r<1、0<s<1、0<t<1、0<u<1)等のリチウム化合物を材料として用いることができる。
また、A(XO(A=Li、Na、Mg、M=Fe、Mn、Ti、V、Nb、X=S、P、Mo、W、As、Si)の一般式で表されるナシコン型化合物を用いることができる。ナシコン型化合物としては、Fe(MnO、Fe(SO、LiFe(PO等がある。また、正極活物質として、LiMPOF、LiMP、LiMO(M=Fe、Mn)の一般式で表される化合物を用いることができる。
また、Vを有するポリアニオン系正極材料を用いることができる。代表例として、α-LiVOPO、β-LiVOPO、α1-LiVOPO、LiVPOF、LiVPOO、LiVP、LiVOSO、LiVOSiO、LiVMoO、等が挙げられる。
また、正極活物質として、NaFeF、FeF等のペロブスカイト型フッ化物、TiS、MoS等の金属カルコゲナイド(硫化物、セレン化物、テルル化物)、LiMVO等の逆スピネル型の結晶構造を有する酸化物、バナジウム酸化物系(V、V13、LiV等)、マンガン酸化物、有機硫黄化合物等の材料を用いることができる。
また、正極活物質として、一般式LiMBO(Mは、Fe(II)、Mn(II)、Co(II))で表されるホウ酸塩系正極材料を用いることができる。
また、正極活物質として、組成式LiMnで表すことができるリチウムマンガン複合酸化物を用いることができる。ここで、元素Mは、リチウム、マンガン以外から選ばれた金属元素、またはシリコン、リンを用いることが好ましく、ニッケルであることがさらに好ましい。また、リチウムマンガン複合酸化物の粒子全体を測定する場合、放電時に0<a/(b+c)<2、かつc>0、かつ0.26≦(b+c)/d<0.5を満たすことが好ましい。なお、高容量を発現させるために、表層部と中心部で、結晶構造、結晶方位または酸素含有量が異なる領域を有するリチウムマンガン複合酸化物とすることが好ましい。このようなリチウムマンガン複合酸化物とするためには例えば、1.6≦a≦1.848、0.19≦c/b≦0.935、2.5≦d≦3とすることが好ましい。さらに、Li1.68Mn0.8062Ni0.318の組成式であらわされるリチウムマンガン複合酸化物を用いることが特に好ましい。本明細書等において、Li1.68Mn0.8062Ni0.318の組成式であらわされるリチウムマンガン複合酸化物とは、原料材料の量の割合(モル比)を、LiCO:MnCO:NiO=0.84:0.8062:0.318とすることにより形成したリチウムマンガン複合酸化物をいう。そのため該リチウムマンガン複合酸化物は、組成式Li1.68Mn0.8062Ni0.318で表されるが、この組成からずれることもある。
なお、リチウムマンガン複合酸化物の粒子全体の金属、シリコン、リン等の組成は、例えばICP-MS(誘導結合プラズマ質量分析計)を用いて測定することができる。またリチウムマンガン複合酸化物の粒子全体の酸素の組成は、例えばEDX(エネルギー分散型X線分析法)を用いて測定することが可能である。また、ICP-MS分析と併用して、融解ガス分析、XAFS(X線吸収微細構造)分析の価数評価を用いることで求めることができる。なお、リチウムマンガン複合酸化物とは、少なくともリチウムとマンガンとを含む酸化物をいい、クロム、コバルト、アルミニウム、ニッケル、鉄、マグネシウム、モリブデン、亜鉛、インジウム、ガリウム、銅、チタン、ニオブ、シリコン、およびリンなどからなる群から選ばれる少なくとも一種の元素を含んでいてもよい。
結晶構造、結晶方位または酸素含有量が異なる領域を有するリチウムマンガン複合酸化物の粒子の断面図の例を図5に示す。
図5(A)に示すように、結晶構造、結晶方位または酸素含有量が異なる領域を有するリチウムマンガン複合酸化物は、領域331と、領域332と、領域333を有することが好ましい。領域332は、領域331の外側の少なくとも一部に接する。ここで、外側とは、粒子の表面により近いことを示す。また、領域333は、リチウムマンガン複合酸化物を有する粒子の、表面と一致する領域を有することが好ましい。
また、図5(B)に示すように、領域331は、領域332に覆われない領域を有してもよい。また、領域332は、領域333に覆われない領域を有してもよい。また、例えば領域331に領域333が接する領域を有してもよい。また、領域331は、領域332および領域333のいずれにも覆われない領域を有してもよい。
領域332は、領域331と異なる組成を有することが好ましい。
例えば、領域331と領域332の組成を分けて測定し、領域331がリチウム、マンガン、元素Mおよび酸素を有し、領域332がリチウム、マンガン、元素Mおよび酸素を有し、領域331のリチウム、マンガン、元素M、および酸素の原子数比はa1:b1:c1:d1で表され、領域332のリチウム、マンガン、元素M、および酸素の原子数比はa2:b2:c2:d2で表される場合について説明する。なお、領域331と領域332のそれぞれの組成は、例えばTEM(透過型電子顕微鏡)を用いたEDX(エネルギー分散型X線分析法)で測定することができる。EDXを用いた測定では、リチウムの組成の測定が困難な場合がある。そのため、以下では、領域331と領域332の組成の違いは、リチウム以外の元素について述べる。ここで、d1/(b1+c1)は2.2以上が好ましく、2.3以上であることがより好ましく、2.35以上3以下であることがさらに好ましい。また、d2/(b2+c2)は2.2未満であることが好ましく、2.1未満であることがより好ましく、1.1以上1.9以下であることがさらに好ましい。またこの場合でも、領域331と領域332を含むリチウムマンガン複合酸化物粒子全体の組成は、前述の0.26≦(b+c)/d<0.5を満たすことが好ましい。
また、領域332が有するマンガンは、領域331が有するマンガンと異なる価数を有してもよい。また、領域332が有する元素Mは、領域331が有する元素Mと異なる価数を有してもよい。
より具体的には、領域331は、層状岩塩型の結晶構造を有するリチウムマンガン複合酸化物であることが好ましい。また領域332は、スピネル型の結晶構造を有するリチウムマンガン複合酸化物であることが好ましい。
ここで、各領域の組成や、元素の価数に空間的な分布がある場合には、例えば複数の箇所についてその組成や価数を評価し、その平均値を算出し、該領域の組成や価数としてもよい。
また、領域332と領域331との間に、遷移層を有してもよい。ここで遷移層とは、例えば組成が連続的、あるいは段階的に変化する領域である。または、遷移層とは、結晶構造が連続的、あるいは段階的に変化する領域である。または、遷移層とは、結晶の格子定数が連続的、あるいは段階的に変化する領域である。または、領域332と領域331との間に、混合層を有してもよい。ここで混合層とは、例えば異なる結晶方位を有する2以上の結晶が混合する場合を指す。あるいは、混合層とは、例えば異なる結晶構造を有する2以上の結晶が混合する場合を指す。あるいは、混合層とは、例えば異なる組成を有する2以上の結晶が混合する場合を指す。
領域333には、炭素または金属化合物を用いることができる。ここで、金属としては例えばコバルト、アルミニウム、ニッケル、鉄、マンガン、チタン、亜鉛、リチウム等が挙げられる。金属化合物の一例として、これらの金属の酸化物や、フッ化物などが挙げられる。
領域333は、上記の中でも、炭素を有することが特に好ましい。炭素は導電性が高いため、炭素で被覆された粒子を蓄電装置の電極に用いることにより、例えば電極の抵抗を低くすることができる。また、領域333はグラフェン化合物を有することが好ましい。領域333にグラフェン化合物を用いることにより、リチウムマンガン複合酸化物の粒子を効率よく被覆することができる。グラフェン化合物については後述する。また、領域333はより具体的には例えば、グラフェンを有してもよく、酸化グラフェンを有してもよい。また、グラフェンとして、酸化グラフェンを還元して得られるグラフェンを用いることが好ましい。グラフェンは、高い導電性を有するという優れた電気特性と、高い柔軟性および高い機械的強度を有するという優れた物理特性と、を有する。領域333に酸化グラフェンを用い、還元を行うことで、領域333と接する領域332が酸化される場合がある。
領域333が、グラフェン化合物を有することで、リチウムマンガン複合酸化物を正極材料に用いた二次電池の、サイクル特性を向上させることができる。
炭素を含む層の膜厚は、0.4nm以上40nm以下とすることが好ましい。
なお、キャリアイオンが、リチウムイオン以外のアルカリ金属イオンや、アルカリ土類金属イオンの場合、正極活物質として、リチウムの代わりに、アルカリ金属(例えば、ナトリウムやカリウム等)、アルカリ土類金属(例えば、カルシウム、ストロンチウム、バリウム、ベリリウム、マグネシウム等)を用いてもよい。例えばナトリウム含有層状酸化物を用いることができる。
ナトリウムを有する材料として例えば、NaFeOや、Na2/3[Fe1/2Mn1/2]O、Na2/3[Ni1/3Mn2/3]O、NaFe(SO、Na(PO、NaFePOF、NaVPOF、NaMPO(Mは、Fe(II)、Mn(II)、Co(II)、Ni(II))、NaFePOF、NaCo(PO、などのナトリウム含有酸化物を正極活物質として用いることができる。
また、正極活物質として、リチウム含有金属硫化物を用いることができる。例えば、LiTiS、LiNbSなどが挙げられる。
本実施の形態は、他の実施の形態と適宜組み合わせて実施することが可能である。
(実施の形態2)
本実施の形態では、本発明の一態様のグラフェン化合物について説明する。
<グラフェン化合物>
まず、グラフェンとグラフェン化合物について説明する。
グラフェンとは、炭素原子がsp混成軌道で結合している1原子層のシートであり、炭素原子が平面上に六角形格子構造で配列している。ダイヤモンド以上に炭素原子間の結合が強く、変形や引っ張りに非常に大きな耐性を有している材料である。一方で、電子伝導性が極めて高く、また、リチウムイオンは十分には透過しない。
炭素原子が1原子層配列したグラフェンを、単層グラフェンと呼ぶ場合がある。グラフェンが2層以上100層以下重なったものを、マルチグラフェンと呼ぶ場合がある。単層グラフェンおよびマルチグラフェンは、例えば、長手方向、あるいは面における長軸の長さが50nm以上100μm以下、又は800nm以上50μm以下である。なお、本明細書において、グラフェンには、単層グラフェンおよびマルチグラフェンを含む。
しかし、一般的にグラフェンは様々な種類の欠陥を有している場合がある。例えば、格子を形成する炭素が欠けていることがあり、また、格子に六員環以外に五員環や七員環が存在することがある。また、炭素又は炭素以外の元素を含む官能基を有する場合がある。そのような欠陥サイトを利用して原子や原子団をグラフェンと結合させて、所望の性質を発現させることができる。
本明細書等において、グラフェンを基本骨格として有する化合物をグラフェン化合物(GC:Graphene Compound)と呼ぶ。なお、本明細書において、単層グラフェンおよびマルチグラフェンはそれぞれグラフェン化合物に含まれる。
以下に、グラフェン化合物について詳細を説明する。
グラフェン化合物は例えば、グラフェンが炭素以外の原子、又は炭素以外の原子を有する原子団に化学修飾された化合物である。また、グラフェンが、アルキル基、アルキレン基等の炭素を主とした原子団に化学修飾された化合物であってもよい。なお、グラフェンを化学修飾する原子団を、化学修飾基、修飾基、置換基、官能基、又は特性基等と呼ぶ場合がある。ここで、本明細書等において化学修飾とは、置換反応、付加反応、又はその他の反応により、グラフェン、マルチグラフェン、グラフェン化合物、又は酸化グラフェン(後述)に、原子団を導入することをいう。
化学修飾は、1種類の原子又は原子団を導入するだけでなく、複数の種類の化学修飾を施し、複数の種類の原子又は原子団を導入することも指す。また、化学修飾は、水素、ハロゲン原子、炭化水素基、芳香族炭化水素基、複素環化合物基を付加する反応も含まれる。また、グラフェンに原子団を導入する反応として、付加反応、置換反応等が挙げられる。また、フリーデル・クラフツ(Friedel-Crafts)反応、ビンゲル(Bingel)反応等を行ってもよい。グラフェンに対してラジカル付加反応を行ってもよく、シクロ付加反応によりグラフェンと原子団との間に環を形成してもよい。
なお、グラフェンの表面と裏面は、それぞれ異なる原子や原子団により化学修飾されていてもよい。また、マルチグラフェンにおいては、それぞれの層が異なる原子や原子団に化学修飾されていてもよい。
上述の原子又は原子団により化学修飾されたグラフェン化合物の一例として、酸素又は酸素を含む官能基に化学修飾されたグラフェンが挙げられる。酸素又は酸素を有する官能基により化学修飾されたグラフェン化合物を、酸化グラフェン(GO:Graphene Oxide)と呼ぶ場合がある。なお、本明細書において、酸化グラフェンは多層の酸化グラフェンを含むものとする。
酸化グラフェンの例を構造式(300)に示す。構造式(300)にはグラフェン層(G layer)がエポキシ基、ヒドロキシ基、カルボキシ基を有する例を示したが、酸化グラフェンが有する官能基の種類や数は、これに限定されない。
Figure 0007153432000004
酸化グラフェンの簡略化した構造を一般式(G3)に示す。一般式(G3)において、G layerはグラフェン層を表す。グラフェン層は、炭素原子が結合して形成されるシート状の層を示しており、層の数は単数でも複数でもよく、グラフェン層が欠陥や官能基を有してもよい。以降、酸化グラフェンとして、一般式(G3)を用いて説明する。なお、一般式(G3)はヒドロキシ基の数を2個示しているが、本発明においてグラフェン層が有する官能基の種類や数は、これに限定されない。
Figure 0007153432000005
次に、酸化グラフェンの作製方法の一例を説明する。酸化グラフェンは、上記グラフェン又はマルチグラフェンを酸化して得ることができる。または、酸化グラフェンは、酸化グラファイトを分離して得ることができる。酸化グラファイトは、グラファイトを酸化して得ることができる。ここで、酸化グラフェンに、さらに上述の原子又は原子団を化学修飾してもよい。
酸化グラフェンを還元して得られる化合物を、RGO(Reduced Graphene Oxide)と呼ぶ場合がある。なお、RGOには、酸化グラフェンに含まれる酸素は全て脱離されずに、一部の酸素又は酸素を含む原子団が炭素に結合した状態で残存する場合がある。
グラフェン化合物は、複数のグラフェン化合物が部分的に重なりながら1枚のシート状となっていてもよい。このようなグラフェン化合物を、グラフェン化合物シートと呼ぶ場合がある。グラフェン化合物シートは例えば、厚さが0.33nm以上10mm以下、より好ましくは0.34nmより大きく10μm以下の領域を有する。グラフェン化合物シートは、炭素以外の原子、炭素以外の原子を有する原子団、又はアルキル基等の炭素を主とした原子団等により化学修飾されていてもよい。また、グラフェン化合物シートが有する複数の層のそれぞれにおいて、異なる原子又は原子団により化学修飾されていてもよい。
グラフェン化合物は、炭素で構成される六員環の他に、炭素で構成される五員環や、炭素で構成される七員環以上の多員環を有してもよい。ここで、七員環以上の多員環の近傍では、リチウムイオンが通過可能な領域が生じる場合がある。
また例えば、グラフェン化合物は、複数のグラフェン化合物が集まって、シート状の形状となっていてもよい。
グラフェン化合物は平面的な形状を有するため、面接触を可能とする。
<化学修飾されたグラフェン化合物>
次に、化学修飾されたグラフェン化合物について説明する。
本発明の一態様に係るグラフェン化合物は例えば、化学修飾によりカルボニル基、エステル基、カルボキシル基、エーテル基、またはエポキシ基、等から選ばれる一以上を含む官能基を有するグラフェン化合物であることが好ましく、エステル基またはカルボキシル基を有するグラフェン化合物であることがより好ましい。ここで修飾剤中のエステル基又はカルボキシル基が多くなることにより修飾剤の分子量が大きくなり、グラフェン化合物の合成を行う過程で、グラフェン又は酸化グラフェンに化学修飾を施す場合に、修飾剤が溶媒へ溶解しづらくなる場合がある。よってグラフェン又は酸化グラフェンを化学修飾する際の反応性が悪くなる場合がある。また、エステル基が多くなると、加水分解が発生しやすくなる場合がある。従って、修飾剤中のエステル基又はカルボキシル基は1以上10以下が好ましい。
また、本発明の一態様に係るグラフェン化合物は例えば、ポリエチレンオキシド(PEO)のようなポリマー材料と比較して、耐熱性が高い。特にリチウムイオン電池は内部の構造物の損傷により予期せぬ反応が生じると、発火や爆発といった大事故に発展する可能性があるため、耐熱性が高いことが重要である。
本発明の一態様のグラフェン化合物は例えば、グラフェン層と、置換または無置換の鎖状の基と、を有し、グラフェン層が、Siを有する置換基を介して鎖状の基と結合される。ここで一般式(G1)に示すようにSiを有する置換基は例えば、Siと、Oと、を有する。本発明の一態様のグラフェン化合物は例えば一般式(G1)に示すように、シリコンと、該シリコンと結合される酸素と、を有し、該シリコンはエステル基を有する鎖状の基と結合される。
本発明の一態様は、下記一般式(G1)又は一般式(G2)で表されるグラフェン化合物である。
Figure 0007153432000006
Figure 0007153432000007
一般式(G1)および一般式(G2)において、G layerはグラフェン層を表す。
本発明の一態様のグラフェン化合物が一般式(G1)および一般式(G2)の構造を有することにより、GOに比べて耐還元性が向上する場合がある。
一般式(G1)および一般式(G2)において、Rは置換又は無置換のアルキレン基を表し、Rは分岐していても良い。また、Rは水素、又は置換若しくは無置換のアルキル基を表し、Rは分岐していても良い。なお、一般式(G1)は、エステル基を有することから、エステルに分類される。一般式(G2)において、Rがアルキル基の場合、一般式(G2)はエステル基を有することから、エステルに分類される。一般式(G2)において、Rが水素の場合、一般式(G2)はカルボキシル基を有することから、カルボン酸に分類される。
上記一般式(G1)または上記一般式(G2)における置換とは、好ましくは、メチル基、エチル基、n-プロピル基、iso-プロピル基、sec-ブチル基、tert-ブチル基、n-ペンチル基、n-ヘキシル基のような炭素数1乃至炭素数6のアルキル基や、フェニル基、o-トリル基、m-トリル基、p-トリル基、1-ナフチル基、2-ナフチル基のような炭素数6乃至炭素数10のアリール基のような置換基による置換を表す。また、フッ素またはトリフルオロメタンのような置換基による置換を表す。
また、好ましくは、Rは置換又は無置換の炭素数1乃至炭素数20のアルキレン基である。また、好ましくは、Rは水素、又は置換若しくは無置換の炭素数1乃至炭素数20のアルキル基である。グラフェン又は酸化グラフェンと比較して、化学修飾したグラフェン化合物は層間距離が大きくなる場合がある。層間距離が大きいほど、電子伝導性が低くなる。所望の電子伝導性となる層間距離になるように、R及びRを適宜選択すればよい。
グラフェン化合物の電子伝導性を低くすることにより、例えば、電極210が層213を有することにより電極210の表面の電界が緩和される場合がある。
また、好ましくは、Rは置換又は無置換の炭素数1乃至炭素数11のアルキレン基である。また、好ましくは、Rは置換又は無置換の炭素数1乃至炭素数11のアルキル基である。例えば溶媒への分散性の観点から該炭素数が好ましい。
本発明の一態様に係るグラフェン化合物のグラフェンは、その分子量又は構造をただ一つには限定されず、あらゆる大きさのグラフェンが適用可能である。そのため、本発明の一態様に係るグラフェン化合物の分子構造を詳細に特定し、それを完全に表現することは不可能である。そのため本発明の一態様に係る化学修飾されたグラフェン化合物を、少なくとも1つ以上のエステル基を含む置換若しくは無置換の基、又はカルボキシル基を含む置換若しくは無置換の基を有するケイ素化合物により化学修飾されたグラフェン化合物、などと製造方法的な表現により特定することが現実的である場合があり、そのように表現しないことが不可能又は非実際的である場合がある。また、グラフェン層とシリコンは、上式のように2つのSi-O結合によりグラフェン層に固定化されている場合もあるが、Si-O結合が1つ又は3つにより固定化されている場合もある。また、結合はSi-O結合に限定されるものでは無く、その他の結合により固定化されていてもよい。また、グラフェン層と結合していないシリコンには、ヒドロキシ基やアルコキシ基が結合している場合もある。
または、本発明の一態様に係る化学修飾されたグラフェン化合物は、下記一般式(G3)で表されるグラフェン化合物である。
Figure 0007153432000008
一般式(G3)においてG layerは、グラフェン層を表す。また、一般式(G3)においてRは少なくとも2つ以上のエーテル結合を有する置換または無置換の鎖状の基を表し、Rは分岐していても良い。また、G layerとSiは、上式のように2つのSi-O結合によりG layerに固定化されている場合もあるが、Si-O結合が1つ又は3つにより固定化されている場合もある。また、結合はSi-O結合に限定されるものでは無く、その他の結合により固定化されていてもよい。
本発明の一態様のグラフェン化合物が一般式(G3)の構造を有することにより、GOに比べて耐還元性が向上する場合がある。
<化学修飾>
次に、グラフェン又は酸化グラフェンに化学修飾を施し、化学修飾されたグラフェン化合物を製造する方法について、下記合成スキーム(A-1)及び合成スキーム(A-2)を用いて説明する。
Figure 0007153432000009
Figure 0007153432000010
合成スキーム(A-1)及び合成スキーム(A-2)において、G layerはグラフェン層を表す。
合成スキーム(A-1)及び合成スキーム(A-2)に示すように、グラフェン又は酸化グラフェンに対し、ルイス塩基の存在下、1つ以上のエステル基又はカルボキシル基を含むケイ素化合物を反応させることで、化学修飾された目的化合物を得ることができる。この様な反応をシリル化と呼ぶ場合がある。
シリル化とは、ヒドロキシ基、アミノ基、カルボキシル基、アミド基またはメルカプト基などの水素原子をケイ素原子に置換することを示す。シリル化反応に使用されるケイ素化合物をシリル化剤と呼ぶ場合がある。
ルイス塩基として、アルキルアミン又は複素環式芳香族化合物を用いればよい。具体的には、ブチルアミン、ペンチルアミン、ヘキシルアミン、ジエチルアミン、ジプロピルアミン、ジブチルアミン、トリエチルアミン、トリプロピルアミン、ピリジンから選ばれる一以上を用いればよい。
また、この反応に対して不活性なガス、例えば窒素またはアルゴンなどの希ガスの雰囲気下で行うことが好ましい。窒素またはアルゴン雰囲気下では、ケイ素化合物の加水分解またはルイス塩基の酸化などを避けることができ、好ましい。反応の雰囲気は窒素またはアルゴンに限らず、例えば大気でもよい。
合成スキーム(A-1)及び合成スキーム(A-2)において、Rは置換又は無置換のアルキレン基を表し、Rは分岐していても良い。Rは水素、又は置換若しくは無置換のアルキル基を表し、Rは分岐していても良い。
また、好ましくは、Rは置換又は無置換の炭素数1乃至炭素数20のアルキレン基である。また、好ましくは、Rは水素、又は置換若しくは無置換の炭素数1乃至炭素数20のアルキル基である。
また、好ましくは、Rは置換又は無置換の炭素数1乃至炭素数11のアルキレン基である。また、好ましくは、Rは置換又は無置換の炭素数1乃至炭素数11のアルキル基である。
合成スキーム(A-1)及び合成スキーム(A-2)において、用いることができるルイス塩基としては、ブチルアミン、ペンチルアミン、ヘキシルアミン、ジエチルアミン、ジプロピルアミン、ジブチルアミン、トリエチルアミン、トリプロピルアミン、ピリジン等の有機塩基などが挙げられる。ただし、用いることができるルイス塩基はこれらに限られるものでは無い。
合成スキーム(A-1)及び合成スキーム(A-2)において、用いることができる溶媒としては、トルエン、キシレン、メシチレン等の芳香族炭化水素や、ヘキサン、ヘプタン等の炭化水素や、エチレングリコールジメチルエーテル等のエーテル類などが挙げられる。ただし、用いることができる溶媒はこれらに限られるものでは無い。特に、ルイス塩基に1級アミンを用い、溶媒に芳香族炭化水素を用いる組み合わせがより好ましい。
合成スキーム(A-1)及び合成スキーム(A-2)に示すケイ素化合物以外にもトリアルコキシシリル基を有するものを用いてもよい。しかし、これらに限定されるものではない。
<具体例>
次に、1つ以上のエステル基又はカルボキシル基を有する鎖状のケイ素化合物の例について以下に示す。これらのケイ素化合物を用いることで、1つ以上のエステル基又はカルボキシル基を有する鎖状の基により化学修飾されたグラフェン化合物を作製することができる。なお、化合物100乃至化合物149、及び化合物156乃至化合物161は、エステル基を有し、エステルに分類される。化合物150乃至化合物155は、カルボキシル基を有し、カルボン酸に分類される。
Figure 0007153432000011
Figure 0007153432000012
Figure 0007153432000013
Figure 0007153432000014
Figure 0007153432000015
以上のようなケイ素化合物を用いることにより、少なくとも1つ以上のエステル基又はカルボキシル基を含む鎖状の基を有するグラフェン化合物を製造することができる。ただし、本発明の一態様に係るグラフェン化合物は、上述のようなケイ素化合物を用いて作製されることには限定されない。
次に、2つ以上のエーテル結合を有する鎖状の基を含むシリル化剤の例について以下に示す。これらのシリル化剤を用いることで、エーテル結合を有する鎖状の基により化学修飾されたグラフェン化合物を作製することができる。
Figure 0007153432000016
Figure 0007153432000017
Figure 0007153432000018
Figure 0007153432000019
Figure 0007153432000020
Figure 0007153432000021
なお、本実施の形態において、本発明の一態様について述べた。または、他の実施の形態において、本発明の一態様について述べる。ただし、本発明の一態様は、これらに限定されない。例えば、本発明の一態様として、少なくとも1つ以上のエステル基又はカルボキシル基を含む鎖状の基を有するグラフェン化合物の例を示したが、本発明の一態様は、これに限定されない。
本実施の形態は、他の実施の形態と適宜組み合わせて実施することが可能である。
(実施の形態3)
本実施の形態では、本発明の一態様の電極が有することが好ましい活物質、結着剤、導電助剤、および集電体について説明する。
本発明の一態様の電極は、活物質を有する。また、本発明の一態様の電極は、結着剤を有してもよい。また、本発明の一態様の正極は、導電助剤を有してもよい。
本発明の一態様の電極が正極である場合には、活物質として正極活物質を有する。正極活物質については先の実施の形態に述べた正極活物質を用いることが好ましい。
また例えば、先の実施の形態で述べた電極210が正極の場合、電極220が負極であることが好ましい。
本発明の一態様の電極が負極である場合には、活物質として負極活物質を有する。
<負極活物質>
電極が有する負極活物質として、例えば炭素系材料や合金系材料等を用いることができる。
炭素系材料としては、黒鉛、易黒鉛化性炭素(ソフトカーボン)、難黒鉛化性炭素(ハードカーボン)、カーボンナノチューブ、グラフェン、カーボンブラック等を用いればよい。
黒鉛としては、人造黒鉛や、天然黒鉛等が挙げられる。人造黒鉛としては例えば、メソカーボンマイクロビーズ(MCMB)、コークス系人造黒鉛、ピッチ系人造黒鉛等が挙げられる。ここで人造黒鉛として、球状の形状を有する球状黒鉛を用いることができる。例えば、MCMBは球状の形状を有する場合があり、好ましい。また、MCMBはその表面積を小さくすることが比較的容易であり、好ましい場合がある。天然黒鉛としては例えば、鱗片状黒鉛、球状化天然黒鉛等が挙げられる。
黒鉛はリチウムイオンが黒鉛に挿入されたとき(リチウム-黒鉛層間化合物の生成時)にリチウム金属と同程度に低い電位を示す(0.05以上0.3V以下 vs.Li/Li)。これにより、リチウムイオン二次電池は高い作動電圧を示すことができる。さらに、黒鉛は、単位体積当たりの容量が比較的高い、体積膨張が比較的小さい、安価である、リチウム金属に比べて安全性が高い等の利点を有するため、好ましい。
ここで、黒鉛にリチウムイオンが挿入されたときには、例えば黒鉛の層間距離は、0.3354nmが0.370nmへと増加することが知られている。つまり、層間距離が約11%増加する。
負極活物質として、リチウムとの合金化・脱合金化反応により充放電反応を行うことが可能な元素を用いることができる。例えば、シリコン、スズ、ガリウム、アルミニウム、ゲルマニウム、鉛、アンチモン、ビスマス、銀、亜鉛、カドミウム、インジウム等のうち少なくとも一つを含む材料を用いることができる。このような元素は炭素と比べて容量が大きく、特にシリコンは理論容量が4200mAh/gと高い。このため、負極活物質にシリコンを用いることが好ましい。また、これらの元素を有する化合物を用いてもよい。例えば、SiO、MgSi、MgGe、SnO、SnO、MgSn、SnS、VSn、FeSn、CoSn、NiSn、CuSn、AgSn、AgSb、NiMnSb、CeSb、LaSn、LaCoSn、CoSb、InSb、SbSn等がある。ここで、リチウムとの合金化・脱合金化反応により充放電反応を行うことが可能な元素、および該元素を有する化合物等を合金系材料と呼ぶ場合がある。
また本明細書等において、SiOは例えば一酸化シリコンを指す。あるいはSiOは、SiOxと表すこともできる。ここでxは1近傍の値を有することが好ましい。例えばxは、0.2以上1.5以下が好ましく、0.3以上1.2以下がより好ましい。
また、本発明の一態様の負極活物質は、シリコンと、リチウムと、酸素と、を有してもよい。例えば、シリコンと、該シリコンの外側に位置するリチウムシリコン酸化物と、を有してもよい。
また、負極活物質として、二酸化チタン(TiO)、リチウムチタン酸化物(LiTi12)、リチウム-黒鉛層間化合物(Li)、五酸化ニオブ(Nb)、酸化タングステン(WO)、酸化モリブデン(MoO)等の酸化物を用いることができる。
また、負極活物質として、リチウムと遷移金属の複窒化物である、LiN型構造をもつLi(3-x)N(M=Co、Ni、Cu)を用いることができる。例えば、Li2.6Co0.4は大きな充放電容量(900mAh/g、1890mAh/cm)を示し好ましい。
リチウムと遷移金属の複窒化物を用いると、負極活物質中にリチウムイオンを含むため、正極活物質としてリチウムイオンを含まないV、Cr等の材料と組み合わせることができ好ましい。なお、正極活物質にリチウムイオンを含む材料を用いる場合でも、あらかじめ正極活物質に含まれるリチウムイオンを脱離させることで、負極活物質としてリチウムと遷移金属の複窒化物を用いることができる。
また、コンバージョン反応が生じる材料を負極活物質として用いることもできる。例えば、酸化コバルト(CoO)、酸化ニッケル(NiO)、酸化鉄(FeO)等の、リチウムとの合金を作らない遷移金属酸化物を負極活物質に用いてもよい。コンバージョン反応が生じる材料としては、さらに、Fe、CuO、CuO、RuO、Cr等の酸化物、CoS0.89、NiS、CuS等の硫化物、Zn、CuN、Ge等の窒化物、NiP、FeP、CoP等のリン化物、FeF、BiF等のフッ化物でも起こる。
負極活物質は、反応電位が低いほど、蓄電装置の電圧を高めることができるため好ましい。一方、電位が低い場合には、電解液を還元する力も強まるため、例えば電解液に用いる有機溶媒等は還元分解される恐れがある。電解液が電気分解されない電位の幅を電位窓(potential window)という。本来、負極は、その電極電位が電解液の電位窓内にあることが好ましいが、例えばリチウムイオン二次電池やリチウムイオンキャパシタの負極に用いる活物質の多くは、その電位はほぼ全ての電解液の電位窓を越えている。特に黒鉛や、シリコンなどの反応電位が低い材料では、蓄電装置の電圧を高くできる利点がある一方で、電解液の還元分解がよりしやすい問題がある。
<結着剤>
電極が有する結着剤として、スチレン-ブタジエンゴム(SBR)、スチレン・イソプレン・スチレンゴム、アクリロニトリル・ブタジエンゴム、ブタジエンゴム、エチレン・プロピレン・ジエン共重合体などのジエン系のゴム材料を用いることが好ましい。また結着剤として、フッ素ゴムを用いることができる。
また、結着剤としては、例えば水溶性の高分子を用いることが好ましい。水溶性の高分子としては、例えば多糖類などを用いることができる。多糖類としては、カルボキシメチルセルロース(CMC)、メチルセルロース、エチルセルロース、ヒドロキシプロピルセルロース、ジアセチルセルロース、再生セルロースなどのセルロース誘導体や、澱粉などを用いることができる。また、これらの水溶性の高分子を、前述のゴム材料と併用して用いると、さらに好ましい。
または、結着剤としては、ポリスチレン、ポリアクリル酸メチル、ポリメタクリル酸メチル(ポリメチルメタクリレート(PMMA))、ポリアクリル酸ナトリウム、ポリビニルアルコール(PVA)、ポリエチレンオキシド(PEO)、ポリプロピレンオキシド、ポリイミド、ポリ塩化ビニル、ポリテトラフルオロエチレン、ポリエチレン、ポリプロピレン、ポリイソブチレン、ポリエチレンテレフタレート、ナイロン、ポリフッ化ビニリデン(PVdF)、ポリアクリロニトリル(PAN)、エチレンプロピレンジエンポリマー、ポリ酢酸ビニル、ニトロセルロース等の材料を用いることが好ましい。
結着剤は上記のうち二種類以上を組み合わせて使用してもよい。
活物質層102の総量に対する結着剤の含有量は、1wt%以上10wt%以下が好ましく、2wt%以上8wt%以下がより好ましく、3wt%以上5wt%以下がさらに好ましい。また、活物質層102の総量に対する導電助剤の含有量は、1wt%以上10wt%以下が好ましく、1wt%以上5wt%以下がより好ましい。
<導電助剤>
電極が有する導電助剤として、例えば炭素材料、金属材料、又は導電性セラミックス材料等を用いることができる。また、導電助剤として繊維状の材料を用いてもよい。活物質層の総量に対する導電助剤の含有量は、1wt%以上10wt%以下が好ましく、1wt%以上5wt%以下がより好ましい。
導電助剤により、電極中に電気伝導のネットワークを形成することができる。導電助剤により、正極活物質どうしの電気伝導の経路を維持することができる。活物質層中に導電助剤を添加することにより、高い電気伝導性を有する活物質層を実現することができる。
導電助剤としては、例えば天然黒鉛、メソカーボンマイクロビーズ等の人造黒鉛、炭素繊維などを用いることができる。炭素繊維としては、例えばメソフェーズピッチ系炭素繊維、等方性ピッチ系炭素繊維等の炭素繊維を用いることができる。また炭素繊維として、カーボンナノファイバーやカーボンナノチューブなどを用いることができる。カーボンナノチューブは、例えば気相成長法などで作製することができる。また、導電助剤として、例えばカーボンブラック(アセチレンブラック(AB)など)、グラファイト(黒鉛)粒子、グラフェン、フラーレンなどの炭素材料を用いることができる。また、例えば、銅、ニッケル、アルミニウム、銀、金などの金属粉末や金属繊維、導電性セラミックス材料等を用いることができる。
導電助剤としてグラフェン化合物を用いてもよい。
グラフェン化合物は、高い導電性を有するという優れた電気特性と、高い柔軟性および高い機械的強度を有するという優れた物理特性と、を有する場合がある。また、グラフェン化合物は平面的な形状を有する。グラフェン化合物は、接触抵抗の低い面接触を可能とする。また、薄くても導電性が非常に高い場合があり、少ない量で効率よく活物質層内で導電パスを形成することができる。そのため、グラフェン化合物を導電助剤として用いることにより、活物質と導電助剤との接触面積を増大させることができるため好ましい。また、電気的な抵抗を減少できる場合があるため好ましい。ここでグラフェン化合物として例えば、グラフェンまたはマルチグラフェンまたはRGOを用いることが特に好ましい。
粒径の小さい活物質、例えば1μm以下の活物質を用いる場合には、活物質の比表面積が大きく、活物質同士を繋ぐ導電パスがより多く必要となる。このような場合には、少ない量でも効率よく導電パスを形成することができるグラフェン化合物を用いることが、特に好ましい。
以下では一例として、活物質層102に、導電助剤としてグラフェン化合物を用いる場合の断面構成例を説明する。
図6(A)に、活物質層102の縦断面図を示す。活物質層102は、粒状の活物質103と、導電助剤としてのグラフェン化合物321と、結着剤104と、を含む。ここで、グラフェン化合物321として例えばグラフェンまたはマルチグラフェンを用いればよい。ここで、グラフェン化合物321はシート状の形状を有することが好ましい。また、グラフェン化合物321は、複数のマルチグラフェン、または/および複数のグラフェンが部分的に重なりシート状となっていてもよい。
活物質層102の縦断面においては、図6(A)に示すように、活物質層102の内部において概略均一にシート状のグラフェン化合物321が分散する。図6(A)においてはグラフェン化合物321を模式的に太線で表しているが、実際には炭素分子の単層又は多層の厚みを有する薄膜である。複数のグラフェン化合物321は、複数の粒状の活物質103を包むように、覆うように、あるいは複数の粒状の活物質103の表面上に張り付くように形成されているため、互いに面接触している。
ここで、複数のグラフェン化合物同士が結合することにより、網目状のグラフェン化合物シート(以下グラフェン化合物ネットまたはグラフェンネットと呼ぶ)を形成することができる。活物質をグラフェンネットが被覆する場合に、グラフェンネットは活物質同士を結合するバインダーとしても機能することができる。よって、バインダーの量を少なくすることができる、又は使用しないことができるため、電極体積や電極重量に占める活物質の比率を向上させることができる。すなわち、蓄電装置の容量を増加させることができる。
ここで、グラフェン化合物321として酸化グラフェンを用い、活物質と混合して活物質層102となる層を形成後、還元することが好ましい。グラフェン化合物321の形成に、極性溶媒中での分散性が極めて高い酸化グラフェンを用いることにより、グラフェン化合物321を活物質層102の内部において概略均一に分散させることができる。均一に分散した酸化グラフェンを含有する分散媒から溶媒を揮発除去し、酸化グラフェンを還元するため、活物質層102に残留するグラフェン化合物321は部分的に重なり合い、互いに面接触する程度に分散していることで三次元的な導電パスを形成することができる。なお、酸化グラフェンの還元は、例えば熱処理により行ってもよいし、還元剤を用いて行ってもよい。
従って、活物質と点接触するアセチレンブラック等の粒状の導電助剤と異なり、グラフェン化合物321は接触抵抗の低い面接触を可能とするものであるから、通常の導電助剤よりも少量で粒状の活物質103とグラフェン化合物321との電気伝導性を向上させることができる。よって、活物質103の活物質層102における比率を増加させることができる。これにより、蓄電装置の放電容量を増加させることができる。
図6(B)は、図6(A)の一点鎖線で囲まれる領域の拡大図を示す。結着剤104は、活物質103の表面に層状に存在してもよい。グラフェン化合物321は、結着剤104の表面に接する領域を有することが好ましい。結着剤104は例えば、活物質103と、グラフェン化合物321との間に位置する。また好ましくは、活物質103上に結着剤104が設けられ、さらに結着剤104上にグラフェン化合物321が設けられる。
<集電体>
集電体101には、ステンレス、金、白金、アルミニウム、チタン等の金属、及びこれらの合金など、導電性が高い材料をもちいることができる。また集電体101を正極に用いる場合には、正極の電位で溶出しないことが好ましい。また集電体101を負極に用いる場合には、リチウム等のキャリアイオンと合金化しないことが好ましい。また、シリコン、チタン、ネオジム、スカンジウム、モリブデンなどの耐熱性を向上させる元素が添加されたアルミニウム合金を用いることができる。また、シリコンと反応してシリサイドを形成する金属元素で形成してもよい。シリコンと反応してシリサイドを形成する金属元素としては、ジルコニウム、チタン、ハフニウム、バナジウム、ニオブ、タンタル、クロム、モリブデン、タングステン、コバルト、ニッケル等がある。集電体101は、箔状、板状(シート状)、網状、パンチングメタル状、エキスパンドメタル状等の形状を適宜用いることができる。集電体101は、厚みが5μm以上30μm以下のものを用いるとよい。
本実施の形態は、他の実施の形態と適宜組み合わせて実施することが可能である。
(実施の形態4)
本実施の形態では、本発明の一態様の電極を適用することができる蓄電装置について説明する。
本発明の一態様の蓄電装置の一例として、リチウムイオン電池等の電気化学反応を用いる二次電池、電気二重層キャパシタ、レドックスキャパシタ等の電気化学キャパシタ、空気電池、燃料電池等が挙げられる。
〈薄型蓄電池〉
図7に、蓄電装置の一例として、薄型の蓄電池について示す。薄型の蓄電池は、可撓性を有する構成とすれば、可撓性を有する部位を少なくとも一部有する電子機器に実装すれば、電子機器の変形に合わせて蓄電池も曲げることもできる。
図7は薄型の蓄電池である蓄電池500の外観図を示す。また、図8(A)および図8(B)は、図7に一点鎖線で示すA1-A2断面およびB1-B2断面を示す。蓄電池500は、正極集電体501および正極活物質層502を有する正極503と、負極集電体504および負極活物質層505を有する負極506と、セパレータ507と、電解液508と、外装体509と、を有する。外装体509内に設けられた正極503と負極506との間にセパレータ507が設置されている。また、外装体509内は、電解液508で満たされている。
電解液508の溶媒としては、非プロトン性有機溶媒が好ましく、例えば、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、ブチレンカーボネート、クロロエチレンカーボネート、ビニレンカーボネート、γ-ブチロラクトン、γ-バレロラクトン、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、エチルメチルカーボネート(EMC)、ギ酸メチル、酢酸メチル、酪酸メチル、1,3-ジオキサン、1,4-ジオキサン、ジメトキシエタン(DME)、ジメチルスルホキシド、ジエチルエーテル、メチルジグライム、アセトニトリル、ベンゾニトリル、テトラヒドロフラン、スルホラン、スルトン等の1種、又はこれらのうちの2種以上を任意の組み合わせおよび比率で用いることができる。
また、電解液の溶媒としてゲル化される高分子材料を用いることで、漏液性等に対する安全性が高まる。また、二次電池の薄型化および軽量化が可能である。ゲル化される高分子材料の代表例としては、シリコーンゲル、アクリルゲル、アクリロニトリルゲル、ポリエチレンオキサイド系ゲル、ポリプロピレンオキサイド系ゲル、フッ素系ポリマーのゲル等がある。
また、電解液の溶媒として、難燃性および難揮発性であるイオン液体(常温溶融塩)を一つ又は複数用いることで、蓄電装置の内部短絡や、過充電等によって内部温度が上昇しても、蓄電装置の破裂や発火などを防ぐことができる。イオン液体は、カチオンとアニオンからなり、有機カチオンとアニオンとを含む。電解液に用いる有機カチオンとして、四級アンモニウムカチオン、三級スルホニウムカチオン、および四級ホスホニウムカチオン等の脂肪族オニウムカチオンや、イミダゾリウムカチオンおよびピリジニウムカチオン等の芳香族カチオンが挙げられる。また、電解液に用いるアニオンとして、1価のアミド系アニオン、1価のメチド系アニオン、フルオロスルホン酸アニオン、パーフルオロアルキルスルホン酸アニオン、テトラフルオロボレートアニオン、パーフルオロアルキルボレートアニオン、ヘキサフルオロホスフェートアニオン、またはパーフルオロアルキルホスフェートアニオン等が挙げられる。
また、上記の溶媒に溶解させる電解質としては、キャリアにリチウムイオンを用いる場合、例えばLiPF、LiClO、LiAsF、LiBF、LiAlCl、LiSCN、LiBr、LiI、LiSO、Li10Cl10、Li12Cl12、LiCFSO、LiCSO、LiC(CFSO、LiC(CSO、LiN(CFSO、LiN(CSO)(CFSO)、LiN(CSO等のリチウム塩を一種、又はこれらのうちの二種以上を任意の組み合わせおよび比率で用いることができる。
蓄電装置に用いる電解液は、粒状のごみや電解液の構成元素以外の元素(以下、単に「不純物」ともいう。)の含有量が少ない高純度化された電解液を用いることが好ましい。具体的には、電解液に対する不純物の重量比を1%以下、好ましくは0.1%以下、より好ましくは0.01%以下とすることが好ましい。
また、電解液にビニレンカーボネート、プロパンスルトン(PS)、tert-ブチルベンゼン(TBB)、フルオロエチレンカーボネート(FEC)、LiBOBなどの添加剤を添加してもよい。添加剤の濃度は、例えば溶媒全体に対して0.1weight%以上5weight%以下とすればよい。
また、ポリマーを電解液で膨潤させたポリマーゲル電解質を用いてもよい。
ポリマーとしては、例えばポリエチレンオキシド(PEO)などのポリアルキレンオキシド構造を有するポリマーや、PVDF、およびポリアクリロニトリル等、およびそれらを含む共重合体等を用いることができる。例えばPVDFとヘキサフルオロプロピレン(HFP)の共重合体であるPVDF-HFPを用いることができる。また、形成されるポリマーは、多孔質形状を有してもよい。
また、電解液の代わりに、硫化物系や酸化物系等の無機物材料を有する固体電解質や、PEO(ポリエチレンオキシド)系等の高分子材料を有する固体電解質を用いることができる。固体電解質を用いる場合には、セパレータやスペーサの設置が不要となる。また、電池全体を固体化できるため、漏液のおそれがなくなり安全性が飛躍的に向上する。
セパレータ507としては、例えば、紙、不織布、ガラス繊維、セラミックス、或いはナイロン(ポリアミド)、ビニロン(ポリビニルアルコール系繊維)、ポリエステル、アクリル、ポリオレフィン、ポリウレタンを用いた合成繊維等で形成されたものを用いることができる。
セパレータ507は袋状に加工し、正極503または負極506のいずれか一方を包むように配置することが好ましい。例えば、図9(A)に示すように、正極503を挟むようにセパレータ507を2つ折りにし、正極503と重なる領域よりも外側で封止部514により封止することで、正極503をセパレータ507内に確実に担持することができる。そして、図9(B)に示すように、セパレータ507に包まれた正極503と負極506とを交互に積層し、これらを外装体509内に配置することで蓄電池500を形成するとよい。
次に、蓄電池を作製した後のエージングについて説明する。蓄電池を作製した後に、エージングを行うことが好ましい。エージング条件の一例について以下に説明する。まず初めに0.001C以上0.2C以下のレートで充電を行う。温度は例えば室温以上、50℃以下とすればよい。ここで、正極や負極の反応電位が電解液508の電位窓の範囲を超える場合には、蓄電池の充放電により電解液の分解が生じる場合がある。電解液の分解によりガスが発生した場合には、そのガスがセル内にたまると、電解液が電極表面と接することができない領域が発生してしまう。つまり電極の実効的な反応面積が減少し、実効的な抵抗が高くなることに相当する。
また、過度に抵抗が高くなると、負極電位が下がることによって、黒鉛へのリチウム挿入が起こると同時に、黒鉛表面へのリチウム析出も生じてしまう。このリチウム析出は容量の低下を招く場合がある。例えば、リチウムが析出した後、表面に被膜等が成長してしまうと、表面に析出したリチウムが再溶出できなくなり、容量に寄与しないリチウムが増えてしまう。また、析出したリチウムが物理的に崩落し、電極との導通を失った場合にも、やはり容量に寄与しないリチウムが生じてしまう。よって、負極電極の電位が充電電圧上昇によりリチウム電位まで到達する前に、ガスを抜くことが好ましい。
また、ガス抜きを行った後に、室温よりも高い温度、好ましくは30℃以上60℃以下、より好ましくは35℃以上50℃以下において、例えば1時間以上100時間以下、充電状態で保持してもよい。初めに行う充電の際に、表面で分解した電解液は黒鉛の表面に被膜を形成する。よって、例えばガス抜き後に室温よりも高い温度で保持することにより、形成された被膜が緻密化する場合も考えられる。
図10には、リード電極に集電体を溶接する例を示す。図10(A)に示すように、セパレータ507に包まれた正極503と、負極506と、を交互に重ねる。次に、正極集電体501を正極リード電極510に、負極集電体504を負極リード電極511に、それぞれ溶接する。正極集電体501を正極リード電極510に溶接する例を図10(B)に示す。正極集電体501は、超音波溶接などを用いて溶接領域512で正極リード電極510に溶接される。また、正極集電体501は、図10(B)に示す湾曲部513を有することにより、蓄電池500の作製後に外から力が加えられて生じる応力を緩和することができ、蓄電池500の信頼性を高めることができる。
図7および図8に示す蓄電池500において、正極リード電極510は正極503が有する正極集電体501と、負極リード電極511は負極506が有する負極集電体504と、それぞれ超音波接合される。また、外部との電気的接触を得る端子の役割を正極集電体501および負極集電体504で兼ねることもできる。その場合は、リード電極を用いずに、正極集電体501および負極集電体504の一部を外装体509から外側に露出するように配置してもよい。
また、図7では正極リード電極510と負極リード電極511は同じ辺に配置されているが、図11に示すように、正極リード電極510と負極リード電極511を異なる辺に配置してもよい。このように、本発明の一態様の蓄電池は、リード電極を自由に配置することができるため、設計自由度が高い。よって、本発明の一態様の蓄電池を用いた製品の設計自由度を高めることができる。また、本発明の一態様の蓄電池を用いた製品の生産性を高めることができる。
蓄電池500において、外装体509には、例えばポリエチレン、ポリプロピレン、ポリカーボネート、アイオノマー、ポリアミド等の材料からなる膜上に、アルミニウム、ステンレス、銅、ニッケル等の可撓性に優れた金属薄膜を設け、さらに該金属薄膜上に外装体の外面としてポリアミド系樹脂、ポリエステル系樹脂等の絶縁性合成樹脂膜を設けた三層構造のフィルムを用いることができる。
また図8では、一例として、向かい合う正極活物質層と負極活物質層の組の数を5組としているが、勿論、電極の組は5組に限定されず、多くてもよいし、少なくてもよい。電極層数が多い場合には、より多くの容量を有する蓄電池とすることができる。また、電極層数が少ない場合には、薄型化でき、可撓性に優れた蓄電池とすることができる。
上記構成において、二次電池の外装体509は、最小の曲率半径が例えば、3mm以上30mm以下、より好ましくは3mm以上10mm以下となるように変形することができる。二次電池の外装体であるフィルムは、1枚または2枚で構成されており、積層構造の二次電池である場合、湾曲させた電池の断面構造は、外装体であるフィルムの2つの曲線で挟まれた構造となる。
面の曲率半径について、図12を用いて説明する。図12(A)において、曲面1700を切断した平面1701において、曲面1700に含まれる曲線1702の一部を円の弧に近似して、その円の半径を曲率半径1703とし、円の中心を曲率中心1704とする。図12(B)に曲面1700の上面図を示す。図12(C)に、平面1701で曲面1700を切断した断面図を示す。曲面を平面で切断するとき、曲面に対する平面の角度や切断位置に応じて、断面に現れる曲線の曲率半径は異なるものとなるが、本明細書等では、最も小さい曲率半径を面の曲率半径とする。
2枚のフィルムを外装体として電極・電解液など1805を挟む二次電池を湾曲させた場合には、二次電池の曲率中心1800に近い側のフィルム1801の曲率半径1802は、曲率中心1800から遠い側のフィルム1803の曲率半径1804よりも小さい(図13(A))。二次電池を湾曲させて断面を円弧状とすると曲率中心1800に近いフィルムの表面には圧縮応力がかかり、曲率中心1800から遠いフィルムの表面には引っ張り応力がかかる(図13(B))。外装体の表面に凹部または凸部で形成される模様を形成すると、このように圧縮応力や引っ張り応力がかかったとしても、ひずみによる影響を許容範囲内に抑えることができる。そのため、二次電池は、曲率中心に近い側の外装体の最小の曲率半径が例えば、3mm以上30mm以下、より好ましくは3mm以上10mm以下となるように変形することができる。
なお、二次電池の断面形状は、単純な円弧状に限定されず、一部が円弧を有する形状にすることができ、例えば図13(C)に示す形状や、波状(図13(D))、S字形状などとすることもできる。二次電池の曲面が複数の曲率中心を有する形状となる場合は、複数の曲率中心それぞれにおける曲率半径の中で、最も曲率半径が小さい曲面において、2枚の外装体の曲率中心に近い方の外装体の最小の曲率半径が例えば、3mm以上30mm以下、より好ましくは3mm以上10mm以下となるように変形することができる。
次に、正極、負極およびセパレータの積層の様々な例を示す。
図16(A)には、正極111及び負極115を6層ずつ積層する例について示す。正極111が有する正極集電体121の片面に正極活物質層122が設けられている。また、負極115が有する負極集電体125の片面に負極活物質層126が設けられている。
また、図16(A)に示す構成では、正極111の正極活物質層122を有さない面同士が接し、負極115の負極活物質層126を有さない面同士が接するように、正極111及び負極115が積層される。このような積層順とすることで、正極111の正極活物質層122を有さない面同士、負極115の負極活物質層126を有さない面同士という、金属同士の接触面をつくることができる。金属同士の接触面は、活物質とセパレータとの接触面と比較して摩擦係数を小さくすることができる。
そのため、二次電池を湾曲したとき、正極111の正極活物質層122を有さない面同士、負極115の負極活物質層126を有さない面同士が滑ることで、湾曲の内径と外径の差により生じる応力を逃がすことができる。ここで湾曲の内径とは例えば、蓄電池500を湾曲させる場合に、蓄電池500の外装体509において、湾曲部の内側に位置する面が有する曲率半径を指す。そのため、蓄電池500の劣化を抑制することができる。また、信頼性の高い蓄電池500とすることができる。
また、図16(B)に、図16(A)と異なる正極111と負極115の積層の例を示す。図16(B)に示す構成では、正極集電体121の両面に正極活物質層122を設けている点において、図16(A)に示す構成と異なる。図16(B)のように正極集電体121の両面に正極活物質層122を設けることで、蓄電池500の単位体積あたりの容量を大きくすることができる。
また、図16(C)に、図16(B)と異なる正極111と負極115の積層の例を示す。図16(C)に示す構成では、負極集電体125の両面に負極活物質層126を設けている点において、図16(B)に示す構成と異なる。図16(C)のように負極集電体125の両面に負極活物質層126を設けることで、蓄電池500の単位体積あたりの容量をさらに大きくすることができる。
また、図16に示す構成では、セパレータ123が正極111を袋状に包む構成であったが、本発明はこれに限られるものではない。ここで、図17(A)に、図16(A)と異なる構成のセパレータ123を有する例を示す。図17(A)に示す構成では、正極活物質層122と負極活物質層126との間にシート状のセパレータ123を1枚ずつ設けている点において、図16(A)に示す構成と異なる。図17(A)に示す構成では、正極111及び負極115を6層ずつ積層しており、セパレータ123を6層設けている。
また、図17(B)に図17(A)とは異なるセパレータ123を設けた例を示す。図17(B)に示す構成では、1枚のセパレータ123が正極活物質層122と負極活物質層126の間に挟まれるように複数回折り返されている点において、図17(A)に示す構成と異なる。また、図17(B)の構成は、図17(A)に示す構成の各層のセパレータ123を延長して層間をつなぎあわせた構成ということもできる。図17(B)に示す構成では、正極111及び負極115を6層ずつ積層しており、セパレータ123を少なくとも5回以上折り返すことが好ましい。また、セパレータ123は、正極活物質層122と負極活物質層126の間に挟まれるように設けるだけでなく、延長して複数の正極111と負極115を一まとめに結束するようにしてもよい。
また図18に示すように正極、負極およびセパレータを積層してもよい。図18(A)は第1の電極組立体130、図18(B)は第2の電極組立体131の断面図である。図18(C)は、図7の一点破線A1-A2における断面図である。なお、図18(C)では図を明瞭にするため、第1の電極組立体130、第2の電極組立体131およびセパレータ123を抜粋して示す。
図18(C)に示すように、蓄電池500は、複数の第1の電極組立体130および複数の第2の電極組立体131を有する。
図18(A)に示すように、第1の電極組立体130では、正極集電体121の両面に正極活物質層122を有する正極111a、セパレータ123、負極集電体125の両面に負極活物質層126を有する負極115a、セパレータ123、正極集電体121の両面に正極活物質層122を有する正極111aがこの順に積層されている。また図18(B)に示すように、第2の電極組立体131では、負極集電体125の両面に負極活物質層126を有する負極115a、セパレータ123、正極集電体121の両面に正極活物質層122を有する正極111a、セパレータ123、負極集電体125の両面に負極活物質層126を有する負極115aがこの順に積層されている。
さらに図18(C)に示すように、複数の第1の電極組立体130および複数の第2の電極組立体131は、捲回したセパレータ123によって覆われている。
[コイン型蓄電池]
次に蓄電装置の一例として、コイン型の蓄電池の一例について、図14を参照して説明する。図14(A)はコイン型(単層偏平型)の蓄電池の外観図であり、図14(B)は、その断面図である。
コイン型の蓄電池300は、正極端子を兼ねた正極缶301と負極端子を兼ねた負極缶302とが、ポリプロピレン等で形成されたガスケット303で絶縁シールされている。正極304は、正極集電体305と、これと接するように設けられた正極活物質層306により形成される。
また、負極307は、負極集電体308と、これに接するように設けられた負極活物質層309により形成される。
正極304は、正極503の記載を参照すればよい。正極活物質層306は、正極活物質層502を参照すればよい。負極307は、負極506を参照すればよい。負極活物質層309は、負極活物質層505の記載を参照すればよい。セパレータ310は、セパレータ507の記載を参照すればよい。電解液は、電解液508の記載を参照すればよい。
なお、コイン型の蓄電池300に用いる正極304および負極307は、それぞれ活物質層は片面のみに形成すればよい。
正極缶301、負極缶302には、電解液に対して耐食性のあるニッケル、アルミニウム、チタン等の金属、又はこれらの合金やこれらと他の金属との合金(例えばステンレス鋼等)を用いることができる。また、電解液による腐食を防ぐため、ニッケルやアルミニウム等を被覆することが好ましい。正極缶301は正極304と、負極缶302は負極307とそれぞれ電気的に接続する。
これら負極307、正極304およびセパレータ310を電解質に含浸させ、図14(B)に示すように、正極缶301を下にして正極304、セパレータ310、負極307、負極缶302をこの順で積層し、正極缶301と負極缶302とをガスケット303を介して圧着してコイン形の蓄電池300を製造する。
[円筒型蓄電池]
次に蓄電装置の一例として、円筒型の蓄電池を示す。円筒型の蓄電池について、図15を参照して説明する。円筒型の蓄電池600は、図15(A)に示すように、上面に正極キャップ(電池蓋)601を有し、側面および底面に電池缶(外装缶)602を有している。これら正極キャップと電池缶(外装缶)602とは、ガスケット(絶縁パッキン)610によって絶縁されている。
図15(B)は、円筒型の蓄電池の断面を模式的に示した図である。中空円柱状の電池缶602の内側には、帯状の正極604と負極606とがセパレータ605を間に挟んで捲回された電池素子が設けられている。図示しないが、電池素子はセンターピンを中心に捲回されている。電池缶602は、一端が閉じられ、他端が開いている。電池缶602には、電解液に対して耐腐食性のあるニッケル、アルミニウム、チタン等の金属、又はこれらの合金やこれらと他の金属との合金(例えば、ステンレス鋼等)を用いることができる。また、電解液による腐食を防ぐため、ニッケルやアルミニウム等を被覆することが好ましい。電池缶602の内側において、正極、負極およびセパレータが捲回された電池素子は、対向する一対の絶縁板608、609により挟まれている。また、電池素子が設けられた電池缶602の内部は、非水電解液(図示せず)が注入されている。非水電解液は、コイン型の蓄電池と同様のものを用いることができる。
正極604は、正極503を参照すればよい。また負極606は、負極506を参照すればよい。また、正極604および負極606は、例えば実施の形態1に示す電極の作製方法を参照することができる。円筒型の蓄電池に用いる正極および負極は捲回するため、集電体の両面に活物質を形成することが好ましい。正極604には正極端子(正極集電リード)603が接続され、負極606には負極端子(負極集電リード)607が接続される。正極端子603および負極端子607は、ともにアルミニウムなどの金属材料を用いることができる。正極端子603は安全弁機構612に、負極端子607は電池缶602の底にそれぞれ抵抗溶接される。安全弁機構612は、PTC素子(Positive Temperature Coefficient)611を介して正極キャップ601と電気的に接続されている。安全弁機構612は電池の内圧の上昇が所定の閾値を超えた場合に、正極キャップ601と正極604との電気的な接続を切断するものである。また、PTC素子611は温度が上昇した場合に抵抗が増大する熱感抵抗素子であり、抵抗の増大により電流量を制限して異常発熱を防止するものである。PTC素子には、チタン酸バリウム(BaTiO)系半導体セラミックス等を用いることができる。
図15に示すような円筒型の蓄電池のように電極を捲回する際には、捲回時に電極に大きな応力が作用する。また、電極の捲回体を筐体に収納した場合に、電極には常に捲回軸の外側に向かう応力が作用する。このように電極に大きな応力が作用したとしても、活物質が劈開してしまうことを防止することができる。
なお、本実施の形態では、蓄電池として、コイン型、円筒型および薄型の蓄電池を示したが、その他の封止型蓄電池、角型蓄電池等様々な形状の蓄電池を用いることができる。また、正極、負極、およびセパレータが複数積層された構造、正極、負極、およびセパレータが捲回された構造であってもよい。例えば、他の蓄電池の例を図19乃至図23に示す。
[薄型の蓄電池の構成例]
図19および図20に、薄型の蓄電池の構成例を示す。図19(A)に示す捲回体993は、負極994と、正極995と、セパレータ996と、を有する。
捲回体993は、セパレータ996を挟んで負極994と、正極995とが重なり合って積層され、該積層シートを捲回したものである。この捲回体993を角型の封止容器などで覆うことにより角型の二次電池が作製される。
なお、負極994、正極995およびセパレータ996からなる積層の積層数は、必要な容量と素子体積に応じて適宜設計すればよい。負極994はリード電極997およびリード電極998の一方を介して負極集電体(図示せず)に接続され、正極995はリード電極997およびリード電極998の他方を介して正極集電体(図示せず)に接続される。
図19(B)および図19(C)に示す蓄電池990は、外装体となるフィルム981と、凹部を有するフィルム982とを熱圧着などにより貼り合わせて形成される空間に上述した捲回体993を収納したものである。捲回体993は、リード電極997およびリード電極998を有し、フィルム981と、凹部を有するフィルム982との内部で電解液に含浸される。
フィルム981と、凹部を有するフィルム982は、例えばアルミニウムなどの金属材料や樹脂材料を用いることができる。フィルム981および凹部を有するフィルム982の材料として樹脂材料を用いれば、外部から力が加わったときにフィルム981と、凹部を有するフィルム982を変形させることができ、可撓性を有する蓄電池を作製することができる。
また、図19(B)および図19(C)では2枚のフィルムを用いる例を示しているが、1枚のフィルムを折り曲げることによって空間を形成し、その空間に上述した捲回体993を収納してもよい。
また蓄電装置の外装体や、封止容器を樹脂材料などにすることによって可撓性を有する蓄電装置を作製することができる。ただし、外装体や、封止容器を樹脂材料にする場合、外部に接続を行う部分は導電材料とする。
例えば、可撓性を有する別の薄型蓄電池の例を図20に示す。図20(A)の捲回体993は、図19(A)に示したものと同一であるため、詳細な説明は省略することとする。
図20(B)および図20(C)に示す蓄電池990は、外装体991の内部に上述した捲回体993を収納したものである。捲回体993は、リード電極997およびリード電極998を有し、外装体991、992の内部で電解液に含浸される。外装体991、992は、例えばアルミニウムなどの金属材料や樹脂材料を用いることができる。外装体991、992の材料として樹脂材料を用いれば、外部から力が加わったときに外装体991、992を変形させることができ、可撓性を有する薄型蓄電池を作製することができる。
本発明の一態様に係る活物質を含む電極を、可撓性を有する薄型蓄電池に用いることにより、薄型蓄電池を繰り返し折り曲げることによって電極に応力が作用したとしても、活物質が劈開してしまうことを防止することができる。
以上により、劈開面の少なくとも一部にグラフェンで覆われた活物質を電極に用いることにより、電池の電圧の低下や、放電容量の低下を抑制することができる。これにより、充放電に伴う電池のサイクル特性を向上させることができる。
[蓄電システムの構造例]
また、蓄電システムの構造例について、図21乃至図23を用いて説明する。ここで蓄電システムとは、例えば、蓄電装置を搭載した機器を指す。
図21(A)および図21(B)は、蓄電システムの外観図を示す図である。蓄電システムは、回路基板900と、蓄電池913と、を有する。蓄電池913には、ラベル910が貼られている。さらに、図21(B)に示すように、蓄電システムは、端子951と、端子952と、アンテナ914と、アンテナ915と、を有する。
回路基板900は、端子911と、回路912と、を有する。端子911は、端子951、端子952、アンテナ914、アンテナ915、および回路912に接続される。なお、端子911を複数設けて、複数の端子911のそれぞれを、制御信号入力端子、電源端子などとしてもよい。
回路912は、回路基板900の裏面に設けられていてもよい。なお、アンテナ914およびアンテナ915は、コイル状に限定されず、例えば線状、板状であってもよい。また、平面アンテナ、開口面アンテナ、進行波アンテナ、EHアンテナ、磁界アンテナ、誘電体アンテナ等のアンテナを用いてもよい。又は、アンテナ914若しくはアンテナ915は、平板状の導体でもよい。この平板状の導体は、電界結合用の導体の一つとして機能することができる。つまり、コンデンサの有する2つの導体のうちの一つの導体として、アンテナ914若しくはアンテナ915を機能させてもよい。これにより、電磁界、磁界だけでなく、電界で電力のやり取りを行うこともできる。
アンテナ914の線幅は、アンテナ915の線幅よりも大きいことが好ましい。これにより、アンテナ914により受電する電力量を大きくできる。
蓄電システムは、アンテナ914およびアンテナ915と、蓄電池913との間に層916を有する。層916は、例えば蓄電池913による電磁界を遮蔽することができる機能を有する。層916としては、例えば磁性体を用いることができる。
なお、蓄電システムの構造は、図21に示す構造に限定されない。
例えば、図22(A-1)および図22(A-2)に示すように、図21(A)および図21(B)に示す蓄電池913のうち、対向する一対の面のそれぞれにアンテナを設けてもよい。図22(A-1)は、上記一対の面の一方側方向から見た外観図であり、図22(A-2)は、上記一対の面の他方側方向から見た外観図である。なお、図21(A)および図21(B)に示す蓄電システムと同じ部分については、図21(A)および図21(B)に示す蓄電システムの説明を適宜援用できる。
図22(A-1)に示すように、蓄電池913の一対の面の一方に層916を挟んでアンテナ914が設けられ、図22(A-2)に示すように、蓄電池913の一対の面の他方に層917を挟んでアンテナ915が設けられる。層917は、例えば蓄電池913による電磁界を遮蔽することができる機能を有する。層917としては、例えば磁性体を用いることができる。
上記構造にすることにより、アンテナ914およびアンテナ915の両方のサイズを大きくすることができる。
または、図22(B-1)および図22(B-2)に示すように、図21(A)および図21(B)に示す蓄電池913のうち、対向する一対の面のそれぞれに別のアンテナを設けてもよい。図22(B-1)は、上記一対の面の一方側方向から見た外観図であり、図22(B-2)は、上記一対の面の他方側方向から見た外観図である。なお、図21(A)および図21(B)に示す蓄電システムと同じ部分については、図21(A)および図21(B)に示す蓄電システムの説明を適宜援用できる。
図22(B-1)に示すように、蓄電池913の一対の面の一方に層916を挟んでアンテナ914およびアンテナ915が設けられ、図22(B-2)に示すように、蓄電池913の一対の面の他方に層917を挟んでアンテナ918が設けられる。アンテナ918は、例えば、外部機器とのデータ通信を行うことができる機能を有する。アンテナ918には、例えばアンテナ914およびアンテナ915に適用可能な形状のアンテナを適用することができる。アンテナ918を介した蓄電システムと他の機器との通信方式としては、NFCなど、蓄電システムと他の機器の間で用いることができる応答方式などを適用することができる。
又は、図23(A)に示すように、図21(A)および図21(B)に示す蓄電池913に表示装置920を設けてもよい。表示装置920は、端子919を介して端子911に電気的に接続される。なお、表示装置920が設けられる部分にラベル910を設けなくてもよい。なお、図21(A)および図21(B)に示す蓄電システムと同じ部分については、図21(A)および図21(B)に示す蓄電システムの説明を適宜援用できる。
表示装置920には、例えば充電中であるか否かを示す画像、蓄電量を示す画像などを表示してもよい。表示装置920としては、例えば電子ペーパー、液晶表示装置、エレクトロルミネセンス(ELともいう)表示装置などを用いることができる。例えば、電子ペーパーを用いることにより表示装置920の消費電力を低減することができる。
又は、図23(B)に示すように、図21(A)および図21(B)に示す蓄電池913にセンサ921を設けてもよい。センサ921は、端子922を介して端子911に電気的に接続される。なお、図21(A)および図21(B)に示す蓄電システムと同じ部分については、図21(A)および図21(B)に示す蓄電システムの説明を適宜援用できる。
センサ921としては、例えば、力、変位、位置、速度、加速度、角速度、回転数、距離、光、液、磁気、温度、化学物質、音声、時間、硬度、電場、電流、電圧、電力、放射線、流量、湿度、傾度、振動、におい又は赤外線を測定する機能を含むものを用いることができる。センサ921を設けることにより、例えば、蓄電システムが置かれている環境を示すデータ(温度など)を検出し、回路912内のメモリに記憶しておくこともできる。
本実施の形態で示す蓄電池や蓄電システムには、本発明の一態様に係る電極が用いられている。そのため、蓄電池や蓄電システムの容量を大きくすることができる。また、エネルギー密度を高めることができる。また、信頼性を高めることができる。また、寿命を長くすることができる。
本実施の形態は、他の実施の形態と適宜組み合わせて実施することが可能である。
(実施の形態5)
本実施の形態では、本発明の一態様の電極を適用することができる形態として、可撓性を有する蓄電池を電子機器に実装する例について説明する。
実施の形態4に示す可撓性を有する蓄電池を電子機器に実装する例を図24に示す。フレキシブルな形状を備える蓄電装置を適用した電子機器として、例えば、テレビジョン装置(テレビ、又はテレビジョン受信機ともいう)、コンピュータ用などのモニタ、デジタルカメラ、デジタルビデオカメラ、デジタルフォトフレーム、携帯電話機(携帯電話、携帯電話装置ともいう)、携帯型ゲーム機、携帯情報端末、音響再生装置、パチンコ機などの大型ゲーム機などが挙げられる。
また、フレキシブルな形状を備える蓄電装置を、家屋やビルの内壁または外壁や、自動車の内装または外装の曲面に沿って組み込むことも可能である。
図24(A)は、携帯電話機の一例を示している。携帯電話機7400は、筐体7401に組み込まれた表示部7402の他、操作ボタン7403、外部接続ポート7404、スピーカ7405、マイク7406などを備えている。なお、携帯電話機7400は、蓄電装置7407を有している。
図24(B)は、携帯電話機7400を湾曲させた状態を示している。携帯電話機7400を外部の力により変形させて全体を湾曲させると、その内部に設けられている蓄電装置7407も湾曲される。また、その時、曲げられた蓄電装置7407の状態を図24(C)に示す。蓄電装置7407は薄型の蓄電池である。蓄電装置7407は曲げられた状態で固定されている。なお、蓄電装置7407は集電体7409と電気的に接続されたリード電極7408を有している。例えば、集電体7409は銅箔であり、一部ガリウムと合金化させて、集電体7409と接する活物質層との密着性を向上し、蓄電装置7407が曲げられた状態での信頼性が高い構成となっている。
図24(D)は、バングル型の表示装置の一例を示している。携帯表示装置7100は、筐体7101、表示部7102、操作ボタン7103、及び蓄電装置7104を備える。また、図24(E)に曲げられた蓄電装置7104の状態を示す。蓄電装置7104は曲げられた状態で使用者の腕への装着時に、筐体が変形して蓄電装置7104の一部または全部の曲率が変化する。なお、曲線の任意の点における曲がり具合を相当する円の半径の値で表したものを曲率半径であり、曲率半径の逆数を曲率と呼ぶ。具体的には、曲率半径が40mm以上150mm以下の範囲内で筐体または蓄電装置7104の主表面の一部または全部が変化する。蓄電装置7104の主表面における曲率半径が40mm以上150mm以下の範囲であれば、高い信頼性を維持できる。
図24(F)は、腕時計型の携帯情報端末の一例を示している。携帯情報端末7200は、筐体7201、表示部7202、バンド7203、バックル7204、操作ボタン7205、入出力端子7206などを備える。
携帯情報端末7200は、移動電話、電子メール、文章閲覧及び作成、音楽再生、インターネット通信、コンピュータゲームなどの種々のアプリケーションを実行することができる。
表示部7202はその表示面が湾曲して設けられ、湾曲した表示面に沿って表示を行うことができる。また、表示部7202はタッチセンサを備え、指やスタイラスなどで画面に触れることで操作することができる。例えば、表示部7202に表示されたアイコン7207に触れることで、アプリケーションを起動することができる。
操作ボタン7205は、時刻設定のほか、電源のオン、オフ動作、無線通信のオン、オフ動作、マナーモードの実行及び解除、省電力モードの実行及び解除など、様々な機能を持たせることができる。例えば、携帯情報端末7200に組み込まれたオペレーティングシステムにより、操作ボタン7205の機能を自由に設定することもできる。
また、携帯情報端末7200は、通信規格された近距離無線通信を実行することが可能である。例えば無線通信可能なヘッドセットと相互通信することによって、ハンズフリーで通話することもできる。
また、携帯情報端末7200は入出力端子7206を備え、他の情報端末とコネクターを介して直接データのやりとりを行うことができる。また入出力端子7206を介して充電を行うこともできる。なお、充電動作は入出力端子7206を介さずに無線給電により行ってもよい。
携帯情報端末7200の表示部7202には、本発明の一態様の電極を備える蓄電装置を有している。例えば、図24(E)に示した蓄電装置7104を、筐体7201の内部に湾曲した状態で、またはバンド7203の内部に湾曲可能な状態で組み込むことができる。
携帯情報端末7200はセンサを有することが好ましい。センサとして例えば、指紋センサ、脈拍センサ、体温センサ等の人体センサや、タッチセンサ、加圧センサ、加速度センサ、等が搭載されることが好ましい。
図24(G)は、腕章型の表示装置の一例を示している。表示装置7300は、表示部7304を有し、本発明の一態様の蓄電装置を有している。また、表示装置7300は、表示部7304にタッチセンサを備えることもでき、また、携帯情報端末として機能させることもできる。
表示部7304はその表示面が湾曲しており、湾曲した表示面に沿って表示を行うことができる。また、表示装置7300は、通信規格された近距離無線通信などにより、表示状況を変更することができる。
また、表示装置7300は入出力端子を備え、他の情報端末とコネクターを介して直接データのやりとりを行うことができる。また入出力端子を介して充電を行うこともできる。なお、充電動作は入出力端子を介さずに無線給電により行ってもよい。
本実施の形態は、他の実施の形態と適宜組み合わせて実施することが可能である。
(実施の形態6)
本実施の形態では、蓄電装置を搭載することのできる電子機器の一例を示す。
図25(A)および図25(B)に、2つ折り可能なタブレット型端末の一例を示す。図25(A)および図25(B)に示すタブレット型端末9600は、筐体9630a、筐体9630b、筐体9630aと筐体9630bを接続する可動部9640、表示部9631aと表示部9631bを有する表示部9631、表示モード切り替えスイッチ9626、電源スイッチ9627、省電力モード切り替えスイッチ9625、留め具9629、操作スイッチ9628、を有する。図25(A)は、タブレット型端末9600を開いた状態を示し、図25(B)は、タブレット型端末9600を閉じた状態を示している。
また、タブレット型端末9600は、筐体9630aおよび筐体9630bの内部に蓄電体9635を有する。蓄電体9635は、可動部9640を通り、筐体9630aと筐体9630bに渡って設けられている。
表示部9631aは、一部をタッチパネルの領域9632aとすることができ、表示された操作キー9638にふれることでデータ入力をすることができる。なお、表示部9631aにおいては、一例として半分の領域が表示のみの機能を有する構成、もう半分の領域がタッチパネルの機能を有する構成を示しているが該構成に限定されない。表示部9631aの全ての領域がタッチパネルの機能を有する構成としても良い。例えば、表示部9631aの全面をキーボードボタン表示させてタッチパネルとし、表示部9631bを表示画面として用いることができる。
また、表示部9631bにおいても表示部9631aと同様に、表示部9631bの一部をタッチパネルの領域9632bとすることができる。また、タッチパネルのキーボード表示切り替えボタン9639が表示されている位置に指やスタイラスなどでふれることで表示部9631bにキーボードボタン表示することができる。
また、タッチパネルの領域9632aとタッチパネルの領域9632bに対して同時にタッチ入力することもできる。
また、表示モード切り替えスイッチ9626は、縦表示又は横表示などの表示の向きを切り替え、白黒表示やカラー表示の切り替えなどを選択できる。省電力モード切り替えスイッチ9625は、タブレット型端末9600に内蔵している光センサで検出される使用時の外光の光量に応じて表示の輝度を最適なものとすることができる。タブレット型端末は光センサだけでなく、ジャイロ、加速度センサ等の傾きを検出するセンサなどの他の検出装置を内蔵させてもよい。
また、図25(A)では表示部9631bと表示部9631aの表示面積が同じ例を示しているが特に限定されず、一方のサイズともう一方のサイズが異なっていてもよく、表示の品質も異なっていてもよい。例えば一方が他方よりも高精細な表示を行える表示パネルとしてもよい。
図25(B)は、閉じた状態であり、タブレット型端末は、筐体9630、太陽電池9633、DCDCコンバータ9636を含む充放電制御回路9634有する。また、蓄電体9635として、本発明の一態様に係る蓄電体を用いる。
なお、タブレット型端末9600は2つ折り可能なため、未使用時に筐体9630aおよび筐体9630bを重ね合せるように折りたたむことができる。折りたたむことにより、表示部9631a、表示部9631bを保護できるため、タブレット型端末9600の耐久性を高めることができる。また、本発明の一態様の蓄電体を用いた蓄電体9635は可撓性を有し、曲げ伸ばしを繰り返しても充放電容量が低下しにくい。よって、信頼性の優れたタブレット型端末を提供できる。
また、この他にも図25(A)および図25(B)に示したタブレット型端末は、様々な情報(静止画、動画、テキスト画像など)を表示する機能、カレンダー、日付又は時刻などを表示部に表示する機能、表示部に表示した情報をタッチ入力操作又は編集するタッチ入力機能、様々なソフトウェア(プログラム)によって処理を制御する機能、等を有することができる。
タブレット型端末の表面に装着された太陽電池9633によって、電力をタッチパネル、表示部、又は映像信号処理部等に供給することができる。なお、太陽電池9633は、筐体9630の片面又は両面に設けることができ、蓄電体9635の充電を効率的に行う構成とすることができる。なお蓄電体9635としては、リチウムイオン電池を用いると、小型化を図れる等の利点がある。
また、図25(B)に示す充放電制御回路9634の構成、および動作について図25(C)にブロック図を示し説明する。図25(C)には、太陽電池9633、蓄電体9635、DCDCコンバータ9636、コンバータ9637、スイッチSW1乃至SW3、表示部9631について示しており、蓄電体9635、DCDCコンバータ9636、コンバータ9637、スイッチSW1乃至SW3が、図25(B)に示す充放電制御回路9634に対応する箇所となる。
まず外光により太陽電池9633により発電がされる場合の動作の例について説明する。太陽電池で発電した電力は、蓄電体9635を充電するための電圧となるようDCDCコンバータ9636で昇圧又は降圧がなされる。そして、表示部9631の動作に太陽電池9633からの電力が用いられる際にはスイッチSW1をオンにし、コンバータ9637で表示部9631に必要な電圧に昇圧又は降圧をすることとなる。また、表示部9631での表示を行わない際には、SW1をオフにし、SW2をオンにして蓄電体9635の充電を行う構成とすればよい。
なお太陽電池9633については、発電手段の一例として示したが、特に限定されず、圧電素子(ピエゾ素子)や熱電変換素子(ペルティエ素子)などの他の発電手段による蓄電体9635の充電を行う構成であってもよい。例えば、無線(非接触)で電力を送受信して充電する無接点電力伝送モジュールや、また他の充電手段を組み合わせて行う構成としてもよい。
図26に、他の電子機器の例を示す。図26において、表示装置8000は、本発明の一態様に係る蓄電装置8004を用いた電子機器の一例である。具体的に、表示装置8000は、TV放送受信用の表示装置に相当し、筐体8001、表示部8002、スピーカ部8003、蓄電装置8004等を有する。本発明の一態様に係る蓄電装置8004は、筐体8001の内部に設けられている。表示装置8000は、商用電源から電力の供給を受けることもできるし、蓄電装置8004に蓄積された電力を用いることもできる。よって、停電などにより商用電源から電力の供給が受けられない時でも、本発明の一態様に係る蓄電装置8004を無停電電源として用いることで、表示装置8000の利用が可能となる。
表示部8002には、液晶表示装置、有機EL素子などの発光素子を各画素に備えた発光装置、電気泳動表示装置、DMD(Digital Micromirror Device)、PDP(Plasma Display Panel)、FED(Field Emission Display)などの、半導体表示装置を用いることができる。
なお、表示装置には、TV放送受信用の他、パーソナルコンピュータ用、広告表示用など、全ての情報表示用表示装置が含まれる。
図26において、据え付け型の照明装置8100は、本発明の一態様に係る蓄電装置8103を用いた電子機器の一例である。具体的に、照明装置8100は、筐体8101、光源8102、蓄電装置8103等を有する。図26では、蓄電装置8103が、筐体8101及び光源8102が据え付けられた天井8104の内部に設けられている場合を例示しているが、蓄電装置8103は、筐体8101の内部に設けられていても良い。照明装置8100は、商用電源から電力の供給を受けることもできるし、蓄電装置8103に蓄積された電力を用いることもできる。よって、停電などにより商用電源から電力の供給が受けられない時でも、本発明の一態様に係る蓄電装置8103を無停電電源として用いることで、照明装置8100の利用が可能となる。
なお、図26では天井8104に設けられた据え付け型の照明装置8100を例示しているが、本発明の一態様に係る蓄電装置は、天井8104以外、例えば側壁8105、床8106、窓8107等に設けられた据え付け型の照明装置に用いることもできるし、卓上型の照明装置などに用いることもできる。
また、光源8102には、電力を利用して人工的に光を得る人工光源を用いることができる。具体的には、白熱電球、蛍光灯などの放電ランプ、LEDや有機EL素子などの発光素子が、上記人工光源の一例として挙げられる。
図26において、室内機8200及び室外機8204を有するエアコンディショナーは、本発明の一態様に係る蓄電装置8203を用いた電子機器の一例である。具体的に、室内機8200は、筐体8201、送風口8202、蓄電装置8203等を有する。図26では、蓄電装置8203が、室内機8200に設けられている場合を例示しているが、蓄電装置8203は室外機8204に設けられていても良い。或いは、室内機8200と室外機8204の両方に、蓄電装置8203が設けられていても良い。エアコンディショナーは、商用電源から電力の供給を受けることもできるし、蓄電装置8203に蓄積された電力を用いることもできる。特に、室内機8200と室外機8204の両方に蓄電装置8203が設けられている場合、停電などにより商用電源から電力の供給が受けられない時でも、本発明の一態様に係る蓄電装置8203を無停電電源として用いることで、エアコンディショナーの利用が可能となる。
なお、図26では、室内機と室外機で構成されるセパレート型のエアコンディショナーを例示しているが、室内機の機能と室外機の機能とを1つの筐体に有する一体型のエアコンディショナーに、本発明の一態様に係る蓄電装置を用いることもできる。
図26において、電気冷凍冷蔵庫8300は、本発明の一態様に係る蓄電装置8304を用いた電子機器の一例である。具体的に、電気冷凍冷蔵庫8300は、筐体8301、冷蔵室用扉8302、冷凍室用扉8303、蓄電装置8304等を有する。図26では、蓄電装置8304が、筐体8301の内部に設けられている。電気冷凍冷蔵庫8300は、商用電源から電力の供給を受けることもできるし、蓄電装置8304に蓄積された電力を用いることもできる。よって、停電などにより商用電源から電力の供給が受けられない時でも、本発明の一態様に係る蓄電装置8304を無停電電源として用いることで、電気冷凍冷蔵庫8300の利用が可能となる。
なお、上述した電子機器のうち、電子レンジ等の高周波加熱装置、電気炊飯器などの電子機器は、短時間で高い電力を必要とする。よって、商用電源では賄いきれない電力を補助するための補助電源として、本発明の一態様に係る蓄電装置を用いることで、電子機器の使用時に商用電源のブレーカーが落ちるのを防ぐことができる。
また、電子機器が使用されない時間帯、特に、商用電源の供給元が供給可能な総電力量のうち、実際に使用される電力量の割合(電力使用率と呼ぶ)が低い時間帯において、蓄電装置に電力を蓄えておくことで、上記時間帯以外において電力使用率が高まるのを抑えることができる。例えば、電気冷凍冷蔵庫8300の場合、気温が低く、冷蔵室用扉8302、冷凍室用扉8303の開閉が行われない夜間において、蓄電装置8304に電力を蓄える。そして、気温が高くなり、冷蔵室用扉8302、冷凍室用扉8303の開閉が行われる昼間において、蓄電装置8304を補助電源として用いることで、昼間の電力使用率を低く抑えることができる。
本実施の形態は、他の実施の形態と適宜組み合わせて実施することが可能である。
(実施の形態7)
本実施の形態では、車両に蓄電装置を搭載する例を示す。
また、蓄電装置を車両に搭載すると、ハイブリッド車(HEV)、電気自動車(EV)、又はプラグインハイブリッド車(PHEV)等の次世代クリーンエネルギー自動車を実現できる。
図27において、本発明の一態様を用いた車両を例示する。図27(A)に示す自動車8400は、走行のための動力源として電気モーターを用いる電気自動車である。または、走行のための動力源として電気モーターとエンジンを適宜選択して用いることが可能なハイブリッド自動車である。本発明の一態様を用いることで、航続距離の長い車両を実現することができる。また、自動車8400は蓄電装置を有する。蓄電装置は電気モーター8406を駆動するだけでなく、ヘッドライト8401やルームライト(図示せず)などの発光装置に電力を供給することができる。
また、蓄電装置は、自動車8400が有するスピードメーター、タコメーターなどの表示装置に電力を供給することができる。また、蓄電装置は、自動車8400が有するナビゲーションシステムなどの半導体装置に電力を供給することができる。
図27(B)に示す自動車8500は、自動車8500が有する蓄電装置にプラグイン方式や非接触給電方式等により外部の充電設備から電力供給を受けて、充電することができる。図27(B)に、地上設置型の充電装置8021から自動車8500に搭載された蓄電装置8024に、ケーブル8022を介して充電を行っている状態を示す。充電に際しては、充電方法やコネクターの規格等はCHAdeMO(登録商標)やコンボ等の所定の方式で適宜行えばよい。充電装置8021は、商用施設に設けられた充電ステーションでもよく、また家庭の電源であってもよい。例えば、プラグイン技術によって、外部からの電力供給により自動車8500に搭載された蓄電装置8024を充電することができる。充電は、ACDCコンバータ等の変換装置を介して、交流電力を直流電力に変換して行うことができる。
また、図示しないが、受電装置を車両に搭載し、地上の送電装置から電力を非接触で供給して充電することもできる。この非接触給電方式の場合には、道路や外壁に送電装置を組み込むことで、停車中に限らず走行中に充電を行うこともできる。また、この非接触給電の方式を利用して、車両どうしで電力の送受信を行ってもよい。さらに、車両の外装部に太陽電池を設け、停車時や走行時に蓄電装置の充電を行ってもよい。このような非接触での電力の供給には、電磁誘導方式や磁界共鳴方式を用いることができる。
本発明の一態様によれば、蓄電装置のサイクル特性が良好となり、信頼性を向上させることができる。また、本発明の一態様によれば、蓄電装置の特性を向上することができ、よって、蓄電装置自体を小型軽量化することができる。蓄電装置自体を小型軽量化できれば、車両の軽量化に寄与するため、航続距離を向上させることができる。また、車両に搭載した蓄電装置を車両以外の電力供給源として用いることもできる。この場合、電力需要のピーク時に商用電源を用いることを回避することができる。
本実施の形態は、他の実施の形態と適宜組み合わせて実施することが可能である。
本実施例では、蓄電装置において本発明の一態様の電極を用いて充放電を行った場合の特性について説明する。
電極として電極M、電極Nおよび電極Oを準備した。
<リチウムマンガンニッケル酸化物を有する粒子の合成>
リチウムマンガンニッケル酸化物を合成した。原料として、LiCOと、MnCO、NiOとを用い、割合(モル比)を、LiCO:MnCO:NiO=0.84:0.8062:0.318となるように秤量した。
次に、秤量した原料の混合を行った。その後、1000℃において加熱処理を行い、リチウムマンガンニッケル酸化物を合成した。その後、得られたリチウムマンガンニッケル酸化物に対し、ビーズミルを用いて解砕処理を行った。
次に、得られたリチウムマンガンニッケル酸化物の表面にグラフェン化合物を被覆した。まず酸化グラフェンに水を加え、分散液を作製した。5.2gの酸化グラフェンに水を160ml加え、酸化グラフェン分散液の濃度を32.5g/lとした。
次に、作製した酸化グラフェンの分散液に、リチウムマンガンニッケル酸化物を加えて混合した。酸化グラフェンの重量を5.2g含む分散液に、260gのリチウムマンガンニッケル酸化物を加えた。すなわち、正極活物質の重量の2%の酸化グラフェンを加えた。その後、減圧下において50℃の熱処理を行い、酸化グラフェンが被覆されたリチウムマンガンニッケル酸化物である試料Aを得た。
次に、酸化グラフェンを還元するため、240gの試料Aと、40.5gのアスコルビン酸と、9.36gの水酸化リチウム一水和物と、1029mlのエタノールと、9.36gの水と、を加え、混合した。得られた混合液に対し、スプレードライ処理を行い、混合液から粉末を回収した。その後、減圧下において170℃の熱処理を行った。
以上の工程により、リチウムマンガンニッケル酸化物を有する粒子Bを作製した。
<活物質層212の形成>
次に、スラリーを作製した。作製した粒子Bと、アセチレンブラック(AB)と、PVdFと、を粒子B:AB:PVdF=90:5:5(重量比)の割合で混合し、溶媒としてNMPを加え、混練を行った。スラリーの固形分比は47重量%であった。
次に、スラリーを集電体の片面に塗布した。厚さ20μmのアルミニウム箔の両面に、アンダーコートを施した集電体を用いた。その後、溶媒を65℃で揮発させた後、75℃で揮発させた。
次に、減圧下、250℃において熱処理を行った。その後、120℃、1000kN/mの圧力でプレスを行った。以上の工程により、集電体上に活物質層212を有する電極Oを形成した。
<グラフェン化合物の合成>
次に、以下の構造式(202)の構造を有するグラフェン化合物を合成した。
Figure 0007153432000022
まず、フラスコに酸化グラフェン(株式会社仁科マテリアル製、製品名:Rap dGO(TQ-11)-1)0.41g、n-ブチルアミン5.6g(77mmol)を加えた。この混合物に窒素気流下で、超音波を5分照射し、さらに60℃で1時間撹拌した。撹拌後、この混合物を室温まで降温し、トルエン20mLを加え、超音波を5分照射した。この混合物を0℃に冷却後、11-アセトキシウンデシルトリクロロシラン11g(31mmol)を滴下し、60℃で5時間撹拌した。撹拌後、この混合物にトルエンを加えて洗浄し、固体を吸引濾過により回収した。得られた固体(ろ取物)をさらにエタノール、アセトンにより洗浄した。得られた固体を乾燥し、目的物の黒色粉末(試料1)を0.52g得た。
<層213の形成>
まず電極Mの作製方法について説明する。電極Mは、電極O上にグラフェン化合物を有する層213が形成される。まず、活物質層212上に、グラフェン化合物を有する層213を形成した。まずグラフェン化合物と、エタノールと、を混合し、分散液を作製した。次に、集電体上に活物質層212を有する電極Oを70℃のホットプレートに載せ、作製した分散液を活物質層212上に滴下した。さらに減圧下、70℃において熱処理を行った。以上の工程により、集電体上に活物質層212と、層213と、を有する電極Mを作製した。
次に電極Nの作製方法について説明する。電極Nは、電極O上に酸化グラフェンを有する層213が形成される。まず、酸化グラフェンとエタノールとを混合し、分散液を作製した。その後、作製した分散液を活物質層212上に滴下し、熱処理を行ってエタノールを揮発させた。以上の工程により、集電体上に活物質層212と、酸化グラフェンを有する層と、を有する電極Nを作製した。活物質層212および層213の合計の厚さは約90μmであった。
次に、作製した電極を12mmφの大きさで打ち抜いて正極とした。それぞれの電極から2つずつ(No.1およびNo.2)の正極を打ち抜いた。負極として15mmφの大きさで打ち抜いたリチウム箔を用い、セパレータを正極と負極で挟み、CR2032タイプのコイン型の蓄電池を作製した。セパレータとしてポリプロピレンを用いた。電解液として、エチレンカーボネート(EC)とジエチルカーボネート(DEC)とを体積比で1:1の割合で混合した混合溶液中へ六フッ化リン酸リチウム(LiPF)を1モル/リットルの濃度で溶解したものを用いた。
電極O、電極Mおよび電極N(Electrode O、Electrode M and Electrode N)の正極活物質(Positive Elctrode Active Material)の担持量と、電極Mおよび電極Nの酸化グラフェンまたはグラフェン化合物(GO orGC)の担持量を表1に示す。正極活物質の担持量は18.6乃至19.5mg/cm、酸化グラフェンまたはグラフェン化合物の担持量は1.1乃至1.8mg/cmであった。
Figure 0007153432000023
作製した蓄電池の充電および放電を行った。充電は、4.8Vを上限として30mA/g(約0.08C)の定電流充電を行った。放電は、2Vを下限として、30mA/g(約0.08C)の定電流放電を行った。
図28に電極Mの、図29(A)に電極Nの、図29(B)に電極Oの充放電サイクル特性をそれぞれ示す。それぞれの電極条件につき、2つずつ正極を打ち抜いたため、充放電サイクル特性の結果はそれぞれの条件につき2つずつ示す。縦軸は容量(Capacity)、横軸はサイクル数(Cycle)である。電極Oを用いた条件と比較して、酸化グラフェンを有する層が形成された電極Nにおいては、容量の低下が緩和された。また、本発明の一態様のグラフェン化合物を有する層が形成された電極Mにおいては、サイクルに伴う容量の減少が小さく、良好な結果が得られた。
101 集電体
102 活物質層
103 活物質
111 正極
111a 正極
115 負極
115a 負極
121 正極集電体
122 正極活物質層
123 セパレータ
125 負極集電体
126 負極活物質層
130 電極組立体
131 電極組立体
210 電極
211 集電体
212 活物質層
213 層
220 電極
221 活物質
230 領域
251 カチオン
252 カチオン
253 電子
300 蓄電池
301 正極缶
302 負極缶
303 ガスケット
304 正極
305 正極集電体
306 正極活物質層
307 負極
308 負極集電体
309 負極活物質層
310 セパレータ
321 グラフェン化合物
331 領域
332 領域
333 領域
500 蓄電池
501 正極集電体
502 正極活物質層
503 正極
504 負極集電体
505 負極活物質層
506 負極
507 セパレータ
508 電解液
509 外装体
510 正極リード電極
511 負極リード電極
512 溶接領域
514 封止部
600 蓄電池
601 正極キャップ
602 電池缶
603 正極端子
604 正極
605 セパレータ
606 負極
607 負極端子
608 絶縁板
609 絶縁板
611 PTC素子
612 安全弁機構
900 回路基板
910 ラベル
911 端子
912 回路
913 蓄電池
914 アンテナ
915 アンテナ
916 層
917 層
918 アンテナ
919 端子
920 表示装置
921 センサ
922 端子
951 端子
952 端子
981 フィルム
982 フィルム
990 蓄電池
991 外装体
992 外装体
993 捲回体
994 負極
995 正極
996 セパレータ
997 リード電極
998 リード電極
1700 曲面
1701 平面
1702 曲線
1703 曲率半径
1704 曲率中心
1800 曲率中心
1801 フィルム
1802 曲率半径
1803 フィルム
1804 曲率半径
7100 携帯表示装置
7101 筐体
7102 表示部
7103 操作ボタン
7104 蓄電装置
7200 携帯情報端末
7201 筐体
7202 表示部
7203 バンド
7204 バックル
7205 操作ボタン
7206 入出力端子
7207 アイコン
7300 表示装置
7304 表示部
7400 携帯電話機
7401 筐体
7402 表示部
7403 操作ボタン
7404 外部接続ポート
7405 スピーカ
7406 マイク
7407 蓄電装置
7408 リード電極
7409 集電体
8000 表示装置
8001 筐体
8002 表示部
8003 スピーカ部
8004 蓄電装置
8021 充電装置
8022 ケーブル
8024 蓄電装置
8100 照明装置
8101 筐体
8102 光源
8103 蓄電装置
8104 天井
8105 側壁
8106 床
8107 窓
8200 室内機
8201 筐体
8202 送風口
8203 蓄電装置
8204 室外機
8300 電気冷凍冷蔵庫
8301 筐体
8302 冷蔵室用扉
8303 冷凍室用扉
8304 蓄電装置
8400 自動車
8401 ヘッドライト
8406 電気モーター
8500 自動車
9600 タブレット型端末
9625 スイッチ
9626 スイッチ
9627 電源スイッチ
9628 操作スイッチ
9629 留め具
9630 筐体
9630a 筐体
9630b 筐体
9631 表示部
9631a 表示部
9631b 表示部
9632a 領域
9632b 領域
9633 太陽電池
9634 充放電制御回路
9635 蓄電体
9636 DCDCコンバータ
9637 コンバータ
9638 操作キー
9639 ボタン
9640 可動部

Claims (5)

  1. 活物質と、グラフェン化合物と、を有し、
    前記活物質は、粒子状であり、
    前記グラフェン化合物は、前記活物質の表面に接する領域を有し、
    前記活物質は、元素Aと、元素Mと、を有し、
    前記元素Aは、第1族の元素および第2族の元素から選ばれる一以上であり、
    前記元素Mは、マンガンおよびニッケルから選ばれる一以上を有し、
    前記グラフェン化合物は、下記式(G1)で表される構造を有する電極。
    Figure 0007153432000024

    (一般式(G1)中において、G layerはグラフェン層を表し、Rは置換又は無置換のアルキレン基を表し、Rは水素、又は置換若しくは無置換のアルキル基を表す。)
  2. 活物質と、グラフェン化合物と、を有し、
    前記活物質は、粒子状であり、
    前記グラフェン化合物は、前記活物質の表面に接する領域を有し、
    前記活物質は、元素Aと、元素Mと、を有し、
    前記元素Aは、第1族の元素および第2族の元素から選ばれる一以上であり、
    前記元素Mは、マンガンおよびニッケルから選ばれる一以上を有し、
    前記グラフェン化合物は、下記式(G2)で表される構造を有する電極。
    Figure 0007153432000025

    (一般式(G2)中において、G layerはグラフェン層を表し、Rは置換又は無置換のアルキレン基を表し、Rは水素、又は置換若しくは無置換のアルキル基を表す。)
  3. 活物質と、グラフェン化合物と、を有し、
    前記活物質は、粒子状であり、
    前記グラフェン化合物は、前記活物質の表面に接する領域を有し、
    前記活物質は、元素Aと、元素Mと、を有し、
    前記元素Aは、第1族の元素および第2族の元素から選ばれる一以上であり、
    前記元素Mは、マンガンおよびニッケルから選ばれる一以上を有し、
    前記グラフェン化合物は、下記式(G3)で表される構造を有する電極。
    Figure 0007153432000026

    (一般式(G3)中において、G layerはグラフェン層を表し、Rは少なくとも2つ以上のエーテル結合を有する置換または無置換の鎖状の基を表す。)
  4. 請求項1乃至請求項のいずれか一において、
    前記グラフェン化合物は元素Mをトラップする機能を有する電極。
  5. 正極として、請求項1乃至請求項のいずれか一に記載の電極を有し、
    外装体と、電解液と、セパレータと、負極と、を有する蓄電装置。

JP2017173930A 2016-09-12 2017-09-11 電極、および蓄電装置 Active JP7153432B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022159559A JP2022191321A (ja) 2016-09-12 2022-10-03 電極および蓄電装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016177284 2016-09-12
JP2016177284 2016-09-12

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2022159559A Division JP2022191321A (ja) 2016-09-12 2022-10-03 電極および蓄電装置

Publications (2)

Publication Number Publication Date
JP2018046011A JP2018046011A (ja) 2018-03-22
JP7153432B2 true JP7153432B2 (ja) 2022-10-14

Family

ID=61560436

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2017173930A Active JP7153432B2 (ja) 2016-09-12 2017-09-11 電極、および蓄電装置
JP2022159559A Pending JP2022191321A (ja) 2016-09-12 2022-10-03 電極および蓄電装置

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2022159559A Pending JP2022191321A (ja) 2016-09-12 2022-10-03 電極および蓄電装置

Country Status (2)

Country Link
US (1) US20180076489A1 (ja)
JP (2) JP7153432B2 (ja)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017149405A1 (en) 2016-03-02 2017-09-08 Semiconductor Energy Laboratory Co., Ltd. Graphene compound, method for forming graphene compound, and lithium-ion storage battery
KR102323397B1 (ko) 2016-07-05 2021-11-05 가부시키가이샤 한도오따이 에네루기 켄큐쇼 양극 활물질, 양극 활물질의 제작 방법, 및 이차 전지
WO2018011675A1 (en) 2016-07-13 2018-01-18 Semiconductor Energy Laboratory Co., Ltd. Graphene compound, method for forming graphene compound, and power storage device
DE202017007622U1 (de) 2016-10-12 2023-09-13 Semiconductor Energy Laboratory Co., Ltd. Positivelektrodenaktivmaterialteilchen
US10707524B2 (en) 2016-10-19 2020-07-07 Semiconductor Energy Laboratory Co., Ltd. Graphene compound and manufacturing method thereof, electrolyte, and power storage device
US11489151B2 (en) 2017-05-12 2022-11-01 Semiconductor Energy Laboratory Co., Ltd. Positive electrode active material particle
CN115995596A (zh) 2017-05-19 2023-04-21 株式会社半导体能源研究所 锂离子二次电池
KR102529616B1 (ko) 2017-06-26 2023-05-04 가부시키가이샤 한도오따이 에네루기 켄큐쇼 양극 활물질의 제작 방법 및 이차 전지
US20220093914A1 (en) 2019-02-01 2022-03-24 Nichia Corporation Electrode active material for non-aqueous secondary battery and method for producing the same
US11909219B2 (en) * 2019-12-19 2024-02-20 SOCIéTé BIC Portable device configured for charging electronic devices
US20230044210A1 (en) * 2019-12-27 2023-02-09 Semiconductor Energy Laboratory Co., Ltd. Positive Electrode Active Material Layer, Active Material Layer, Positive Electrode, Secondary Battery, and Vehicle
KR20220019912A (ko) * 2020-08-11 2022-02-18 주식회사 엘지에너지솔루션 리튬 이차전지용 양극, 이의 제조방법 및 상기 양극을 포함하는 리튬 이차전지

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011076748A (ja) 2009-09-29 2011-04-14 Furukawa Battery Co Ltd:The 非水電解質二次電池用セパレータ、非水電解質二次電池用セパレータの製造方法および非水電解質二次電池
JP2012146477A (ja) 2011-01-12 2012-08-02 Hitachi Ltd 非水電解液電池
US20120330044A1 (en) 2009-12-29 2012-12-27 Montclair State University Chelating agent modified graphene oxides, methods of preparation and use
JP2013093319A (ja) 2011-10-07 2013-05-16 Semiconductor Energy Lab Co Ltd 蓄電装置
JP2013152926A (ja) 2011-12-26 2013-08-08 Semiconductor Energy Lab Co Ltd 二次電池用正極および二次電池用正極の作製方法
US20140315083A1 (en) 2011-05-12 2014-10-23 Ningbo Institute Of Material Technology And Engineering, Chinese Academy Of Sciences Graphene coating modified electrode plate for lithium secondary battery and method for producing the same
JP2016512283A (ja) 2013-03-15 2016-04-25 アダマ・マテリアルズ・インコーポレーテッド オリゴマーがグラフトしたナノフィラーおよび先進複合材料

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101681950B1 (ko) * 2009-01-15 2016-12-05 삼성전자주식회사 그라펜 에지의 화학적 변형 방법 및 이에 의하여 얻어진 그라펜
JP6159228B2 (ja) * 2012-11-07 2017-07-05 株式会社半導体エネルギー研究所 非水系二次電池用正極の製造方法
KR20180071147A (ko) * 2015-11-12 2018-06-27 주식회사 동진쎄미켐 고성능 전극

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011076748A (ja) 2009-09-29 2011-04-14 Furukawa Battery Co Ltd:The 非水電解質二次電池用セパレータ、非水電解質二次電池用セパレータの製造方法および非水電解質二次電池
US20120330044A1 (en) 2009-12-29 2012-12-27 Montclair State University Chelating agent modified graphene oxides, methods of preparation and use
JP2012146477A (ja) 2011-01-12 2012-08-02 Hitachi Ltd 非水電解液電池
US20140315083A1 (en) 2011-05-12 2014-10-23 Ningbo Institute Of Material Technology And Engineering, Chinese Academy Of Sciences Graphene coating modified electrode plate for lithium secondary battery and method for producing the same
JP2013093319A (ja) 2011-10-07 2013-05-16 Semiconductor Energy Lab Co Ltd 蓄電装置
JP2013152926A (ja) 2011-12-26 2013-08-08 Semiconductor Energy Lab Co Ltd 二次電池用正極および二次電池用正極の作製方法
JP2016512283A (ja) 2013-03-15 2016-04-25 アダマ・マテリアルズ・インコーポレーテッド オリゴマーがグラフトしたナノフィラーおよび先進複合材料

Also Published As

Publication number Publication date
JP2018046011A (ja) 2018-03-22
US20180076489A1 (en) 2018-03-15
JP2022191321A (ja) 2022-12-27

Similar Documents

Publication Publication Date Title
JP7153432B2 (ja) 電極、および蓄電装置
JP7224406B2 (ja) 正極活物質の作製方法、及びリチウムイオン電池
JP7277510B2 (ja) 二次電池用集電体
JP7112451B2 (ja) リチウムイオン二次電池
JP7174787B2 (ja) 蓄電装置の作製方法
JP6682192B2 (ja) リチウムイオン二次電池及び電子機器
JP6685691B2 (ja) 粒子、及び二次電池
JP2022023097A (ja) 蓄電装置
JP7284215B2 (ja) 蓄電池、電池制御ユニットおよび電子機器
JP7097690B2 (ja) 電極および蓄電池
JP2020074295A (ja) 負極
CN106169560B (zh) 电极、蓄电装置及电子设备
JP7192072B2 (ja) 正極活物質、蓄電装置、電子機器
CN113597410A (zh) 正极活性物质的制造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200909

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210811

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210824

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20211022

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220208

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20220411

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220607

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220906

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20221003

R150 Certificate of patent or registration of utility model

Ref document number: 7153432

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150