JP7150877B2 - Fertilizer, method for producing same, method for producing cultivated plant, and method for promoting growth - Google Patents

Fertilizer, method for producing same, method for producing cultivated plant, and method for promoting growth Download PDF

Info

Publication number
JP7150877B2
JP7150877B2 JP2020560734A JP2020560734A JP7150877B2 JP 7150877 B2 JP7150877 B2 JP 7150877B2 JP 2020560734 A JP2020560734 A JP 2020560734A JP 2020560734 A JP2020560734 A JP 2020560734A JP 7150877 B2 JP7150877 B2 JP 7150877B2
Authority
JP
Japan
Prior art keywords
mass
sio
fertilizer
glass
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020560734A
Other languages
Japanese (ja)
Other versions
JPWO2020129222A5 (en
JPWO2020129222A1 (en
Inventor
一宰 三宮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SHINJO HIROSHI
Original Assignee
SHINJO HIROSHI
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SHINJO HIROSHI filed Critical SHINJO HIROSHI
Publication of JPWO2020129222A1 publication Critical patent/JPWO2020129222A1/ja
Publication of JPWO2020129222A5 publication Critical patent/JPWO2020129222A5/ja
Application granted granted Critical
Publication of JP7150877B2 publication Critical patent/JP7150877B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G22/00Cultivation of specific crops or plants not otherwise provided for
    • A01G22/20Cereals
    • A01G22/22Rice
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G7/00Botany in general
    • A01G7/06Treatment of growing trees or plants, e.g. for preventing decay of wood, for tingeing flowers or wood, for prolonging the life of plants
    • CCHEMISTRY; METALLURGY
    • C05FERTILISERS; MANUFACTURE THEREOF
    • C05DINORGANIC FERTILISERS NOT COVERED BY SUBCLASSES C05B, C05C; FERTILISERS PRODUCING CARBON DIOXIDE
    • C05D9/00Other inorganic fertilisers

Description

本発明は、肥料および栽培植物の生産方法に関する。詳しく述べると、本発明は、植物、特に単子葉植物の成長を促進し、その種子ないし果実、代表的には米、麦、トウモロコシ等の穀物の収量を増大させる肥料およびこれを用いた栽培植物の生産方法に関するものである。 The present invention relates to methods for producing fertilizers and cultivated plants. More specifically, the present invention provides a fertilizer that promotes the growth of plants, particularly monocotyledonous plants, and increases the yield of their seeds or fruits, typically grains such as rice, wheat, and corn, and cultivated plants using the same. It relates to the production method of

ケイ素は、植物にとって必須要素ではないものの、単子葉植物、とりわけイネ科植物においては重要な成分である。植物におけるケイ素の主な効能・効果としては、例えば、倒伏防止、マンガンの過剰症の軽減、いもち病やうどんこ病の発生抑制等の病虫害の軽減などが挙げられる。ケイ素が植物にもたらすこれらの病虫害抵抗性は、植物体内に沈積したシリカが病原菌に対して物理的な障壁を築くだけではなく、植物体内のケイ素が感染部位の抵抗性を誘導する作用を持つことが見出され、この病虫害抵抗性には水溶性ケイ素が重要な働きをしていることが報告されている(例えば、非特許文献1、2参照)。 Although silicon is not an essential element for plants, it is an important component in monocotyledonous plants, especially in grasses. The main effects and effects of silicon in plants include, for example, prevention of lodging, alleviation of excessive manganese, and alleviation of disease and pest damage such as suppression of blast and powdery mildew. These disease and insect resistance that silicon brings to plants are not only due to the fact that the silica deposited in the plant body builds a physical barrier against pathogens, but also that the silicon in the plant body has the effect of inducing resistance at the site of infection. was found, and it has been reported that water-soluble silicon plays an important role in this disease and insect resistance (see, for example, Non-Patent Documents 1 and 2).

元来、土壌中には多量のケイ素が含まれているが、それらは植物にとって吸収し難い難溶性のケイ酸アルミニウム等の形態で存在しており、植物の育成に効率よく利用されているとは言い難い。 Originally, soil contains a large amount of silicon, but it exists in the form of poorly soluble aluminum silicate, which is difficult for plants to absorb, and is efficiently used for plant growth. hard to say.

このような観点から、従来、イネの水田耕作においては、ケイ素含有肥料を施肥することが行われているが、一般的に使用されているケイ素含有肥料のうち大部分の種類は、そのケイ素源として鉄や各種金属を精錬する際に得られるスラグ(鉱滓)を用いたものであり、一般的な土壌のpH5~7程度の条件下においては、ケイ酸としての溶出量が極端に低下し、ケイ酸分の供給源としては効率が良いものとは言えないものであった。 From this point of view, it has been conventional practice to apply silicon-containing fertilizers in paddy field cultivation of rice. Slag (slag) obtained when refining iron and various metals is used as a slag. It cannot be said that it is efficient as a supply source of silicic acid.

さらに、特許文献1においては、結晶質であるスラグ、特にダイカルシウムシリケート(2CaO・SiO)の鉱物相を含むものがpH5~7程度の条件下においても高いケイ酸溶出性を有することから、施肥効果に改善が見られることが示されているが、同じスラグ系のものを用いたものの中での向上という程度のものであって、未だ十分なものとは言えないものであった。なお、この特許文献1におけるスラグの組成としては、主成分がCaO、SiO、MgO、Alからなり、CaOを40~60質量%、SiOを25~40質量%、MgOを5~15質量%、Alを0~5質量%含み、かつCaO/SiO質量比が1.4~2.0であるものが示されている。Furthermore, in Patent Document 1, crystalline slag, especially slag containing a mineral phase of dicalcium silicate (2CaO.SiO 2 ), has high silicic acid elution even under pH conditions of about 5 to 7, Although it has been shown that the fertilization effect is improved, it is only an improvement among those using the same slag type, and it is still not sufficient. The composition of the slag in Patent Document 1 is mainly composed of CaO, SiO 2 , MgO and Al 2 O 3 , with 40 to 60% by mass of CaO, 25 to 40% by mass of SiO 2 and 5% by mass of MgO. ~15% by weight, 0-5% by weight of Al 2 O 3 and a CaO/SiO 2 weight ratio of 1.4-2.0.

また、植物へのケイ素の吸収を容易にするべく、ケイ素含有化合物を液体肥料化する試みも従来なされており、例えば、特許文献2においては、作物が最も吸収しやすいとされるオルトケイ酸(正ケイ酸)HSiO(Si(OH))を得る上で、酸性条件下水溶液中で正ケイ酸アルキル(テトラアルコキシシラン)を加水分解して液体肥料を製造することが提案されている。しかしながら、テトラアルコキシシランのような純化学的原料を用いて合成により得られる肥料は、その添加量がわずかであるとしても価格的に高価なものとなることが予測でき、かつ原料の引火性、刺激性等の問題もある。このため商業化の面では疑問の残るものである。さらに、液体肥料は即効性の面では優れたものであるが、一般にオルトケイ酸は速やかに脱水縮合しシリカになるため安定した単体として保持する困難であることが周知であって、溶液として散布後において有効成分のゲル化が生じないかも疑問の残るところであった。Also, in order to facilitate the absorption of silicon by plants, attempts have been made to convert silicon-containing compounds into liquid fertilizers. For example, in Patent Document 2, orthosilicic acid (correct Silicic acid) H 4 SiO 4 (Si(OH) 4 ) has been proposed to produce liquid fertilizers by hydrolyzing orthoalkyl silicates (tetraalkoxysilanes) in aqueous solution under acidic conditions. . However, fertilizers obtained by synthesis using pure chemical raw materials such as tetraalkoxysilane can be expected to be expensive even if the amount added is small, and the flammability of the raw materials, There are also problems such as irritation. For this reason, it remains questionable in terms of commercialization. Furthermore, liquid fertilizers are excellent in terms of immediate effect, but it is well known that orthosilicic acid is generally difficult to maintain as a stable single substance because it quickly undergoes dehydration condensation and becomes silica. It was questionable whether the gelation of the active ingredient would not occur in this method.

なお、上記した非特許文献2においては、イネの健全の生育と安定な多収には多量のケイ素の集積が必要であること、通常植物は、ケイ素を、pH9以下で電荷を持たない中性分子としてのケイ酸(オルトケイ酸)の形で根から吸収し地上部へ輸送し、地上部においてケイ酸が蒸散によってしだいに濃縮され重合してシリカとして沈積されること、またこのような吸収は、ケイ酸を細胞外から細胞内へ輸送するケイ酸内向きトランスポータLsi1蛋白質と、細胞内から細胞外へ輸送するケイ酸外向きトランスポータLsi2蛋白質の協同作業によってケイ酸を効率よく輸送しているものとの考えが示されている。しかし、十分なケイ酸を与え続けた場合にはLsi1およびLsi2の発現が顕著に抑制されることも報告されている。このため、同文献において示されるケイ素の集積という機構は、これが仮に正しいものであるとしても、イネの生育と多収においてその一因となり得る程度のもので、絶対的なものではないと考えられた。 In addition, in the above-mentioned Non-Patent Document 2, it is necessary to accumulate a large amount of silicon for healthy growth and stable high yield of rice. Silicic acid (orthosilicic acid) as a molecule is absorbed from the roots and transported to the aerial part, where the silicic acid is gradually concentrated by transpiration, polymerized and deposited as silica. Silicic acid is transported efficiently by the cooperation of the silicic acid inward transporter Lsi1 protein that transports silicic acid from the extracellular to the intracellular and the silicic acid outward transporter Lsi2 protein that transports silicic acid from the intracellular to the extracellular. The idea that there is However, it has also been reported that the expression of Lsi1 and Lsi2 is remarkably suppressed when sufficient silicic acid is continuously given. For this reason, even if the mechanism of silicon accumulation shown in the same document is correct, it is considered to be only a factor that contributes to the growth and high yield of rice, and is not an absolute mechanism. rice field.

このように従来、植物の成長、特に穀物の収量の増大を期待してのケイ素成分の供与に関し、多くの研究、提案がなされているが十分に満足のいくレベルに達しているところではなく、さらなる検討、改良が望まれるところであった。 Thus far, many studies and proposals have been made regarding the provision of silicon components in hopes of increasing the growth of plants, especially grain yields, but they have not reached a sufficiently satisfactory level. Further investigation and improvement were desired.

特開2004-218065号公報Japanese Patent Application Laid-Open No. 2004-218065 特開2005-67996号公報JP-A-2005-67996

高橋英一著、「作物にとってケイ酸とは何か 環境適応力を高める「有用元素」」、第1刷、社団法人農山漁村文化協会、2007年9月25日、p.188~189Eiichi Takahashi, "What is silicic acid for crops? 'Useful elements' that enhance environmental adaptability," 1st edition, Noyama Fishing Village Cultural Association, September 25, 2007, p. 188-189 馬 建峰ら、「イネのケイ素トランスポーター」、蛋白質 核酸 酵素 Vol.52 No.14 1849-1856頁(2007)、「イネのケイ素トランスポーター」Jianfeng Ma et al., "Silicon transporter in rice", Protein Nucleic Acid Enzyme Vol. 52 No. 14 pp. 1849-1856 (2007), "Silicon transporters in rice"

従って、本発明は、上述したような従来技術における問題点を鑑み、植物、特にイネ科等の単子葉植物の成長を促進し、その種子ないし果実の収量を効果的に増大させる安定で経済的にも安価で提供可能なケイ素含有肥料およびこれを用いた栽培植物の生産方法を提供することを課題とする。 Therefore, in view of the problems in the prior art as described above, the present invention provides a stable and economical method for promoting the growth of plants, particularly monocotyledonous plants such as gramineous plants, and effectively increasing the yield of their seeds or fruits. It is an object of the present invention to provide a silicon-containing fertilizer that can be provided at a low cost and a method for producing cultivated plants using the same.

本発明者らは、上記課題を解決するために鋭意検討、研究を重ねた結果、米、コムギ、トウモロコシといったイネ科植物の栽培において、土壌に廃ガラスを原料として焼成発泡化された資材を施肥して育成を行うと、その穀物収量が大幅に増大することを見出した。 As a result of intensive studies and studies to solve the above problems, the present inventors have found that in the cultivation of grasses such as rice, wheat, and corn, fertilizing the soil with a material that is fired and foamed using waste glass as a raw material. It was found that the grain yield was greatly increased when the grain was cultivated by

さらに、このように育成した植物について調べてみると、比較対照区において育成した植物と比較して、穀物収量のみならず、植物全体の質量(植物体量)も大幅に増加していることは確認されたが、一方で、植物体内ケイ素濃度は、比較対照区において育成した植物と、あまり変わりがなくむしろ減少しており、従来主張されているような穀物収量増加の上では、オルトケイ酸HSiO(Si(OH))の形でのケイ素の吸収と、植物体内での多量のケイ素の集積が必要であるという理論とは結びつかないものであることが判明した。Furthermore, when examining the plants grown in this way, it was found that not only the grain yield but also the mass of the whole plant (plant mass) was significantly increased compared to the plants grown in the control plot. However, on the other hand, the silicon concentration in the plant was not much different from that of the plants grown in the control plot, and rather decreased. It has been found that the absorption of silicon in the form of 4 SiO 4 (Si(OH) 4 ) and the need for large amounts of silicon accumulation in the plant are not connected with the theory.

本発明者らは、その収量増加の要因を探るべくさらに鋭意研究を進めたところ、イネの水耕栽培において、水田水中におけるメタケイ酸イオン(SiO 2-)濃度に関して、上記したような資材を与えた実施区においては比較対照区と比較して大きな違いが生じていることが判明した。すなわち、イネの栽培初期においては、水中におけるメタケイ酸イオン(SiO 2-)濃度は、実施区の方が比較対照区に比べてわずかに高い程度でそれ程差異はないものの、栄養生長期となると比較対照区においてはその濃度が大幅に低下しており、イネにおいてLsi遺伝子の発現が促進されていることも観察されたのに対し、実施区においては濃度が若干下がっているものの栽培初期から濃度がそれ程変わっておらず、イネにおいてLsi遺伝子の発現も抑制されていることが観察された。The inventors of the present invention have made further intensive studies to explore the factors behind the increase in yield, and have found that the use of the above-mentioned materials in the hydroponic culture of rice is associated with the concentration of metasilicate ions (SiO 3 2− ) in paddy water. It was found that there was a large difference in the given plot compared to the control plot. That is, in the early stage of rice cultivation, the concentration of metasilicate ions (SiO 3 2- ) in the water is slightly higher in the experimental plot than in the control plot, and there is no significant difference. In the control plot, the concentration was significantly reduced, and it was also observed that the expression of the Lsi gene was promoted in rice. did not change significantly, and it was observed that the expression of the Lsi gene was also suppressed in rice.

これらのことから、イネ科植物の栽培においてその穀物収量の増大の上では、従来非特許文献2などで言われるように、イネが、ケイ素を中性分子であるオルトケイ酸HSiO(Si(OH))の形で吸収し、植物体内での多量のケイ素の集積を行うというようなことではなく、イネがケイ素をメタケイ酸イオン(SiO 2-)の形で取り込み、植物体が大きくなり光合成量が増えることで、穀物収量が増大するといった作用機序が重要であること、また、このような過程において、上記したように廃ガラスを原料として焼成発泡化された資材は、長期に亘って安定してケイ素をメタケイ酸イオン(SiO 2-)の形で溶出提供でき、イネの成長、穀物の収量増加に顕著な効果を与えるものであるとの結論に達し、本発明を完成するに至ったものである。From these facts, in terms of increasing the grain yield in the cultivation of gramineous plants, as previously reported in Non-Patent Document 2, etc., rice contains silicon as a neutral molecule, orthosilicate H 4 SiO 4 (Si ( OH ) 4 ) and accumulate a large amount of silicon in the plant body. It is important to have a mechanism of action such as increasing the yield of grains by increasing the amount of photosynthesis and increasing the yield of grains. We have reached the conclusion that silicon can be stably eluted in the form of metasilicate ions (SiO 3 2- ) over a long period of time and have a remarkable effect on the growth of rice and the increase in the yield of grains. It has reached completion.

すなわち、上記課題を解決する本発明は、ガラス質発泡焼成体を含有してなる肥料である。 That is, the present invention for solving the above problems is a fertilizer containing a vitreous foamed sintered body.

本発明に係る肥料としては、前記ガラス質発泡焼成体が嵩密度0.3~0.6g/cm3、吸水率30~35%のものである態様が示される。As a fertilizer according to the present invention, an embodiment is shown in which the vitreous foamed sintered body has a bulk density of 0.3 to 0.6 g/cm 3 and a water absorption rate of 30 to 35%.

本発明に係る肥料としては、前記ガラス質発泡体が、前記ガラス質発泡体が、SiOを65.0質量%以上含み、水に対してメタケイ酸イオン(SiO 2-)溶出性を示すものである態様が示される。As a fertilizer according to the present invention, the vitreous foam contains 65.0% by mass or more of SiO 2 and exhibits metasilicate ion (SiO 3 2− ) elution in water. Embodiments are shown.

本発明に係る肥料としては、さらに、前記ガラス質発泡体が、廃ガラス粉砕原料に、炭化珪素、炭酸カルシウム、窒化アルミニウム、Al灰からなる群より選択されてなる少なくともいずれか1種の発泡剤を原料全体の0.1~3重量%配合して焼成したものである態様が示される。 The fertilizer according to the present invention further includes at least one foaming agent selected from the group consisting of silicon carbide, calcium carbonate, aluminum nitride, and Al ash, in addition to the waste glass pulverized raw material in the vitreous foam. is added in an amount of 0.1 to 3% by weight based on the total raw materials and fired.

本発明に係る肥料としてはまた、前記ガラス質発泡焼成体が、SiO 65.0~75.0質量%、CaO 7.0~15.0質量%、NaO 10.0~16.0質量%、KO 0~3.5質量%、MgO 0~4.5質量%、Al 0~2.5質量%、C 0~2質量%、その他の成分3質量未満を含むものである態様が示される。As a fertilizer according to the present invention, the vitreous foamed sintered body contains SiO 2 65.0 to 75.0% by mass, CaO 7.0 to 15.0% by mass, and Na 2 O 10.0 to 16.0%. 0 to 3.5% by mass of K 2 O, 0 to 4.5% by mass of MgO, 0 to 2.5% by mass of Al 2 O 3 , 0 to 2% by mass of C, and less than 3% by mass of other components Aspects are presented which are intended to

上記課題を解決する本発明はまた、単子葉植物の土耕または水耕栽培において、植物の根の近傍位置に上記に記載した肥料を配置することを特徴とする栽培植物の生産方法である。 The present invention, which solves the above problems, is also a method for producing a cultivated plant, characterized by placing the fertilizer described above in the vicinity of the root of the plant in the soil culture or hydroponics culture of a monocotyledon.

本発明に係る栽培植物の生産方法において、前記植物が特にイネ科植物である態様が示される。 In the method for producing a cultivated plant according to the present invention, there is shown an aspect in which the plant is particularly a plant of the Gramineae family.

上記課題を解決する本発明はまた、植物の根の近傍位置でのメタケイ酸イオン(SiO 2-)濃度を調整することを特徴とする栽培植物の成長の調節方法である。The present invention, which solves the above problems, is also a method for regulating the growth of cultivated plants, characterized by adjusting the concentration of metasilicate ions (SiO 3 2− ) near the roots of the plants.

本発明に係る栽培植物の成長の調節方法において、前記栽培植物に与える水中のメタケイ酸イオン(SiO 2-)濃度を20~25mg/Lに維持する態様が示される。In the method for regulating the growth of cultivated plants according to the present invention, there is shown an embodiment in which the concentration of metasilicate ions (SiO 3 2− ) in water given to the cultivated plants is maintained at 20-25 mg/L.

本発明によれば、植物の育成において、ガラス質発泡焼成体からなる肥料を植物の根元に与えるという極めて単純な作業により、植物の収量の大幅な増大を図れるものであり、特に、コメ、小麦、トウモロコシといった主要穀物のいずれに対しても有効であることから、食糧問題の解決に大きく貢献するものである。また収量を高めるための膨大な研究費と時間を要する植物の品種改良が不要であり、結果的に食糧のコスト低減にも大きく貢献する。さらに、本発明に係るガラス質発泡焼成体は、廃ガラスを原料として製造されるため、低コストでかつ省資源であり、さらにこの素材は、廃棄物法上は「土」と見なされ、法的にもまた実質的にも環境負荷がないものである。さらに本発明によれば、植物がその体内に取り込むケイ素の分子形態が明らかとされ、単子葉植物の進化の解明に、理学的に大きく貢献することが期待される。 According to the present invention, in growing plants, it is possible to significantly increase the yield of plants, particularly rice and wheat, by a very simple operation of applying a fertilizer made of a vitreous foamed sintered body to the roots of the plants. Since it is effective for all major grains such as corn and maize, it will greatly contribute to solving the food problem. In addition, there is no need for plant breeding, which requires enormous research expenses and time to increase yields, and as a result, it contributes greatly to the reduction of food costs. Furthermore, since the vitreous foamed sintered body according to the present invention is manufactured using waste glass as a raw material, it is low cost and resource-saving. There is no environmental load physically and practically. Furthermore, according to the present invention, the molecular form of silicon taken into the body of plants has been clarified, and is expected to make a great scientific contribution to the elucidation of the evolution of monocotyledonous plants.

(a)本発明の肥料を用いて栽培した実施例区における第一品種のコメと、(b)比較対照区で栽培した当該第一品種のコメの生育状態を比較する写真である。2 is a photograph comparing the growth state of (a) rice of the first variety cultivated in an example plot cultivated using the fertilizer of the present invention and (b) rice of the first variety cultivated in a comparative control plot. 本発明の肥料を用いて栽培した実施例区における第一品種のコメと、比較対照区で栽培した当該第一品種のコメとにおける植物体内ケイ素濃度を示すグラフである。4 is a graph showing the intraplant silicon concentration of the first variety rice cultivated in the example plot cultivated using the fertilizer of the present invention and the first variety rice cultivated in the comparative control plot. 本発明の肥料を用いて栽培した実施例区における第一品種のコメと、比較対照区で栽培した当該第一品種のコメとにおける植物体量を示すグラフである。Fig. 2 is a graph showing the plant weight of the first variety rice cultivated in the example plot cultivated using the fertilizer of the present invention and the first variety rice cultivated in the comparative control plot. 本発明の肥料を用いて栽培した実施例区における第一品種のコメと、比較対照区で栽培した当該第一品種のコメとにおける果実(玄米)収量を示すグラフである。4 is a graph showing the fruit (brown rice) yield of the first variety of rice cultivated in the example plot cultivated using the fertilizer of the present invention and the first variety of rice cultivated in the comparative control plot. 本発明の肥料を用いて栽培した別の品種の実施例区における第二品種のコメと、別の比較対照区で栽培した当該第二品種のコメとにおける果実(玄米)収量を示すグラフである。Fig. 4 is a graph showing the fruit (brown rice) yield of the second variety of rice cultivated using the fertilizer of the present invention in an example plot of another variety and the second variety of rice cultivated in another comparative control plot. . 本発明の肥料を用いた実施例区で苗を植えた、および苗を植えない水田水中の60日経過後のメタケイ酸イオン(SiO 2-)濃度と、比較対照区で苗を植えた、および苗を植えない60日経過後の水田水中のメタケイ酸イオン(SiO 2-)濃度の経時的変化を示すグラフである。Metasilicate ion (SiO 3 2− ) concentration after 60 days in paddy water in which seedlings were planted in the example plot using the fertilizer of the present invention and in which seedlings were not planted, and seedlings were planted in the control plot, and 4 is a graph showing temporal changes in metasilicate ion (SiO 3 2− ) concentration in paddy water after 60 days without planting seedlings. 本発明の肥料を用いてイネを栽培した実施例区でのイネでのLis遺伝子発現の状態を示す顕微鏡写真と、比較対照区で栽培したイネでLis遺伝子発現の状態を示す顕微鏡写真である。FIG. 2 is a micrograph showing the state of Lis gene expression in rice in an example plot in which rice was cultivated using the fertilizer of the present invention, and a micrograph showing the state of Lis gene expression in rice cultivated in a control plot. (a)本発明の肥料を用いて栽培した実施例区における小麦と、(b)比較対照区で栽培した小麦の生育状態を比較する写真である。(a) A photograph comparing the growth state of wheat cultivated in an example plot cultivated using the fertilizer of the present invention and (b) wheat cultivated in a comparative control plot. (a)本発明の肥料を用いて栽培した実施例区におけるトウモロコシと、(b)比較対照区で栽培したトウモロコシの生育状態を比較する写真である。1 is a photograph comparing the growth state of (a) corn grown using the fertilizer of the present invention in an example plot and (b) corn grown in a control plot.

以下、本発明を実施形態に基づき詳細に説明する。 BEST MODE FOR CARRYING OUT THE INVENTION The present invention will be described in detail below based on embodiments.

(肥料)
本発明の肥料は、ガラス質発泡焼成体を含有してなるものである。
(fertilizer)
The fertilizer of the present invention contains a vitreous foamed sintered body.

前記ガラス質発泡焼成体は、代表的には、後述するように、一般に廃ガラスを原料とし、これに少量の発泡剤を加えて、ガラスの軟化点以上、一般的に750℃以上、好ましくは840~980℃の範囲、代表的には880℃前後にて焼成することにより得られるものである。 Typically, the vitreous foamed sintered body, as described later, is generally made from waste glass as a raw material, added with a small amount of foaming agent, and heated to a temperature higher than the softening point of glass, generally 750° C. or higher, preferably 750° C. or higher. It is obtained by firing in the range of 840 to 980°C, typically around 880°C.

このため、その組成としては、原料となる廃ガラスに入るガラスの種類によって多少変動するものの、ケイ素成分として、SiOを65.0質量%以上含み、残部のほとんどがアルカリないしアルカリ土類金属の酸化物となることから、その焼成体相中に水可溶性メタケイ酸塩を多く含有するものとなる。従って、前記ガラス質発泡焼成体は、水に対してメタケイ酸イオン(SiO 2-)溶出性を示すものである。特に限定されるわけではないが、具体的には例えば、水温20℃(±5℃)の純水1リットルにガラス質発泡焼成体100gを入れて3日間、静置保存した場合において、メタケイ酸イオンイオン(SiO 2-)溶出量が、25~50mg/L、特に、35~45mg/L、例えば41mg/Lであり、特に好ましくは、14日間の溶出量が、50mg/L以上、特に、50~70mg/L、例えば、56mg/Lとなる。Therefore, although the composition varies somewhat depending on the type of glass entering the waste glass as a raw material, it contains 65.0% by mass or more of SiO 2 as a silicon component, and most of the remainder is an alkali or alkaline earth metal. Since it becomes an oxide, it contains a large amount of water-soluble metasilicate in the sintered body phase. Therefore, the vitreous foamed sintered body exhibits metasilicate ion (SiO 3 2− ) elution with water. Although it is not particularly limited, specifically, for example, when 100 g of the glassy foamed fired body is put in 1 liter of pure water at a water temperature of 20 ° C. (± 5 ° C.) and left to stand for 3 days, metasilicic acid The ion ion (SiO 3 2− ) elution amount is 25 to 50 mg/L, particularly 35 to 45 mg/L, for example 41 mg/L, and particularly preferably the elution amount for 14 days is 50 mg/L or more, especially , 50-70 mg/L, for example 56 mg/L.

特に、主たる廃ガラスが、ガラスびん、板ガラス、窓ガラス等のソーダ石灰ガラスであることから、これに比較的近い組成を有し、代表的には、SiO 65.0~75.0質量%、特に70.0~74.0質量%、CaO 7.0~15.0質量%、特に10.0~13.0質量%、NaO 10.0~16.0質量%、特に10.0~13.0質量%、KO 0~3.5質量%、特に1.0~3.0質量%、MgO 0~4.5質量%、特に1.0~3.0質量%、Al 0~2.5質量%、特に1.0質量%未満、C 0~2質量%、特に、1.5質量%未満、その他の成分3質量未満、特に2質量%未満を含むものである。その他の成分としては、特に限定されるものではないが、例えば、ホウケイ酸ガラス、結晶化ガラス等のその他のガラス由来のB、Li、TiO、ZrOなどや、着色ガラス由来のFe、CoOなどが挙げられる。In particular, since the main waste glass is soda-lime glass such as glass bottles, plate glass, and window glass, it has a composition relatively close to this, typically SiO 2 65.0 to 75.0% by mass. , especially 70.0 to 74.0% by weight, CaO 7.0 to 15.0% by weight, especially 10.0 to 13.0% by weight, Na 2 O 10.0 to 16.0% by weight, especially 10.0% by weight. 0-13.0% by weight, K 2 O 0-3.5% by weight, especially 1.0-3.0% by weight, MgO 0-4.5% by weight, especially 1.0-3.0% by weight, Al 2 O 3 0-2.5% by weight, especially less than 1.0% by weight, C 0-2% by weight, especially less than 1.5% by weight, other components less than 3% by weight, especially less than 2% by weight It is a thing. Other components include, but are not limited to, B 2 O 3 , Li 2 O 3 , TiO 2 , ZrO 2 derived from other glasses such as borosilicate glass and crystallized glass, and coloring. Glass-derived Fe 2 O 3 , CoO and the like can be mentioned.

また本発明の肥料に係るガラス質発泡焼成体の形状としても、特に限定されるものではなく、土耕栽培において植物の根の近傍位置となる土壌中ないし地表部位、あるいは水耕栽培において植物の根の近傍位置あるいは少なくとも植物の根への水の供給経路のいずれかに接する位置に、配することができ、十分に水分と接し得るもので有れば良いが、例えば、前記ガラス質発泡焼成体が嵩密度0.3~0.6g/cm3、吸水率30~35%のものであることが望ましい。このような範囲内の嵩密度であると、軽量で植物の根への負担もなく、かつ根に対する保持性も良好であり、また、吸水率がこの範囲内にあることで、より効率よく水と接触して所定のメタケイ酸イオン(SiO 2-)の溶出を安定して良好な量においてもたらすことが可能である。また、平均粒径としても特に限定されるものではないが、例えば、平均粒径10~60mm程度のものが好ましく用いられる。Also, the shape of the vitreous foamed sintered body of the fertilizer of the present invention is not particularly limited. It can be placed in the vicinity of the roots or at least in a position in contact with the water supply route to the roots of the plant, as long as it can be in contact with water sufficiently. Desirably, the body has a bulk density of 0.3 to 0.6 g/cm 3 and a water absorption of 30 to 35%. If the bulk density is within such a range, it is lightweight, does not burden the roots of the plant, and has good retention on the roots. It is possible to stably bring about elution of a predetermined metasilicate ion (SiO 3 2− ) in a good amount. Also, the average particle size is not particularly limited, but, for example, those having an average particle size of about 10 to 60 mm are preferably used.

なお、本明細書において、嵩密度は、アルキメデス法により測定したものである。また、吸水率は、先ず、測定する試料の乾燥状態での重量W0 を測定し、次に水中に試料を沈めた状態で5分保持し、取り出した後、表面を湿った布で拭き、重量W1 を測定し、(W1-W0)/W0×100の式から算出して求めた。さらに、平均粒子径は、JIS M-8511に準じた空気透過法による比表面積の測定結果から計算した値である。In addition, in this specification, the bulk density is measured by the Archimedes method. In addition, the water absorption rate is measured by first measuring the weight W 0 of the sample to be measured in a dry state, then submerging the sample in water and holding it for 5 minutes, taking it out, wiping the surface with a damp cloth, The weight W 1 was measured and calculated from the formula (W 1 -W 0 )/W 0 ×100. Furthermore, the average particle size is a value calculated from the results of measuring the specific surface area by an air permeation method according to JIS M-8511.

本発明の肥料として用いられるガラス質発泡体の製造法としては、特に限定されるものではないが、例えば、以下のようにして製造され得る。 The method for producing the vitreous foam used as the fertilizer of the present invention is not particularly limited, but for example, it can be produced as follows.

ガラス原料は、各種の廃ガラスである。例えば、廃棄されたガラスびん、板ガラス、窓ガラス、テレビやパソコンの前面ガラスパネル、ガラス製品工場からのスクラップなどである。これらの廃材は、ガラス質として見た場合、ソーダ石灰ガラス、ホウケイ酸ガラス、ほうけい酸塩ガラス、結晶ガラスなどが含まれているが、このような廃ガラスのうち、ソーダ石灰ガラスを用いた、ガラスびん、板ガラス、窓ガラスの廃材が、主要なものであり回収も容易であり、大量に利用可能であるため有利である。 Glass raw materials are various waste glasses. Examples include discarded glass bottles, plate glass, window glass, television and computer front glass panels, and scrap from glassware factories. These waste materials include soda-lime glass, borosilicate glass, borosilicate glass, crystal glass, etc. when viewed as vitreous. , glass bottles, plate glass, and window glass waste are the major ones, are easy to collect, and are available in large quantities, which is advantageous.

このような廃ガラスを粉砕し、これに発泡剤を加えて、ガラスの融点以上、好ましくは880℃にて焼成することにより得られるものである。発泡剤としては、炭化珪素(SiC)、炭酸カルシウム(CaCO)、窒化アルミニウム(AlN)、Al灰等が用いられ得るが、このうちSiCが好ましく、その添加量としては、原料全体の0.1~3重量%程度とすることが適当である。It is obtained by pulverizing such waste glass, adding a foaming agent thereto, and firing at a temperature higher than the melting point of glass, preferably at 880°C. As the foaming agent, silicon carbide (SiC), calcium carbonate (CaCO 3 ), aluminum nitride (AlN), Al ash, etc. can be used. About 1 to 3% by weight is suitable.

さらに具体的にその製法を、好ましい一例を挙げて説明すると、まず廃ガラス原料を市販のガラス破砕機、例えばハンマーミルなどの衝撃型破砕機を用いて粉砕し、粉砕物を篩分けし得られる0.21mm以上2.38mm以下の粒度分布を有する粗粉砕ガラス粉96%以上と0.21mm未満の粒度分布を有する微粉ガラス粉4%以下の配合ガラス粉を原料とする。粗粉砕ガラス粉の粒度分布の内訳は、種々変えることができるが、平均粒径としては、約0.5mm又はそれ以上のものを使用することが好ましい。 More specifically, the manufacturing method thereof will be described with a preferred example. First, waste glass raw materials are crushed using a commercially available glass crusher, for example, an impact crusher such as a hammer mill, and the crushed material is sieved. Mixed glass powder containing 96% or more of coarsely ground glass powder having a particle size distribution of 0.21 mm or more and 2.38 mm or less and 4% or less of fine glass powder having a particle size distribution of less than 0.21 mm is used as a raw material. Although the particle size distribution of the coarsely ground glass powder can be varied, it is preferable to use an average particle size of about 0.5 mm or more.

粗粉砕ガラス粉の粒度が2.38mmを超える粗粒は再び粉砕し、上記の粒度分布の範囲内の粗粉砕ガラス粉と微粉砕ガラス粉とに篩分けして使用する。粗粉砕ガラス粉の粒度分布の上限を2.38mmの粒度とする理由は、2.38mmを超える粒径のものを原料として用いると、製品中にそのまゝの状態として残存し易く、均一な発泡組織が得られないからである。 Coarsely ground glass powder having a particle size exceeding 2.38 mm is ground again and sieved into coarsely ground glass powder and finely ground glass powder within the above particle size distribution range for use. The reason why the upper limit of the particle size distribution of the coarsely pulverized glass powder is set to 2.38 mm is that if glass powder with a particle size exceeding 2.38 mm is used as a raw material, it tends to remain as it is in the product, resulting in a uniform particle size. This is because a foam structure cannot be obtained.

このように、0.21mm以上の粗粉砕ガラス粉が配合ガラス粉の大部分を占めるので、ガラス廃材を粗粉砕できる比較的安価な粉砕機を使用して安価に粉砕原料を得ることができ、全てを0.2mm以下に微粉砕するボールミルやレイノルズミルなどのような高価な微粉砕機を使用する必要がない。 As described above, since the coarsely ground glass powder having a size of 0.21 mm or more accounts for the majority of the mixed glass powder, it is possible to obtain a raw material for grinding at a low cost using a relatively inexpensive grinder capable of coarsely grinding glass waste materials. There is no need to use expensive pulverizers such as ball mills or Reynolds mills that pulverize everything to 0.2 mm or less.

なお、廃ガラス原料からは、予め、出来る限りこれらに混在している陶器片、磁器片、金属、土、砂、砂利などの無機系不燃物やプラスチック、紙、木片などの夾触物を除去することが望まれるが、本発明の肥料に係るガラス質発泡体を製造するに差支えない限り、極めて少量であるならば、混ざっていても差支えない。 Inorganic incombustible materials such as ceramic pieces, porcelain pieces, metals, soil, sand, gravel, etc., and contaminants such as plastics, paper, wood pieces, etc. mixed in with waste glass raw materials are removed in advance as much as possible. However, as long as it does not affect the production of the vitreous foam for the fertilizer of the present invention, it may be mixed in a very small amount.

上記したように、該粗粉砕ガラス粉に少量の微粉砕ガラス粉を配合したガラス質配合粉を調製するのは、例えば、粒径0.21mm未満の該微粉砕ガラス粉を全く混ぜないで粒径2mm以下の粒度分布を有する粗粉砕ガラス粉のみを原料とし加熱焼成すると、加熱前の常温では互いに接触する粗粒子で囲まれ形成される空隙は、粗粉粒の焼結性が悪いため、500~600℃の焼結温度ではまだ粗粒子相互は焼結が充分に行われないので閉塞孔とならず、この間粗粒子から発生するガスは外部に抜ける。その後、700℃の焼結温度でやっと粗粒子間の焼結が充分に行われて該空隙は閉塞し、独立気孔が生成するが、その大きさは極めて小さい。さらに700℃以上の焼成昇温時では既に独立気孔内のガスが少量のため、その気孔は大きくならず、小さいままであり、大きな独立気孔が得られない。これに対し、2mm程度の粗粒ガラス粉間に0.2mm以下の微粒砕ガラス粉が介在した状態で加熱焼成を行うと、加熱前の常温では、該粗粒子間に微粒子が介在した状態で形成される比較的大きい空隙は、500~600℃の焼結温度で微粒子は焼結し易いので、その微粒子と接触している各粗粒子とは、この500~600℃の低い焼結温度でも互いに焼結し、該空隙は閉塞され、包囲壁をつくり、その内部にこれら粒子から発生するガスを閉じ込めた大きな独立気孔を生成する。さらに高温の700℃の焼結でさらに軟化焼結が進行し、粗粒は融合し、該独立気孔の周囲を囲む良好な融合壁となり、これにより独立気孔は被包されると共に大きな口径を維持する。さらに700℃以上に昇温すれば、独立気孔内のガスは膨脹し、従って、独立気孔が膨脹し、極めて軽量でかつ吸水性の小さい泡ガラス体が得られる。 As described above, the vitreous blended powder obtained by blending the coarsely ground glass powder with a small amount of the finely ground glass powder is prepared, for example, by not mixing the finely ground glass powder having a particle size of less than 0.21 mm. When only coarsely ground glass powder having a particle size distribution with a diameter of 2 mm or less is used as a raw material and fired by heating, voids formed by being surrounded by coarse particles that are in contact with each other at room temperature before heating are poor in sinterability of the coarse particles. At a sintering temperature of 500 to 600° C., the coarse particles are not yet sintered sufficiently to form closed pores, and during this time the gas generated from the coarse particles escapes to the outside. After that, at a sintering temperature of 700° C., sintering between the coarse particles is sufficiently carried out and the voids are closed to form independent pores, which are very small in size. Furthermore, when the firing temperature is raised to 700° C. or more, the amount of gas in the independent pores is already small, so the pores do not become large and remain small, and large independent pores cannot be obtained. On the other hand, if the heat firing is performed in a state in which the fine crushed glass powder of 0.2 mm or less is interposed between the coarse glass powders of about 2 mm, fine particles are interposed between the coarse particles at room temperature before heating. The relatively large voids that are formed make it easy for the fine particles to be sintered at a sintering temperature of 500 to 600°C. When sintered together, the voids are closed, creating a surrounding wall and creating large closed pores within which the gases generated by these particles are trapped. Sintering at a higher temperature of 700°C further promotes softening sintering, and the coarse grains are fused to form a well-fused wall surrounding the independent pores, thereby enveloping the independent pores and maintaining a large diameter. do. If the temperature is further raised to 700° C. or higher, the gas in the closed pores expands, and thus the closed pores expand, resulting in a foamed glass body that is extremely lightweight and has low water absorption.

前記のように配合したガラス質混合粉に、これに対し0.1~3重量%の炭化珪素を添加、混合した混合粉を調製し、これをガラスの軟化点以上に、上記の焼成温度500℃以上に加熱し、上記のように昇温し、少なくとも700℃以上で焼成昇温した後、急冷又は徐冷により冷却することにより、強靭なガラス質壁で覆われた大きな独立気泡を無数に有する嵩比重0.3~0.6g/cm3、特に0.4~0.5g/cm、吸水率30~35%のガラス質発泡体が得られる。炭化珪素は通常、コークスと酸化珪素が主体である珪砂から製造されるが、本目的に使用される炭化珪素は必ずしも充分に精製されていなくてもよい。例えば、純度が85%程度のものとか、製造中、微粉末としてバッグフィルターなどで回収されるものでもよい。炭化珪素の添加量を配合ガラス粉に対し0.1~3重量%に限定する理由は、その添加量が0.1重量%未満であると、嵩比重が0.3~0.6g/cmと充分な軽量特性をもつ製品をつくることが困難となる。一方、その添加量が3重量%を超えても充分な軽量特性をもつ製品をつくることができるが、製品単価が高価となり好ましくない。また、該配合ガラス粉とそのガラスの軟化点以上に加熱焼成するのであるが、この軟化点は夫々のガラス原料の種類によって異なる。ソーダ石灰ガラスの場合には750℃以上が一般であり、特に好ましい温度域は840~980℃の範囲である。例えば900℃まで昇温させるに要する時間は、その被処理物層の厚さにもよるが、厚さが10mmであれば10分、20mmであれば20分程度とすることが好ましい。また最高温度に達した後の高温保持時間は、最高温度が低ければ保持時間を長く、逆に最高温度が高ければ保持時間を短くするようにする。例えば、その保持時間は一般に30~0分の範囲である。ここで0分とは、最高温度に達したら直ちに冷却することを意味する。30分以上の長い保持時間は製造コストの観点から好ましくない。尚、配合ガラス粉に水分が多量に含まれている場合には、200℃付近で完全に水分を蒸発してから、上記の昇温を行うべきである。0.1 to 3% by weight of silicon carbide is added to the vitreous mixed powder blended as described above to prepare a mixed powder, which is heated to the softening point of the glass or higher at the above firing temperature of 500. ° C or higher, heated as described above, fired at least at 700 ° C or higher, and then cooled by rapid cooling or slow cooling to create countless large closed cells covered with tough vitreous walls. A vitreous foam having a bulk specific gravity of 0.3 to 0.6 g/cm 3 , particularly 0.4 to 0.5 g/cm 3 and a water absorption of 30 to 35% is obtained. Silicon carbide is usually produced from silica sand mainly composed of coke and silicon oxide, but the silicon carbide used for this purpose does not necessarily have to be sufficiently refined. For example, it may have a purity of about 85%, or it may be recovered as a fine powder with a bag filter or the like during production. The reason why the added amount of silicon carbide is limited to 0.1 to 3% by weight with respect to the mixed glass powder is that if the added amount is less than 0.1% by weight, the bulk specific gravity is 0.3 to 0.6 g/cm. 3 and it becomes difficult to make a product with sufficient lightweight properties. On the other hand, even if the added amount exceeds 3% by weight, it is possible to produce a product having sufficient light weight characteristics, but the unit price of the product becomes expensive, which is not preferable. Further, the blended glass powder and the glass are heated and sintered at a temperature higher than the softening point of the glass. In the case of soda-lime glass, the temperature is generally 750°C or higher, and a particularly preferred temperature range is 840-980°C. For example, the time required to raise the temperature to 900° C. depends on the thickness of the layer to be processed, but is preferably about 10 minutes if the thickness is 10 mm, and about 20 minutes if the thickness is 20 mm. As for the high-temperature holding time after reaching the maximum temperature, the lower the maximum temperature, the longer the holding time, and conversely, the higher the maximum temperature, the shorter the holding time. For example, the retention time is generally in the range of 30-0 minutes. Here, 0 minutes means cooling as soon as the maximum temperature is reached. A long holding time of 30 minutes or more is not preferable from the viewpoint of manufacturing costs. If the mixed glass powder contains a large amount of water, the above temperature should be raised after the water is completely evaporated at around 200°C.

上記の配合ガラス粉は、所定の成形型枠に入れ加熱焼成した後徐冷すれば、レンガ、壁材などの板状の成形品とすることができるが、急冷すれば、板状成形体に亀裂を生じ不定形の塊状に壊れた無数の粒状物、例えば粒径10~60mmの不定型塊状のガラス質発泡体として得られる。なお、一定の形状、例えば、レンガ、板状、その他、任意の形状を有する成型品を作る場合は、例えば、上記の高温保持時間後、200℃まで徐々に冷却する。この場合の冷却速度は、できるだけ遅い方が好ましく、2℃/分程度が最も好ましい。
なお製造方法は、バッチ方式、連続方式のいずれの方式でも可能である。
The above-mentioned mixed glass powder can be formed into plate-shaped molded articles such as bricks and wall materials by placing it in a predetermined forming mold, heating and firing it, and then slowly cooling it. It is obtained as countless granules that are cracked and broken into irregular masses, for example, amorphous mass vitreous foams with a particle size of 10 to 60 mm. In addition, when making a molded product having a certain shape, such as a brick shape, a plate shape, or any other shape, the product is gradually cooled to 200° C. after the above-mentioned high temperature holding time. In this case, the cooling rate is preferably as slow as possible, most preferably about 2°C/min.
The production method can be either a batch method or a continuous method.

(栽培植物の生産方法)
本発明の栽培植物の生産方法は、上記したようなガラス質発泡焼成体を含有する肥料を、単子葉植物の土耕または水耕栽培において、植物の根の近傍位置に配置することを特徴とするものである。
(Method for producing cultivated plants)
The method for producing a cultivated plant of the present invention is characterized in that the fertilizer containing the above-mentioned vitreous foamed sintered body is placed in the vicinity of the root of the plant in the soil or hydroponics of monocotyledonous plants. It is something to do.

対象となる単子葉植物としては、特に限定されるものではない。具体的には、例えば、イネ(Oryza sativa)、トウモロコシ(Zea mays)、オオムギ(Hordeum vulgare)、コムギ(Triticum aestivum)、ライムギ(Secale cereale)、ハトムギ(Coix lacryma-jobi var. ma-yuen)、タケ(Phyllostachys)、サトウキビ(Saccharum officinarum)、アワ(Setaria italica)、ヒエ(Echinochloa esculenta)、モロコシ(Sorghum bicolor)、ネピアグラス(Pennisetum pupureum)、エリアンサス(Erianthus ravenae)、ミスキャンタス(ススキ)(Miscanthus virgatum)、ソルガム(Sorghum)、スイッチグラス(Panicum)、エンバク(Avena fatua)などのイネ科;チューリップ(Tulipa)、ユリ(Lilium)などのユリ科;アブラヤシ(Elaeis guineensis、Elaeis oleifera)、ココヤシ(Cocos nucifera)、ナツメヤシ(Phoenix dactylifera)、ロウヤシ(Copernicia)などのヤシ科などが例示できるが、もちろんこれらに限定されるものではない。これらのうち、特にイネ科の植物に対して優れた効果が期待できるため好ましい。 The target monocotyledonous plant is not particularly limited. Specifically, for example, rice (Oryza sativa), corn (Zea mays), barley (Hordeum vulgare), wheat (Triticum aestivum), rye (Secale cereale), pearl barley (Coix lacryma-jobi var. ma-yuen), Bamboo (Phyllostachys), Sugarcane (Saccharum officinarum), Foxtail (Setaria italica), Japanese barnyard (Echinochloa esculenta), Sorghum (Sorghum bicolor), Napier grass (Pennisetum pupureum), Erianthus (Erianthus ravenae), Miscanthus (Miscanthus) virgatum), sorghum, switchgrass (Panicum), oat (Avena fatua); nucifera), date palm (Phoenix dactylifera), wax palm (Copernicia), and the like, but are not limited to these. Among these, it is particularly preferable for Poaceae plants because excellent effects can be expected.

単子葉植物に対する上記ガラス質発泡焼成体の施肥方法、時期および量としても特に限定されるものではない。対象となる植物の根が吸収する水分中に当該ガラス質発泡焼成体よりの溶出物、特にメタケイ酸イオンが確実に移行できるものであればよく、土耕栽培の場合においては、土壌中あるいは地表部位に配する、また水耕栽培においては、植物の根の近傍位置あるいは少なくとも植物の根への水の供給経路のいずれかに接する位置に、配することが可能である。また、植物の栽培において、上記ガラス質発泡焼成体は、元肥としてあるいは追肥として使用可能である。いずれにおいても、好ましくは、植物の成長期、例えばイネの水田耕作の場合においては、分けつ期を含む期間には、ガラス質発泡焼成体を存在させておくことが望ましい。さらに、その使用量としても、対象とする植物種、栽培方法等によっても左右されるので、特に限定されるものではないが、代表的には例えば、栽培区1m当り2~3kg程度の供給によって、良好な収量増大効果を期待できる。The fertilization method, timing and amount of the vitreous foamed sintered body for monocotyledonous plants are not particularly limited. It is acceptable as long as the eluate from the vitreous foamed calcined body, especially the metasilicate ion, can reliably migrate into the moisture absorbed by the roots of the target plant. It can be placed in a site, and in hydroponics, it can be placed in the vicinity of the root of the plant or at least in contact with the water supply route to the root of the plant. Further, in the cultivation of plants, the above-mentioned vitreous foamed sintered body can be used as base fertilizer or top dressing. In any case, it is desirable to allow the vitreous foamed sintered body to exist during the growing period of the plant, for example, during the period including the tillering period in the case of paddy field cultivation of rice. Furthermore, the amount used is also not particularly limited because it depends on the target plant species, cultivation method, etc., but typically, for example, about 2 to 3 kg is supplied per 1 m 2 of the cultivation area. A good yield increasing effect can be expected.

なお、例えば、水田耕作において、土壌中に本発明に係る上記肥料の施肥を行った場合、代表的には、約3日程で、水田水中におけるメタケイ酸イオン(SiO 2-)濃度の有意な変化が生じ、土壌栽培の場合にも、同様のことが生じていると思われる。Note that, for example, in paddy field cultivation, when the fertilizer according to the present invention is applied to the soil, the metasilicate ion (SiO 3 2− ) concentration in paddy water typically reaches a significant level in about 3 days. Changes have occurred, and it seems that the same is happening in the case of soil cultivation.

さらに、このように植物、特に、単子葉植物、さらにイネ科植物の育成において、植物の根に与える水におけるメタケイ酸イオン(SiO 2-)濃度を所定量以上に維持するようにコントロールすることで、植物の成長促進、種子ないし果実の収量を増大させることができる。Furthermore, in growing plants, particularly monocotyledonous plants and gramineous plants, the concentration of metasilicate ions (SiO 3 2− ) in the water supplied to the roots of the plants is controlled so as to be maintained at a predetermined level or higher. can promote plant growth and increase seed or fruit yield.

メタケイ酸イオン(SiO 2-)の至適濃度に関しては、植物の種類によってもある程度変動すると思われるので一概には規定できないが、対象となる植物に対して、水中メタケイ酸イオン濃度を変えたいくつかの試験区において栽培を行うことによって比較的容易に決定し得るものと思われるが、代表的には、例えば、イネの水田水耕において、水におけるメタケイ酸イオン(SiO 2-)濃度を20~25mg/Lにする、コムギの土耕栽培において、水におけるメタケイ酸イオン(SiO 2-)濃度を20~25mg/Lにする、トウモロコシのコムギの土耕栽培において、水におけるメタケイ酸イオン(SiO 2-)濃度を20~25mg/Lにするといった施策によって、大きな収量増大が期待できる。The optimum concentration of metasilicate ions (SiO 3 2− ) is thought to vary to some extent depending on the type of plant, so it cannot be defined unconditionally. Although it seems that it can be determined relatively easily by cultivating in several test plots, typically, for example, in paddy field hydroponics of rice, the metasilicate ion (SiO 3 2- ) concentration in water is 20 to 25 mg/L in the soil culture of wheat, the metasilicate ion (SiO 3 2− ) concentration in the water is 20 to 25 mg/L in the soil culture of corn wheat, metasilicic acid in the water By setting the ion (SiO 3 2− ) concentration to 20 to 25 mg/L, a significant increase in yield can be expected.

また、このようなメタケイ酸イオン(SiO 2-)濃度を所定量以上に維持する期間としても特に限定されるものではなく、各植物の成長期間に併せて適宜選択できるが、少なくとも60日以上の継続的な期間を設けることが望ましい。In addition, the period for maintaining such a metasilicate ion (SiO 3 2− ) concentration at a predetermined amount or more is not particularly limited, and can be appropriately selected according to the growth period of each plant, but at least 60 days or more. It is desirable to establish a continuous period of

以下、本発明を具体的な実施例に基づき、より具体的に説明する。なお、以下に示される実施例は、あくまで本発明の内容の理解を容易とする目的のためのみに開示されたものであって、本発明はこれらの実施例の内容に何ら限定されるものではない。 Hereinafter, the present invention will be described more specifically based on specific examples. The examples shown below are disclosed only for the purpose of facilitating the understanding of the content of the present invention, and the present invention is not limited to the content of these examples. do not have.

合成例
廃棄ビンを主体とする廃ガラス原料を、十分に洗浄、乾燥させた後、ハンマーミルを用いて粉砕し、粉砕物を篩分けし得られる0.21mm以上2.38mm以下の粒度分布を有する粗粉砕ガラス粉96質量%と、0.21mm未満の粒度分布を有する微粉ガラス粉4質量%以下の配合ガラス粉を原料とした。この配合ガラス粉に、3質量%の炭化珪素を添加、混合した混合粉を調製した。この混合粉を880℃まで昇温し、大気中で室温まで冷却して、粒径10~60mmの不定型塊状のガラス質発泡焼結体を得た。
このものの嵩比重は0.3g/cm、吸水率30%であり、組成は、SiO 73.5質量%、CaO 12.1質量%、NaO 10.5質量%、KO 0.98質量%、MgO 0.42質量%、Al 1.57質量%、C 0.4質量%、残部0.53質量%であった。
Synthesis Example Waste glass raw materials, mainly waste bottles, are sufficiently washed and dried, then pulverized using a hammer mill, and the particle size distribution of 0.21 mm or more and 2.38 mm or less obtained by sieving the pulverized material is determined. 96% by mass of coarsely pulverized glass powder having a particle size distribution of less than 0.21 mm and 4% by mass or less of fine glass powder having a particle size distribution of less than 0.21 mm. A mixed powder was prepared by adding and mixing 3% by mass of silicon carbide to this blended glass powder. This mixed powder was heated to 880° C. and cooled to room temperature in the atmosphere to obtain an irregular bulk vitreous foamed sintered body having a particle size of 10 to 60 mm.
This product has a bulk specific gravity of 0.3 g /cm 3 and a water absorption rate of 30%. .98 wt%, MgO 0.42 wt% , Al2O3 1.57 wt%, C 0.4 wt%, balance 0.53 wt%.

実施例1
底部に穴のない鉢に、市販の黒土を乾燥重量で約1,620g入れ、これに、上記合成例で得られたガラス質発泡焼結体180gを、鉢の底部において均一に施撒した。そして、灌漑用水として市水を用い、水深が約5cmとなるように水を入れて、水田の実施例区とした。前記ガラス質発泡焼結体を土壌に供給してからコシヒカリの苗を植え、通常の水田耕作法に従い、コメを生育させた。なお、栽培期間中、鉢内の用水は適宜同じ市水を補充して、ほぼ同様の水深を維持した。
Example 1
About 1,620 g of commercially available black soil in terms of dry weight was placed in a pot without a hole in the bottom, and 180 g of the vitreous foamed sintered body obtained in the above synthesis example was evenly sprinkled on the bottom of the pot. Then, city water was used as irrigation water, and water was added so that the water depth was about 5 cm. After supplying the vitreous foamed sintered body to the soil, Koshihikari seedlings were planted and rice was grown according to the usual paddy field cultivation method. During the cultivation period, the water in the pots was appropriately replenished with the same city water to maintain substantially the same water depth.

イネを植えてから180日後に稲穂が成熟したところで、栽培を終え、イネの成熟度合いを外観観察し、また、個体の植物体量を測定し、玄米の収量を測定するとともに、植物体内のケイ素濃度を測定した。なお、植物体内のケイ素濃度の測定は、硝酸分解重量法により行った。得られた結果をそれぞれ図1~4に示す。 After 180 days from the planting of rice, when the ear of rice matured, cultivation was finished, and the degree of maturity of the rice was observed externally. Concentration was measured. The silicon concentration in the plant body was measured by the nitric acid decomposition weight method. The results obtained are shown in FIGS. 1 to 4, respectively.

また、実施例区の水田水中のイオン濃度の測定を、苗を植えない鉢、および、植えた鉢、ともに栽培開始60日後において、測定した。なお、60日後の測定は、実施例区への用水の直前の補充から7日経過した後において行った。また、苗を植えない鉢に関しても、苗を植えた鉢と同様のサイクルにて鉢内の用水は補充した。測定したイオン濃度のうち、SO 2-イオン濃度を図6に示す。In addition, the ion concentration in the paddy water of the example plot was measured 60 days after the start of cultivation for both the pots in which the seedlings were not planted and the pots in which the seedlings were planted. In addition, the measurement after 60 days was performed after 7 days had passed since the last replenishment of water to the example plot. Also, regarding the pots in which the seedlings were not planted, the water in the pots was replenished in the same cycle as the pots in which the seedlings were planted. FIG. 6 shows the SO 3 2- ion concentration among the measured ion concentrations.

さらに、14日間育苗したイネを採取し、当該個体におけるLsi転写産物発現の程度を、イネLsi遺伝子特異的プライマーを用いたRT-PCR法により調べた。プライマー配列は、FW: 5’-GAGAACAAACTCCAGGGCGA-3’、RV:5’-CGAGCGTGACGAACATCATG-3’である。得られた結果を、図7に示す。なお、この測定は、臭化エチジウム染色という手順により行った。 Furthermore, rice plants raised for 14 days were collected, and the degree of expression of Lsi transcripts in the individuals was examined by RT-PCR using rice Lsi gene-specific primers. The primer sequences are FW: 5'-GAGAACAAAACTCCAGGGCGA-3', RV: 5'-CGAGCGTGACGAACATCATG-3'. The results obtained are shown in FIG. This measurement was performed by a procedure called ethidium bromide staining.

比較例1
比較のために、ガラス質発泡焼結体を土壌に混合せず、等量の土壌を補填した以外は実施例1と同様にしてコシヒカリを栽培し、実施例1と同じ期間で栽培を終え、イネの成熟度合いを外観観察し、また、個体の植物体量を測定し、玄米の収量を測定するとともに、植物体内のケイ素濃度を測定し、実施例1との差異を観察した。得られた結果をそれぞれ図1~4に示す。
Comparative example 1
For comparison, Koshihikari was cultivated in the same manner as in Example 1 except that the vitreous foamed sintered body was not mixed with the soil and an equal amount of soil was added. The degree of maturity of rice was observed externally, the mass of individual plants was measured, the yield of brown rice was measured, the silicon concentration in the plant was measured, and differences from Example 1 were observed. The results obtained are shown in FIGS. 1 to 4, respectively.

また、実施例区と同様に水田水中のイオン濃度の測定を、苗を植えない鉢、および、植えた鉢、ともに栽培開始60日後において、測定した。なお、60日後の測定は、比較例区への用水の直前の補充から7日経過した後において行った。上記実施例区の場合と同様に、、苗を植えない鉢に関しても、苗を植えた鉢と同様のサイクルにて鉢内の用水は補充した。測定したイオン濃度のうち、SO 2-イオン濃度を図6に示す。In addition, the ion concentration in the paddy water was measured 60 days after the start of cultivation for both the pots in which the seedlings were not planted and the pots in which the seedlings were planted. In addition, the measurement after 60 days was performed after 7 days had passed since the last replenishment of water to the comparative plot. As in the case of the above example plot, the water in the pots without seedlings was replenished in the same cycle as the pots with seedlings. FIG. 6 shows the SO 3 2- ion concentration among the measured ion concentrations.

さらに、14日間育苗したイネを採取し、当該個体におけるLsi蛋白質発現の程度を、RT-PCR法により調べた。得られた結果を、図7に示す。 Furthermore, rice plants raised for 14 days were collected, and the degree of Lsi protein expression in the individuals concerned was examined by RT-PCR method. The results obtained are shown in FIG.

(実験結果)
その結果、図1に示すように、栽培したイネの成長は、実施例1の方が、葉付き、稲穂付き等が明らかに良好であり、図3に示すように植物体量が大きく増加しており、図4に示すように殊に、玄米の収率は、比較例に対して208%の増大が認められた。
(Experimental result)
As a result, as shown in FIG. 1, the growth of the cultivated rice plants in Example 1 was clearly better in terms of leaf attachment, rice ear attachment, etc., and as shown in FIG. As shown in FIG. 4, the yield of brown rice in particular was increased by 208% compared to the comparative example.

一方で、植物体内ケイ素濃度としては、図2に示すように、実施例1においても、比較例1のものとあまり差異はなく、逆に若干低下している程のものであって、植物体内へのケイ素の蓄積の度合いが、玄米の収量の増加や植物の生育の向上とは、直接結びついていないものであるとの結果が示された。 On the other hand, as shown in FIG. 2, the silicon concentration in the plant is not much different in Example 1 from that in Comparative Example 1, and on the contrary, it is slightly lower. The results showed that the degree of silicon accumulation in rice grains was not directly related to the increase in brown rice yield and the improvement of plant growth.

ここで、図6に示すように、イネの栽培期間での水田水中のSiO 2-イオン濃度を見ると、水中におけるメタケイ酸イオン(SiO 2-)濃度は、苗を植えてないものに関しては実施区の方が比較対照区に比べてわずかに高い程度でそれ程差異はないものの、苗を植えたものに関しては栄養生長期では比較対照区においてはその濃度が大幅に低下していることが観察された。さらに、その時期において、図7に示すように、比較例では、イネにおいてLsi遺伝子の発現が促進されていることも観察されたのに対し、苗を植えた実施区においては苗を植えてない実施区より濃度が若干下がっているものの濃度がそれ程変わっておらず、図7に示すようにイネにおいてLsi遺伝子の発現も抑制されていることが観察された。このことから、実施例区においては、ガラス質発泡体より水中に、イネの栽培期間を通じて安定してケイ素分としてSiO 2-イオンが供給され続けていること、イネは水中のSiO 2-イオンを体内に取り込み、これによって成長促進され、光合成量が増えて、結果的に種子ないし果実の収量も大きく向上したものであることが考察された。一方、比較例区においては、イネの栽培期間を通じてイネが水中より体内に取り込むSiO 2-イオンの量に対し、土壌よりの同イオンの供給が追い付かず栽培後期となると欠乏状態に近いものとなって、それ以上の成長の向上性が見られないものであることが考察された。Here, as shown in FIG. 6, when looking at the SiO 3 2- ion concentration in the paddy water during the rice cultivation period, the metasilicate ion (SiO 3 2- ) concentration in the water was higher than that of the seedlings not planted. is slightly higher in the experimental plot than in the control plot, and there is not much difference, but in the planted seedlings, the concentration decreased significantly in the control plot during the vegetative growth period. observed. Furthermore, at that time, as shown in FIG. 7, in the comparative example, it was observed that the expression of the Lsi gene was promoted in rice, whereas in the experimental plot where seedlings were planted, no seedlings were planted. Although the concentration was slightly lower than that in the experimental plot, the concentration did not change so much, and as shown in FIG. 7, it was observed that the expression of the Lsi gene was also suppressed in rice. From this, it can be concluded that, in the example group, SiO 2- ions were stably and continuously supplied as silicon content from the vitreous foam to the water throughout the rice cultivation period . It was considered that ions were taken into the body, which promoted growth, increased the amount of photosynthesis, and consequently greatly improved the yield of seeds or fruits. On the other hand, in the comparative plot, the supply of SiO 3 2- ions from the soil could not keep up with the amount of SiO 3 2- ions taken into the body by the rice plants from the water throughout the rice cultivation period, and the ions were nearly deficient in the later stage of cultivation. As a result, it was considered that no further improvement in growth could be seen.

実施例2および比較例2
栽培するイネの品種を、コシヒカリからヒトメボレに変えた以外は実施例1および比較例1と同様にして、コメを栽培し、得られた各個体の玄米の収量を測定した。得られた結果を図5に示す。
図5に示すように、コメの品種を変えても、実施例1および比較例1の対比結果と同様に、本発明にかかる実施例2においては、比較例2に対して、高い収量が示された。
Example 2 and Comparative Example 2
Rice was cultivated in the same manner as in Example 1 and Comparative Example 1, except that the rice variety to be cultivated was changed from Koshihikari to Hitomebore, and the brown rice yield of each individual was measured. The results obtained are shown in FIG.
As shown in FIG. 5, even if the rice variety is changed, in Example 2 according to the present invention, the yield is higher than in Comparative Example 2, as in the comparison results of Example 1 and Comparative Example 1. was done.

実施例3および比較例3
底部に穴の有る鉢に、市販の黒土を乾燥重量で約1,620g入れ、これに、上記合成例で得られたガラス質発泡焼結体180gを、鉢の底において均一に施撒した。前記ガラス質発泡焼結体を土壌に供給してから、7日間隔毎に、約500mlの市水を供給した。なお供給された水のうち土壌に保水されない分の水は鉢の底部より約1分ほどで抜けるものであった。
ガラス質発泡焼結体を配してからコムギの苗を植え、その後、上記のサイクルで水を与えながら、90日間、コムギの栽培を行った(実施例3)。栽培期間終了後、コムギの成長度合いを外観観察した。得られた結果を図8に示す。
一方、比較のために、ガラス質発泡焼結体を土壌に混合せず、等量の土壌を補填した以外は実施例3と同様にしてコムギを栽培し、実施例3と同じ期間で栽培を終えた(比較例3)。栽培期間終了後、コムギの成長度合いを外観観察した。得られた結果を図8に示す。
Example 3 and Comparative Example 3
About 1,620 g of commercially available black soil in terms of dry weight was placed in a pot having a hole at the bottom, and 180 g of the vitreous foamed sintered body obtained in the above synthesis example was evenly spread on the bottom of the pot. After supplying the vitreous foamed sintered body to the soil, about 500 ml of city water was supplied at intervals of 7 days. Of the supplied water, the amount of water not retained in the soil drained from the bottom of the pot in about 1 minute.
After disposing the vitreous foamed sintered body, wheat seedlings were planted, and thereafter, the wheat was cultivated for 90 days while being watered according to the above cycle (Example 3). After the cultivation period was over, the degree of growth of wheat was visually observed. The results obtained are shown in FIG.
On the other hand, for comparison, wheat was cultivated in the same manner as in Example 3, except that the vitreous foam sintered body was not mixed with the soil and an equal amount of soil was added. finished (Comparative Example 3). After the cultivation period was over, the degree of growth of wheat was visually observed. The results obtained are shown in FIG.

図8に示す結果から明らかなように、コムギについても、本発明に係るガラス質発泡焼結体を土壌に配した実施例3においては、比較例3に比べて、その成長度の顕著な促進がみられた。 As is clear from the results shown in FIG. 8, in Example 3, in which the vitreous foamed sintered body according to the present invention was placed in the soil, the growth rate of wheat was significantly accelerated compared to Comparative Example 3. was seen.

実施例4および比較例4
底部に穴の有る鉢に、市販の黒土を乾燥重量で約1,620g入れ、これに、上記合成例で得られたガラス質発泡焼結体180gを、鉢の底において均一に施撒した。前記ガラス質発泡焼結体を土壌に供給してから、7日間隔毎に、約500mlの市水を供給した。なお供給された水のうち土壌に保水されない分の水は鉢の底部より約1分ほどで抜けるものであった。
ガラス質発泡焼結体を配してから、トウモロコシの苗を植え、その後、上記のサイクルで水を与えながら、90日間、トウモロコシの栽培を行った(実施例3)。栽培期間終了後、トウモロコシの成長度合いを外観観察した。得られた結果を図9に示す。
一方、比較のために、ガラス質発泡焼結体を土壌に混合せず、等量の土壌を補填した以外は実施例4と同様にしてトウモロコシを栽培し、実施例4と同じ期間で栽培を終えた(比較例4)。栽培期間終了後、トウモロコシの成長度合いを外観観察した。得られた結果を図9に示す。
Example 4 and Comparative Example 4
About 1,620 g of commercially available black soil in terms of dry weight was placed in a pot having a hole at the bottom, and 180 g of the vitreous foamed sintered body obtained in the above synthesis example was evenly spread on the bottom of the pot. After supplying the vitreous foamed sintered body to the soil, about 500 ml of city water was supplied at intervals of 7 days. Of the supplied water, the amount of water not retained in the soil drained from the bottom of the pot in about 1 minute.
After disposing the vitreous foamed sintered body, corn seedlings were planted, and thereafter, corn was cultivated for 90 days while watering according to the above cycle (Example 3). After the cultivation period was over, the degree of growth of the corn was visually observed. The results obtained are shown in FIG.
On the other hand, for comparison, corn was cultivated in the same manner as in Example 4 except that the vitreous foamed sintered body was not mixed with the soil and the same amount of soil was supplemented, and cultivated for the same period as in Example 4. finished (Comparative Example 4). After the cultivation period was over, the degree of growth of the corn was visually observed. The results obtained are shown in FIG.

図9に示す結果から明らかなように、トウモロコシについても、本発明に係るガラス質発泡焼結体を土壌に配した実施例4においては、比較例4に比べて、その成長度の顕著な促進がみられた。 As is clear from the results shown in FIG. 9, in Example 4, in which the vitreous foamed sintered body according to the present invention was placed in the soil, the growth rate of corn was remarkably accelerated compared to Comparative Example 4. was seen.

Claims (10)

水に対してメタケイ酸イオン(SiO 2-)溶出性を示すものであり、平均粒径が10~60mmの範囲であるガラス質発泡焼成体からなる、肥料。 A fertilizer comprising a vitreous foamed sintered body exhibiting metasilicate ion (SiO 3 2− ) elution in water and having an average particle diameter in the range of 10 to 60 mm. ガラス質発泡焼成体からなる肥料であって、
前記ガラス質発泡焼成体は、平均粒径が10~60mmの範囲であり、かつ、100gの前記ガラス質発泡焼成体を1リットルの水に入れて3日間静置保存をしたときのメタケイ酸イオン(SiO 2-)濃度が、25mg/L以上となる、水に対してメタケイ酸イオン(SiO 2-)溶出性を示す、肥料。
A fertilizer comprising a vitreous foamed sintered body,
The vitreous foamed sintered body has an average particle diameter in the range of 10 to 60 mm, and 100 g of the vitreous foamed sintered body is placed in 1 liter of water and stored statically for 3 days. A fertilizer having a (SiO 3 2− ) concentration of 25 mg/L or more and exhibiting a metasilicate ion (SiO 3 2− ) elution property in water.
100gの前記ガラス質発泡焼成体を1リットルの水に入れて14日間静置保存をしたときのメタケイ酸イオン(SiO 2-)濃度が50mg/L以上となる、請求項1または2に記載の肥料。 3. A metasilicate ion (SiO 3 2− ) concentration of 50 mg/L or more when 100 g of the vitreous foamed sintered body is placed in 1 liter of water and left to stand for 14 days, is 50 mg/L or more. fertilizer. 栽培植物の土耕または水耕栽培において、前記栽培植物の根の近傍位置に、請求項1から3のいずれか1項に記載の肥料を配置することを特徴とする、栽培植物の生産方法。 4. A method for producing a cultivated plant, wherein the fertilizer according to any one of claims 1 to 3 is placed in the vicinity of the root of the cultivated plant in soil culture or hydroponics of the cultivated plant. 請求項1から3のいずれか1項に記載の肥料を製造する方法であって、
SiOを65.0質量%以上含むガラス原料を粉砕することによって得られるガラス粉砕原料に、前記ガラス粉砕原料100質量%に対し、0.1~3質量%の発泡剤を添加し、前記ガラス粉砕原料および前記発泡剤を混合して混合粉を調製する工程と、
前記混合粉を前記ガラス粉砕原料の軟化点以上で加熱する焼成発泡工程と、
前記焼成発泡工程後に冷却してガラス質発泡焼成体を得る冷却工程と
を含む、肥料の製造方法。
A method for producing the fertilizer according to any one of claims 1 to 3,
0.1 to 3% by mass of a foaming agent is added to a glass pulverization raw material obtained by pulverizing a glass pulverization raw material containing 65.0% by mass or more of SiO 2 with respect to 100% by mass of the glass pulverization raw material to obtain the glass. A step of mixing the pulverized raw material and the foaming agent to prepare a mixed powder;
a sintering and foaming step of heating the mixed powder at a softening point or higher of the glass pulverization raw material;
and a cooling step to obtain a vitreous foamed sintered body by cooling after the sintering and foaming step.
前記冷却工程での冷却を急冷とすることによって、粒径が10~60mmである複数のガラス質発泡焼成体を得る、請求項5に記載の肥料の製造方法。 6. The method for producing a fertilizer according to claim 5, wherein the cooling in the cooling step is quenched to obtain a plurality of vitreous foamed sintered bodies having a particle size of 10 to 60 mm. 前記ガラス原料は、ソーダ石灰ガラスである、請求項5または6に記載の肥料の製造方法。 The method for producing a fertilizer according to claim 5 or 6, wherein the frit is soda-lime glass. 前記ガラス原料は、SiOを65.0~75.0質量%、CaOを7.0~15.0質量%、NaOを10.0~16.0質量%、KOを0~3.5質量%、MgOを0~4.5質量%、Alを0~2.5質量%、Cを0~2質量%、その他の成分を3質量未満含むものを用いる、請求項5または6に記載の肥料の製造方法。 The glass raw material contains 65.0 to 75.0% by mass of SiO 2 , 7.0 to 15.0% by mass of CaO, 10.0 to 16.0% by mass of Na 2 O, and 0 to 0% by mass of K 2 O. 3.5% by mass, 0 to 4.5% by mass of MgO, 0 to 2.5% by mass of Al 2 O 3 , 0 to 2% by mass of C, and less than 3% by mass of other components. Item 7. A method for producing a fertilizer according to Item 5 or 6. 請求項1から3のいずれか1項に記載の肥料を、栽培植物の土耕栽培の場合では、土壌中あるいは地表部位に配置し、また、栽培植物の水耕栽培の場合では、前記栽培植物の根の近傍位置あるいは少なくとも前記栽培植物の根への水の供給経路のいずれかに接する位置に配置して、前記栽培植物の根の近傍位置でのメタケイ酸イオン(SiO 2-)濃度を調整することを特徴とする、栽培植物の成長促進方法。 The fertilizer according to any one of claims 1 to 3 is placed in the soil or on the surface of the ground in the case of soil culture of cultivated plants, and in the case of hydroponics of cultivated plants, the cultivated plants or at least a position in contact with the water supply route to the root of the cultivated plant, and the metasilicate ion (SiO 3 2- ) concentration at the position near the root of the cultivated plant is measured. A method for promoting the growth of cultivated plants, characterized by adjusting. 前記栽培植物に与える水中のメタケイ酸イオン(SiO 2-)濃度を、20mg/L以上に維持するものである、請求項9に記載の栽培植物の成長促進方法。 10. The method for promoting the growth of cultivated plants according to claim 9, wherein the concentration of metasilicate ions (SiO 3 2- ) in water given to the cultivated plants is maintained at 20 mg/L or more.
JP2020560734A 2018-12-20 2018-12-20 Fertilizer, method for producing same, method for producing cultivated plant, and method for promoting growth Active JP7150877B2 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/047086 WO2020129222A1 (en) 2018-12-20 2018-12-20 Fertilizer and method for producing cultivated plants

Publications (3)

Publication Number Publication Date
JPWO2020129222A1 JPWO2020129222A1 (en) 2020-06-25
JPWO2020129222A5 JPWO2020129222A5 (en) 2022-02-17
JP7150877B2 true JP7150877B2 (en) 2022-10-11

Family

ID=71102675

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020560734A Active JP7150877B2 (en) 2018-12-20 2018-12-20 Fertilizer, method for producing same, method for producing cultivated plant, and method for promoting growth

Country Status (2)

Country Link
JP (1) JP7150877B2 (en)
WO (1) WO2020129222A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114557245B (en) * 2022-03-01 2023-03-24 西藏自治区农牧科学院农业研究所 Simplified cultivation method of Tibet highland barley

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002065049A (en) 2000-08-31 2002-03-05 Kensetsu Kankyo Engineering Kk Water retaining material and method for producing water retaining material
JP2004076307A (en) 2002-08-12 2004-03-11 Yoshihiro Asano High functional greening block and greening wall structure
JP2005097065A (en) 2003-09-26 2005-04-14 Soil Engineering Co Ltd Recycling system of phosphorus using glass foamed body

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63176337A (en) * 1987-01-14 1988-07-20 Kirin Brewery Co Ltd Liquid-impregnated granular foam glass
JPH04267817A (en) * 1991-02-25 1992-09-24 Central Glass Co Ltd Soil admixture

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002065049A (en) 2000-08-31 2002-03-05 Kensetsu Kankyo Engineering Kk Water retaining material and method for producing water retaining material
JP2004076307A (en) 2002-08-12 2004-03-11 Yoshihiro Asano High functional greening block and greening wall structure
JP2005097065A (en) 2003-09-26 2005-04-14 Soil Engineering Co Ltd Recycling system of phosphorus using glass foamed body

Also Published As

Publication number Publication date
JPWO2020129222A1 (en) 2020-06-25
WO2020129222A1 (en) 2020-06-25

Similar Documents

Publication Publication Date Title
US11147219B2 (en) Methods and systems for growing plants using silicate-based substrates, cultivation of enhanced photosynthetic productivity and photosafening by utilization of exogenous glycopyranosides for endogenous glycopyranosyl-protein derivatives, and formulations, process and systems for the same
JP6268650B2 (en) Soil improver and soil containing it
KR102143300B1 (en) Liquid anhydrous silicate, Manufacturing method thereof, Agent for preventing plant fungal diseases using the same, and Plant fertilizer containing the same
JP7150877B2 (en) Fertilizer, method for producing same, method for producing cultivated plant, and method for promoting growth
KR100267461B1 (en) Mixture of useful microbes and porous seramic powder
JP6967504B2 (en) Fertilizer and cultivated plant production method
JP5401656B2 (en) Clay heat treatment granular material
KR101508952B1 (en) The cultivating method of a sprout garlic with minerals extracted from mica
JPWO2020129222A5 (en)
US20240025815A1 (en) Use of an aluminosilicate glass for providing a plant with silicon in an assimilable form, method for treating a plant using this glass and new powder of this glass
KR100993007B1 (en) Fertilizer composition for direct sowing and preparation method thereof
JP5912887B2 (en) Method for producing silicate fertilizer
KR100739347B1 (en) Sodium Silicate use product growth a plant and manufacture a method.
KR20210131550A (en) Artificial soil and manufacturing method of the same
JP3793109B2 (en) Soil improver for promoting the growth of sugar beet crops containing olivine
JP3767998B2 (en) Mushroom artificial culture medium and mushroom artificial cultivation method using the same
JP2002256266A (en) Soil-conditioning and water-controlling agent for composition using industrial waste as main component and process for preparing the same
KR100761496B1 (en) Antibacterial artifial soil and manufacturing method thereof
JPH04267817A (en) Soil admixture
JP4105562B2 (en) Glass composition for plant cultivation
JP2015057950A (en) Transgenic poaceae plant, seed thereof, or production method of processed goods of seed
JP2688959B2 (en) Activator for mushroom cultivation
KR100548109B1 (en) Method for forming grouped soil particles in gardening culture soil and gardening culture soil formed the grouped soil particles
CN109734482A (en) A kind of efficient siliceous fertilizer and preparation method thereof
JP2000135035A (en) Artificial culture soil for hydroponic culture and its production

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211216

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211216

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20211216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220426

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220613

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220830

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220928

R150 Certificate of patent or registration of utility model

Ref document number: 7150877

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350