JP4105562B2 - Glass composition for plant cultivation - Google Patents

Glass composition for plant cultivation Download PDF

Info

Publication number
JP4105562B2
JP4105562B2 JP2003044675A JP2003044675A JP4105562B2 JP 4105562 B2 JP4105562 B2 JP 4105562B2 JP 2003044675 A JP2003044675 A JP 2003044675A JP 2003044675 A JP2003044675 A JP 2003044675A JP 4105562 B2 JP4105562 B2 JP 4105562B2
Authority
JP
Japan
Prior art keywords
glass
glass composition
plant cultivation
fertilizer
silicic acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003044675A
Other languages
Japanese (ja)
Other versions
JP2004250299A (en
Inventor
秀次 森
Original Assignee
酒井硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 酒井硝子株式会社 filed Critical 酒井硝子株式会社
Priority to JP2003044675A priority Critical patent/JP4105562B2/en
Publication of JP2004250299A publication Critical patent/JP2004250299A/en
Application granted granted Critical
Publication of JP4105562B2 publication Critical patent/JP4105562B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C4/00Compositions for glass with special properties
    • C03C4/0064Compositions for glass with special properties for self-destructing glass
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/062Glass compositions containing silica with less than 40% silica by weight
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/062Glass compositions containing silica with less than 40% silica by weight
    • C03C3/064Glass compositions containing silica with less than 40% silica by weight containing boron
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C4/00Compositions for glass with special properties

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Cultivation Receptacles Or Flower-Pots, Or Pots For Seedlings (AREA)
  • Glass Compositions (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)
  • Fertilizers (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、植物の栽培土壌への灌水や水耕栽培液に加えることにより、植物の生育に有用な珪酸分を効率的に補給する植物栽培用ガラス組成物に関する。
【0002】
【従来の技術】
全ての植物は、その生命維持及び生育のために、種々の元素を含む有機質及び無機質物質を必要としており、これらの中でも酸素、窒素、炭素、燐、カリウム、カルシウム、マグネシウム、鉄等が古くから必須成分として重要であるとされている。ところが、地殻中に酸素に次いで多量に存在する珪素については、植物との相互作用が希薄であり、イネ科の植物での必要性が明らかにされている程度であった。例えば、水稲は、珪酸を好んで吸収する特異な作物であり、体内の珪酸が不足すると、倒伏したり病虫害を受けやすくなることが知られていた。
【0003】
しかしながら、近年において、珪酸が全ての植物体の構成部であって、その生体中の含有率は0.02〜0.15%に相当し、植物の成長を促すと共に生体組織の機械的強さを増し、更に病虫害に対する耐性を向上させることが判り、珪酸質肥料が注目されている。そして、このような珪酸質肥料として、珪酸カルシウム肥料、珪酸カリウム肥料、溶成燐肥、コロイド状シリカ、珪酸白土等が使用されている。
【0004】
珪酸カルシウム肥料は、一般的にケイカルと称され、高炉スラグを利用した鉱滓珪酸質肥料が広く用いられ、ロックウール等にも使用されている。珪酸カリウム肥料は、フライアッシュと水酸化カリウム及び水酸化マグネシウムを混合造粒し、約860℃で焼成して一部ガラス化し、枸溶性(クエン酸溶性)肥料としたものや、鉄鋼製造の脱珪処理で生成する溶融シリカにカリ原料を添加して製造される緩効性肥料等がある。
【0005】
また、溶成燐肥は、燐鉱石と蛇紋岩とを1350〜1500℃で溶融、急冷して作られるガラス状肥料であり、通常P2 5 を17〜25重量%、CaOを25〜35重量%、MgOを14〜19重量%、SiO2 を16〜25重量%含有するものが多用されているが、前記原料に更にマンガン鉱石やコレマナイトを添加してMgO、B2 3 の微量要素成分を補足したBM溶リンと称される緩効性肥料も使用されている。
【0006】
コロイド状シリカは、通常シリカゾルとして販売されているものであるが、酸性シリカゾルも市販されている。珪酸白土は、一般にソフトシリカと称される天然モンモリナイト粘土であり、SiO2 を約73重量%、Al2 3 を約10重量%、Na2 Oを約5重量%、Fe2 3 を約5重量%、CaOを約3重量%含む他、多くの微量要素成分を含有している。
【0007】
【発明が解決しようとする課題】
しかしながら、前記の珪酸カルシウム肥料や珪酸カリウム肥料のように鉱滓を原料とした肥料は、珪酸が溶け出しにくく、大量に何度も施肥する必要があるため、農家の労力負担が大きく、特に水耕栽培には不向きであった。また、アルカリ金属珪酸塩の溶液である液体珪酸肥料は、PHが高く、他の肥料成分との反応によって沈殿やゲル化を生じ易く安定性に欠けるため、長期貯蔵によって不溶物を析出したり、水耕培養液施肥用や灌水用のストレーナー、ノズルに目詰まりを生じる等の問題が多かった。更に、コロイド状シリカも、一般的にPHが9〜11程度と高く、他の成分を添加した場合に沈殿やゲル化を生じ易いという難点があった。
【0008】
一方、溶成燐肥は、高温焼成を経ているために珪酸分の溶出性が悪い上、アルカリ性であるために栽培土壌への灌水や水耕栽培液に用いるには不適である。また、珪酸白土は、吸着やイオン交換による水質の浄化作用はあるが、珪酸イオンとして溶出しにくい。更に、酸性シリカゾルは、安定しにくく、グルコン酸やカルボン酸等の酸やその塩からなる安定剤を加える必要があるため、コスト高になるという問題があった。
【0009】
本発明者は、上述の情況に鑑み、珪酸分を植物に吸収し易い形で水耕培養液や栽培用灌水に効率よく溶出でき、且つ珪酸分の溶出量や溶出期間、PH等を適正に調整できる珪酸質肥料を提供すべく、鋭意検討を重ねる過程でガラス構造に着目した。すなわち、一般的にガラスは、共有的な結合で網目構造の骨格を構成する珪素、ホウ素、燐等の酸化物であるガラス形成酸化物と、イオン的な結合をするアルカリ金属やアルカリ土類金属等の酸化物である修飾酸化物とからできているが、ガラス形成酸化物に対する修飾酸化物の導入量を漸次増してゆくと、ガラス形成酸化物を中心とする酸素多面体における非架橋酸素数が増加し、これに伴ってガラス構造は共有結合の減少によって次第に開放的になり、網目構造が弛緩して環状構造になり、次いで環が切れた鎖状構造となり、更に鎖が切れた単純構造でイオン結合の多い所謂逆性ガラスと称される状態になる。
【0010】
上記の鎖状構造から単純構造の範囲のガラスでは、ガラス形成酸化物は、非架橋酸素を持つ陰イオンとして修飾酸化物の陽イオンと結合した状態で存在し、水中に浸漬した際にイオンとして溶け出すことができる。例えば、K2 O−SiO2 ガラスでは、K2 O比率の増大に伴ってガラス構造が開放的になり、次第に溶融粘度が低下し、遂には急冷してもガラス化しない限界に達するが、この状態に至る手前の逆性ガラスの段階においては珪酸分がイオンとして水中に溶出可能である。しかるに、K2 O−SiO2 ガラスは、アルカリ分が多く高PHであるために肥料として使用できない。
【0011】
そこで、更に研究を重ねた結果、燐、カリウム、カルシウムの酸化物を主体とする特定のガラス組成に珪酸を加えることにより、珪酸がイオン形態でガラス構造中に取り込まれ、このガラスを水中に浸漬した際、中性域ないし弱酸性域で珪酸を植物に吸収され易い活性なオルト珪酸イオン(SiO4 4- )及びピロ珪酸イオン(Si2 6 7-)として効率よく継続的に溶出でき、もって植物に珪酸分を付与する肥料として非常に有効であると共に、燐酸、カリウム、カルシウムも溶出して肥料成分として作用すること、更には上記組成に硼酸を加えることにより、製造時の溶融温度を低下できると共に、植物に吸収され易い珪酸分の溶出度合及び溶出期間を調整できることを見出し、本発明をなすに至った。
【0012】
すなわち、本発明の請求項1に係る植物栽培用ガラス組成物は、植物栽培用の水中に浸漬するガラス組成物であって、モル%として、P25 30〜60%、K2 O15〜36%、CaO5〜25%、B23 0〜20%、SiO2 3〜22%を含有し、溶出液を弱酸性ないし中性域とするガラスからなるものとしている。
【0013】
また、このような植物栽培用ガラス組成物の好適態様として、請求項2の発明では微量栄養素成分として鉄、マンガン、マグネシウム、亜鉛、銅、モリブデンより選択される少なくとも一種を含有する構成を、請求項3の発明では微量の銀を含有する構成を、それぞれ採用している。
【0014】
【発明の実施の形態】
本発明の植物栽培用ガラス組成物は、既述のように、モル%として、P2 5 30〜60%、K2 O15〜36%、CaO5〜25%、B2 3 0〜20%、SiO2 3〜22%を含有するガラスからなるものであり、ガラス網目構造が弛緩して前記の鎖状構造ないし単純構造を多く含む形態になっていることから、水中に浸漬した際に中性域ないし弱酸性域で珪酸を植物に吸収されやすいオルト珪酸イオン及びピロ珪酸イオンとして効率よく継続的に溶出できると共に、燐酸、カリウム、カルシウムも植物に吸収されやすい形で溶出して肥料成分として作用する。従って、この使用により、少ない施肥量及び施肥回数で植物の成育を促進すると共に葉や茎を丈夫にし、且つ病虫害を抑制して高収穫を得ることが可能になり、もって施肥労力及び環境負荷を軽減できる。
【0015】
また、この植物栽培用ガラス組成物は、水中浸漬による溶出液の安定性がよく沈殿やゲル化を生じにくいため、該溶出液を長期貯留しても高品位を維持できると共に、耕培養液施肥用や灌水用のストレーナー、ノズルを介して溶出液を散布する場合に目詰まりを回避できる。
【0016】
この植物栽培用ガラス組成物におけるP2 5 は、ガラス形成酸化物であると共に溶出して肥料成分として作用するが、そのモル%が30%未満であるとガラス化が困難になり、逆に60%を越えるとガラス中に網目構造を生じて珪酸溶出率が低下することになる。また、K2 Oは、15モル%未満であると珪酸溶出率の低下と原料混合物をガラス化する際の溶融温度の上昇を招き、逆に36%を越えると溶出液のPHが高くなって好ましくない。なお、P2 5 /K2 Oのモル比は1.0〜2.7の範囲がよく、これによって溶出液を植物栽培上で好適なPH3.2〜7.0程度の弱酸性〜中性域に設定できる。
【0017】
CaOについては、5モル%未満になると珪酸溶出率が低下し、25モル%を越えると原料混合物をガラス化する際の溶融温度が上昇し、且つ相対的にSiO2 含有量の低下を招くので好ましくない。
【0018】
2 3 は、原料混合物をガラス化する際の溶融温度を低下させてガラス成分の揮発を抑制し、またガラスの結晶化を抑えると共に、ガラスの溶解性を高める作用がある。しかして、本発明においては、P2 5 、K2 O、CaO、SiO2 の配合比率によって、これら成分のみで適度な溶融温度でガラスの結晶化を回避できる場合は、特に用いる必要はないが、ガラスの溶解性を高める上である程度のB2 3 を加えることが望ましい。しかるに、B2 3 のモル比が20%を越える場合は、ガラスの溶解性が過多になり、制御不能となる。
【0019】
SiO2 は、溶出させるべき珪酸分の原料であり、3モル%未満では珪酸分の必要な溶出量が得られず、22モル%を越えても前記溶融温度が高くなって得られるガラス組成物の珪酸溶出率の低下を招く。
【0020】
本発明の植物栽培用ガラス組成物においては、上記の主要成分に加えて、微量栄養素成分として鉄、マンガン、マグネシウム、亜鉛、銅、モリブデンより選択される少なくとも一種を含有させてもよい。しかして、これらの微量栄養素成分も珪酸分と同様に水中に溶出するから、水耕培養液や栽培用灌水に利用することにより、植物に必要な微量栄養素を効率よく持続的に供給できる。
【0021】
更に、本発明の植物栽培用ガラス組成物においては、上述した成分以外に、微量の銀を含有させてもよい。この銀を含有するガラス組成物の使用により、銀が溶出して抗菌作用を発揮するから、植物の病気の原因となる細菌やカビの発生を抑えることができ、もって培土、水耕培養液、栽培施設等が清浄に保たれ、それだけ農薬の散布、消毒等の作業回数を減らして労力を軽減することができる。なお、前記微量栄養素成分としての銅にも抗菌作用があるから、この銅を配合する場合には敢えて抗菌目的の銀を加える必要はない。
【0022】
なお、前記の微量栄養素成分や銀等の任意に配合可能な微量成分は、これら成分の合量として前記主要成分(P2 5 、K2 O、CaO、B2 3 、SiO2 )に対して5重量%以下とすることが望ましく、多過ぎてはガラス組成物の製造時に結晶化を生じ易くなる。
【0023】
このような植物栽培用ガラス組成物は、前記主要成分を付与する原料を、要すれば微量栄養素成分の原料及び/又は銀を加えて混合し、この混合物を坩堝やタンク窯等に入れ、都市ガスや電気等を熱源として加熱溶融させ、溶融物を冷却することによって製造されるが、このときの原料の配合比率と溶融温度条件とを適宜選択することにより、生成物がガラス状態となるように設定する。
【0024】
しかして、前記主要成分を付与する原料としては、鉱滓系のものは珪酸が溶け出しにくくなるために不適であり、単体の化合物や、鉱物でも単成分系のものを用いることが望ましい。例えば、P2 5 源としてはリン酸アンモニウム、K2 O源としてはリン酸カリウム、CaO源としてはリン酸カルシウム、B2 3 源としては硼酸及び酸化ホウ素、SiO2 源としては珪砂等が好適である。
【0025】
上記の溶融温度としては、1000〜1250℃の範囲が好ましい。この溶融温度が高過ぎると、P2 5 やB2 3 等のガラス成分の揮発が多くなり、目的のガラス組成を維持できなくなり、また遷移金属酸化物を含む場合には還元され易くなり、冷却時に結晶を生じて溶解性が低下する。一方、前記の冷却手段としては、溶融物を多量の水中に浸漬する方法や、流し出した溶融物に水を吹き付ける方法等があり、これらの方法で急冷させた場合には砂状ないし粒状のガラス粒子が得られるが、必要に応じて適当な手段で粉末状、球状、繊維状、フレーク状等として用途に応じた肥料形態とすることが可能である。
【0026】
しかして、砂状ないし粒状のガラス粒子の場合、ナイロン等のメッシュ袋に収容し、水耕栽培用培養液タンク中に吊るして浸漬させ、珪酸分を含む成分を溶出させるのに利用できる。また、栽培土壌への灌水に使用する場合は、これら種々の形態のガラス組成物を灌水パイプの中間に設けたカラムに入れて珪酸分を含む成分を溶出させるようにすればよい。
【0027】
【実施例】
以下に、本発明の実施例を比較例と対比して具体的に説明する。
【0028】
実施例1〜5,比較例1〜3
ガラス原料として、リン酸アンモニウム、リン酸カリウム、リン酸カルシウム、硼酸及び珪砂を使用し、これらを後記表1記載の成分割合となるように秤量して混合し、この混合物を坩堝に入れて同表1に記載の温度で加熱溶融させたのち、この溶融物を水中に流し出して急冷し、生成物を取り出して乾燥することにより、粒状の組成物を得た。そして、得られた組成物について、組織を調べると共に、20℃のイオン交換水2000ml中に浸漬して溶解試験を行い、重量減から溶解速度を算出し、また試験後の溶出液のPHを測定した。これらの結果を後記表1に示す。
【0029】
【表1】

Figure 0004105562
【0030】
表1の結果から、本発明に係る組成物(実施例1〜5)は、ガラス形態で適度な溶解性を具備し、溶出液が中性から弱酸性域に納まり、持続的に有効成分を溶出する肥料として有用であることが判る。これに対し、組成物が結晶化したもの(比較例1,3)では溶出性に乏しく、またガラス形態でもモル比が本発明の規定から外れる組成(比較例2)の場合は溶出性が不充分となることが明らかである。なお、B2 3 については、無添加(実施例2)よりも、添加した方(実施例1,3〜5)が溶解性を高め得ることが示唆される。
【0031】
〔ガラス成分溶出試験〕
実施例1のガラス組成物について、含有する各成分の溶出持続性を調べたところ、後記表2に示す結果が得られた。なお、試験は、ビーカーに入ったイオン交換水2000ml中に、ガラス組成物2gを収容したナイロン製メッシュ袋を浸漬し、液温を25℃に保持しながら、所定時間毎に液をサンプリングし、各成分の溶出量を測定した。しかして、P2 5 ,CaO,B2 3 ,SiO2 は高周波プラズマ発光分光分析法により、K2 Oは原子吸光光度法により、それぞれ測定した。
【0032】
【表2】
Figure 0004105562
【0033】
表2の結果から明らかなように、各成分は、経時的に溶出量を若干減じながら、ほぼ同じ傾向で継続的に溶出している。
【0034】
実施例6
2 5 ,K2 O,CaO,B2 3 ,SiO2 のモル比が実施例1と同じ割合になる配合のガラス原料100重量部に対し、微量栄養素成分原料として酸化鉄、二酸化マンガン、炭酸マグネシウム、酸化銅、モリブデン酸アンモニウムを、Fe2 3 として2.0重量部、MnO2 として1.0重量部、MgOとして1.0重量部、CuOとして0.5重量部、MoO2 として0.5重量部となる割合で添加して混合し、この混合物を実施例1と同様にして加熱溶融させ、急冷、乾燥を行って粒状の組成物を得た。
【0035】
〔栽培試験〕
実施例1,3,6のガラス組成物を用い、ミニトマト、茄子及びミニバラの栽培試験を行った。その結果を、これらガラス組成物を使用しない対照区における栽培試験の結果と共に、栽培条件を含めて後記表3及び表4に示す。なお、試験では、ガラス組成物を収容したナイロン網袋を養液槽に浸漬して溶出させ、この養液を給水に用いて栽培し、うどん粉病の状況、収穫状況、成育状況を調べたが、ミニバラについては既にうどん粉病が発生している養液土耕栽培施設において試験を行った。
【0036】
【表3】
Figure 0004105562
【0037】
【表4】
Figure 0004105562
【0038】
表3及び表4に示す結果から、本発明の植物栽培用ガラス組成物を用いることにより、栽培植物の葉や茎が丈夫になり、且つうどん粉病を防止でき、しかも収量が増加すると共に、品位も向上することが判る。
【0039】
【発明の効果】
請求項1の発明によれば、植物栽培用ガラス組成物として、SiO2 と共に特定の成分を特定モル比で含有することから、珪酸分を植物に吸収し易い形で水耕培養液や栽培用灌水に効率よく持続的に溶出でき、その溶出成分によって植物の成育を促して葉や茎を丈夫にすると共に病害虫に対する耐性を強め、もって収量の増大及び品位の向上を図ることができ、しかも珪酸分の溶出量や溶出期間、PH等を適正に調整できる上、溶出液の安定性がよく、沈殿やゲル化を生じにくいため、該溶出液を長期貯留しても高品位を維持できると共に、耕培養液施肥用や灌水用のストレーナー、ノズルを介して溶出液を散布する場合に目詰まりを回避できるものが提供される。
【0040】
請求項2の発明によれば、上記の植物栽培用ガラス組成物に微量栄養素成分を加えることから、植物の成育をより促進できるという利点かある。
【0041】
請求項3の発明によれば、上記の植物栽培用ガラス組成物に微量の銀を加えることから、溶出液が抗菌作用を示し、この抗菌作用によって植物の病害の予防及び緩和、治療等の効果を発揮できるという利点がある。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a glass composition for plant cultivation that efficiently replenishes silicic acid useful for plant growth by adding water to the cultivation soil of the plant or hydroponics.
[0002]
[Prior art]
All plants require organic and inorganic substances containing various elements for their life support and growth. Among these, oxygen, nitrogen, carbon, phosphorus, potassium, calcium, magnesium, iron, etc. have been used since ancient times. It is considered important as an essential ingredient. However, silicon, which is present in the crust in a large amount after oxygen, has little interaction with plants, and the necessity for grasses has been clarified. For example, paddy rice is a peculiar crop that favors and absorbs silicic acid, and it has been known that if the body is deficient in silicic acid, it tends to fall or be susceptible to pest damage.
[0003]
However, in recent years, silicic acid is a constituent part of all plant bodies, and its content in the living body corresponds to 0.02 to 0.15%, which promotes plant growth and mechanical strength of living tissues. The silicic acid fertilizer has been attracting attention because it has been found that the resistance to pest damage is further improved. As such siliceous fertilizers, calcium silicate fertilizer, potassium silicate fertilizer, dissolved phosphorous fertilizer, colloidal silica, silicate clay and the like are used.
[0004]
Calcium silicate fertilizer is generally referred to as calcium, and slag siliceous fertilizer using blast furnace slag is widely used, and is also used for rock wool and the like. Potassium silicate fertilizer is a mixture of granulated fly ash, potassium hydroxide and magnesium hydroxide, fired at about 860 ° C and partially vitrified to form a miscible (citric acid soluble) fertilizer. There are slow-release fertilizers manufactured by adding potash raw material to fused silica produced by silicidation.
[0005]
In addition, melted phosphate fertilizer is a glassy fertilizer made by melting and quenching phosphate ore and serpentine at 1350-1500 ° C., usually 17-25 wt% P 2 O 5 and 25-35 CaO. A material containing 14 to 19% by weight of MgO, 14 to 19% by weight of MgO and 16 to 25% by weight of SiO 2 is often used, but manganese ore or colemanite is further added to the raw material, and trace elements of MgO and B 2 O 3 A slow release fertilizer called BM dissolved phosphorus supplemented with ingredients is also used.
[0006]
Colloidal silica is usually sold as silica sol, but acidic silica sol is also commercially available. Silicate clay are generally referred natural montmorillonite clay and soft silica, SiO 2 about 73 wt%, the Al 2 O 3 about 10 wt%, about 5 wt% of Na 2 O, the Fe 2 O 3 about In addition to 5% by weight and about 3% by weight of CaO, it contains many trace element components.
[0007]
[Problems to be solved by the invention]
However, fertilizers made from slag, such as the calcium silicate fertilizer and potassium silicate fertilizer described above, are difficult to dissolve silicic acid and need to be fertilized many times in large quantities. It was unsuitable for cultivation. In addition, liquid silicate fertilizer, which is a solution of alkali metal silicate, has a high pH and is liable to precipitate or gel due to reaction with other fertilizer components and lacks stability. There were many problems such as clogging of strainers and nozzles for hydroponic broth application and irrigation. Further, colloidal silica generally has a high pH of about 9 to 11, and has a drawback that precipitation and gelation are likely to occur when other components are added.
[0008]
On the other hand, dissolved phosphorous fertilizer is not suitable for irrigation to cultivated soil or hydroponics because it has a high silicic acid content due to high temperature firing and is alkaline. Silicate clay has a water purification effect by adsorption and ion exchange, but is hardly eluted as silicate ions. Furthermore, the acidic silica sol is difficult to stabilize, and it is necessary to add a stabilizer made of an acid such as gluconic acid or carboxylic acid or a salt thereof, which raises a problem of high cost.
[0009]
In view of the above-mentioned circumstances, the present inventor can efficiently elute silicic acid in a hydroponic culture solution and cultivation irrigation in a form that is easily absorbed by the plant, and appropriately adjusts the amount of silicic acid eluted, the elution period, PH, etc. In order to provide an adjustable siliceous fertilizer, we focused on the glass structure in the process of intensive studies. In other words, glass is generally a glass-forming oxide that is an oxide of silicon, boron, phosphorus, or the like that forms a skeleton of a network structure with a covalent bond, and an alkali metal or alkaline earth metal that has an ionic bond. However, if the amount of the modified oxide introduced into the glass-forming oxide is gradually increased, the number of non-bridging oxygens in the oxygen polyhedron centered on the glass-forming oxide is increased. Along with this, the glass structure gradually becomes open due to the decrease in covalent bonds, the network structure relaxes to a cyclic structure, then becomes a chain structure with broken rings, and a simple structure with broken chains. It will be in the state called what is called reverse glass with many ionic bonds.
[0010]
In glasses ranging from the above chain structure to a simple structure, the glass-forming oxide exists as an anion having non-bridging oxygen in a state of being combined with the cation of the modified oxide, and becomes an ion when immersed in water. Can melt out. For example, in K 2 O—SiO 2 glass, as the K 2 O ratio increases, the glass structure becomes open, the melt viscosity gradually decreases, and eventually reaches the limit where it does not become vitrified even when rapidly cooled. At the stage of the reverse glass just before reaching the state, the silicic acid content can be eluted into the water as ions. However, K 2 O—SiO 2 glass cannot be used as a fertilizer because it has a high alkali content and a high pH.
[0011]
As a result of further research, by adding silicic acid to a specific glass composition mainly composed of oxides of phosphorus, potassium and calcium, silicic acid is incorporated into the glass structure in ionic form, and this glass is immersed in water. In this case, silicic acid can be efficiently and continuously eluted as active orthosilicate ions (SiO 4 4− ) and pyrosilicate ions (Si 2 O 6 7− ), which are easily absorbed by plants in neutral to weakly acidic ranges. Therefore, it is very effective as a fertilizer to give silicic acid to plants, and it also dissolves phosphoric acid, potassium and calcium and acts as a fertilizer component, and further, by adding boric acid to the above composition, the melting temperature at the time of production is increased. It was found that the elution degree and elution period of the silicic acid component that can be reduced by the plant can be adjusted, and the present invention has been made.
[0012]
That is, the glass composition for plant cultivation according to claim 1 of the present invention is a glass composition immersed in water for plant cultivation, and as mol%, P 2 O 5 30 to 60%, K 2 O 15 to It contains 36%, CaO 5 to 25%, B 2 O 3 0 to 20%, SiO 2 3 to 22%, and is made of glass whose eluent is weakly acidic to neutral .
[0013]
Further, as a preferred embodiment of such a glass composition for plant cultivation, in the invention of claim 2, a structure containing at least one selected from iron, manganese, magnesium, zinc, copper, and molybdenum as a micronutrient component is claimed. The invention of Item 3 employs a configuration containing a small amount of silver.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
As described above, the glass composition for plant cultivation of the present invention is 30% to 60% P 2 O 5 , 15 to 36% K 2 O, 5 to 25% CaO, and 0 to 20% B 2 O 3 as described above . , Composed of glass containing 3 to 22% of SiO 2 , and the glass network structure is relaxed and has a form containing a lot of the chain structure or simple structure. Silicates can be efficiently and continuously eluted as orthosilicate ions and pyrosilicate ions that are easily absorbed by plants in sexual to weakly acidic ranges, and phosphoric acid, potassium, and calcium are also eluted in a form that is easily absorbed by plants as fertilizer components. Works. Therefore, it is possible to promote the growth of plants with a small amount of fertilization and the number of times of fertilization, to make the leaves and stems strong, and to obtain high yields by suppressing disease and insect damage, thereby reducing fertilization labor and environmental burden. Can be reduced.
[0015]
In addition, since the glass composition for plant cultivation has good stability of the eluate when immersed in water and does not easily precipitate or gel, it can maintain high quality even when the eluate is stored for a long period of time, Clogging can be avoided when the eluate is sprayed through a strainer or nozzle for use or irrigation.
[0016]
P 2 O 5 in the glass composition for plant cultivation is a glass-forming oxide and is eluted and acts as a fertilizer component. However, if its mol% is less than 30%, vitrification becomes difficult. If it exceeds 60%, a network structure is formed in the glass and the silicic acid elution rate is lowered. Further, if K 2 O is less than 15 mol%, the silicic acid elution rate decreases and the melting temperature rises when vitrifying the raw material mixture. Conversely, if it exceeds 36%, the pH of the eluate increases. It is not preferable. In addition, the molar ratio of P 2 O 5 / K 2 O is preferably in the range of 1.0 to 2.7, so that the eluate is weakly acidic with a pH of about 3.2 to 7.0 suitable for plant cultivation. Can be set to sex range.
[0017]
As for CaO, when the content is less than 5 mol%, the elution rate of silicic acid decreases, and when it exceeds 25 mol%, the melting temperature at the time of vitrification of the raw material mixture increases, and the SiO 2 content is relatively decreased. It is not preferable.
[0018]
B 2 O 3 has an effect of lowering the melting temperature when the raw material mixture is vitrified to suppress volatilization of the glass component, suppress crystallization of the glass, and increase the solubility of the glass. Therefore, in the present invention, it is not necessary to use the crystallization of glass at an appropriate melting temperature only with these components depending on the blending ratio of P 2 O 5 , K 2 O, CaO, and SiO 2. However, it is desirable to add a certain amount of B 2 O 3 in order to increase the solubility of the glass. However, when the molar ratio of B 2 O 3 exceeds 20%, the solubility of the glass becomes excessive and control becomes impossible.
[0019]
SiO 2 is a raw material of silicic acid content to be eluted, and if it is less than 3 mol%, the required amount of silicic acid is not obtained, and even if it exceeds 22 mol%, the glass composition obtained by increasing the melting temperature is obtained. This causes a decrease in the silicic acid elution rate.
[0020]
In the glass composition for plant cultivation of this invention, in addition to said main component, you may contain at least 1 type selected from iron, manganese, magnesium, zinc, copper, and molybdenum as a micronutrient component. Since these micronutrient components are also eluted in water like the silicic acid component, micronutrients necessary for plants can be efficiently and continuously supplied by utilizing them in hydroponic culture solution and cultivation irrigation.
[0021]
Furthermore, in the glass composition for plant cultivation of this invention, you may contain a trace amount silver other than the component mentioned above. By using this glass composition containing silver, silver is eluted and exerts an antibacterial action, so it is possible to suppress the generation of bacteria and fungi that cause plant diseases, so that it can be used for cultivation soil, hydroponic culture solution, Cultivation facilities and the like are kept clean, and labor can be reduced by reducing the number of operations such as spraying and disinfecting agricultural chemicals. Since copper as the micronutrient component also has antibacterial action, it is not necessary to add silver for antibacterial purposes when this copper is blended.
[0022]
Note that arbitrarily blended trace components such as the micronutrient component and silver, the main component as a total amount of the components (P 2 O 5, K 2 O, CaO, B 2 O 3, SiO 2) to On the other hand, the amount is preferably 5% by weight or less, and if it is too much, crystallization is likely to occur during the production of the glass composition.
[0023]
Such a glass composition for plant cultivation is prepared by adding a raw material for providing the main component, if necessary, adding a raw material of a micronutrient component and / or silver, and putting the mixture in a crucible, a tank kiln or the like. Manufactured by heating and melting gas or electricity as a heat source and cooling the melt. By appropriately selecting the blending ratio of raw materials and the melting temperature condition at this time, the product becomes a glass state. Set to.
[0024]
Thus, as a raw material for imparting the main component, a mineral-based material is not suitable because silicic acid is difficult to dissolve, and it is desirable to use a single-component compound or a mineral as a single-component material. For example, ammonium phosphate is suitable as the P 2 O 5 source, potassium phosphate as the K 2 O source, calcium phosphate as the CaO source, boric acid and boron oxide as the B 2 O 3 source, and silica sand as the SiO 2 source. It is.
[0025]
As said melting temperature, the range of 1000-1250 degreeC is preferable. If the melting temperature is too high, the volatilization of glass components such as P 2 O 5 and B 2 O 3 will increase, the target glass composition will not be maintained, and if a transition metal oxide is included, it will be easily reduced. Crystals are formed during cooling, and the solubility is lowered. On the other hand, as the cooling means, there are a method of immersing the melt in a large amount of water, a method of spraying water on the melt that has flowed out, and the like. Glass particles can be obtained, but if necessary, it can be made into a fertilizer form suitable for the application in the form of powder, sphere, fiber, flake or the like by an appropriate means.
[0026]
Therefore, in the case of sandy or granular glass particles, they can be accommodated in a mesh bag of nylon or the like, suspended in a culture tank for hydroponics and immersed, and used to elute components containing silicic acid. Moreover, when using it for irrigation to cultivation soil, what is necessary is just to put the glass composition of these various forms into the column provided in the middle of the irrigation pipe, and to elute the component containing a silicic acid content.
[0027]
【Example】
Examples of the present invention will be specifically described below in comparison with comparative examples.
[0028]
Examples 1-5, Comparative Examples 1-3
As a glass raw material, ammonium phosphate, potassium phosphate, calcium phosphate, boric acid and silica sand are used, and these are weighed and mixed so as to have the component ratios described in Table 1 below. After heating and melting at the temperature described in 1., the melt was poured into water and quenched, and the product was taken out and dried to obtain a granular composition. The obtained composition was examined, and the dissolution test was conducted by immersing in 2000 ml of ion exchange water at 20 ° C., the dissolution rate was calculated from the weight loss, and the pH of the eluate after the test was measured. did. These results are shown in Table 1 below.
[0029]
[Table 1]
Figure 0004105562
[0030]
From the results of Table 1, the compositions according to the present invention (Examples 1 to 5) have a moderate solubility in the form of glass, and the eluate is contained in a neutral to weakly acidic region, and the active ingredient is continuously added. It turns out that it is useful as a fertilizer to elute. On the other hand, when the composition is crystallized (Comparative Examples 1 and 3), the dissolution property is poor, and even when the composition is a glass form (comparative example 2) in which the molar ratio is outside the definition of the present invention, the dissolution property is not good. Clearly it will be sufficient. Note that the B 2 O 3, than no additive (Example 2), suggesting better to Addition (Example 1, 3 to 5) can enhance solubility.
[0031]
[Glass component dissolution test]
The elution persistence of each component contained in the glass composition of Example 1 was examined. The results shown in Table 2 below were obtained. The test was performed by immersing a nylon mesh bag containing 2 g of the glass composition in 2000 ml of ion-exchanged water in a beaker and sampling the liquid every predetermined time while maintaining the liquid temperature at 25 ° C. The elution amount of each component was measured. Thus, P 2 O 5 , CaO, B 2 O 3 , and SiO 2 were measured by high frequency plasma emission spectroscopy, and K 2 O was measured by atomic absorption spectrophotometry.
[0032]
[Table 2]
Figure 0004105562
[0033]
As is apparent from the results in Table 2, each component was eluted continuously with substantially the same tendency while the amount of elution was slightly reduced over time.
[0034]
Example 6
With respect to 100 parts by weight of the glass raw material having the same ratio as in Example 1, the molar ratio of P 2 O 5 , K 2 O, CaO, B 2 O 3 , SiO 2 is iron oxide, manganese dioxide as a micronutrient component raw material. , Magnesium carbonate, copper oxide, ammonium molybdate, 2.0 parts by weight as Fe 2 O 3 , 1.0 part by weight as MnO 2 , 1.0 part by weight as MgO, 0.5 part by weight as CuO, MoO 2 As a result, the mixture was added and mixed at a ratio of 0.5 parts by weight, and the mixture was heated and melted in the same manner as in Example 1 and quenched and dried to obtain a granular composition.
[0035]
[Cultivation test]
Using the glass compositions of Examples 1, 3, and 6, cultivation tests of cherry tomatoes, eggplants, and mini roses were conducted. The results are shown in Tables 3 and 4 below, including the cultivation conditions, together with the results of the cultivation test in the control area where these glass compositions are not used. In the test, the nylon net bag containing the glass composition was immersed in a nutrient solution tank and eluted, and the nutrient solution was cultivated using water supply, and the situation of powdery mildew, harvest status, and growth status were examined. The mini-rose was tested in a hydroponic cultivation facility where powdery mildew had already occurred.
[0036]
[Table 3]
Figure 0004105562
[0037]
[Table 4]
Figure 0004105562
[0038]
From the results shown in Table 3 and Table 4, by using the glass composition for plant cultivation of the present invention, the leaves and stems of the cultivated plant become strong, powdery mildew can be prevented, and the yield is increased. It turns out that it improves.
[0039]
【The invention's effect】
According to the present invention, as a plant cultivation glass composition, since it contains a specific molar ratio certain ingredients with SiO 2, for hydroponic culture solution and cultivated easily form it absorbs silicate content in plants It can be efficiently and continuously eluted by irrigation, and its elution component promotes the growth of the plant, strengthens the leaves and stems, strengthens the resistance to pests, and thus can increase the yield and improve the quality. In addition to being able to properly adjust the elution volume, elution period, pH, etc. of the minute, the stability of the eluate is good, and precipitation and gelation are less likely to occur. A strainer for cultivating culture solution fertilization and irrigation, and a device capable of avoiding clogging when the eluate is sprayed through a nozzle are provided.
[0040]
According to invention of Claim 2, since a micronutrient component is added to said glass composition for plant cultivation, there exists an advantage that the growth of a plant can be accelerated | stimulated more.
[0041]
According to invention of Claim 3, since a trace amount silver is added to said glass composition for plant cultivation, an elution liquid shows an antibacterial effect, and effects, such as prevention of the disease of a plant, mitigation, and a treatment by this antibacterial effect There is an advantage that can be demonstrated.

Claims (3)

植物栽培用の水中に浸漬するガラス組成物であって、モル%として、P25 30〜60%、K2 O15〜36%、CaO5〜25%、B23 0〜20%、SiO2 3〜22%を含有し、溶出液を弱酸性ないし中性域とする植物栽培用ガラス組成物。 A glass composition for immersion in water for plant cultivation, as mole%, P 2 O 5 30~60% , K 2 O15~36%, CaO5~25%, B 2 O 3 0~20%, SiO 2 A glass composition for plant cultivation containing 3 to 22% and having an eluent of weakly acidic to neutral range . 微量栄養素成分として、鉄、マンガン、マグネシウム、亜鉛、銅、モリブデンより選択される少なくとも一種を含有する請求項1に記載の植物栽培用ガラス組成物。  The glass composition for plant cultivation according to claim 1, comprising at least one selected from iron, manganese, magnesium, zinc, copper, and molybdenum as a micronutrient component. 微量の銀を含有する請求項1又は2のいずれかに記載の植物栽培用ガラス組成物。  The glass composition for plant cultivation in any one of Claim 1 or 2 containing a trace amount silver.
JP2003044675A 2003-02-21 2003-02-21 Glass composition for plant cultivation Expired - Fee Related JP4105562B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003044675A JP4105562B2 (en) 2003-02-21 2003-02-21 Glass composition for plant cultivation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003044675A JP4105562B2 (en) 2003-02-21 2003-02-21 Glass composition for plant cultivation

Publications (2)

Publication Number Publication Date
JP2004250299A JP2004250299A (en) 2004-09-09
JP4105562B2 true JP4105562B2 (en) 2008-06-25

Family

ID=33027302

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003044675A Expired - Fee Related JP4105562B2 (en) 2003-02-21 2003-02-21 Glass composition for plant cultivation

Country Status (1)

Country Link
JP (1) JP4105562B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2009301632B2 (en) * 2008-10-08 2013-10-24 MaxSil Pty Ltd Silicon-containing glass powder particles to improve plant growth

Also Published As

Publication number Publication date
JP2004250299A (en) 2004-09-09

Similar Documents

Publication Publication Date Title
US4867779A (en) Nutritive glasses for agriculture
US5037470A (en) Nutritive glasses for agriculture
EP2882825B1 (en) . product and process for the intensification of plant cultivation and increase plant fertillity
KR101194193B1 (en) Water-soluble inorganic composite material prepared from natural ore resources including silicate ore
JP2709563B2 (en) Vitreous composition for plant cultivation
KR102143300B1 (en) Liquid anhydrous silicate, Manufacturing method thereof, Agent for preventing plant fungal diseases using the same, and Plant fertilizer containing the same
KR101168754B1 (en) Liquid fertilizers using minerals and method for manufacturing the same
Ouis et al. Evaluation of agriglass as an environment friendly slow release fertilizer
JP4105562B2 (en) Glass composition for plant cultivation
KR100498090B1 (en) a soil manure using serpentine
JP6967504B2 (en) Fertilizer and cultivated plant production method
KR100637289B1 (en) Sodium silicate of use manure silicic acid a component and method production
KR100756185B1 (en) Waste glass use agriculture plant growth a product method of manufacture
JP7150877B2 (en) Fertilizer, method for producing same, method for producing cultivated plant, and method for promoting growth
JP4525156B2 (en) Bactericides and fertilizers for raising seedlings, soil for raising seedlings and methods for raising them
JP6474601B2 (en) Iron-containing material for rice, method for producing iron-containing material for rice, and method for applying iron-containing material for rice
SU1742276A1 (en) Glassy granulated prolonged-action fertilizer based on phosphate glass
KR20060116636A (en) Sodium silicate use product growth a plant and manufacture a method
KR100835890B1 (en) phosphates polymerization of use phosphatic manure a component and method production.
JPH04267817A (en) Soil admixture
Labbilta et al. Controlled-release fertilizers from phosphate glass-matrix: A new ecological approach to match nutrients release with plants demand
JP2022157253A (en) Vitreous micro-element fertilizer used for nutriculture
KR100613723B1 (en) Manufacturing method for sodium accumulation and chemical property adsorption ratio conditioner in soil
JPH06321575A (en) Glassy composition for plant culture and its production
KR100681736B1 (en) Sodium silicate use floriculture promoted forcing culture a product manufacture

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041111

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060815

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061101

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061228

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080305

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080327

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110404

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120404

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130404

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees