JP2015057950A - Transgenic poaceae plant, seed thereof, or production method of processed goods of seed - Google Patents

Transgenic poaceae plant, seed thereof, or production method of processed goods of seed Download PDF

Info

Publication number
JP2015057950A
JP2015057950A JP2013191472A JP2013191472A JP2015057950A JP 2015057950 A JP2015057950 A JP 2015057950A JP 2013191472 A JP2013191472 A JP 2013191472A JP 2013191472 A JP2013191472 A JP 2013191472A JP 2015057950 A JP2015057950 A JP 2015057950A
Authority
JP
Japan
Prior art keywords
seed
genetically modified
hydroponic
rice
production method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013191472A
Other languages
Japanese (ja)
Inventor
藤井 裕二
Yuji Fujii
裕二 藤井
和也 南藤
Kazuya Nanto
和也 南藤
玲子 大島
Reiko Oshima
玲子 大島
明義 河岡
Akiyoshi Kawaoka
明義 河岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Paper Industries Co Ltd
Jujo Paper Co Ltd
Original Assignee
Nippon Paper Industries Co Ltd
Jujo Paper Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Paper Industries Co Ltd, Jujo Paper Co Ltd filed Critical Nippon Paper Industries Co Ltd
Priority to JP2013191472A priority Critical patent/JP2015057950A/en
Publication of JP2015057950A publication Critical patent/JP2015057950A/en
Pending legal-status Critical Current

Links

Classifications

    • Y02P60/216

Abstract

PROBLEM TO BE SOLVED: To provide a transgenic Poaceae plant with a good quality which can improve a ripening and/or grain filling rate of a transgenic Poaceae plant, to provide a seed thereof, or to provide a production method of processed goods of the seed.SOLUTION: The invention provides a transgenic Poaceae plant, a seed thereof, or a production method of the processed goods of the seed, wherein hydroponics of the transgenic Poaceae plant is performed using 20-30°C hydroponics water.

Description

本発明は、遺伝子組み換えイネ科植物又はその種子の生産方法に関する。   The present invention relates to a method for producing a genetically modified gramineous plant or seeds thereof.

非特許文献1には、イネの養分吸収の適水温は30℃前後であること、及び、出穂までの生育前半に水温の影響を強く受け、25℃より低くなると収量が減り、20℃以下ではほとんど稔実しないことが記載されている。   In Non-Patent Document 1, the proper water temperature for nutrient absorption of rice is around 30 ° C, and it is strongly influenced by the water temperature in the first half of growth until heading, and the yield decreases when the temperature falls below 25 ° C, and below 20 ° C. It is described that there is almost no conscience.

非特許文献2には、水稲の生育において、水稲の生育及び収量は幼穂分化期ころまでは主として水温に、幼穂発育の後期ころまでは気温と水温の両方に、そして出穂直前から以降は主として気温に左右されることが記載されている。また、生育に対する適温は生育の時期によって異なり、移植直後では水温38℃くらいまでは高いほど良く、出穂後は出穂前より低い21〜23℃で登熟が良く収量も多いことも記載されている。   In Non-Patent Document 2, in the growth of paddy rice, the growth and yield of the paddy rice is mainly at the water temperature until the early panicle differentiation stage, at both the air temperature and the water temperature until the late stage of the young panicle development, and mainly at the air temperature immediately before heading. It is described that it depends on. In addition, it is also described that the optimum temperature for growth varies depending on the timing of growth, and it is better that the water temperature is higher up to about 38 ° C. immediately after transplanting, and that after heading, the ripening is good and the yield is high at 21-23 ° C. lower than before heading. .

高辻正基「植物工場の基礎と実際」裳華房、1996年3月30日出版Masataka Takatsuki “Basics and Practice of Plant Factory” 角田公正、星川清親、石井龍一「基礎シリーズ 作物入門」実教出版、1998年6月出版Jun Tsunoda, Kiyochika Hoshikawa, Ryuichi Ishii “Basic Series Crop Introduction”, published in June 1998

しかし遺伝子組み換え植物は一般に非遺伝子組み換え植物よりも稔実させることが難しい。上記非特許文献1及び2はこのような遺伝子組み換え植物における稔実困難性の問題を考慮した記載がないことから非遺伝子組み換えイネを対象としていることが明らかである。通常のイネの生育条件で遺伝子組み換えイネを栽培すると、稔実率が非常に低く、効率のよい生産ができなかった。   However, genetically modified plants are generally more difficult to fertilize than non-genetically modified plants. It is clear that Non-Patent Documents 1 and 2 are directed to non-genetically modified rice because there is no description taking into account the problem of difficulty in seeding in such genetically modified plants. When genetically modified rice was cultivated under normal rice growth conditions, the fruit yield was very low and efficient production was not possible.

本発明は、遺伝子組み換えイネ科植物の稔実率及び/又は登熟率を向上させることのできる、品質の良好な遺伝子組み換えイネ科植物、その種子又は種子の加工品の生産方法を提供することを目的とする。   The present invention provides a method for producing a high-quality genetically modified gramineous plant, its seed or a processed product of the seed, which can improve the fruiting rate and / or the ripening rate of the genetically modified grass. With the goal.

本発明は、以下の〔1〕〜〔4〕を提供する。
〔1〕20〜30℃の水耕水を用いて遺伝子組み換えイネ科植物の水耕栽培を行う、遺伝子組み換えイネ科植物の生産方法。
〔2〕20〜30℃の水耕水を用いて遺伝子組み換えイネ科植物の水耕栽培を行う、遺伝子組み換えイネ科植物の種子又は種子の加工品の生産方法。
〔3〕水耕水のECが0.6mS/cm以上である、〔1〕又は〔2〕に記載の生産方法。
〔4〕少なくとも登熟期の期間中水耕栽培を行う、〔1〕〜〔3〕のいずれか一項に記載の生産方法。
The present invention provides the following [1] to [4].
[1] A method for producing a genetically modified gramineous plant using hydroponic water at 20 to 30 ° C.
[2] A method for producing a genetically modified gramineous plant seed or a processed product of the seed, comprising hydroponically cultivating the genetically modified gramineous plant using hydroponic water at 20 to 30 ° C.
[3] The production method according to [1] or [2], wherein EC of hydroponic water is 0.6 mS / cm or more.
[4] The production method according to any one of [1] to [3], wherein hydroponics is performed at least during a ripening period.

本発明によれば、遺伝子組み換えイネ科植物の稔実率及び/又は登熟率を向上させることができ、品質の良好な遺伝子組み換えイネ、その種子又は種子の加工品の効率的な生産を可能とする。   According to the present invention, it is possible to improve the fruiting rate and / or the ripening rate of genetically modified gramineous plants, and it is possible to efficiently produce genetically modified rice of good quality, its seeds or processed seeds. And

本発明の適用対象は、遺伝子組み換えイネ科植物である。イネ科(Poaceae)植物としてはイネ(Oryza sativa、Oryza glaberrima)、コムギ(Triticum)、オオムギ(Hordeum vulgare)、カラスムギ(Avena fatua)、ライムギ(Secale cereale)、キビ(Panicum miliaceum)、アワ(Setaria italica)、ヒエ(Echinochloa esculenta)、トウモロコシ(Zea mays)、シコクビエ(Eleusine esculenta)、モロコシ(Sorghum bicolor)、タケ(Bambuseae)、マコモ(Zizania latifolia)、サトウキビ(Saccharum officinarum)、ハトムギ(Coix lacryma−jobi var.ma−yuen)等が例示される。このうち、イネが好ましい。   The target of application of the present invention is genetically modified grasses. Poaceae plants include rice (Oryza sativa, Oryza glaberrima), wheat (Triticum), barley (Hordeum vulgare), oatumum (Avena fatua), rye (Secale cereal). ), Echinochloa esculenta, corn (Zea mays), Eleusine esculenta, Sorghum bicolor, Bambouseae, Zizania latifolium, acryl-jobi var.ma-yuen) and the like. Of these, rice is preferred.

遺伝子は特に限定されない。また、遺伝子組み換えの目的は特に限定されず、品種改良であってもよいし、医薬又は食品としての遺伝子組み換えイネ科植物の生産であってもよく、後者であることが好ましい。   The gene is not particularly limited. The purpose of genetic recombination is not particularly limited, and may be breed improvement, production of genetically modified grasses as a medicine or food, and the latter is preferred.

本発明においては、20℃〜30℃の水耕水を用いて水耕栽培を行う。これにより、遺伝子組み換えイネ科植物の稔実率及び/又は登熟率を向上させることができる。水耕水の温度は20℃〜30℃の範囲であれば変動してもよいが(好ましくは温度差3℃以内)、水耕栽培の間を通じて20度未満および30℃を超えないように調整される。室外の日中最高気温が20℃以下又は日中最低気温が10℃以下のとき(例えば12月〜4月)は、水耕水の温度は20℃〜29℃の範囲を外れないように調節することが好ましく、21℃〜28℃の範囲を外れないように調節することがより好ましく、22℃〜27℃に調節することが更に好ましい。   In the present invention, hydroponics is performed using hydroponic water at 20 ° C to 30 ° C. Thereby, the fruiting rate and / or the ripening rate of the genetically modified gramineous plant can be improved. The temperature of hydroponic water may vary as long as it is in the range of 20 ° C to 30 ° C (preferably within a temperature difference of 3 ° C), but is adjusted to be less than 20 degrees and not exceeding 30 ° C throughout hydroponics Is done. When the outdoor daytime maximum temperature is 20 ° C or less or the daytime minimum temperature is 10 ° C or less (for example, from December to April), the temperature of hydroponic water is adjusted so as not to fall outside the range of 20 ° C to 29 ° C. It is preferable to adjust so that it does not deviate from the range of 21 ° C. to 28 ° C., and it is more preferable to adjust to 22 ° C. to 27 ° C.

室外の日中最高気温が20℃を超える又は日中最低気温が10℃を超えるとき(例えば7月〜11月)は、水耕水の温度は21℃〜30℃の範囲を外れないように調節することが好ましく、22℃〜28℃の範囲を外れないように調節することがより好ましく、23℃〜27℃の範囲を外れないように調節することが更に好ましく、22℃〜27℃の範囲を外れないように調節することが更により好ましい。   When the outdoor daytime maximum temperature exceeds 20 ° C or the daytime minimum temperature exceeds 10 ° C (for example, from July to November), the temperature of hydroponic water should not be out of the range of 21 ° C to 30 ° C. It is preferable to adjust, and it is more preferable to adjust so that it may not deviate from the range of 22 degreeC-28 degreeC, It is still more preferable to adjust so that it may not deviate from the range of 23 degreeC-27 degreeC, It is even more preferred to adjust so that it does not go out of range.

水耕水の温度調整は、冷やす場合はチラー(空冷式、水冷式等)、暖める場合はボイラー等の公知の装置で行えばよい。   The temperature of hydroponic water may be adjusted with a known device such as a chiller (air-cooled type, water-cooled type, etc.) for cooling and a boiler for warming.

水耕水のEC値(電気伝導度)が0.6mS/cm以上であることが好ましい。これにより、遺伝子組み換えイネ科植物の稔実率及び/又は登熟率を顕著に向上させることができる。ECの上限は好ましくは1.5mS/cm以下である。EC値は、栽培機関を通じて一定である必要はなく、例えば、0.2mS/cm〜0.4mS/cmの範囲で変化してもよい。EC値はポータブル型のEC測定装置等の機器で測定することができる。   It is preferable that EC value (electrical conductivity) of hydroponic water is 0.6 mS / cm or more. Thereby, the fruiting rate and / or the ripening rate of the genetically modified gramineous plant can be remarkably improved. The upper limit of EC is preferably 1.5 mS / cm or less. The EC value does not need to be constant throughout the cultivation organization, and may vary, for example, in the range of 0.2 mS / cm to 0.4 mS / cm. The EC value can be measured by a device such as a portable EC measuring device.

水耕栽培の方式は特に問わない。水耕液にイネ科植物の根部を浸漬させる方式、水耕液を噴霧又は散水する方式が例示され、通常は前者である。   The method of hydroponics is not particularly limited. Examples include a method of immersing the roots of gramineous plants in a hydroponic solution and a method of spraying or watering a hydroponic solution, and is usually the former.

水耕水のイネ科植物に対する適用量は特に限定されない。浸漬する場合には通常1株あたり1000cm3〜27000cm3であり、噴霧又は散水する場合には通常1株あたり1000cm3〜27000cm3である。 The amount of hydroponic water applied to the grass family is not particularly limited. When the immersion is usually per share 1000cm 3 ~27000cm 3, usually per share 1000cm 3 ~27000cm 3 in the case of spraying or watering.

水耕液は、無機成分、炭素源、ビタミン類、アミノ酸類および植物ホルモン類等の成分を含んでいてもよい。   The hydroponic liquid may contain components such as inorganic components, carbon sources, vitamins, amino acids, and plant hormones.

無機成分としては、窒素、リン、カリウム、硫黄、カルシウム、マグネシウム、鉄、マンガン、亜鉛、ホウ素、モリブデン、塩素、ヨウ素、コバルト、珪素等の元素、および、これらの元素から選ばれる1以上の元素を含む無機塩が例示される。該無機塩としては例えば、硝酸カリウム、硝酸アンモニウム、塩化アンモニウム、硝酸ナトリウム、リン酸1水素カリウム、リン酸2水素ナトリウム、塩化カリウム、硫酸マグネシウム、硫酸第1鉄、硫酸第2鉄、硫酸マンガン、硫酸亜鉛、硫酸銅、硫酸ナトリウム、塩化カルシウム、塩化マグネシウム、ホウ酸、三酸化モリブデン、モリブデン酸ナトリウム、ヨウ化カリウム、塩化コバルト、珪酸等、これらの水和物が挙げられる。無機成分は、1種であってもよいし2種以上の組み合わせであってもよい。   Inorganic components include elements such as nitrogen, phosphorus, potassium, sulfur, calcium, magnesium, iron, manganese, zinc, boron, molybdenum, chlorine, iodine, cobalt, silicon, and one or more elements selected from these elements An inorganic salt containing is exemplified. Examples of the inorganic salt include potassium nitrate, ammonium nitrate, ammonium chloride, sodium nitrate, potassium monohydrogen phosphate, sodium dihydrogen phosphate, potassium chloride, magnesium sulfate, ferrous sulfate, ferric sulfate, manganese sulfate, and zinc sulfate. These include hydrates such as copper sulfate, sodium sulfate, calcium chloride, magnesium chloride, boric acid, molybdenum trioxide, sodium molybdate, potassium iodide, cobalt chloride, and silicic acid. The inorganic component may be one type or a combination of two or more types.

水耕液は、窒素、リン及びカリウムを必須元素として含むことが好ましい。よって、上述の無機成分の具体例のうち、窒素、リン、カリウム、窒素を含む無機塩、リンを含む無機塩、およびカリウムを含む無機塩が好ましく、窒素、リン、カリウム、および、窒素を含む無機塩がより好ましい。水耕液中の無機成分の濃度は、窒素の場合は10mg/L〜40mg/Lであることが好ましく、リンの場合20mg/L〜40mg/Lであることがより好ましい。カリウムの場合、それぞれの水耕液中の濃度が、30mg/L〜180mg/Lであることが好ましい。   The hydroponic liquid preferably contains nitrogen, phosphorus and potassium as essential elements. Therefore, among the specific examples of the above-mentioned inorganic components, nitrogen, phosphorus, potassium, inorganic salts containing nitrogen, inorganic salts containing phosphorus, and inorganic salts containing potassium are preferable, and nitrogen, phosphorus, potassium, and nitrogen are included. Inorganic salts are more preferred. The concentration of the inorganic component in the hydroponic liquid is preferably 10 mg / L to 40 mg / L in the case of nitrogen, and more preferably 20 mg / L to 40 mg / L in the case of phosphorus. In the case of potassium, the concentration in each hydroponic solution is preferably 30 mg / L to 180 mg / L.

本発明においては、水耕液として公知の一般水田用配合肥料を用いてもよい。これらの水耕液は、必要に応じて適宜希釈等して用いてもよい。   In this invention, you may use the well-known general fertilizer for paddy fields as a hydroponic solution. These hydroponic liquids may be used after appropriately diluted or the like as necessary.

水耕液の組成は、イネ科植物の成長期に応じて変化させてもよい。また、栽培中は水耕液を適宜交換することが好ましい。   The composition of the hydroponic solution may be changed according to the growing season of the gramineous plant. In addition, it is preferable to change the hydroponic solution as appropriate during cultivation.

水耕液の調製方法は特に限定されない。水耕液組成を混合し調製してそのまま用いてもよい。   The method for preparing the hydroponic liquid is not particularly limited. The hydroponic liquid composition may be mixed and prepared and used as it is.

水耕栽培の際、通常は支持体を用いる。支持体は栽培中遺伝子組み換えイネ科植物を固定する(根を張る、挿し付ける)ことができる。支持体としては砂、赤玉土等の自然土壌;籾殻燻炭、ココナッツ繊維、バーミキュライト、パーライト、ピートモス、ガラスビーズ等の人工土壌;発泡フェノール樹脂、ロックウール等の多孔性成形品などが例示される。水耕栽培の際、支持体は水耕液にて湿潤させるか、又は支持体を水耕液中に浸漬させることが好ましい。   In hydroponics, a support is usually used. The support can fix (root, insert) genetically modified grasses during cultivation. Examples of the support include natural soils such as sand and red bean clay; artificial soils such as rice husk charcoal, coconut fiber, vermiculite, perlite, peat moss, and glass beads; and porous molded products such as foamed phenol resin and rock wool. . In hydroponics, it is preferable to wet the support with a hydroponic solution or to immerse the support in the hydroponic solution.

本発明の生産方法において、水耕栽培を実施する期間は、苗の定植から収穫までの全期間(栄養成長期(播種から穂分化)、生殖成長期(出穂まで)及び登熟期(収穫まで))でもよいし一部の期間であってもよいが、全期間であることが好ましい。また、上記の通り水耕水の温度を調整して水耕栽培を実施する期間は、少なくとも登熟期を含むことが好ましく、短日処理時〜開花期を含むことがより好ましい。登熟期を含む場合には、収量が増加する。また、適用期間の季節は問わない。通常は冬季又は夏季である。   In the production method of the present invention, the hydroponics period is the entire period from seedling planting to harvest (vegetative growth period (seeding to ear differentiation), reproductive growth period (until heading), and ripening period (until harvesting). )) Or a partial period, but the entire period is preferable. Moreover, as above-mentioned, it is preferable that the period which adjusts the temperature of hydroponic water and implements hydroponics includes at least a ripening period, and it is more preferable to include the time of short-day treatment-a flowering period. When the ripening period is included, the yield increases. Moreover, the season of application period is not ask | required. Usually in winter or summer.

水耕栽培は屋内外のいずれで実施してもよいが、栽培条件の制御が容易であるので、屋内で実施することが好ましい。屋内で水耕栽培を実施する場合の施設は特に限定されず、いわゆる植物工場の施設が例示される。施設は、室内温度制御手段、光照射量制御手段、水耕水温度制御手段等の水耕栽培条件制御手段を備えていてもよい。施設は地上でもよいし地下でもよいが、自然光による光照射を行う場合には、施設の壁面の少なくとも一部は地上に位置し、その一部に採光用の窓を有していることが好ましい。施設は密閉であってもよいし開放窓を有する開放型であってもよい。ただし、環境影響評価を終えていない場合は、カルタヘナ法に遵守し、花粉の飛散時は飛散を防止しした環境で栽培する。   Hydroponics may be carried out either indoors or outdoors, but it is preferable to carry it indoors because the cultivation conditions are easily controlled. The facility for carrying out hydroponics indoors is not particularly limited, and a so-called plant factory facility is exemplified. The facility may include hydroponic cultivation condition control means such as indoor temperature control means, light irradiation amount control means, hydroponic water temperature control means, and the like. The facility may be on the ground or underground, but in the case of performing light irradiation with natural light, it is preferable that at least a part of the wall surface of the facility is located on the ground, and that part of the wall has a lighting window. . The facility may be sealed or an open type having an open window. However, if the environmental impact assessment has not been completed, observe the Cartagena Act and cultivate in an environment that prevents scattering when pollen is scattered.

水耕栽培の施設は、循環扇などの送風装置を備えていてもよい。循環扇を用いる場合風速は通常2〜3m/秒に調整することができる。また運転時間は15〜30分/時間を24時間とすることもできる。植物に乾燥などのストレスがかからない程度の使用とすることが好ましい。   The hydroponics facility may include a blower such as a circulation fan. When a circulation fan is used, the wind speed can be usually adjusted to 2 to 3 m / sec. The operating time can be 15 to 30 minutes / hour and 24 hours. It is preferable to use the plant so that it does not receive stress such as drying.

水耕栽培の際の室内温度は、通常は20℃〜30℃の範囲を外れないように調節され、冬季は20℃〜26℃の範囲を外れないように調節することが好ましく、夏期は25℃〜35℃の範囲を外れないように調節することが好ましい。室外温度との差は通常1℃〜25℃であり、冬季は15℃〜25℃であることが好ましく、夏期は1℃〜3℃であることが好ましい。室内温度の最低値と最高値の差は5℃〜20℃であることが好ましく、5℃〜10℃であることがより好ましい。   The room temperature during hydroponics is usually adjusted so as not to deviate from the range of 20 ° C. to 30 ° C., preferably adjusted so as not to deviate from the range of 20 ° C. to 26 ° C. in winter, and 25 in summer. It is preferable to adjust so that it does not deviate from the range of ℃ to 35 ℃. The difference from the outdoor temperature is usually 1 ° C to 25 ° C, preferably 15 ° C to 25 ° C in winter, and preferably 1 ° C to 3 ° C in summer. The difference between the minimum value and the maximum value of the room temperature is preferably 5 ° C to 20 ° C, and more preferably 5 ° C to 10 ° C.

室内湿度は、通常は45%〜100%であり、冬季は45%〜90%であることが好ましく、夏期は70%〜100%であることが好ましい。室外湿度との差は通常5%〜20%であり、冬季は5%〜20%であることが好ましく、夏期は10%〜20%であることが好ましい。室内湿度の最低値と最高値の差は10%〜50%であることが好ましく、15%〜45%であることがより好ましい。   The indoor humidity is usually 45% to 100%, preferably 45% to 90% in winter, and preferably 70% to 100% in summer. The difference from the outdoor humidity is usually 5% to 20%, preferably 5% to 20% in winter, and preferably 10% to 20% in summer. The difference between the minimum value and the maximum value of the indoor humidity is preferably 10% to 50%, more preferably 15% to 45%.

植栽間隔は、通常は20本/m2〜100本/m2であり、20本/m2〜50本/m2であることが好ましい。 The planting interval is usually 20 / m 2 to 100 / m 2 , and preferably 20 / m 2 to 50 / m 2 .

光照射量は、24時間の平均値が通常0.1kw〜0.3kwであり、0.2kw〜0.3kwであることが好ましい。光源は白熱灯、蛍光灯、レーザー光、LED等の人工光でもよいし、太陽光などの自然光でもよい。人工光の場合光照射量の調整は、機器を操作すればよい。自然光の場合には採光窓、日よけ等で調節すればよい。   As for the amount of light irradiation, the average value for 24 hours is usually 0.1 kw to 0.3 kw, and preferably 0.2 kw to 0.3 kw. The light source may be artificial light such as an incandescent lamp, fluorescent lamp, laser light, LED, or natural light such as sunlight. In the case of artificial light, the light irradiation amount may be adjusted by operating the device. In the case of natural light, it may be adjusted by a daylighting window or a sunshade.

本発明の生産方法により、遺伝子組み換えイネ科植物の稔実率及び/又は登熟率を向上させることができ、これにより遺伝子組み換えイネ科植物を効率よく収穫することができる。遺伝子組み換えイネ科植物からは種子(例えば、コメ)を効率よく得ることができ、さらに種子から加工品(米粉、うどん、ライスヌードル等の麺;ライスペーパー;酒、味噌、米酢;など)を効率よく得ることができる。   According to the production method of the present invention, it is possible to improve the fruiting rate and / or the ripening rate of the genetically modified gramineous plant, thereby efficiently harvesting the genetically modified gramineous plant. Seeds (eg, rice) can be efficiently obtained from genetically modified grasses, and processed products (rice flour, udon, rice noodles, noodles; rice paper; sake, miso, rice vinegar; etc.) can be obtained from the seeds. It can be obtained efficiently.

実施例1及び比較例1〜3
遺伝子組み換えイネおよびコシヒカリ(非遺伝子組み換えイネ)の栽培を表1に示す条件で行った。栽培期間は比較例2及び3は平成22年12月〜平成23年4月であり、実施例1及び比較例1は平成23年12月〜平成24年4月であった。遺伝子組み換えイネはCry j 1遺伝子及びCry j 2遺伝子をアグロバクテリウム法でイネ(品種:コシヒカリ)に導入して得られ、遺伝的に固定されたイネ由来の籾を支持体に植え発芽させ苗とした。支持体の材料はウレタンで、サイズは3cm×3cm×3cmであった。水耕水に大塚化学製水耕栽培用肥料、M1、M2、M5を添加後、pHを5.5に調整した。開始時のN、P、K濃度は、それぞれ21mg/L、50mg/L、60mg/Lであった。水耕水量は2.2m3/栽培台であり、支持体を発泡スチロール製の水耕用パネルに定植した後、パネルを水耕水上に浮かべた。養液コントロール盤(M式水耕研究所)により水耕水の温度制御を行った。複合環境制御盤(グリーンマイコン)により、室内温度、日長、窓の開閉などの制御を行った。各群98株にて栽培を行った。実施例1の水耕水のEC値は、1.1〜1.4mS/cmであった。表1に開花以降1ヶ月間のデータの最低値および最高値を示す。表1中、稔実率は10株の平均値である。
Example 1 and Comparative Examples 1-3
Genetically modified rice and Koshihikari (non-genetically modified rice) were grown under the conditions shown in Table 1. The cultivation period was December 2010 to April 2011 in Comparative Examples 2 and 3, and Example 1 and Comparative Example 1 were December 2011 to April 2012. Genetically modified rice is obtained by introducing Cry j 1 gene and Cry j 2 gene into rice (cultivar: Koshihikari) by Agrobacterium method, and genetically fixed rice-derived rice is planted and germinated on a support. It was. The material of the support was urethane and the size was 3 cm × 3 cm × 3 cm. After adding Otsuka Chemical's hydroponics fertilizer, M1, M2, and M5 to hydroponic water, the pH was adjusted to 5.5. The N, P and K concentrations at the start were 21 mg / L, 50 mg / L and 60 mg / L, respectively. The amount of hydroponic water was 2.2 m 3 / cultivation stand. After the support was planted on a hydroponics panel made of polystyrene foam, the panel was floated on hydroponic water. Hydroponic water temperature was controlled by a nutrient solution control panel (M-type Hydroponic Research Laboratory). The indoor environmental control panel (green microcomputer) was used to control room temperature, day length, and opening / closing of windows. Cultivation was performed with 98 strains in each group. The EC value of hydroponic water of Example 1 was 1.1 to 1.4 mS / cm. Table 1 shows the minimum and maximum data for one month after flowering. In Table 1, the fruiting rate is an average value of 10 shares.

Figure 2015057950
Figure 2015057950

表1に示すとおり、比較例2の稔実率は25%であるのに対して、実施例1の稔実率は61%であった。この結果は、本発明の生産方法により遺伝子組み換えイネの稔実率を向上させることができることが明らかである。一方、比較例1及び3の稔実率はそれぞれ94%と88%であり、両者に差がなかった。この結果は、非遺伝子組み換えイネの稔実率と水耕水の水温との関連性は低いことを示している。   As shown in Table 1, the yield rate of Comparative Example 2 was 25%, while the yield rate of Example 1 was 61%. This result clearly shows that the yield of genetically modified rice can be improved by the production method of the present invention. On the other hand, the yield rates of Comparative Examples 1 and 3 were 94% and 88%, respectively, and there was no difference between them. This result indicates that the relationship between the non-GMO rice seed yield and hydroponic water temperature is low.

実施例2及び比較例4〜5
遺伝子組み換えイネおよびコシヒカリの栽培を表2に示す条件で行ったこと、実施例2の水耕水のEC値が0.6〜0.8mS/cmであったことのほかは、実施例1と同様にして行った。栽培期間は比較例4および5は平成23年7月〜平成23年11月、実施例2は平成24年5月〜平成24年9月であった。各群196株にて栽培を行った。表2に開花以降1ヶ月間のデータの最低値および最高値を示す。表2中、稔実率は10株の平均値である。
Example 2 and Comparative Examples 4-5
Except that the genetically modified rice and Koshihikari were grown under the conditions shown in Table 2, and that the EC value of hydroponic water of Example 2 was 0.6 to 0.8 mS / cm, The same was done. The cultivation period was July 2011 to November 2011 for Comparative Examples 4 and 5, and May 2012 to September 2012 for Example 2. Cultivation was performed with 196 strains in each group. Table 2 shows the minimum and maximum data for one month after flowering. In Table 2, the fruiting rate is an average value of 10 shares.

Figure 2015057950
Figure 2015057950

表2に示すとおり、比較例4の稔実率は68%であるのに対して、実施例1の稔実率は85%であった。この結果は、本発明の生産方法により遺伝子組み換えイネの稔実率を向上させることができることが明らかである。一方、比較例5の稔実率は94%であった。この結果は、非遺伝子組み換えイネの稔実率と水耕水の水温との関連性は低いことを示している。   As shown in Table 2, the yield rate of Comparative Example 4 was 68%, while the yield rate of Example 1 was 85%. This result clearly shows that the yield of genetically modified rice can be improved by the production method of the present invention. On the other hand, the yield of Comparative Example 5 was 94%. This result indicates that the relationship between the non-GMO rice seed yield and hydroponic water temperature is low.

実施例3及び比較例6〜7
登熟期の室内温度及び水耕水温度を制御した場合(実施例3)としない場合(比較例6と比較例7)での玄米重量を測定し、比較した。実施例3及び比較例6では実施例1と同様の遺伝子組み換え米を用い、比較例7では比較例1と同様の非組み換え米を用いた。温度調整以外の栽培条件は、実施例3の水耕水のEC値が1.1〜1.5mS/cmであったこと以外は、実施例1と同様とした。表3に、登熟期の栽培条件及び玄米重量を示す。表3中の玄米重量は玄米300粒の平均値±標準偏差である。
Example 3 and Comparative Examples 6-7
The brown rice weight was measured and compared when the indoor temperature and hydroponic water temperature during the ripening period were controlled (Example 3) and not (Comparative Example 6 and Comparative Example 7). In Example 3 and Comparative Example 6, the same genetically modified rice as in Example 1 was used, and in Comparative Example 7, the same non-recombined rice as in Comparative Example 1 was used. The cultivation conditions other than temperature adjustment were the same as in Example 1 except that the EC value of hydroponic water in Example 3 was 1.1 to 1.5 mS / cm. Table 3 shows the cultivation conditions and brown rice weight during the ripening period. The brown rice weight in Table 3 is an average value ± standard deviation of 300 brown rice grains.

Figure 2015057950
Figure 2015057950

表3に示すとおり、登熟期間中の水耕水温度を22.3℃〜24.8℃に制御した実施例3での玄米重量は19.5±2.0mgであった。それに対して制御せず、登熟期間中の水耕水温度を17.5℃〜22.0℃に制御した比較例6での玄米重量は14.0±2.5mg、比較例7は19.4±1.7mgであった。実施例3および比較例6の結果は、遺伝子組み換え米が、登熟期の水耕水温度を制御することにより玄米重量を上昇させることができることを示している。実施例3および比較例7の結果は、遺伝子組換え米を、登熟期の水耕水温度を制御して栽培すると非組換え米と同等の重量の玄米を得ることができることを示している。   As shown in Table 3, the weight of brown rice in Example 3 in which the hydroponic temperature during the ripening period was controlled to 22.3 ° C. to 24.8 ° C. was 19.5 ± 2.0 mg. In contrast, the weight of brown rice in Comparative Example 6 in which the hydroponic temperature during the ripening period was controlled to 17.5 ° C. to 22.0 ° C. was 14.0 ± 2.5 mg, and Comparative Example 7 was 19 4 ± 1.7 mg. The results of Example 3 and Comparative Example 6 indicate that the genetically modified rice can increase the brown rice weight by controlling the hydroponic water temperature during the ripening period. The results of Example 3 and Comparative Example 7 indicate that brown rice having the same weight as non-recombinant rice can be obtained when genetically modified rice is grown while controlling the hydroponic temperature during the ripening period. .

Claims (4)

20〜30℃の水耕水を用いて遺伝子組み換えイネ科植物の水耕栽培を行う、遺伝子組み換えイネ科植物の生産方法。   A method for producing a genetically modified gramineous plant, comprising hydroponically cultivating a genetically modified gramineous plant using hydroponic water at 20 to 30 ° C. 20〜30℃の水耕水を用いて遺伝子組み換えイネ科植物の水耕栽培を行う、遺伝子組み換えイネ科植物の種子又は種子の加工品の生産方法。   A method for producing a seed of a genetically modified gramineous plant or a processed product of the seed, which hydroponically cultivates the genetically modified gramineous plant using hydroponic water at 20 to 30 ° C. 水耕水のECが0.6mS/cm以上である、請求項1又は2に記載の生産方法。   The production method according to claim 1 or 2, wherein EC of hydroponic water is 0.6 mS / cm or more. 少なくとも登熟期の期間中水耕栽培を行う、請求項1〜3のいずれか一項に記載の生産方法。   The production method according to any one of claims 1 to 3, wherein hydroponics is performed at least during a ripening period.
JP2013191472A 2013-09-17 2013-09-17 Transgenic poaceae plant, seed thereof, or production method of processed goods of seed Pending JP2015057950A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013191472A JP2015057950A (en) 2013-09-17 2013-09-17 Transgenic poaceae plant, seed thereof, or production method of processed goods of seed

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013191472A JP2015057950A (en) 2013-09-17 2013-09-17 Transgenic poaceae plant, seed thereof, or production method of processed goods of seed

Publications (1)

Publication Number Publication Date
JP2015057950A true JP2015057950A (en) 2015-03-30

Family

ID=52816001

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013191472A Pending JP2015057950A (en) 2013-09-17 2013-09-17 Transgenic poaceae plant, seed thereof, or production method of processed goods of seed

Country Status (1)

Country Link
JP (1) JP2015057950A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017110626A1 (en) * 2015-12-24 2017-06-29 積水化学工業株式会社 Hydroponic culture method for plant in high salinity environment
WO2017135236A1 (en) * 2016-02-05 2017-08-10 積水化学工業株式会社 Method for growing salt-resistant seedling and method for hydroponic cultivation of plant

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5362607A (en) * 1976-11-15 1978-06-05 Kubota Ltd Growing method for nursery rice plant
JPS5362608A (en) * 1976-11-15 1978-06-05 Kubota Ltd Growing method for matty nursery rice plant in lowwtemperture resion or season
JPS59156227A (en) * 1983-02-28 1984-09-05 中村 正六 Hydropontic culturing of rice plants
WO2007086282A1 (en) * 2006-01-27 2007-08-02 National Institute Of Agrobiological Sciences Transgenic plant transformed with stress-responsive gene
WO2011052697A1 (en) * 2009-10-30 2011-05-05 日本製紙株式会社 Protein having cedar pollen immunogenicity, polynucleotide for coding for said protein, and uses of said protein and polynucleotide
JP2012024052A (en) * 2010-07-27 2012-02-09 Nippon Paper Industries Co Ltd Transgenic plant highly accumulating target protein
JP2013116103A (en) * 2011-11-04 2013-06-13 Sumitomo Chemical Co Ltd Method for reducing abiotic stress in plant

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5362607A (en) * 1976-11-15 1978-06-05 Kubota Ltd Growing method for nursery rice plant
JPS5362608A (en) * 1976-11-15 1978-06-05 Kubota Ltd Growing method for matty nursery rice plant in lowwtemperture resion or season
JPS59156227A (en) * 1983-02-28 1984-09-05 中村 正六 Hydropontic culturing of rice plants
WO2007086282A1 (en) * 2006-01-27 2007-08-02 National Institute Of Agrobiological Sciences Transgenic plant transformed with stress-responsive gene
WO2011052697A1 (en) * 2009-10-30 2011-05-05 日本製紙株式会社 Protein having cedar pollen immunogenicity, polynucleotide for coding for said protein, and uses of said protein and polynucleotide
JP2012024052A (en) * 2010-07-27 2012-02-09 Nippon Paper Industries Co Ltd Transgenic plant highly accumulating target protein
JP2013116103A (en) * 2011-11-04 2013-06-13 Sumitomo Chemical Co Ltd Method for reducing abiotic stress in plant

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017110626A1 (en) * 2015-12-24 2017-06-29 積水化学工業株式会社 Hydroponic culture method for plant in high salinity environment
US11330774B2 (en) 2015-12-24 2022-05-17 Sekisui Chemical Co., Ltd. Hydroponic culture method for plant in high salinity environment
WO2017135236A1 (en) * 2016-02-05 2017-08-10 積水化学工業株式会社 Method for growing salt-resistant seedling and method for hydroponic cultivation of plant

Similar Documents

Publication Publication Date Title
Krenzer Jr et al. Carbon Dioxide Enrichment Effects Upon Yield and Yield Components in Wheat 1
WO2022048302A1 (en) Method for accelerating vegetative growth to reproductive growth of leafy vegetables
CN105075829B (en) A kind of method for cultivating tomato health seedling
Tunçturk et al. Changes in micronutrients, dry weight and plant growth of soybean (Glycine max L. Merrill) cultivars under salt stress
CN106973787B (en) A kind of artificial light environment cultural method of arabidopsis
CN106538395A (en) A kind of method for improving endangered plants Tibet Paeonia ludlowii planting percent and seedling percent
CN111543300B (en) Light environment regulation and control method for promoting lettuce vegetable core wrapping
CN103524255A (en) High-yield cultivation seed dressing agent for corn and rice and preparation method thereof
WO2023280325A1 (en) Light environment for indoor purple and red lettuce production
CN105123472A (en) Method for cultivating healthy grafting seedlings of tomatoes
WO2022121316A1 (en) Plant factory cultivation method for promoting 4-5 cereal crop yields per year
和田光生 et al. Effects of shading in summer on yield and quality of tomatoes grown on a single-truss system
JP2015057950A (en) Transgenic poaceae plant, seed thereof, or production method of processed goods of seed
CN105123471A (en) Method for cultivating healthy tomato seedlings
CN102498990B (en) Rice industrial production technology and workshop thereof
KR102163281B1 (en) Method for suppressing over-growth of tomato plug seedling by control of day and night temperature
KR20180073086A (en) Method for cultivating mouseear cress
CN101743866A (en) Plant incubator
Krug et al. Elevated relative humidity increases the incidence of distorted growth and boron deficiency in bedding plant plugs
Juárez-Rosete et al. Producción de biomasa, requerimiento nutrimental de nitrógeno, fósforo y potasio, y concentración de la solución nutritiva en orégano
CN103548656A (en) Matrix for dianthus caryophylus seed and seedling tray cutting and breeding
Haji Sabli Fertigation of Bell Pepper (Capsicum annuum L.) in a soil-less greenhouse system: effects of fertiliser formulation and irrigation frequency
CN106977254A (en) A kind of high yield celery nutrient solution
KR20170072747A (en) Method for hydroponics of nicotina benthamiana
Falah et al. Controlled environment with artificial lighting for hydroponics production systems.

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160224

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20161117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161129

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170125

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170627

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170919

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20170926

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20171124