WO2020129222A1 - Fertilizer and method for producing cultivated plants - Google Patents

Fertilizer and method for producing cultivated plants Download PDF

Info

Publication number
WO2020129222A1
WO2020129222A1 PCT/JP2018/047086 JP2018047086W WO2020129222A1 WO 2020129222 A1 WO2020129222 A1 WO 2020129222A1 JP 2018047086 W JP2018047086 W JP 2018047086W WO 2020129222 A1 WO2020129222 A1 WO 2020129222A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
plant
sio
fertilizer
plants
Prior art date
Application number
PCT/JP2018/047086
Other languages
French (fr)
Japanese (ja)
Inventor
一宰 三宮
Original Assignee
一宰 三宮
新城 博
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 一宰 三宮, 新城 博 filed Critical 一宰 三宮
Priority to JP2020560734A priority Critical patent/JP7150877B2/en
Priority to PCT/JP2018/047086 priority patent/WO2020129222A1/en
Publication of WO2020129222A1 publication Critical patent/WO2020129222A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G22/00Cultivation of specific crops or plants not otherwise provided for
    • A01G22/20Cereals
    • A01G22/22Rice
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01GHORTICULTURE; CULTIVATION OF VEGETABLES, FLOWERS, RICE, FRUIT, VINES, HOPS OR SEAWEED; FORESTRY; WATERING
    • A01G7/00Botany in general
    • A01G7/06Treatment of growing trees or plants, e.g. for preventing decay of wood, for tingeing flowers or wood, for prolonging the life of plants
    • CCHEMISTRY; METALLURGY
    • C05FERTILISERS; MANUFACTURE THEREOF
    • C05DINORGANIC FERTILISERS NOT COVERED BY SUBCLASSES C05B, C05C; FERTILISERS PRODUCING CARBON DIOXIDE
    • C05D9/00Other inorganic fertilisers

Definitions

  • the present invention relates to a method for producing fertilizers and cultivated plants. More specifically, the present invention is a fertilizer that promotes the growth of plants, particularly monocots, and increases the yield of seeds or fruits, typically grains such as rice, wheat and corn, and cultivated plants using the same. The production method of.
  • silicon is not an essential element for plants, it is an important component in monocots, especially grasses.
  • main effects and effects of silicon on plants include prevention of lodging, reduction of excess manganese, reduction of pest diseases such as prevention of blast and powdery mildew, and the like.
  • the resistance of these pests to the plants caused by silicon is not only that silica deposited in the plant establishes a physical barrier against pathogenic bacteria, but that silicon in the plant has the action of inducing resistance at the site of infection. It has been found that water-soluble silicon plays an important role in the resistance to pests and diseases (for example, see Non-Patent Documents 1 and 2).
  • Patent Document 1 since crystalline slag, especially one containing a mineral phase of dicalcium silicate (2CaO.SiO 2 ) has a high silicic acid elution property even under conditions of pH 5 to 7, It was shown that the fertilization effect was improved, but it was only an improvement among those using the same slag system, and it was still not sufficient.
  • the main components are CaO, SiO 2 , MgO, and Al 2 O 3 , 40 to 60% by mass of CaO, 25 to 40% by mass of SiO 2 , and 5% of MgO. to 15 wt%, the Al 2 O 3 comprises 0-5% by weight, and CaO / SiO 2 mass ratio is shown what is 1.4 to 2.0.
  • liquid fertilizers are excellent in terms of immediate effect, it is well known that it is generally difficult to maintain orthosilicic acid as a stable simple substance because it rapidly dehydrates and condenses into silica. It was also questionable whether or not the active ingredient did not gel.
  • Non-Patent Document 2 it is necessary to accumulate a large amount of silicon for the healthy growth of rice and stable high yield, and normal plants have a neutral pH of silicon that is not charged at pH 9 or less.
  • silicic acid orthosilicic acid
  • Silicate transporter Lsi1 protein that transports silicic acid from extracellular to intracellular and silicic acid transporter Lsi2 protein that transports silicic acid from intracellular to extracellular efficiently cooperate to efficiently transport silicic acid. The idea that there is shown.
  • the present invention for solving the above-mentioned problems is a fertilizer containing a glassy foam fired body.
  • the glassy foamed fired body has a bulk density of 0.3 to 0.6 g/cm 3 and a water absorption rate of 30 to 35%.
  • the glassy foam may be used as a raw material for pulverizing waste glass, and at least one foaming agent selected from the group consisting of silicon carbide, calcium carbonate, aluminum nitride and Al ash.
  • foaming agent selected from the group consisting of silicon carbide, calcium carbonate, aluminum nitride and Al ash.
  • An embodiment is shown in which 0.1 to 3% by weight of the entire raw material is blended and fired.
  • the present invention for solving the above-mentioned problems is also a method for producing a cultivated plant, which comprises arranging the above-mentioned fertilizer at a position near the root of the plant in soil cultivation or hydroponic cultivation of a monocot.
  • the plant is a gramineous plant.
  • the present invention for solving the above-mentioned problems is also a method for regulating growth of cultivated plants, which comprises adjusting the concentration of metasilicate ions (SiO 3 2 ⁇ ) in the vicinity of the roots of the plants.
  • the fertilizer of the present invention contains a glassy foamed fired body.
  • the above-mentioned vitreous foamed fired body exhibits a metasilicate ion (SiO 3 2 ⁇ ) elution property with respect to water.
  • SiO 3 2 ⁇ metasilicate ion
  • the ion ion (SiO 3 2 ⁇ ) elution amount is 25 to 50 mg/L, particularly 35 to 45 mg/L, for example 41 mg/L, and particularly preferably, the elution amount for 14 days is 50 mg/L or more, particularly , 50 to 70 mg/L, for example, 56 mg/L.
  • the main waste glass is soda lime glass such as glass bottles, plate glass, window glass, etc.
  • it has a composition relatively close to this, and typically has a SiO 2 content of 65.0 to 75.0 mass %.
  • a SiO 2 content 65.0 to 75.0 mass %.
  • CaO 7.0 to 15.0% by mass especially 10.0 to 13.0% by mass
  • Na 2 O 10.0 to 16.0% by mass especially 10.
  • the shape of the vitreous foamed fired body according to the fertilizer of the present invention is not particularly limited, in the soil or the surface portion of the soil near the root of the plant in soil cultivation, or of the plant in hydroponics. It may be arranged at a position in the vicinity of the root or at least in contact with a water supply route to the root of the plant, and it may be arranged as long as it can come in contact with sufficient water. It is desirable that the body has a bulk density of 0.3 to 0.6 g/cm 3 and a water absorption rate of 30 to 35%.
  • the bulk density is measured by the Archimedes method.
  • the water absorption is determined by first measuring the weight W 0 of the sample to be measured in a dry state, then holding the sample in water for 5 minutes, taking it out, and then wiping the surface with a damp cloth.
  • the weight W 1 was measured and calculated by the formula (W 1 ⁇ W 0 )/W 0 ⁇ 100.
  • the average particle diameter is a value calculated from the measurement result of the specific surface area by the air permeation method according to JIS M-8511.
  • the glass raw materials are various kinds of waste glass. For example, discarded glass bottles, flat glass, window glass, front glass panels of televisions and personal computers, scrap from glass product factories, and the like. These waste materials include soda lime glass, borosilicate glass, borosilicate glass, crystal glass, etc. when viewed as vitreous, but among such waste glasses, soda lime glass was used. Waste materials such as glass bottles, plate glass, and window glass are advantageous because they are major ones, can be easily collected, and can be used in large quantities.
  • SiC silicon carbide
  • CaCO 3 calcium carbonate
  • AlN aluminum nitride
  • Al ash and the like can be used.
  • SiC is preferable, and the addition amount thereof is 0. It is suitable to set it to about 1 to 3% by weight.
  • a waste glass raw material is crushed using a commercially available glass crusher, for example, an impact crusher such as a hammer mill, and a crushed product can be sieved.
  • the raw material is 96% or more of coarsely crushed glass powder having a particle size distribution of 0.21 mm or more and 2.38 mm or less and 4% or less of fine glass powder having a particle size distribution of less than 0.21 mm.
  • the content of the particle size distribution of the coarsely crushed glass powder can be variously changed, but it is preferable to use an average particle size of about 0.5 mm or more.
  • Coarse crushed glass powder with a particle size of more than 2.38 mm is crushed again and used by sieving into coarse crushed glass powder and fine crushed glass powder within the above range of particle size distribution.
  • the reason for setting the upper limit of the particle size distribution of coarsely crushed glass powder to 2.38 mm is that if a material having a particle size of more than 2.38 mm is used as a raw material, it tends to remain in the product as it is, and the particle size is uniform. This is because a foamed structure cannot be obtained.
  • the crushing raw material can be obtained at a low cost by using the relatively inexpensive crusher capable of roughly crushing the waste glass material, It is not necessary to use an expensive fine pulverizer such as a ball mill or Reynolds mill that pulverizes everything to 0.2 mm or less.
  • the finely ground glass powder having a particle size of less than 0.21 mm can be prepared without mixing the finely ground glass powder at all.
  • coarsely crushed glass powder having a particle size distribution with a diameter of 2 mm or less is used as a raw material and heated and fired, at room temperature before heating, voids formed by being surrounded by coarse particles that are in contact with each other have poor sinterability of the coarse powder particles.
  • the coarse particles are not sufficiently sintered yet, they do not become closed pores, and the gas generated from the coarse particles escapes to the outside during this period. After that, the sintering between the coarse particles is finally sufficiently performed at the sintering temperature of 700° C. to close the voids and form the independent pores, but the size thereof is extremely small. Furthermore, at the time of heating up to 700° C. or more, since the gas in the independent pores is already small, the pores do not become large but remain small, and large independent pores cannot be obtained.
  • the softening and sintering progresses further by sintering at a higher temperature of 700° C., and the coarse particles are fused to form a good fusion wall that surrounds the periphery of the independent pores, whereby the independent pores are encapsulated and a large diameter is maintained.
  • a higher temperature of 700° C. the coarse particles are fused to form a good fusion wall that surrounds the periphery of the independent pores, whereby the independent pores are encapsulated and a large diameter is maintained.
  • the temperature is further raised to 700° C. or higher, the gas inside the independent pores expands, and accordingly, the independent pores expand, and an extremely lightweight foam glass body with low water absorption is obtained.
  • silicon carbide was added and mixed to prepare a mixed powder.
  • heating to °C or more heating as described above, firing at least 700 °C or more, and then cooling by rapid cooling or slow cooling, innumerable large closed cells covered with a tough glassy wall
  • a glassy foam having a bulk specific gravity of 0.3 to 0.6 g/cm 3 , particularly 0.4 to 0.5 g/cm 3 , and a water absorption rate of 30 to 35% is obtained.
  • silicon carbide is usually produced from silica sand containing mainly coke and silicon oxide, the silicon carbide used for this purpose does not necessarily have to be sufficiently purified.
  • the compounded glass powder and the glass are heated and fired above the softening point of the glass, but the softening point varies depending on the type of each glass raw material.
  • the temperature is generally 750°C or higher, and the particularly preferable temperature range is 840 to 980°C.
  • the time required to raise the temperature to 900° C. depends on the thickness of the layer to be treated, but it is preferably 10 minutes if the thickness is 10 mm, and about 20 minutes if the thickness is 20 mm.
  • the holding time is set longer when the maximum temperature is low, and conversely, the holding time is set shorter when the maximum temperature is high.
  • the holding time is generally in the range of 30-0 minutes.
  • 0 minute means cooling immediately after reaching the maximum temperature.
  • a long holding time of 30 minutes or more is not preferable from the viewpoint of manufacturing cost.
  • the mixed glass powder contains a large amount of water, it is necessary to evaporate the water completely at around 200° C. before the above temperature rise.
  • the above compounded glass powder can be made into a plate-shaped molded article such as a brick or a wall material by slowly cooling it after heating and firing in a predetermined molding frame, but if it is rapidly cooled, it becomes a plate-shaped molded body. It is obtained as a myriad of granular materials that crack and break into irregular lumps, for example, irregular lump-like glassy foam having a particle size of 10 to 60 mm.
  • a molded product having a certain shape for example, a brick, a plate shape, or any other shape, for example, after the above high temperature holding time, it is gradually cooled to 200°C.
  • the cooling rate is preferably as slow as possible, and most preferably about 2° C./minute.
  • the manufacturing method may be a batch method or a continuous method.
  • the method for producing a cultivated plant of the present invention is characterized in that a fertilizer containing a glassy foam fired body as described above is placed in the vicinity of the root of the plant in soil cultivation or hydroponic cultivation of monocotyledonous plants. To do.
  • the vitreous foamed fired body is preferably present during the growing period of the plant, for example, in the case of paddy cultivation of rice, during the period including the dividing period.
  • the amount used is also not particularly limited as it depends on the target plant species, cultivation method, etc., but typically, for example, supply of about 2 to 3 kg per 1 m 2 of cultivation area. Therefore, a good yield increasing effect can be expected.
  • the metasilicate ion (SiO 3 2 ⁇ ) concentration in the paddy water is significantly increased in about 3 days. Changes have occurred and the same is likely to happen in the case of soil cultivation.
  • the bulk specific gravity of this product was 0.3 g/cm 3 , the water absorption rate was 30%, and the composition was SiO 2 73.5 mass %, CaO 12.1 mass %, Na 2 O 10.5 mass %, K 2 O 0. It was 0.98 mass %, MgO 0.42 mass %, Al 2 O 3 1.57 mass %, C 0.4 mass %, and the balance 0.53 mass %.
  • Example 1 About 1,620 g of dry black soil was put in a pot having no holes at the bottom by dry weight, and 180 g of the glassy foamed sintered body obtained in the above Synthesis Example was evenly spread on the bottom of the pot. Then, city water was used as irrigation water, and water was added so that the water depth would be about 5 cm, thereby forming a paddy field example ward. After supplying the glassy foamed sintered body to the soil, Koshihikari seedlings were planted, and rice was grown according to the ordinary paddy field cultivation method. During the cultivation period, the water in the pot was appropriately supplemented with the same city water to maintain a substantially similar water depth.
  • the ion concentration in the paddy water of the example ward was measured 60 days after the start of cultivation in both the pot in which seedlings were not planted and the pot in which the seedlings were planted. The measurement after 60 days was performed after 7 days had passed since the water was replenished to the Example section immediately before. Also, for pots without seedlings, water in the pots was replenished in the same cycle as the pots with seedlings. Of the measured ion concentrations, the SO 3 2- ion concentration is shown in FIG.
  • the ion concentration in the paddy water was measured in the same manner as in the Example section in the pots without planting seedlings and the pots in which the seedlings were planted 60 days after the start of cultivation. The measurement after 60 days was carried out 7 days after the replenishment of water for the comparative example immediately before. Similar to the case of the above-mentioned Example section, also in the pots without planting seedlings, the water in the pots was replenished in the same cycle as the pots with seedlings planted. Of the measured ion concentrations, the SO 3 2- ion concentration is shown in FIG.
  • Example 2 and Comparative Example 2 Rice was cultivated in the same manner as in Example 1 and Comparative Example 1 except that the rice variety to be cultivated was changed from Koshihikari to Himebore, and the yield of brown rice of each obtained individual was measured. The obtained results are shown in FIG. As shown in FIG. 5, even when the rice varieties were changed, in the same manner as the comparison results of Example 1 and Comparative Example 1, Example 2 according to the present invention showed a higher yield than Comparative Example 2. Was done.
  • Example 3 wheat was cultivated in the same manner as in Example 3 except that the glassy foamed sintered body was not mixed with the soil and an equal amount of soil was supplemented, and cultivated in the same period as in Example 3. Finished (Comparative Example 3). After the cultivation period, the appearance of wheat growth was visually observed. The obtained results are shown in FIG.
  • Example 3 in which the glassy foamed sintered body according to the present invention was placed in soil, the growth degree was significantly promoted as compared with Comparative Example 3. Was seen.
  • Example 4 and Comparative Example 4 About 1,620 g of dry black soil was put on a dry basis in a pot having a hole at the bottom, and 180 g of the glassy foamed sintered body obtained in the above Synthesis Example was evenly spread on the bottom of the pot. After the glassy foamed sintered body was supplied to the soil, about 500 ml of city water was supplied every 7 days. Of the supplied water, the water that was not retained in the soil was drained from the bottom of the pot in about 1 minute. After arranging the glassy foamed sintered body, corn seedlings were planted, and then corn was cultivated for 90 days while water was supplied in the above cycle (Example 3). After the end of the cultivation period, the appearance of the growth degree of corn was observed.
  • Example 4 corn was cultivated in the same manner as in Example 4 except that the glassy foamed sintered body was not mixed with the soil and an equal amount of soil was supplemented, and cultivated in the same period as in Example 4. Finished (Comparative Example 4). After the end of the cultivation period, the appearance of the growth degree of corn was observed. The obtained results are shown in FIG.
  • Example 4 in which the vitreous foamed sintered body according to the present invention was placed in soil, the growth degree was significantly promoted as compared with Comparative Example 4. Was seen.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Ecology (AREA)
  • Botany (AREA)
  • Environmental Sciences (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Chemical & Material Sciences (AREA)
  • Forests & Forestry (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Fertilizers (AREA)
  • Cultivation Of Plants (AREA)

Abstract

The present invention provides: a silicon-based fertilizer that promotes the growth of plants, especially monocotyledons, and increases the yield of seeds or fruits of the plants; and a method for producing cultivated plants using the silicon-based fertilizer. Silicon is supplied to plants, the silicon being stabilized in the form of metasilicate ions (SiO3 2-), by using a vitreous foam fired body obtained by adding a foaming agent to a waste glass pulverized raw material and firing, the supply of silicon making the plants larger and raising the photosynthesis level of the plants, thereby increasing the yield of seeds or fruits.

Description

肥料および栽培植物の生産方法Fertilizer and production method of cultivated plant
 本発明は、肥料および栽培植物の生産方法に関する。詳しく述べると、本発明は、植物、特に単子葉植物の成長を促進し、その種子ないし果実、代表的には米、麦、トウモロコシ等の穀物の収量を増大させる肥料およびこれを用いた栽培植物の生産方法に関するものである。 The present invention relates to a method for producing fertilizers and cultivated plants. More specifically, the present invention is a fertilizer that promotes the growth of plants, particularly monocots, and increases the yield of seeds or fruits, typically grains such as rice, wheat and corn, and cultivated plants using the same. The production method of.
 ケイ素は、植物にとって必須要素ではないものの、単子葉植物、とりわけイネ科植物においては重要な成分である。植物におけるケイ素の主な効能・効果としては、例えば、倒伏防止、マンガンの過剰症の軽減、いもち病やうどんこ病の発生抑制等の病虫害の軽減などが挙げられる。ケイ素が植物にもたらすこれらの病虫害抵抗性は、植物体内に沈積したシリカが病原菌に対して物理的な障壁を築くだけではなく、植物体内のケイ素が感染部位の抵抗性を誘導する作用を持つことが見出され、この病虫害抵抗性には水溶性ケイ素が重要な働きをしていることが報告されている(例えば、非特許文献1、2参照)。 Although silicon is not an essential element for plants, it is an important component in monocots, especially grasses. Examples of main effects and effects of silicon on plants include prevention of lodging, reduction of excess manganese, reduction of pest diseases such as prevention of blast and powdery mildew, and the like. The resistance of these pests to the plants caused by silicon is not only that silica deposited in the plant establishes a physical barrier against pathogenic bacteria, but that silicon in the plant has the action of inducing resistance at the site of infection. It has been found that water-soluble silicon plays an important role in the resistance to pests and diseases (for example, see Non-Patent Documents 1 and 2).
 元来、土壌中には多量のケイ素が含まれているが、それらは植物にとって吸収し難い難溶性のケイ酸アルミニウム等の形態で存在しており、植物の育成に効率よく利用されているとは言い難い。 Originally, a large amount of silicon is contained in soil, but they exist in the form of poorly soluble aluminum silicate or the like that is difficult for plants to absorb, and it is said that they are efficiently used for plant growth. Is hard to say.
 このような観点から、従来、イネの水田耕作においては、ケイ素含有肥料を施肥することが行われているが、一般的に使用されているケイ素含有肥料のうち大部分の種類は、そのケイ素源として鉄や各種金属を精錬する際に得られるスラグ(鉱滓)を用いたものであり、一般的な土壌のpH5~7程度の条件下においては、ケイ酸としての溶出量が極端に低下し、ケイ酸分の供給源としては効率が良いものとは言えないものであった。 From such a point of view, conventionally, in paddy cultivation of rice, fertilizing with a silicon-containing fertilizer has been performed. However, most types of commonly used silicon-containing fertilizers have a silicon source. As the slag (slag) obtained when refining iron and various metals is used as the above, under the condition that pH of general soil is about 5 to 7, the elution amount as silicic acid is extremely reduced, It was not an efficient source of silicic acid.
 さらに、特許文献1においては、結晶質であるスラグ、特にダイカルシウムシリケート(2CaO・SiO)の鉱物相を含むものがpH5~7程度の条件下においても高いケイ酸溶出性を有することから、施肥効果に改善が見られることが示されているが、同じスラグ系のものを用いたものの中での向上という程度のものであって、未だ十分なものとは言えないものであった。なお、この特許文献1におけるスラグの組成としては、主成分がCaO、SiO、MgO、Alからなり、CaOを40~60質量%、SiOを25~40質量%、MgOを5~15質量%、Alを0~5質量%含み、かつCaO/SiO質量比が1.4~2.0であるものが示されている。 Further, in Patent Document 1, since crystalline slag, especially one containing a mineral phase of dicalcium silicate (2CaO.SiO 2 ) has a high silicic acid elution property even under conditions of pH 5 to 7, It was shown that the fertilization effect was improved, but it was only an improvement among those using the same slag system, and it was still not sufficient. As the composition of the slag in Patent Document 1, the main components are CaO, SiO 2 , MgO, and Al 2 O 3 , 40 to 60% by mass of CaO, 25 to 40% by mass of SiO 2 , and 5% of MgO. to 15 wt%, the Al 2 O 3 comprises 0-5% by weight, and CaO / SiO 2 mass ratio is shown what is 1.4 to 2.0.
 また、植物へのケイ素の吸収を容易にするべく、ケイ素含有化合物を液体肥料化する試みも従来なされており、例えば、特許文献2においては、作物が最も吸収しやすいとされるオルトケイ酸(正ケイ酸)HSiO(Si(OH))を得る上で、酸性条件下水溶液中で正ケイ酸アルキル(テトラアルコキシシラン)を加水分解して液体肥料を製造することが提案されている。しかしながら、テトラアルコキシシランのような純化学的原料を用いて合成により得られる肥料は、その添加量がわずかであるとしても価格的に高価なものとなることが予測でき、かつ原料の引火性、刺激性等の問題もある。このため商業化の面では疑問の残るものである。さらに、液体肥料は即効性の面では優れたものであるが、一般にオルトケイ酸は速やかに脱水縮合しシリカになるため安定した単体として保持する困難であることが周知であって、溶液として散布後において有効成分のゲル化が生じないかも疑問の残るところであった。 Further, in order to facilitate the absorption of silicon into plants, attempts have been conventionally made to convert a silicon-containing compound into a liquid fertilizer. For example, in Patent Document 2, orthosilicic acid (positive In obtaining silicic acid) H 4 SiO 4 (Si(OH) 4 ), it has been proposed to hydrolyze an alkyl orthosilicate (tetraalkoxysilane) in an aqueous solution under acidic conditions to produce a liquid fertilizer. .. However, the fertilizer obtained by synthesis using a pure chemical raw material such as tetraalkoxysilane can be expected to be expensive in price even if the amount added is small, and the flammability of the raw material, There are also problems such as irritation. Therefore, in terms of commercialization, it is questionable. Furthermore, although liquid fertilizers are excellent in terms of immediate effect, it is well known that it is generally difficult to maintain orthosilicic acid as a stable simple substance because it rapidly dehydrates and condenses into silica. It was also questionable whether or not the active ingredient did not gel.
 なお、上記した非特許文献2においては、イネの健全の生育と安定な多収には多量のケイ素の集積が必要であること、通常植物は、ケイ素を、pH9以下で電荷を持たない中性分子としてのケイ酸(オルトケイ酸)の形で根から吸収し地上部へ輸送し、地上部においてケイ酸が蒸散によってしだいに濃縮され重合してシリカとして沈積されること、またこのような吸収は、ケイ酸を細胞外から細胞内へ輸送するケイ酸内向きトランスポータLsi1蛋白質と、細胞内から細胞外へ輸送するケイ酸外向きトランスポータLsi2蛋白質の協同作業によってケイ酸を効率よく輸送しているものとの考えが示されている。しかし、十分なケイ酸を与え続けた場合にはLsi1およびLsi2の発現が顕著に抑制されることも報告されている。このため、同文献において示されるケイ素の集積という機構は、これが仮に正しいものであるとしても、イネの生育と多収においてその一因となり得る程度のもので、絶対的なものではないと考えられた。 In Non-Patent Document 2 described above, it is necessary to accumulate a large amount of silicon for the healthy growth of rice and stable high yield, and normal plants have a neutral pH of silicon that is not charged at pH 9 or less. In the form of silicic acid (orthosilicic acid) as a molecule, it is absorbed from the roots and transported to the aerial part, where the silicic acid is gradually concentrated by transpiration and polymerizes to be deposited as silica. , Silicate transporter Lsi1 protein that transports silicic acid from extracellular to intracellular, and silicic acid transporter Lsi2 protein that transports silicic acid from intracellular to extracellular efficiently cooperate to efficiently transport silicic acid. The idea that there is is shown. However, it has also been reported that the expression of Lsi1 and Lsi2 is remarkably suppressed when sufficient silicic acid is continuously supplied. Therefore, the mechanism of silicon accumulation shown in the literature is considered to be a factor in rice growth and high yield, even if it is correct, and is not considered to be absolute. It was
 このように従来、植物の成長、特に穀物の収量の増大を期待してのケイ素成分の供与に関し、多くの研究、提案がなされているが十分に満足のいくレベルに達しているところではなく、さらなる検討、改良が望まれるところであった。 As described above, many studies and proposals have been made so far regarding the growth of plants, especially the donation of silicon components in the hope of increasing the yield of grains, but they have not reached a sufficiently satisfactory level. Further examination and improvement were desired.
特開2004-218065号公報Japanese Patent Laid-Open No. 2004-218065 特開2005-67996号公報JP, 2005-67996, A
 従って、本発明は、上述したような従来技術における問題点を鑑み、植物、特にイネ科等の単子葉植物の成長を促進し、その種子ないし果実の収量を効果的に増大させる安定で経済的にも安価で提供可能なケイ素含有肥料およびこれを用いた栽培植物の生産方法を提供することを課題とする。 Therefore, in view of the above-mentioned problems in the prior art, the present invention promotes the growth of plants, particularly monocotyledonous plants such as Gramineae, and stably and economically increases the yield of its seeds or fruits. Another object is to provide a silicon-containing fertilizer that can be provided at low cost and a method for producing a cultivated plant using the same.
 本発明者らは、上記課題を解決するために鋭意検討、研究を重ねた結果、米、コムギ、トウモロコシといったイネ科植物の栽培において、土壌に廃ガラスを原料として焼成発泡化された資材を施肥して育成を行うと、その穀物収量が大幅に増大することを見出した。 The present inventors have conducted extensive studies and studies to solve the above problems, and as a result, in the cultivation of gramineous plants such as rice, wheat, and corn, fertilizing a material that has been fired and foamed using waste glass as a raw material in soil. It was found that the yield of the grain increased significantly when it was grown.
 さらに、このように育成した植物について調べてみると、比較対照区において育成した植物と比較して、穀物収量のみならず、植物全体の質量(植物体量)も大幅に増加していることは確認されたが、一方で、植物体内ケイ素濃度は、比較対照区において育成した植物と、あまり変わりがなくむしろ減少しており、従来主張されているような穀物収量増加の上では、オルトケイ酸HSiO(Si(OH))の形でのケイ素の吸収と、植物体内での多量のケイ素の集積が必要であるという理論とは結びつかないものであることが判明した。 Furthermore, when examining the plants cultivated in this way, it is found that not only the grain yield but also the mass (plant mass) of the whole plant is significantly increased as compared with the plants cultivated in the comparative control group. On the other hand, the silicon concentration in the plant did not change much from the plants grown in the control group, but rather decreased, and the orthosilicate H It has been found that the absorption of silicon in the form of 4 SiO 4 (Si(OH) 4 ) and the theory that a large amount of accumulation of silicon in the plant body is necessary are not linked.
 本発明者らは、その収量増加の要因を探るべくさらに鋭意研究を進めたところ、イネの水耕栽培において、水田水中におけるメタケイ酸イオン(SiO 2-)濃度に関して、上記したような資材を与えた実施区においては比較対照区と比較して大きな違いが生じていることが判明した。すなわち、イネの栽培初期においては、水中におけるメタケイ酸イオン(SiO 2-)濃度は、実施区の方が比較対照区に比べてわずかに高い程度でそれ程差異はないものの、栄養生長期となると比較対照区においてはその濃度が大幅に低下しており、イネにおいてLsi遺伝子の発現が促進されていることも観察されたのに対し、実施区においては濃度が若干下がっているものの栽培初期から濃度がそれ程変わっておらず、イネにおいてLsi遺伝子の発現も抑制されていることが観察された。 The inventors of the present invention conducted further diligent research in order to find out the factor of the increase in yield. As a result, in hydroponics of rice, materials such as those described above were used for the concentration of metasilicate ion (SiO 3 2− ) in paddy water. It was found that there was a large difference between the given control plots and the control plots. That is, in the early stage of rice cultivation, the metasilicate ion (SiO 3 2− ) concentration in water was slightly higher in the practice plot than in the comparative control plot, but there was no significant difference, but during the vegetative growth period. The concentration was significantly decreased in the control group, and it was also observed that the expression of the Lsi gene was promoted in rice, whereas in the control group, the concentration was slightly decreased from the initial cultivation period. Was not so changed, and it was observed that Lsi gene expression was also suppressed in rice.
 これらのことから、イネ科植物の栽培においてその穀物収量の増大の上では、従来非特許文献2などで言われるように、イネが、ケイ素を中性分子であるオルトケイ酸HSiO(Si(OH))の形で吸収し、植物体内での多量のケイ素の集積を行うというようなことではなく、イネがケイ素をメタケイ酸イオン(SiO 2-)の形で取り込み、植物体が大きくなり光合成量が増えることで、穀物収量が増大するといった作用機序が重要であること、また、このような過程において、上記したように廃ガラスを原料として焼成発泡化された資材は、長期に亘って安定してケイ素をメタケイ酸イオン(SiO 2-)の形で溶出提供でき、イネの成長、穀物の収量増加に顕著な効果を与えるものであるとの結論に達し、本発明を完成するに至ったものである。 From these facts, in order to increase the grain yield in the cultivation of Gramineae plants, as described in Non-Patent Document 2 and the like, rice has orthosilicic acid H 4 SiO 4 (Si) which is a neutral molecule of silicon. Rather than absorbing in the form of (OH) 4 ) and accumulating a large amount of silicon in the plant body, rice takes up silicon in the form of metasilicate ion (SiO 3 2− ) It is important that the mechanism of action is such that the grain yield increases as the size increases and the amount of photosynthesis increases. Also, in such a process, as described above, the material obtained by firing and foaming waste glass as a raw material is It was concluded that silicon can be stably eluted and provided in the form of metasilicate ion (SiO 3 2− ) over a long period of time, and that it exerts a remarkable effect on the growth of rice and the increase of grain yield. It has been completed.
 すなわち、上記課題を解決する本発明は、ガラス質発泡焼成体を含有してなる肥料である。 That is, the present invention for solving the above-mentioned problems is a fertilizer containing a glassy foam fired body.
 本発明に係る肥料としては、前記ガラス質発泡焼成体が嵩密度0.3~0.6g/cm3、吸水率30~35%のものである態様が示される。 As the fertilizer according to the present invention, there is shown an embodiment in which the glassy foamed fired body has a bulk density of 0.3 to 0.6 g/cm 3 and a water absorption rate of 30 to 35%.
 本発明に係る肥料としては、前記ガラス質発泡体が、前記ガラス質発泡体が、SiOを65.0質量%以上含み、水に対してメタケイ酸イオン(SiO 2-)溶出性を示すものである態様が示される。 The fertilizer according to the present invention, the glassy foam, the glassy foam, comprises SiO 2 or 65.0 mass%, indicating a metasilicate ion (SiO 3 2-) eluting in water One embodiment is shown.
 本発明に係る肥料としては、さらに、前記ガラス質発泡体が、廃ガラス粉砕原料に、炭化珪素、炭酸カルシウム、窒化アルミニウム、Al灰からなる群より選択されてなる少なくともいずれか1種の発泡剤を原料全体の0.1~3重量%配合して焼成したものである態様が示される。 As the fertilizer according to the present invention, the glassy foam may be used as a raw material for pulverizing waste glass, and at least one foaming agent selected from the group consisting of silicon carbide, calcium carbonate, aluminum nitride and Al ash. An embodiment is shown in which 0.1 to 3% by weight of the entire raw material is blended and fired.
 本発明に係る肥料としてはまた、前記ガラス質発泡焼成体が、SiO 65.0~75.0質量%、CaO 7.0~15.0質量%、NaO 10.0~16.0質量%、KO 0~3.5質量%、MgO 0~4.5質量%、Al 0~2.5質量%、C 0~2質量%、その他の成分3質量未満を含むものである態様が示される。 As the fertilizer according to the present invention, the vitreous foamed and fired body may be SiO 2 65.0 to 75.0% by mass, CaO 7.0 to 15.0% by mass, and Na 2 O 10.0 to 16.0. % By mass, K 2 O 0-3.5% by mass, MgO 0-4.5% by mass, Al 2 O 3 0-2.5% by mass, C 0-2% by mass, and other components less than 3% by mass. An embodiment is shown that is mutable.
 上記課題を解決する本発明はまた、単子葉植物の土耕または水耕栽培において、植物の根の近傍位置に上記に記載した肥料を配置することを特徴とする栽培植物の生産方法である。 The present invention for solving the above-mentioned problems is also a method for producing a cultivated plant, which comprises arranging the above-mentioned fertilizer at a position near the root of the plant in soil cultivation or hydroponic cultivation of a monocot.
 本発明に係る栽培植物の生産方法において、前記植物が特にイネ科植物である態様が示される。 In the method for producing a cultivated plant according to the present invention, an aspect is shown in which the plant is a gramineous plant.
 上記課題を解決する本発明はまた、植物の根の近傍位置でのメタケイ酸イオン(SiO 2-)濃度を調整することを特徴とする栽培植物の成長の調節方法である。 The present invention for solving the above-mentioned problems is also a method for regulating growth of cultivated plants, which comprises adjusting the concentration of metasilicate ions (SiO 3 2− ) in the vicinity of the roots of the plants.
 本発明に係る栽培植物の成長の調節方法において、前記栽培植物に与える水中のメタケイ酸イオン(SiO 2-)濃度を20~25mg/Lに維持する態様が示される。 In the method for controlling growth of a cultivated plant according to the present invention, there is shown a mode in which the concentration of metasilicate ion (SiO 3 2− ) in water given to the cultivated plant is maintained at 20 to 25 mg/L.
 本発明によれば、植物の育成において、ガラス質発泡焼成体からなる肥料を植物の根元に与えるという極めて単純な作業により、植物の収量の大幅な増大を図れるものであり、特に、コメ、小麦、トウモロコシといった主要穀物のいずれに対しても有効であることから、食糧問題の解決に大きく貢献するものである。また収量を高めるための膨大な研究費と時間を要する植物の品種改良が不要であり、結果的に食糧のコスト低減にも大きく貢献する。さらに、本発明に係るガラス質発泡焼成体は、廃ガラスを原料として製造されるため、低コストでかつ省資源であり、さらにこの素材は、廃棄物法上は「土」と見なされ、法的にもまた実質的にも環境負荷がないものである。さらに本発明によれば、植物がその体内に取り込むケイ素の分子形態が明らかとされ、単子葉植物の進化の解明に、理学的に大きく貢献することが期待される。 According to the present invention, in the growth of plants, it is possible to significantly increase the yield of plants by an extremely simple operation of giving a fertilizer composed of a glassy foamed fired body to the roots of the plants, and especially rice and wheat. Since it is effective against all major crops such as corn and corn, it contributes greatly to solving food problems. In addition, there is no need for enormous research costs and time-consuming plant breeding to increase yields, and as a result, it greatly contributes to food cost reduction. Furthermore, the vitreous foamed and fired body according to the present invention is produced at low cost and saves resources because it is produced from waste glass. Furthermore, this material is regarded as "earth" in the Waste Law, It has no environmental impact either physically or practically. Furthermore, according to the present invention, the molecular morphology of silicon taken up by the plant is clarified, and it is expected to make a great scientific contribution to the elucidation of the evolution of monocotyledonous plants.
(a)本発明の肥料を用いて栽培した実施例区における第一品種のコメと、(b)比較対照区で栽培した当該第一品種のコメの生育状態を比較する写真である。It is a photograph which compares the growth state of the rice of the 1st variety in the Example section cultivated using the fertilizer of this invention (a), and the rice of the said 1st variety cultivated in the (b) comparison control section. 本発明の肥料を用いて栽培した実施例区における第一品種のコメと、比較対照区で栽培した当該第一品種のコメとにおける植物体内ケイ素濃度を示すグラフである。It is a graph which shows the silicon density|concentration in a plant in the rice of the 1st variety cultivated using the fertilizer of this invention, and the rice of the said 1st variety cultivated in the comparison control ward. 本発明の肥料を用いて栽培した実施例区における第一品種のコメと、比較対照区で栽培した当該第一品種のコメとにおける植物体量を示すグラフである。It is a graph which shows the plant mass in the rice of the 1st variety cultivated using the fertilizer of this invention, and the rice of the said 1st variety cultivated in the comparison control ward. 本発明の肥料を用いて栽培した実施例区における第一品種のコメと、比較対照区で栽培した当該第一品種のコメとにおける果実(玄米)収量を示すグラフである。It is a graph which shows the fruit (brown rice) yield in the rice of the 1st variety in the Example section cultivated using the fertilizer of this invention, and the rice of the said 1st variety cultivated in the comparison control section. 本発明の肥料を用いて栽培した別の品種の実施例区における第二品種のコメと、別の比較対照区で栽培した当該第二品種のコメとにおける果実(玄米)収量を示すグラフである。It is a graph which shows the fruit (brown rice) yield in the rice of the 2nd variety in the Example section of another variety cultivated using the fertilizer of this invention, and the rice of the said 2nd variety cultivated in another comparison control section. .. 本発明の肥料を用いた実施例区で苗を植えた、および苗を植えない水田水中の60日経過後のメタケイ酸イオン(SiO 2-)濃度と、比較対照区で苗を植えた、および苗を植えない60日経過後の水田水中のメタケイ酸イオン(SiO 2-)濃度の経時的変化を示すグラフである。Seedlings were planted in the example plots using the fertilizer of the present invention, and metasilicate ion (SiO 3 2− ) concentrations after 60 days in paddy water without planting seedlings, and seedlings were planted in the comparative control plot, and it is a graph showing the time course of metasilicate ions (SiO 3 2-) concentration of paddy water after 60 days without planting. 本発明の肥料を用いてイネを栽培した実施例区でのイネでのLis遺伝子発現の状態を示す顕微鏡写真と、比較対照区で栽培したイネでLis遺伝子発現の状態を示す顕微鏡写真である。It is the micrograph which shows the state of Lis gene expression in rice in the Example group which cultivated rice using the fertilizer of this invention, and the micrograph which shows the state of Lis gene expression in the rice cultivated in the comparison control group. (a)本発明の肥料を用いて栽培した実施例区における小麦と、(b)比較対照区で栽培した小麦の生育状態を比較する写真である。It is a photograph which compares the growth state of the wheat in the Example section cultivated using the fertilizer of this invention (a), and the wheat cultivated in the (b) comparison control section. (a)本発明の肥料を用いて栽培した実施例区におけるトウモロコシと、(b)比較対照区で栽培したトウモロコシの生育状態を比較する写真である。It is a photograph which compares the growth state of the corn in the Example section cultivated using the fertilizer of this invention (a), and the corn cultivated in the (b) comparison control section.
 以下、本発明を実施形態に基づき詳細に説明する。 Hereinafter, the present invention will be described in detail based on the embodiments.
(肥料)
 本発明の肥料は、ガラス質発泡焼成体を含有してなるものである。
(fertilizer)
The fertilizer of the present invention contains a glassy foamed fired body.
 前記ガラス質発泡焼成体は、代表的には、後述するように、一般に廃ガラスを原料とし、これに少量の発泡剤を加えて、ガラスの軟化点以上、一般的に750℃以上、好ましくは840~980℃の範囲、代表的には880℃前後にて焼成することにより得られるものである。 The glassy foamed and fired body is typically made of waste glass as a raw material, and a small amount of a foaming agent is added to the glassy foamed body to make the glass softening point or higher, generally 750° C. or higher, preferably It is obtained by firing in the range of 840 to 980°C, typically around 880°C.
 このため、その組成としては、原料となる廃ガラスに入るガラスの種類によって多少変動するものの、ケイ素成分として、SiOを65.0質量%以上含み、残部のほとんどがアルカリないしアルカリ土類金属の酸化物となることから、その焼成体相中に水可溶性メタケイ酸塩を多く含有するものとなる。従って、前記ガラス質発泡焼成体は、水に対してメタケイ酸イオン(SiO 2-)溶出性を示すものである。特に限定されるわけではないが、具体的には例えば、水温20℃(±5℃)の純水1リットルにガラス質発泡焼成体100gを入れて3日間、静置保存した場合において、メタケイ酸イオンイオン(SiO 2-)溶出量が、25~50mg/L、特に、35~45mg/L、例えば41mg/Lであり、特に好ましくは、14日間の溶出量が、50mg/L以上、特に、50~70mg/L、例えば、56mg/Lとなる。 Therefore, although its composition varies somewhat depending on the type of glass contained in the waste glass as a raw material, it contains 65.0 mass% or more of SiO 2 as a silicon component, and most of the balance is an alkali or alkaline earth metal. Since it becomes an oxide, it contains a large amount of water-soluble metasilicate in the fired body phase. Therefore, the above-mentioned vitreous foamed fired body exhibits a metasilicate ion (SiO 3 2− ) elution property with respect to water. Although not particularly limited, specifically, for example, when 100 g of the glassy foamed and fired body is placed in 1 liter of pure water having a water temperature of 20° C. (±5° C.) and left standing for 3 days, metasilicic acid is used. The ion ion (SiO 3 2− ) elution amount is 25 to 50 mg/L, particularly 35 to 45 mg/L, for example 41 mg/L, and particularly preferably, the elution amount for 14 days is 50 mg/L or more, particularly , 50 to 70 mg/L, for example, 56 mg/L.
 特に、主たる廃ガラスが、ガラスびん、板ガラス、窓ガラス等のソーダ石灰ガラスであることから、これに比較的近い組成を有し、代表的には、SiO 65.0~75.0質量%、特に70.0~74.0質量%、CaO 7.0~15.0質量%、特に10.0~13.0質量%、NaO 10.0~16.0質量%、特に10.0~13.0質量%、KO 0~3.5質量%、特に1.0~3.0質量%、MgO 0~4.5質量%、特に1.0~3.0質量%、Al 0~2.5質量%、特に1.0質量%未満、C 0~2質量%、特に、1.5質量%未満、その他の成分3質量未満、特に2質量%未満を含むものである。その他の成分としては、特に限定されるものではないが、例えば、ホウケイ酸ガラス、結晶化ガラス等のその他のガラス由来のB、Li、TiO、ZrOなどや、着色ガラス由来のFe、CoOなどが挙げられる。 In particular, since the main waste glass is soda lime glass such as glass bottles, plate glass, window glass, etc., it has a composition relatively close to this, and typically has a SiO 2 content of 65.0 to 75.0 mass %. , Especially 70.0 to 74.0% by mass, CaO 7.0 to 15.0% by mass, especially 10.0 to 13.0% by mass, Na 2 O 10.0 to 16.0% by mass, especially 10. 0 to 13.0% by mass, K 2 O 0 to 3.5% by mass, especially 1.0 to 3.0% by mass, MgO 0 to 4.5% by mass, especially 1.0 to 3.0% by mass, Al 2 O 3 0 to 2.5% by weight, in particular less than 1.0% by weight, C 0 to 2% by weight, in particular less than 1.5% by weight, other components less than 3% by weight, in particular less than 2% by weight. It is a waste. Examples of other components include, but are not particularly limited, and for example, borosilicate glass, other from glass B 2 O 3, such as a crystallized glass, Li 2 O 3, TiO 2 , etc. ZrO 2, colored Fe 2 O 3 derived from glass, CoO and the like can be mentioned.
 また本発明の肥料に係るガラス質発泡焼成体の形状としても、特に限定されるものではなく、土耕栽培において植物の根の近傍位置となる土壌中ないし地表部位、あるいは水耕栽培において植物の根の近傍位置あるいは少なくとも植物の根への水の供給経路のいずれかに接する位置に、配することができ、十分に水分と接し得るもので有れば良いが、例えば、前記ガラス質発泡焼成体が嵩密度0.3~0.6g/cm3、吸水率30~35%のものであることが望ましい。このような範囲内の嵩密度であると、軽量で植物の根への負担もなく、かつ根に対する保持性も良好であり、また、吸水率がこの範囲内にあることで、より効率よく水と接触して所定のメタケイ酸イオン(SiO 2-)の溶出を安定して良好な量においてもたらすことが可能である。また、平均粒径としても特に限定されるものではないが、例えば、平均粒径10~60mm程度のものが好ましく用いられる。 Also as the shape of the vitreous foamed fired body according to the fertilizer of the present invention, is not particularly limited, in the soil or the surface portion of the soil near the root of the plant in soil cultivation, or of the plant in hydroponics. It may be arranged at a position in the vicinity of the root or at least in contact with a water supply route to the root of the plant, and it may be arranged as long as it can come in contact with sufficient water. It is desirable that the body has a bulk density of 0.3 to 0.6 g/cm 3 and a water absorption rate of 30 to 35%. When the bulk density is within such a range, the weight is light, there is no burden on the roots of the plants, and the root retainability is also good, and the water absorption rate is within this range, so that the water is more efficiently absorbed. It is possible to bring about the elution of a predetermined metasilicate ion (SiO 3 2− ) in a stable and good amount in contact with. The average particle size is also not particularly limited, but for example, an average particle size of about 10 to 60 mm is preferably used.
 なお、本明細書において、嵩密度は、アルキメデス法により測定したものである。また、吸水率は、先ず、測定する試料の乾燥状態での重量Wを測定し、次に水中に試料を沈めた状態で5分保持し、取り出した後、表面を湿った布で拭き、重量Wを測定し、(W1-W0)/W0×100の式から算出して求めた。さらに、平均粒子径は、JIS M-8511に準じた空気透過法による比表面積の測定結果から計算した値である。 In the present specification, the bulk density is measured by the Archimedes method. The water absorption is determined by first measuring the weight W 0 of the sample to be measured in a dry state, then holding the sample in water for 5 minutes, taking it out, and then wiping the surface with a damp cloth. The weight W 1 was measured and calculated by the formula (W 1 −W 0 )/W 0 ×100. Further, the average particle diameter is a value calculated from the measurement result of the specific surface area by the air permeation method according to JIS M-8511.
 本発明の肥料として用いられるガラス質発泡体の製造法としては、特に限定されるものではないが、例えば、以下のようにして製造され得る。 The method for producing the glassy foam used as the fertilizer of the present invention is not particularly limited, but it can be produced, for example, as follows.
 ガラス原料は、各種の廃ガラスである。例えば、廃棄されたガラスびん、板ガラス、窓ガラス、テレビやパソコンの前面ガラスパネル、ガラス製品工場からのスクラップなどである。これらの廃材は、ガラス質として見た場合、ソーダ石灰ガラス、ホウケイ酸ガラス、ほうけい酸塩ガラス、結晶ガラスなどが含まれているが、このような廃ガラスのうち、ソーダ石灰ガラスを用いた、ガラスびん、板ガラス、窓ガラスの廃材が、主要なものであり回収も容易であり、大量に利用可能であるため有利である。 The glass raw materials are various kinds of waste glass. For example, discarded glass bottles, flat glass, window glass, front glass panels of televisions and personal computers, scrap from glass product factories, and the like. These waste materials include soda lime glass, borosilicate glass, borosilicate glass, crystal glass, etc. when viewed as vitreous, but among such waste glasses, soda lime glass was used. Waste materials such as glass bottles, plate glass, and window glass are advantageous because they are major ones, can be easily collected, and can be used in large quantities.
 このような廃ガラスを粉砕し、これに発泡剤を加えて、ガラスの融点以上、好ましくは880℃にて焼成することにより得られるものである。発泡剤としては、炭化珪素(SiC)、炭酸カルシウム(CaCO)、窒化アルミニウム(AlN)、Al灰等が用いられ得るが、このうちSiCが好ましく、その添加量としては、原料全体の0.1~3重量%程度とすることが適当である。 It is obtained by crushing such waste glass, adding a foaming agent to the crushed glass, and firing it at a temperature not lower than the melting point of the glass, preferably 880°C. As the foaming agent, silicon carbide (SiC), calcium carbonate (CaCO 3 ), aluminum nitride (AlN), Al ash, and the like can be used. Among them, SiC is preferable, and the addition amount thereof is 0. It is suitable to set it to about 1 to 3% by weight.
 さらに具体的にその製法を、好ましい一例を挙げて説明すると、まず廃ガラス原料を市販のガラス破砕機、例えばハンマーミルなどの衝撃型破砕機を用いて粉砕し、粉砕物を篩分けし得られる0.21mm以上2.38mm以下の粒度分布を有する粗粉砕ガラス粉96%以上と0.21mm未満の粒度分布を有する微粉ガラス粉4%以下の配合ガラス粉を原料とする。粗粉砕ガラス粉の粒度分布の内訳は、種々変えることができるが、平均粒径としては、約0.5mm又はそれ以上のものを使用することが好ましい。 More specifically, the production method will be described with reference to a preferred example. First, a waste glass raw material is crushed using a commercially available glass crusher, for example, an impact crusher such as a hammer mill, and a crushed product can be sieved. The raw material is 96% or more of coarsely crushed glass powder having a particle size distribution of 0.21 mm or more and 2.38 mm or less and 4% or less of fine glass powder having a particle size distribution of less than 0.21 mm. The content of the particle size distribution of the coarsely crushed glass powder can be variously changed, but it is preferable to use an average particle size of about 0.5 mm or more.
 粗粉砕ガラス粉の粒度が2.38mmを超える粗粒は再び粉砕し、上記の粒度分布の範囲内の粗粉砕ガラス粉と微粉砕ガラス粉とに篩分けして使用する。粗粉砕ガラス粉の粒度分布の上限を2.38mmの粒度とする理由は、2.38mmを超える粒径のものを原料として用いると、製品中にそのまゝの状態として残存し易く、均一な発泡組織が得られないからである。 Coarse crushed glass powder with a particle size of more than 2.38 mm is crushed again and used by sieving into coarse crushed glass powder and fine crushed glass powder within the above range of particle size distribution. The reason for setting the upper limit of the particle size distribution of coarsely crushed glass powder to 2.38 mm is that if a material having a particle size of more than 2.38 mm is used as a raw material, it tends to remain in the product as it is, and the particle size is uniform. This is because a foamed structure cannot be obtained.
 このように、0.21mm以上の粗粉砕ガラス粉が配合ガラス粉の大部分を占めるので、ガラス廃材を粗粉砕できる比較的安価な粉砕機を使用して安価に粉砕原料を得ることができ、全てを0.2mm以下に微粉砕するボールミルやレイノルズミルなどのような高価な微粉砕機を使用する必要がない。 As described above, since the roughly crushed glass powder of 0.21 mm or more occupies most of the mixed glass powder, the crushing raw material can be obtained at a low cost by using the relatively inexpensive crusher capable of roughly crushing the waste glass material, It is not necessary to use an expensive fine pulverizer such as a ball mill or Reynolds mill that pulverizes everything to 0.2 mm or less.
 なお、廃ガラス原料からは、予め、出来る限りこれらに混在している陶器片、磁器片、金属、土、砂、砂利などの無機系不燃物やプラスチック、紙、木片などの夾触物を除去することが望まれるが、本発明の肥料に係るガラス質発泡体を製造するに差支えない限り、極めて少量であるならば、混ざっていても差支えない。 It should be noted that from the waste glass raw material, as much as possible, remove inorganic non-combustible materials such as pottery pieces, porcelain pieces, metal, soil, sand, gravel, etc., and contaminants such as plastic, paper, wood pieces, etc. It is desirable to do so, but as long as it does not interfere with the production of the glassy foam of the fertilizer of the present invention, if it is an extremely small amount, it may be mixed.
 上記したように、該粗粉砕ガラス粉に少量の微粉砕ガラス粉を配合したガラス質配合粉を調製するのは、例えば、粒径0.21mm未満の該微粉砕ガラス粉を全く混ぜないで粒径2mm以下の粒度分布を有する粗粉砕ガラス粉のみを原料とし加熱焼成すると、加熱前の常温では互いに接触する粗粒子で囲まれ形成される空隙は、粗粉粒の焼結性が悪いため、500~600℃の焼結温度ではまだ粗粒子相互は焼結が充分に行われないので閉塞孔とならず、この間粗粒子から発生するガスは外部に抜ける。その後、700℃の焼結温度でやっと粗粒子間の焼結が充分に行われて該空隙は閉塞し、独立気孔が生成するが、その大きさは極めて小さい。さらに700℃以上の焼成昇温時では既に独立気孔内のガスが少量のため、その気孔は大きくならず、小さいままであり、大きな独立気孔が得られない。これに対し、2mm程度の粗粒ガラス粉間に0.2mm以下の微粒砕ガラス粉が介在した状態で加熱焼成を行うと、加熱前の常温では、該粗粒子間に微粒子が介在した状態で形成される比較的大きい空隙は、500~600℃の焼結温度で微粒子は焼結し易いので、その微粒子と接触している各粗粒子とは、この500~600℃の低い焼結温度でも互いに焼結し、該空隙は閉塞され、包囲壁をつくり、その内部にこれら粒子から発生するガスを閉じ込めた大きな独立気孔を生成する。さらに高温の700℃の焼結でさらに軟化焼結が進行し、粗粒は融合し、該独立気孔の周囲を囲む良好な融合壁となり、これにより独立気孔は被包されると共に大きな口径を維持する。さらに700℃以上に昇温すれば、独立気孔内のガスは膨脹し、従って、独立気孔が膨脹し、極めて軽量でかつ吸水性の小さい泡ガラス体が得られる。 As described above, for preparing a vitreous blended powder in which a small amount of finely ground glass powder is blended with the coarsely ground glass powder, for example, the finely ground glass powder having a particle size of less than 0.21 mm can be prepared without mixing the finely ground glass powder at all. When only coarsely crushed glass powder having a particle size distribution with a diameter of 2 mm or less is used as a raw material and heated and fired, at room temperature before heating, voids formed by being surrounded by coarse particles that are in contact with each other have poor sinterability of the coarse powder particles. At a sintering temperature of 500 to 600° C., since the coarse particles are not sufficiently sintered yet, they do not become closed pores, and the gas generated from the coarse particles escapes to the outside during this period. After that, the sintering between the coarse particles is finally sufficiently performed at the sintering temperature of 700° C. to close the voids and form the independent pores, but the size thereof is extremely small. Furthermore, at the time of heating up to 700° C. or more, since the gas in the independent pores is already small, the pores do not become large but remain small, and large independent pores cannot be obtained. On the other hand, when heating and firing is performed in a state where finely crushed glass powder of 0.2 mm or less is interposed between coarse glass powders of about 2 mm, at room temperature before heating, fine particles are present between the coarse particles. Since the comparatively large voids formed easily sinter the fine particles at a sintering temperature of 500 to 600° C., each coarse particle in contact with the fine particles can be sintered even at a low sintering temperature of 500 to 600° C. Sintering with each other, the voids are closed, creating a surrounding wall, creating large, independent pores within which the gas evolved from these particles is confined. The softening and sintering progresses further by sintering at a higher temperature of 700° C., and the coarse particles are fused to form a good fusion wall that surrounds the periphery of the independent pores, whereby the independent pores are encapsulated and a large diameter is maintained. To do. When the temperature is further raised to 700° C. or higher, the gas inside the independent pores expands, and accordingly, the independent pores expand, and an extremely lightweight foam glass body with low water absorption is obtained.
 前記のように配合したガラス質混合粉に、これに対し0.1~3重量%の炭化珪素を添加、混合した混合粉を調製し、これをガラスの軟化点以上に、上記の焼成温度500℃以上に加熱し、上記のように昇温し、少なくとも700℃以上で焼成昇温した後、急冷又は徐冷により冷却することにより、強靭なガラス質壁で覆われた大きな独立気泡を無数に有する嵩比重0.3~0.6g/cm3、特に0.4~0.5g/cm、吸水率30~35%のガラス質発泡体が得られる。炭化珪素は通常、コークスと酸化珪素が主体である珪砂から製造されるが、本目的に使用される炭化珪素は必ずしも充分に精製されていなくてもよい。例えば、純度が85%程度のものとか、製造中、微粉末としてバッグフィルターなどで回収されるものでもよい。炭化珪素の添加量を配合ガラス粉に対し0.1~3重量%に限定する理由は、その添加量が0.1重量%未満であると、嵩比重が0.3~0.6g/cmと充分な軽量特性をもつ製品をつくることが困難となる。一方、その添加量が3重量%を超えても充分な軽量特性をもつ製品をつくることができるが、製品単価が高価となり好ましくない。また、該配合ガラス粉とそのガラスの軟化点以上に加熱焼成するのであるが、この軟化点は夫々のガラス原料の種類によって異なる。ソーダ石灰ガラスの場合には750℃以上が一般であり、特に好ましい温度域は840~980℃の範囲である。例えば900℃まで昇温させるに要する時間は、その被処理物層の厚さにもよるが、厚さが10mmであれば10分、20mmであれば20分程度とすることが好ましい。また最高温度に達した後の高温保持時間は、最高温度が低ければ保持時間を長く、逆に最高温度が高ければ保持時間を短くするようにする。例えば、その保持時間は一般に30~0分の範囲である。ここで0分とは、最高温度に達したら直ちに冷却することを意味する。30分以上の長い保持時間は製造コストの観点から好ましくない。尚、配合ガラス粉に水分が多量に含まれている場合には、200℃付近で完全に水分を蒸発してから、上記の昇温を行うべきである。 To the glassy mixed powder blended as described above, 0.1 to 3% by weight of silicon carbide was added and mixed to prepare a mixed powder. By heating to ℃ or more, heating as described above, firing at least 700 ℃ or more, and then cooling by rapid cooling or slow cooling, innumerable large closed cells covered with a tough glassy wall A glassy foam having a bulk specific gravity of 0.3 to 0.6 g/cm 3 , particularly 0.4 to 0.5 g/cm 3 , and a water absorption rate of 30 to 35% is obtained. Although silicon carbide is usually produced from silica sand containing mainly coke and silicon oxide, the silicon carbide used for this purpose does not necessarily have to be sufficiently purified. For example, it may have a purity of about 85% or may be collected as a fine powder during manufacture by a bag filter or the like. The reason why the addition amount of silicon carbide is limited to 0.1 to 3% by weight with respect to the blended glass powder is that if the addition amount is less than 0.1% by weight, the bulk specific gravity is 0.3 to 0.6 g/cm 3. 3 and it is difficult to produce a product having sufficient lightweight characteristics. On the other hand, even if the addition amount exceeds 3% by weight, a product having sufficient light weight characteristics can be produced, but the unit price of the product is expensive, which is not preferable. Further, the compounded glass powder and the glass are heated and fired above the softening point of the glass, but the softening point varies depending on the type of each glass raw material. In the case of soda lime glass, the temperature is generally 750°C or higher, and the particularly preferable temperature range is 840 to 980°C. For example, the time required to raise the temperature to 900° C. depends on the thickness of the layer to be treated, but it is preferably 10 minutes if the thickness is 10 mm, and about 20 minutes if the thickness is 20 mm. Regarding the high temperature holding time after reaching the maximum temperature, the holding time is set longer when the maximum temperature is low, and conversely, the holding time is set shorter when the maximum temperature is high. For example, the holding time is generally in the range of 30-0 minutes. Here, 0 minute means cooling immediately after reaching the maximum temperature. A long holding time of 30 minutes or more is not preferable from the viewpoint of manufacturing cost. When the mixed glass powder contains a large amount of water, it is necessary to evaporate the water completely at around 200° C. before the above temperature rise.
 上記の配合ガラス粉は、所定の成形型枠に入れ加熱焼成した後徐冷すれば、レンガ、壁材などの板状の成形品とすることができるが、急冷すれば、板状成形体に亀裂を生じ不定形の塊状に壊れた無数の粒状物、例えば粒径10~60mmの不定型塊状のガラス質発泡体として得られる。なお、一定の形状、例えば、レンガ、板状、その他、任意の形状を有する成型品を作る場合は、例えば、上記の高温保持時間後、200℃まで徐々に冷却する。この場合の冷却速度は、できるだけ遅い方が好ましく、2℃/分程度が最も好ましい。
 なお製造方法は、バッチ方式、連続方式のいずれの方式でも可能である。
The above compounded glass powder can be made into a plate-shaped molded article such as a brick or a wall material by slowly cooling it after heating and firing in a predetermined molding frame, but if it is rapidly cooled, it becomes a plate-shaped molded body. It is obtained as a myriad of granular materials that crack and break into irregular lumps, for example, irregular lump-like glassy foam having a particle size of 10 to 60 mm. In addition, in the case of producing a molded product having a certain shape, for example, a brick, a plate shape, or any other shape, for example, after the above high temperature holding time, it is gradually cooled to 200°C. In this case, the cooling rate is preferably as slow as possible, and most preferably about 2° C./minute.
The manufacturing method may be a batch method or a continuous method.
(栽培植物の生産方法)
 本発明の栽培植物の生産方法は、上記したようなガラス質発泡焼成体を含有する肥料を、単子葉植物の土耕または水耕栽培において、植物の根の近傍位置に配置することを特徴とするものである。
(Method of producing cultivated plant)
The method for producing a cultivated plant of the present invention is characterized in that a fertilizer containing a glassy foam fired body as described above is placed in the vicinity of the root of the plant in soil cultivation or hydroponic cultivation of monocotyledonous plants. To do.
 対象となる単子葉植物としては、特に限定されるものではない。具体的には、例えば、イネ(Oryza sativa)、トウモロコシ(Zea mays)、オオムギ(Hordeum vulgare)、コムギ(Triticum aestivum)、ライムギ(Secale cereale)、ハトムギ(Coix lacryma-jobi var. ma-yuen)、タケ(Phyllostachys)、サトウキビ(Saccharum officinarum)、アワ(Setaria italica)、ヒエ(Echinochloa esculenta)、モロコシ(Sorghum bicolor)、ネピアグラス(Pennisetum pupureum)、エリアンサス(Erianthus ravenae)、ミスキャンタス(ススキ)(Miscanthus virgatum)、ソルガム(Sorghum)、スイッチグラス(Panicum)、エンバク(Avena fatua)などのイネ科;チューリップ(Tulipa)、ユリ(Lilium)などのユリ科;アブラヤシ(Elaeis guineensis、Elaeis oleifera)、ココヤシ(Cocos nucifera)、ナツメヤシ(Phoenix dactylifera)、ロウヤシ(Copernicia)などのヤシ科などが例示できるが、もちろんこれらに限定されるものではない。これらのうち、特にイネ科の植物に対して優れた効果が期待できるため好ましい。 The target monocotyledonous plant is not particularly limited. Specifically, for example, rice (Oryza sativa), corn (Zea mays), barley (Hordeum vulgare), wheat (Triticum aestivum), rye (Secale cereale), pearl barley (Coix lacryma-jobi var. ma-yuen), Bamboo (Phyllostachys), sugar cane (Saccharum officinarum), millet (Setaria italica), millet (Echinochloa esculenta), sorghum (Sorghum bicolor), napiergrass (Pennisetum pupureum), Erianthus (Erianthus ravenae), Miscanthus (Miscanthus) virgatum), sorghum (Sorghum), switchgrass (Panicum), oats (Avena fatua) and other grasses; tulipa, lily and other lily families; oil palm (Elaeis guineensis, Elaeis oleifera), coconut (Cocos) nucifera), date palm (Phoenix dactylifera), and palm family such as wax palm (Copernicia) can be exemplified, but of course, the present invention is not limited thereto. Of these, particularly excellent effects can be expected for plants of the family Gramineae, which is preferable.
 単子葉植物に対する上記ガラス質発泡焼成体の施肥方法、時期および量としても特に限定されるものではない。対象となる植物の根が吸収する水分中に当該ガラス質発泡焼成体よりの溶出物、特にメタケイ酸イオンが確実に移行できるものであればよく、土耕栽培の場合においては、土壌中あるいは地表部位に配する、また水耕栽培においては、植物の根の近傍位置あるいは少なくとも植物の根への水の供給経路のいずれかに接する位置に、配することが可能である。また、植物の栽培において、上記ガラス質発泡焼成体は、元肥としてあるいは追肥として使用可能である。いずれにおいても、好ましくは、植物の成長期、例えばイネの水田耕作の場合においては、分けつ期を含む期間には、ガラス質発泡焼成体を存在させておくことが望ましい。さらに、その使用量としても、対象とする植物種、栽培方法等によっても左右されるので、特に限定されるものではないが、代表的には例えば、栽培区1m当り2~3kg程度の供給によって、良好な収量増大効果を期待できる。 The fertilization method, timing and amount of the above-mentioned glassy foamed fired body for monocotyledonous plants are not particularly limited. In the moisture absorbed by the roots of the target plant, it is sufficient if the eluate from the vitreous foamed fired body, in particular metasilicate ions can be reliably transferred, in the case of soil cultivation, in the soil or the ground surface. It can be placed at a site, or in hydroponics, it can be placed at a position near the root of a plant or at least in a position in contact with a water supply route to the root of the plant. In the cultivation of plants, the vitreous foamed fired body can be used as a basic fertilizer or a supplemental fertilizer. In any case, it is desirable that the vitreous foamed fired body is preferably present during the growing period of the plant, for example, in the case of paddy cultivation of rice, during the period including the dividing period. Further, the amount used is also not particularly limited as it depends on the target plant species, cultivation method, etc., but typically, for example, supply of about 2 to 3 kg per 1 m 2 of cultivation area. Therefore, a good yield increasing effect can be expected.
 なお、例えば、水田耕作において、土壌中に本発明に係る上記肥料の施肥を行った場合、代表的には、約3日程で、水田水中におけるメタケイ酸イオン(SiO 2-)濃度の有意な変化が生じ、土壌栽培の場合にも、同様のことが生じていると思われる。 Note that, for example, when the fertilizer according to the present invention is applied to soil in paddy field cultivation, typically, the metasilicate ion (SiO 3 2− ) concentration in the paddy water is significantly increased in about 3 days. Changes have occurred and the same is likely to happen in the case of soil cultivation.
 さらに、このように植物、特に、単子葉植物、さらにイネ科植物の育成において、植物の根に与える水におけるメタケイ酸イオン(SiO 2-)濃度を所定量以上に維持するようにコントロールすることで、植物の成長促進、種子ないし果実の収量を増大させることができる。 Further, in this way, in the growth of plants, especially monocotyledons and gramineous plants, it is necessary to control the concentration of metasilicate (SiO 3 2− ) in the water given to the roots of the plants so as to maintain it at a predetermined level or higher. Can promote plant growth and increase seed or fruit yield.
 メタケイ酸イオン(SiO 2-)の至適濃度に関しては、植物の種類によってもある程度変動すると思われるので一概には規定できないが、対象となる植物に対して、水中メタケイ酸イオン濃度を変えたいくつかの試験区において栽培を行うことによって比較的容易に決定し得るものと思われるが、代表的には、例えば、イネの水田水耕において、水におけるメタケイ酸イオン(SiO 2-)濃度を20~25mg/Lにする、コムギの土耕栽培において、水におけるメタケイ酸イオン(SiO 2-)濃度を20~25mg/Lにする、トウモロコシのコムギの土耕栽培において、水におけるメタケイ酸イオン(SiO 2-)濃度を20~25mg/Lにするといった施策によって、大きな収量増大が期待できる。 The optimum concentration of metasilicate ion (SiO 3 2− ) cannot be specified because it seems to vary to some extent depending on the type of plant, but the concentration of metasilicate ion in water was changed for the target plant. Although it seems that this can be relatively easily determined by cultivating in some test plots, typically, for example, in paddy hydroponics of rice, the concentration of metasilicate ion (SiO 3 2− ) in water is Of 20 to 25 mg/L in the soil cultivation of wheat, and the concentration of metasilicate ion (SiO 3 2− ) in water is 20 to 25 mg/L. A large increase in yield can be expected by taking measures such as setting the ion (SiO 3 2− ) concentration to 20 to 25 mg/L.
 また、このようなメタケイ酸イオン(SiO 2-)濃度を所定量以上に維持する期間としても特に限定されるものではなく、各植物の成長期間に併せて適宜選択できるが、少なくとも60日以上の継続的な期間を設けることが望ましい。 Further, the period of maintaining such a metasilicate ion (SiO 3 2− ) concentration at a predetermined amount or more is not particularly limited, and can be appropriately selected according to the growth period of each plant, but at least 60 days or more. It is desirable to establish a continuous period of.
 以下、本発明を具体的な実施例に基づき、より具体的に説明する。なお、以下に示される実施例は、あくまで本発明の内容の理解を容易とする目的のためのみに開示されたものであって、本発明はこれらの実施例の内容に何ら限定されるものではない。 Hereinafter, the present invention will be described more specifically based on specific examples. The examples shown below are disclosed only for the purpose of facilitating the understanding of the contents of the present invention, and the present invention is not limited to the contents of these examples. Absent.
合成例
 廃棄ビンを主体とする廃ガラス原料を、十分に洗浄、乾燥させた後、ハンマーミルを用いて粉砕し、粉砕物を篩分けし得られる0.21mm以上2.38mm以下の粒度分布を有する粗粉砕ガラス粉96質量%と、0.21mm未満の粒度分布を有する微粉ガラス粉4質量%以下の配合ガラス粉を原料とした。この配合ガラス粉に、3質量%の炭化珪素を添加、混合した混合粉を調製した。この混合粉を880℃まで昇温し、大気中で室温まで冷却して、粒径10~60mmの不定型塊状のガラス質発泡焼結体を得た。
 このものの嵩比重は0.3g/cm、吸水率30%であり、組成は、SiO 73.5質量%、CaO 12.1質量%、NaO 10.5質量%、KO 0.98質量%、MgO 0.42質量%、Al 1.57質量%、C 0.4質量%、残部0.53質量%であった。
Synthesis example A waste glass raw material mainly composed of a waste bottle is thoroughly washed and dried, and then ground with a hammer mill, and the ground product is sieved to obtain a particle size distribution of 0.21 mm or more and 2.38 mm or less. The raw material was 96% by mass of the coarsely pulverized glass powder and 4% by mass or less of fine glass powder having a particle size distribution of less than 0.21 mm. 3% by mass of silicon carbide was added to and mixed with this mixed glass powder to prepare a mixed powder. This mixed powder was heated to 880° C. and cooled to room temperature in the atmosphere to obtain a glassy foamed sintered body in the form of an indeterminate block having a particle diameter of 10 to 60 mm.
The bulk specific gravity of this product was 0.3 g/cm 3 , the water absorption rate was 30%, and the composition was SiO 2 73.5 mass %, CaO 12.1 mass %, Na 2 O 10.5 mass %, K 2 O 0. It was 0.98 mass %, MgO 0.42 mass %, Al 2 O 3 1.57 mass %, C 0.4 mass %, and the balance 0.53 mass %.
実施例1
 底部に穴のない鉢に、市販の黒土を乾燥重量で約1,620g入れ、これに、上記合成例で得られたガラス質発泡焼結体180gを、鉢の底部において均一に施撒した。そして、灌漑用水として市水を用い、水深が約5cmとなるように水を入れて、水田の実施例区とした。前記ガラス質発泡焼結体を土壌に供給してからコシヒカリの苗を植え、通常の水田耕作法に従い、コメを生育させた。なお、栽培期間中、鉢内の用水は適宜同じ市水を補充して、ほぼ同様の水深を維持した。
Example 1
About 1,620 g of dry black soil was put in a pot having no holes at the bottom by dry weight, and 180 g of the glassy foamed sintered body obtained in the above Synthesis Example was evenly spread on the bottom of the pot. Then, city water was used as irrigation water, and water was added so that the water depth would be about 5 cm, thereby forming a paddy field example ward. After supplying the glassy foamed sintered body to the soil, Koshihikari seedlings were planted, and rice was grown according to the ordinary paddy field cultivation method. During the cultivation period, the water in the pot was appropriately supplemented with the same city water to maintain a substantially similar water depth.
 イネを植えてから180日後に稲穂が成熟したところで、栽培を終え、イネの成熟度合いを外観観察し、また、個体の植物体量を測定し、玄米の収量を測定するとともに、植物体内のケイ素濃度を測定した。なお、植物体内のケイ素濃度の測定は、硝酸分解重量法により行った。得られた結果をそれぞれ図1~4に示す。 180 days after planting the rice, when the rice ears matured, the cultivation was finished, the appearance of the maturity of the rice was visually observed, the plant mass of each individual was measured, and the yield of brown rice was measured. The concentration was measured. The concentration of silicon in the plant was measured by the nitric acid decomposition gravimetric method. The obtained results are shown in FIGS. 1 to 4, respectively.
 また、実施例区の水田水中のイオン濃度の測定を、苗を植えない鉢、および、植えた鉢、ともに栽培開始60日後において、測定した。なお、60日後の測定は、実施例区への用水の直前の補充から7日経過した後において行った。また、苗を植えない鉢に関しても、苗を植えた鉢と同様のサイクルにて鉢内の用水は補充した。測定したイオン濃度のうち、SO 2-イオン濃度を図6に示す。 In addition, the ion concentration in the paddy water of the example ward was measured 60 days after the start of cultivation in both the pot in which seedlings were not planted and the pot in which the seedlings were planted. The measurement after 60 days was performed after 7 days had passed since the water was replenished to the Example section immediately before. Also, for pots without seedlings, water in the pots was replenished in the same cycle as the pots with seedlings. Of the measured ion concentrations, the SO 3 2- ion concentration is shown in FIG.
 さらに、14日間育苗したイネを採取し、当該個体におけるLsi転写産物発現の程度を、イネLsi遺伝子特異的プライマーを用いたRT-PCR法により調べた。プライマー配列は、FW: 5’-GAGAACAAACTCCAGGGCGA-3’、RV:5’-CGAGCGTGACGAACATCATG-3’である。得られた結果を、図7に示す。なお、この測定は、臭化エチジウム染色という手順により行った。 Furthermore, rice seedlings raised for 14 days were collected, and the degree of Lsi transcript expression in the individual was examined by RT-PCR using a rice Lsi gene-specific primer. The primer sequences are FW: 5'-GAGAACAAACTCCAGGGCGA-3', RV: 5'-CGAGCGGTGACGAACATCATG-3'. The obtained results are shown in FIG. 7. Note that this measurement was performed by a procedure called ethidium bromide staining.
比較例1
 比較のために、ガラス質発泡焼結体を土壌に混合せず、等量の土壌を補填した以外は実施例1と同様にしてコシヒカリを栽培し、実施例1と同じ期間で栽培を終え、イネの成熟度合いを外観観察し、また、個体の植物体量を測定し、玄米の収量を測定するとともに、植物体内のケイ素濃度を測定し、実施例1との差異を観察した。得られた結果をそれぞれ図1~4に示す。
Comparative Example 1
For comparison, Koshihikari was cultivated in the same manner as in Example 1 except that the vitreous foamed sintered body was not mixed with soil and an equal amount of soil was supplemented, and cultivation was finished in the same period as in Example 1, The degree of maturity of rice was visually observed, the amount of plants in each individual was measured, the yield of brown rice was measured, and the silicon concentration in the plants was also measured to observe the difference from Example 1. The obtained results are shown in FIGS. 1 to 4, respectively.
 また、実施例区と同様に水田水中のイオン濃度の測定を、苗を植えない鉢、および、植えた鉢、ともに栽培開始60日後において、測定した。なお、60日後の測定は、比較例区への用水の直前の補充から7日経過した後において行った。上記実施例区の場合と同様に、、苗を植えない鉢に関しても、苗を植えた鉢と同様のサイクルにて鉢内の用水は補充した。測定したイオン濃度のうち、SO 2-イオン濃度を図6に示す。 Also, the ion concentration in the paddy water was measured in the same manner as in the Example section in the pots without planting seedlings and the pots in which the seedlings were planted 60 days after the start of cultivation. The measurement after 60 days was carried out 7 days after the replenishment of water for the comparative example immediately before. Similar to the case of the above-mentioned Example section, also in the pots without planting seedlings, the water in the pots was replenished in the same cycle as the pots with seedlings planted. Of the measured ion concentrations, the SO 3 2- ion concentration is shown in FIG.
 さらに、14日間育苗したイネを採取し、当該個体におけるLsi蛋白質発現の程度を、RT-PCR法により調べた。得られた結果を、図7に示す。 Further, rice seedlings raised for 14 days were collected, and the degree of Lsi protein expression in the individual was examined by RT-PCR method. The obtained results are shown in FIG. 7.
(実験結果)
 その結果、図1に示すように、栽培したイネの成長は、実施例1の方が、葉付き、稲穂付き等が明らかに良好であり、図3に示すように植物体量が大きく増加しており、図4に示すように殊に、玄米の収率は、比較例に対して208%の増大が認められた。
(Experimental result)
As a result, as shown in FIG. 1, as for the growth of the cultivated rice, Example 1 was obviously better with leaves, with rice ears, etc., and as shown in FIG. In particular, as shown in FIG. 4, the yield of brown rice was increased by 208% as compared with the comparative example.
 一方で、植物体内ケイ素濃度としては、図2に示すように、実施例1においても、比較例1のものとあまり差異はなく、逆に若干低下している程のものであって、植物体内へのケイ素の蓄積の度合いが、玄米の収量の増加や植物の生育の向上とは、直接結びついていないものであるとの結果が示された。 On the other hand, as shown in FIG. 2, the silicon concentration in the plant is not so different from that in Comparative Example 1 as shown in FIG. It was shown that the degree of accumulation of silicon in the rice was not directly related to the increase in the yield of brown rice and the improvement of plant growth.
 ここで、図6に示すように、イネの栽培期間での水田水中のSiO 2-イオン濃度を見ると、水中におけるメタケイ酸イオン(SiO 2-)濃度は、苗を植えてないものに関しては実施区の方が比較対照区に比べてわずかに高い程度でそれ程差異はないものの、苗を植えたものに関しては栄養生長期では比較対照区においてはその濃度が大幅に低下していることが観察された。さらに、その時期において、図7に示すように、比較例では、イネにおいてLsi遺伝子の発現が促進されていることも観察されたのに対し、苗を植えた実施区においては苗を植えてない実施区より濃度が若干下がっているものの濃度がそれ程変わっておらず、図7に示すようにイネにおいてLsi遺伝子の発現も抑制されていることが観察された。このことから、実施例区においては、ガラス質発泡体より水中に、イネの栽培期間を通じて安定してケイ素分としてSiO 2-イオンが供給され続けていること、イネは水中のSiO 2-イオンを体内に取り込み、これによって成長促進され、光合成量が増えて、結果的に種子ないし果実の収量も大きく向上したものであることが考察された。一方、比較例区においては、イネの栽培期間を通じてイネが水中より体内に取り込むSiO 2-イオンの量に対し、土壌よりの同イオンの供給が追い付かず栽培後期となると欠乏状態に近いものとなって、それ以上の成長の向上性が見られないものであることが考察された。 Here, as shown in FIG. 6, looking at the SiO 3 2− ion concentration in the paddy water during the rice cultivation period, the concentration of metasilicate ion (SiO 3 2− ) in the water was in relation to the seedlings not planted. Although the implementation plots are slightly higher than the control plots and there is no difference so much, the concentration of the seedlings planted in the comparison plots during the vegetative growth period is significantly reduced. Was observed. Further, at that time, as shown in FIG. 7, in the comparative example, it was also observed that the expression of the Lsi gene was promoted in rice, whereas the seedlings were not planted in the practice plots. Although the concentration was slightly lower than that of the control plot, the concentration did not change so much, and it was observed that the Lsi gene expression was also suppressed in rice as shown in FIG. 7. From this fact, in the Example section, SiO 3 2− ions as a silicon component are continuously supplied to the water from the glassy foam through the cultivation period of rice, and the rice is SiO 3 2− in water. It was considered that the ions were taken into the body, which promoted growth, increased the amount of photosynthesis, and consequently significantly improved the yield of seeds or fruits. On the other hand, in the comparative example area, the amount of SiO 3 2- ions taken into the body from the water during the cultivation period of rice was not sufficient to supply the same ions from the soil, and it was almost deficient at the latter stage of cultivation. It was then considered that no further improvement in growth could be seen.
実施例2および比較例2
 栽培するイネの品種を、コシヒカリからヒトメボレに変えた以外は実施例1および比較例1と同様にして、コメを栽培し、得られた各個体の玄米の収量を測定した。得られた結果を図5に示す。
 図5に示すように、コメの品種を変えても、実施例1および比較例1の対比結果と同様に、本発明にかかる実施例2においては、比較例2に対して、高い収量が示された。
Example 2 and Comparative Example 2
Rice was cultivated in the same manner as in Example 1 and Comparative Example 1 except that the rice variety to be cultivated was changed from Koshihikari to Himebore, and the yield of brown rice of each obtained individual was measured. The obtained results are shown in FIG.
As shown in FIG. 5, even when the rice varieties were changed, in the same manner as the comparison results of Example 1 and Comparative Example 1, Example 2 according to the present invention showed a higher yield than Comparative Example 2. Was done.
実施例3および比較例3
 底部に穴の有る鉢に、市販の黒土を乾燥重量で約1,620g入れ、これに、上記合成例で得られたガラス質発泡焼結体180gを、鉢の底において均一に施撒した。前記ガラス質発泡焼結体を土壌に供給してから、7日間隔毎に、約500mlの市水を供給した。なお供給された水のうち土壌に保水されない分の水は鉢の底部より約1分ほどで抜けるものであった。
 ガラス質発泡焼結体を配してからコムギの苗を植え、その後、上記のサイクルで水を与えながら、90日間、コムギの栽培を行った(実施例3)。栽培期間終了後、コムギの成長度合いを外観観察した。得られた結果を図8に示す。
 一方、比較のために、ガラス質発泡焼結体を土壌に混合せず、等量の土壌を補填した以外は実施例3と同様にしてコムギを栽培し、実施例3と同じ期間で栽培を終えた(比較例3)。栽培期間終了後、コムギの成長度合いを外観観察した。得られた結果を図8に示す。
Example 3 and Comparative Example 3
About 1,620 g of dry black soil was put on a dry basis in a pot having a hole at the bottom, and 180 g of the glassy foamed sintered body obtained in the above Synthesis Example was evenly spread on the bottom of the pot. After the glassy foamed sintered body was supplied to the soil, about 500 ml of city water was supplied every 7 days. Of the supplied water, the water that was not retained in the soil was drained from the bottom of the pot in about 1 minute.
After arranging the glassy foam sintered body, wheat seedlings were planted, and then wheat was cultivated for 90 days while water was supplied in the above cycle (Example 3). After the cultivation period, the appearance of wheat growth was visually observed. The obtained results are shown in FIG.
On the other hand, for comparison, wheat was cultivated in the same manner as in Example 3 except that the glassy foamed sintered body was not mixed with the soil and an equal amount of soil was supplemented, and cultivated in the same period as in Example 3. Finished (Comparative Example 3). After the cultivation period, the appearance of wheat growth was visually observed. The obtained results are shown in FIG.
 図8に示す結果から明らかなように、コムギについても、本発明に係るガラス質発泡焼結体を土壌に配した実施例3においては、比較例3に比べて、その成長度の顕著な促進がみられた。 As is clear from the results shown in FIG. 8, as for wheat, in Example 3 in which the glassy foamed sintered body according to the present invention was placed in soil, the growth degree was significantly promoted as compared with Comparative Example 3. Was seen.
実施例4および比較例4
 底部に穴の有る鉢に、市販の黒土を乾燥重量で約1,620g入れ、これに、上記合成例で得られたガラス質発泡焼結体180gを、鉢の底において均一に施撒した。前記ガラス質発泡焼結体を土壌に供給してから、7日間隔毎に、約500mlの市水を供給した。なお供給された水のうち土壌に保水されない分の水は鉢の底部より約1分ほどで抜けるものであった。
 ガラス質発泡焼結体を配してから、トウモロコシの苗を植え、その後、上記のサイクルで水を与えながら、90日間、トウモロコシの栽培を行った(実施例3)。栽培期間終了後、トウモロコシの成長度合いを外観観察した。得られた結果を図9に示す。
 一方、比較のために、ガラス質発泡焼結体を土壌に混合せず、等量の土壌を補填した以外は実施例4と同様にしてトウモロコシを栽培し、実施例4と同じ期間で栽培を終えた(比較例4)。栽培期間終了後、トウモロコシの成長度合いを外観観察した。得られた結果を図9に示す。
Example 4 and Comparative Example 4
About 1,620 g of dry black soil was put on a dry basis in a pot having a hole at the bottom, and 180 g of the glassy foamed sintered body obtained in the above Synthesis Example was evenly spread on the bottom of the pot. After the glassy foamed sintered body was supplied to the soil, about 500 ml of city water was supplied every 7 days. Of the supplied water, the water that was not retained in the soil was drained from the bottom of the pot in about 1 minute.
After arranging the glassy foamed sintered body, corn seedlings were planted, and then corn was cultivated for 90 days while water was supplied in the above cycle (Example 3). After the end of the cultivation period, the appearance of the growth degree of corn was observed. The obtained results are shown in FIG.
On the other hand, for comparison, corn was cultivated in the same manner as in Example 4 except that the glassy foamed sintered body was not mixed with the soil and an equal amount of soil was supplemented, and cultivated in the same period as in Example 4. Finished (Comparative Example 4). After the end of the cultivation period, the appearance of the growth degree of corn was observed. The obtained results are shown in FIG.
 図9に示す結果から明らかなように、トウモロコシについても、本発明に係るガラス質発泡焼結体を土壌に配した実施例4においては、比較例4に比べて、その成長度の顕著な促進がみられた。 As is clear from the results shown in FIG. 9, also for corn, in Example 4 in which the vitreous foamed sintered body according to the present invention was placed in soil, the growth degree was significantly promoted as compared with Comparative Example 4. Was seen.

Claims (9)

  1.  ガラス質発泡焼成体を含有してなる肥料。 Fertilizer containing a glassy foamed fired body.
  2.  ガラス質発泡焼成体が嵩密度0.3~0.6g/cm3、吸水率30~35%である請求項1に記載の肥料。 The fertilizer according to claim 1, wherein the glassy foam fired body has a bulk density of 0.3 to 0.6 g/cm 3 and a water absorption rate of 30 to 35%.
  3.  前記ガラス質発泡体が、SiOを65.0質量%以上含み、水に対してメタケイ酸イオン(SiO 2-)溶出性を示すものである請求項1または2に記載の肥料。 The glassy foam, comprises SiO 2 or 65.0 mass%, the fertilizer according to claim 1 or 2 illustrates a metasilicate ion (SiO 3 2-) dissolution in water.
  4.  前記ガラス質発泡体が、廃ガラス粉砕原料に、炭化珪素、炭酸カルシウム、窒化アルミニウム、Al灰からなる群より選択されてなる少なくともいずれか1種の発泡剤を原料全体の0.1~3重量%配合して焼成したものである請求項1~3のいずれかに記載の肥料。 In the glassy foam, at least one foaming agent selected from the group consisting of silicon carbide, calcium carbonate, aluminum nitride and Al ash is used as a raw material for pulverizing waste glass in an amount of 0.1 to 3% by weight of the entire raw material. % Of the fertilizer according to any one of claims 1 to 3, which is mixed and burned.
  5.  前記ガラス質発泡焼成体が、SiO 65.0~75.0質量%、CaO 7.0~15.0質量%、NaO 10.0~16.0質量%、KO 0~3.5質量%、MgO 0~4.5質量%、Al 0~2.5質量%、C 0~2質量%、その他の成分3質量未満を含むものである請求項1~4のいずれかに記載の肥料。 The vitreous foamed fired body contains SiO 2 65.0 to 75.0% by mass, CaO 7.0 to 15.0% by mass, Na 2 O 10.0 to 16.0% by mass, and K 2 O 0 to 3 5. Mass%, MgO 0-4.5 mass%, Al 2 O 3 0-2.5 mass%, C 0-2 mass% and other components less than 3 mass%. Fertilizer as described in.
  6.  単子葉植物の土耕または水耕栽培において、植物の根の近傍位置に請求項1~5いずれか記載の肥料を配置することを特徴とする栽培植物の生産方法。 A method for producing a cultivated plant, which comprises arranging the fertilizer according to any one of claims 1 to 5 at a position near a root of the plant in soil cultivation or hydroponic cultivation of a monocot.
  7.  前記植物がイネ科植物である請求項6に記載の方法。 The method according to claim 6, wherein the plant is a grass family plant.
  8.  栽培植物の根の近傍位置でのメタケイ酸イオン(SiO 2-)濃度を調整することを特徴とする栽培植物の成長の調節方法。 A method for controlling growth of a cultivated plant, which comprises adjusting the concentration of metasilicate ion (SiO 3 2− ) at a position near the root of the cultivated plant.
  9.  前記栽培植物に与える水中のメタケイ酸イオン(SiO 2-)濃度を20~25mg/Lに維持するものである請求項8に記載の方法。 9. The method according to claim 8, wherein the metasilicate ion (SiO 3 2− ) concentration in the water given to the cultivated plant is maintained at 20 to 25 mg/L.
PCT/JP2018/047086 2018-12-20 2018-12-20 Fertilizer and method for producing cultivated plants WO2020129222A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2020560734A JP7150877B2 (en) 2018-12-20 2018-12-20 Fertilizer, method for producing same, method for producing cultivated plant, and method for promoting growth
PCT/JP2018/047086 WO2020129222A1 (en) 2018-12-20 2018-12-20 Fertilizer and method for producing cultivated plants

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/047086 WO2020129222A1 (en) 2018-12-20 2018-12-20 Fertilizer and method for producing cultivated plants

Publications (1)

Publication Number Publication Date
WO2020129222A1 true WO2020129222A1 (en) 2020-06-25

Family

ID=71102675

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/047086 WO2020129222A1 (en) 2018-12-20 2018-12-20 Fertilizer and method for producing cultivated plants

Country Status (2)

Country Link
JP (1) JP7150877B2 (en)
WO (1) WO2020129222A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114557245A (en) * 2022-03-01 2022-05-31 西藏自治区农牧科学院农业研究所 Simplified cultivation method of Tibet highland barley

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63176337A (en) * 1987-01-14 1988-07-20 Kirin Brewery Co Ltd Liquid-impregnated granular foam glass
JPH04267817A (en) * 1991-02-25 1992-09-24 Central Glass Co Ltd Soil admixture
JP2002065049A (en) * 2000-08-31 2002-03-05 Kensetsu Kankyo Engineering Kk Water retaining material and method for producing water retaining material
JP2004076307A (en) * 2002-08-12 2004-03-11 Yoshihiro Asano High functional greening block and greening wall structure
JP2005097065A (en) * 2003-09-26 2005-04-14 Soil Engineering Co Ltd Recycling system of phosphorus using glass foamed body

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63176337A (en) * 1987-01-14 1988-07-20 Kirin Brewery Co Ltd Liquid-impregnated granular foam glass
JPH04267817A (en) * 1991-02-25 1992-09-24 Central Glass Co Ltd Soil admixture
JP2002065049A (en) * 2000-08-31 2002-03-05 Kensetsu Kankyo Engineering Kk Water retaining material and method for producing water retaining material
JP2004076307A (en) * 2002-08-12 2004-03-11 Yoshihiro Asano High functional greening block and greening wall structure
JP2005097065A (en) * 2003-09-26 2005-04-14 Soil Engineering Co Ltd Recycling system of phosphorus using glass foamed body

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114557245A (en) * 2022-03-01 2022-05-31 西藏自治区农牧科学院农业研究所 Simplified cultivation method of Tibet highland barley

Also Published As

Publication number Publication date
JPWO2020129222A1 (en) 2020-06-25
JP7150877B2 (en) 2022-10-11

Similar Documents

Publication Publication Date Title
DK163814B (en) GROUNDING MEDIUM WITHOUT EARTH, AND PROCEDURES FOR GROWTH AND NUTRITION OF PLANTS USING SUCH CULTIVATING MEDIUM
BRPI0920873B1 (en) METHOD OF SUPPLYING SILICON AVAILABLE FOR PLANTS FOR A PLANT OR FOR A PLANT GROWING MEDIA
WO2014073570A1 (en) Soil improving material and culture soil containing same
WO2020129222A1 (en) Fertilizer and method for producing cultivated plants
JP6967504B2 (en) Fertilizer and cultivated plant production method
JP5463507B2 (en) PK compound fertilizer used as raw fertilizer for wheat cultivation
JPH07170852A (en) Glassy composition for culturing plant
KR101534559B1 (en) Liquid type granular complex fertilizer of micro nutrient and manufacturing method of it
KR101464927B1 (en) Silicic acid fertilizer pill and manufacturing method thereof
JP2007161745A (en) Heat-treated granule of clay
US20240025815A1 (en) Use of an aluminosilicate glass for providing a plant with silicon in an assimilable form, method for treating a plant using this glass and new powder of this glass
KR102446002B1 (en) Artificial soil and manufacturing method of the same
JPWO2020129222A5 (en)
JP5912887B2 (en) Method for producing silicate fertilizer
JPH04267817A (en) Soil admixture
JP3767998B2 (en) Mushroom artificial culture medium and mushroom artificial cultivation method using the same
JP4105562B2 (en) Glass composition for plant cultivation
KR20210038074A (en) manufacturing method of water-soluble silicate
KR20060116636A (en) Sodium silicate use product growth a plant and manufacture a method
KR100761496B1 (en) Antibacterial artifial soil and manufacturing method thereof
KR101479142B1 (en) Soil improvement material and its manufacturing method
JP2000135035A (en) Artificial culture soil for hydroponic culture and its production
KR102358075B1 (en) Silicate and granular the soil improvement a component and Water-Soluble Fertilizer method production
JP4983125B2 (en) How to control blast disease
KR20180111073A (en) Liquid silicate fertilizer and manufacturing method for the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18943686

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020560734

Country of ref document: JP

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 18943686

Country of ref document: EP

Kind code of ref document: A1