JP7148463B2 - 制御装置、電動車両 - Google Patents

制御装置、電動車両 Download PDF

Info

Publication number
JP7148463B2
JP7148463B2 JP2019137903A JP2019137903A JP7148463B2 JP 7148463 B2 JP7148463 B2 JP 7148463B2 JP 2019137903 A JP2019137903 A JP 2019137903A JP 2019137903 A JP2019137903 A JP 2019137903A JP 7148463 B2 JP7148463 B2 JP 7148463B2
Authority
JP
Japan
Prior art keywords
inverter circuit
control device
output voltage
output
current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019137903A
Other languages
English (en)
Other versions
JP2021023025A (ja
Inventor
隆宏 荒木
大輝 小松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2019137903A priority Critical patent/JP7148463B2/ja
Priority to PCT/JP2020/027404 priority patent/WO2021020115A1/ja
Priority to US17/611,301 priority patent/US11855564B2/en
Publication of JP2021023025A publication Critical patent/JP2021023025A/ja
Application granted granted Critical
Publication of JP7148463B2 publication Critical patent/JP7148463B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
    • H02M7/53871Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • H02M1/0016Control circuits providing compensation of output voltage deviations using feedforward of disturbance parameters
    • H02M1/0022Control circuits providing compensation of output voltage deviations using feedforward of disturbance parameters the disturbance parameters being input voltage fluctuations
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/14Estimation or adaptation of machine parameters, e.g. flux, current or voltage
    • H02P21/16Estimation of constants, e.g. the rotor time constant
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/22Current control, e.g. using a current control loop
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • H02M1/0009Devices or circuits for detecting current in a converter

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)

Description

本発明は、インバータ回路の制御装置と、これを備えた電動車両とに関する。
ハイブリッド自動車や電気自動車などに搭載されるインバータ回路の制御装置は、高応答であることが望まれる。この要求に対し、直流電源の内部抵抗変化を反映して出力電圧の制御応答性を確保する技術が提案されている。
本技術分野の背景技術として、特許文献1が知られている。特許文献1には、出力電圧制御系は、フィードバックゲイン決定部によるフィードバックゲインを用いて、DC/DCコンバータの出力電圧の目標電圧に対する偏差をゼロにするためのフィードバック制御を行うフィードバック演算部を含み、フィードバックゲイン決定部は、直流電源(バッテリ)での充電率に応じた内部抵抗変化を反映するように、フィードバックゲインを決定することが記載されている。これにより、直流電源の内部抵抗変化を適切に反映して、出力電圧の制御応答性を確保している。
特開2007-68290号公報
特許文献1に記載の方法では、制御偏差が急激に増減した場合、フィードバック制御量の応答が遅れ、十分な応答性能が得られない恐れがあった。
本発明は、上記課題に鑑みて、インバータ回路の制御の応答性能を向上させることを主な目的とする。
本発明による制御装置は、インバータ回路の制御を行うものであって、前記インバータ回路の出力電流を制御するための出力電流指令値に基づいて前記インバータ回路の入力電流を算出し、算出した前記入力電流に基づいて、前記インバータ回路の入力電圧の変動量に応じた出力電圧補償量を算出する。
本発明による電動車両は、上記制御装置と、この制御装置により制御されて直流電力を交流電力に変換するインバータ回路と、前記インバータ回路から出力される前記交流電力を用いて駆動するモータと、を備える。
本発明によれば、インバータ回路の制御の応答性能を向上させることができる。
本発明の第1の実施例に係る制御装置を含むモータ駆動装置の構成を示す図 インバータ回路の入出力電圧および入出力電流の波形の一例を示す図 本発明の第1の実施形態に係る制御装置の機能構成を示すブロック図 出力電圧誤差算出部の処理手順を示すフローチャート 出力電圧ベクトルVと入力電流idcの関係を示した表 出力電圧誤差ベクトルΔVの例を示す電圧ベクトル図 本発明の第2の実施例に係る制御装置を含むモータ駆動装置の構成を示す図 本発明の第3の実施形態に係る電動車両システムの構成を示す図
以下、図面を参照して本発明の実施形態を説明する。ただし、本発明は下記の実施形態に限定解釈されるものではなく、公知の他の構成要素を組み合わせて本発明の技術思想を実現してもよい。なお、各図において同一要素については同一の符号を記し、重複する説明は省略する。
(第1の実施形態)
図1は、本発明の第1の実施形態に係る制御装置を含むモータ駆動システムの構成を示す図である。図1に示すモータ駆動システムは、インバータ回路100と、インバータ回路100を制御するための制御装置1と、モータ200、位置センサ210、電流センサ220および直流電源300とを備える。
モータ200は、三相交流電動機であり、インバータ回路100から出力される三相交流電力を用いて駆動する。
位置センサ210は、モータ200の回転子の位置を検出し、検出した回転子位置θを出力する。
電流センサ220は、モータ200に流れる各相の電流を検出し、検出した三相電流値i、i、iを出力する。
制御装置1は、外部から入力されるトルク指令T*と、電流センサ220で検出された三相電流値i、i、iと、位置センサ210で検出された回転子位置θとに基づいて、インバータ回路100を制御するためのPWM制御を行う。これにより、インバータ回路100が有する各スイッチング素子を制御するためのスイッチング信号を生成し、インバータ回路100へ出力する。なお、制御装置1が行うPWM制御の詳細については後述する。
インバータ回路100は、スイッチング素子110a~110fを有する。スイッチング素子110aはU相上アーム、スイッチング素子110bはU相下アーム、スイッチング素子110cはV相上アーム、スイッチング素子110dはV相下アーム、スイッチング素子110eはW相上アーム、スイッチング素子110fはW相下アームにそれぞれ配置される。スイッチング素子110a~110fは、例えば金属酸化膜型電界効果トランジスタ(MOSFET)や絶縁ゲートバイポーラトランジスタ(IGBT)等のオンオフ動作が可能な半導体素子と、ダイオードとを組み合わせてそれぞれ構成される。
スイッチング素子110a~110fは、制御装置1から入力されるスイッチング信号に基づいて個別にオンもしくはオフされ、直流電源300から供給される直流電力を三相交流電力に変換する。スイッチング素子110a、110bによりU相交流電力が、スイッチング素子110c、110dによりV相交流電力が、スイッチング素子110e、110fによりW相交流電力がそれぞれ生成される。こうして生成された三相交流電力は、インバータ回路100からモータ200の固定子に出力され、モータ200において三相交流電流を発生させる。この三相交流電流がモータ200に回転磁界を発生させることで回転子が回転し、モータ200が駆動する。
直流電源300は、インバータ回路100の入力端子に接続され、モータ200の駆動に必要な直流電力を供給する。直流電源300には、内部抵抗310および電圧源320が含まれる。直流電源300からインバータ回路100に印加される直流電圧は、直流電源300の状態に応じて変動する。例えば、直流電源300が鉛蓄電池やリチウムイオン電池等の二次電池である場合、直流電源300の充電率に応じて電圧源320の電圧が変化するため、直流電源300の出力電圧も変動する。また、直流電源300に電流が流れると、内部抵抗310の抵抗値RESRに応じた電圧降下が発生し、これにより直流電源300の出力電圧が変化する。この抵抗値RESRは、一般に温度に応じて変化するため、直流電源300の内部温度によっても直流電源300の出力電圧に変動が生じる。
図2は、インバータ回路100の入出力電圧および入出力電流の波形の一例を示す図である。図2(a)は、インバータ回路100の直流入力電圧Vdcおよび各相の線間出力電圧vuv、vvw、vwuの例を表しており、図2(b)は、インバータ回路100の直流入力電流idcおよび各相の出力電流i、i、iの例を表している。なお、図2(a)において入力電圧Vdc上に等間隔で設定された各点の間隔は、制御装置1によるインバータ回路100の制御周期に相当する。
インバータ回路100には、直流電源300の出力電圧に応じた入力電圧Vdcが印加される。このとき図2に示すように、インバータ回路100に入力電流idcが流れていない期間の入力電圧Vdcは、直流電源300の出力端子を開放した場合の電圧源320の電圧と同一である。一方、入力電流idcが流れている期間の入力電圧Vdcは、前述の内部抵抗310の抵抗値RESRに応じた電圧降下により、入力電流idcが流れていない期間よりも低下している。その結果、入力電流idcが流れている期間では、各線間出力電圧vuv、vvw、vwuの振幅も低下している。これは、インバータ回路100に搭載される平滑コンデンサの容量が小さいほど顕著になる。
従来のインバータ回路の制御装置では、このようにインバータ回路の入力電流の有無に応じて線間出力電圧vuv、vvw、vwuの振幅が変化することが考慮されていない。そのため、インバータ回路は制御装置からの指令値通りの電圧を出力することができず、制御の応答性能低下や不安定化を招く恐れがあった。一方、以下に説明する本発明の実施形態では、制御装置1において、上記の点を考慮した制御をインバータ回路100に対して行うことで、従来よりも応答性能の向上を図っている。
図3は、本発明の第1の実施形態に係る制御装置1の機能構成を示すブロック図である。図3において、制御装置1は、電流指令演算部10、dq軸電流制御部20、座標変換部30,31、PWM信号生成部40、dq変換部50、速度変換部60、出力電圧誤差算出部70の各機能ブロックを有する。制御装置1は、例えばマイクロコンピュータにより構成され、マイクロコンピュータにおいて所定のプログラムを実行することにより、これらの機能ブロックを実現することができる。あるいは、これらの機能ブロックの一部または全部をロジックICやFPGA等のハードウェア回路を用いて実現してもよい。
電流指令演算部10は、入力されたトルク指令値T*と、速度変換部60により算出された角速度ωとに基づいて、インバータ回路100の出力電流を制御するためのd軸電流指令値i *およびq軸電流指令値i *を演算する。
dq軸電流制御部20には、電流指令演算部10により演算されたd軸電流指令値i *と、電流センサ220で検出された三相電流i、i、iに基づきdq変換部50から出力されるd軸電流検出値iとの差分、および、電流指令演算部10により演算されたq軸電流指令値i *と、電流センサ220で検出された三相電流i、i、iに基づきdq変換部50から出力されるq軸電流検出値iとの差分が入力される。dq軸電流制御部20は、入力された各差分に基づいて、所定の制御ゲイン指令値に基づく比例制御や積分制御を行うことにより、d軸電圧指令値v *およびq軸電圧指令値v *を演算する。
座標変換部30には、dq軸電流制御部20により演算されたd軸電圧指令値v *およびq軸電圧指令値v *と、位置センサ210で検出された回転子位置θとが入力される。座標変換部30は、d軸電圧指令値v *およびq軸電圧指令値v *に対して回転子位置θに基づく回転座標変換を行うことにより、U相電圧指令値v *、V相電圧指令値v *およびW相電圧指令値v *を出力する。
座標変換部31には、電流指令演算部10により演算されたd軸電流指令値i *およびq軸電流指令値i *と、位置センサ210で検出された回転子位置θとが入力される。座標変換部31は、d軸電流指令値i *およびq軸電流指令値i *に対して回転子位置θに基づく回転座標変換を行うことにより、U相電流指令値i *、V相電流指令値i *およびW相電流指令値i *を出力する。
PWM信号生成部40には、dq軸電流制御部20により演算されたd軸電圧指令値v *およびq軸電圧指令値v *に基づき座標変換部30から出力されるU相電圧指令値v *、V相電圧指令値v *およびW相電圧指令値v *と、出力電圧誤差算出部70により算出されるU相電圧指令補償量Vucomp、V相電圧指令補償量VvcompおよびW相電圧指令補償量Vwcompとが入力される。PWM信号生成部40は、これらの電圧指令値と電圧指令補償量とのUVW各相の和に基づいて、インバータ回路100が有する各相のスイッチング素子110a~110fのオンオフを制御するためのスイッチング信号(PWM信号)を生成する。これにより、UVW各相について、電圧指令補償量Vucomp、Vvcomp、Vwcompに基づいて電圧指令値v *、v *、v *をそれぞれ補償してスイッチング信号を生成する。そのため、インバータ回路100に対する出力電圧指令値のフィードフォワード補償を実現することができる。
dq変換部50には、電流センサ220で検出された三相電流i、i、iと、位置センサ210で検出された回転子位置θとが入力される。dq変換部50は、入力されたこれらの値に基づいて、d軸電流検出値iおよびq軸電流検出値iを出力する。
速度変換部60には、位置センサ210で検出された回転子位置θが入力される。速度変換部60は、回転子位置θに基づいて、モータ200の回転子が回転する角速度ωを出力する。
出力電圧誤差算出部70には、電流指令演算部10により演算されたd軸電流指令値i *およびq軸電流指令値i *に基づき座標変換部31から出力されるU相電流指令値i *、V相電流指令値i *およびW相電流指令値i *と、dq軸電流制御部20により演算されたd軸電圧指令値v *およびq軸電圧指令値v *に基づき座標変換部30から出力されるU相電圧指令値v *、V相電圧指令値v *およびW相電圧指令値v *とが入力される。出力電圧誤差算出部70は、入力されたこれらの値に基づいて、インバータ回路100の入力電圧Vdcの変動量に応じたU相電圧指令補償量Vucomp、V相電圧指令補償量VvcompおよびW相電圧指令補償量Vwcompを算出する。なお、出力電圧誤差算出部70によるUVW各相の電圧指令補償量Vucomp、Vvcomp、Vwcompの算出方法については、図4、5および6を参照して以下に説明する。
図4は、出力電圧誤差算出部70の処理手順を示すフローチャートである。
まずステップS1において、出力電圧誤差算出部70は、入力されたUVW各相の電圧指令値v *、v *、v *から、インバータ回路100のスイッチング素子110a~110fの状態に応じた出力電圧ベクトルVと、各出力電圧ベクトルVの期間Tを算出する。出力電圧ベクトルVとは、スイッチング素子110a~110fがそれぞれオンまたはオフされた状態の組み合わせを、8種類のベクトル(x=0~7)を用いて表現したものである。これは、周知の空間ベクトル変調等の手法により求めることができる。
次にステップS2において、出力電圧誤差算出部70は、ステップS1で算出した出力電圧ベクトルVと、入力されたUVW各相の電流指令値i *、i *、i *から、各出力電圧ベクトルVを出力している期間Tごとに、直流電源300からインバータ回路100に流れる入力電流idcを算出する。ここでは、例えば後述の図5に示す表を参照することで、各出力電圧ベクトルVに対応する入力電流idcを算出する。
次にステップS3において、出力電圧誤差算出部70は、直流電源300が有する内部抵抗310の抵抗値RESRを推定する。ここでは、例えば直流電源300の状態ごとに内部抵抗値を定めたテーブルデータを予め設定しておき、このテーブルデータを参照することで、現在の直流電源300の状態に対応する抵抗値RESRを推定することができる。例えば直流電源300が鉛蓄電池やリチウムイオン電池等の二次電池である場合には、前述のように充電率や内部温度に応じて直流電源300の出力電圧が変動する。そのため、直流電源300の充電率や内部温度ごとに、対応する内部抵抗値をテーブルデータとして予め設定しておくことで、このテーブルデータに基づいて適切な抵抗値RESRを推定することができる。
その後ステップS4において、出力電圧誤差算出部70は、各出力電圧ベクトルVを出力している期間Tごとに、入力電圧Vdcの変動に起因して発生するインバータ回路100の出力電圧の誤差に応じた出力電圧誤差ベクトルΔVを算出する。ここでは、例えば下記の式(1)により、出力電圧誤差ベクトルΔVを算出する。式(1)において、RESRはステップS3で推定された内部抵抗310の抵抗値を表し、idcはステップS2で算出された入力電流を表す。なお、式(1)によって求められる出力電圧誤差ベクトルΔVの方向は、出力電圧ベクトルVとは逆方向に定義される。
ΔV=RESR×idc×T (x=0、1、2、3、4、5、6、7)・・・(1)
なお、ステップS4で算出される出力電圧誤差ベクトルΔVは、繰り返し演算を実施することで、その算出精度を向上させることができる。
最後にステップS5において、出力電圧誤差算出部70は、ステップS4で算出した出力電圧誤差ベクトルΔVを三相電圧値に座標変換することで、UVW各相の電圧指令補償量Vucomp、Vvcomp、Vwcompを算出する。これにより、インバータ回路100が有するUVW各相のスイッチング素子110a~110fがオンまたはオフしている状態の組み合わせごとに、インバータ回路100への入力電圧Vdcの変動量を算出し、出力電圧に対する電圧指令補償量Vucomp、Vvcomp、Vwcompを算出する。
図5は、出力電圧誤差算出部70が上記ステップS2において入力電流idcを算出する際に用いる出力電圧ベクトルVと入力電流idcの関係を示した表である。図5の表では、8種類の出力電圧ベクトルV(x=0~7)のそれぞれについて、UVW各相のスイッチング素子のオンオフ状態を示すとともに、相電流と入力電流idcとの対応関係を示している。なお、図5では、UVW各相のスイッチング素子のオンオフ状態を「0」または「1」で表している。「0」は、当該相の上アームスイッチング素子がオフ、かつ下アームスイッチング素子がオンの状態を表し、「1」は、当該相の上アームスイッチング素子がオン、下アームスイッチング素子がオフの状態を表す。
全相の下アームスイッチング素子がオンしているVベクトル期間では、三相の出力電流i,i,iが直流電源300を経由せずに還流する。そのため、図5の表に示すように入力電流idcは0となる。U相の上アームスイッチング素子のみがオンしているVベクトル期間では、インバータ回路100において入力電流idcがすべてU相に流れ込む。そのため、図5の表に示すようにidc=iとなる。U相とV相の上アームスイッチング素子がオン、W相の上アームスイッチング素子がオフしているVベクトル期間では、W相電流iがインバータ回路100から直流電源300に向かって流れる。そのため、図5の表に示すようにidc=-iとなる。
他の電圧ベクトルが出力されている期間も同様に、三相の出力電流i,i,iのいずれかにより、インバータ回路100の入力電流idcを求めることができる。ここで、図3の制御ブロック図では、出力電圧誤差算出部70は、電流指令演算部10がd軸電流指令値i *およびq軸電流指令値i *を演算することで座標変換部31から出力されるUVW各相の電流指令値i *、i *、i *を用いて、次回の制御周期における出力電流i,i,iを推定し、これらを用いて次回の制御周期における入力電流idcを算出するようにしている。
図6は、出力電圧誤差算出部70が上記ステップS4において算出する出力電圧誤差ベクトルΔVの例を示す電圧ベクトル図である。なお図6の例では、ある制御期間におけるUVW各相の電圧指令値v *、v *、v *のベクトル和である出力電圧指令ベクトルvout が、VベクトルとVベクトルに囲われた領域にある場合を想定している。この場合、まず、インバータ回路100が出力電圧ベクトルVとしてVベクトルを出力している期間Tに発生する出力電圧誤差ベクトルの大きさ|ΔV|は、図5の表より求められる入力電流idcの値(idc=i)を前述の式(1)に代入することで、以下の式(2)により求められる。
ΔV=RESR×i×T ・・・(2)
同様に、インバータ回路100が出力電圧ベクトルVとしてVベクトルを出力している期間Tに発生する出力電圧誤差ベクトルの大きさ|ΔV|は、以下の式(3)により求められる。
ΔV=RESR×(-i)×T ・・・(3)
一方、Vベクトルを出力している期間TとVベクトルを出力している期間Tでは、直流電源300に電流が流れないため、インバータ回路100の入力電圧Vdcは変動せず、出力電圧誤差ベクトルは発生しない。したがって、当該制御周期中(キャリア周期中)に発生する出力電圧誤差Δvoutは、図6に示すように、出力電圧誤差ベクトルΔVと出力電圧誤差ベクトルΔVのベクトル和となる。その結果、インバータ回路100の出力電圧voutは、出力電圧指令ベクトルvout と出力電圧誤差Δvoutのベクトル和となり、そのままでは指令通りの電圧が出力されない。
本実施形態の制御装置1では、出力電圧誤差算出部70が図4のステップS5で算出した各相の電圧指令補償量Vucomp、Vvcomp、Vwcompを、PWM信号生成部40において各相の電圧指令値v *、v *、v *にそれぞれ加算する。これにより、ステップS4で算出した出力電圧誤差ベクトルΔVのベクトル和である出力電圧誤差Δvoutが、出力電圧指令ベクトルvout に予め加算される。そのため、出力電圧指令値のフィードフォワード補償を実現することができる。
以上説明した本発明の第1の実施形態によれば、以下の作用効果を奏する。
(1)制御装置1は、インバータ回路100の制御を行うものであって、インバータ回路100の出力電流を制御するための出力電流指令値であるd軸電流指令値i *およびq軸電流指令値i *に基づいてインバータ回路100の入力電流idcを算出し、算出した入力電流idcに基づいて、インバータ回路100の入力電圧Vdcの変動量に応じた出力電圧補償量であるU相電圧指令補償量Vucomp、V相電圧指令補償量VvcompおよびW相電圧指令補償量Vwcompを算出する。このようにしたので、インバータ回路100の制御の応答性能を向上させることができる。
(2)制御装置1は、インバータ回路100へ直流電力を供給する直流電源300の内部抵抗値RESRを推定し(ステップS3)、推定した内部抵抗値RESRと入力電流idcの積に基づいて入力電圧Vdcの変動量を表す出力電圧誤差ベクトルΔVを算出する(ステップS4)。このようにしたので、直流電源300の状態に応じて内部抵抗値RESRが変化し、それに従って入力電圧Vdcの変動量が変化する場合でも、入力電圧Vdcの変動量を正確に求めることができる。
(3)制御装置1は、ステップS3において、直流電源300の状態ごとに予め設定された内部抵抗値に基づいて、直流電源300の内部抵抗値RESRを推定する。このようにしたので、直流電源300の状態に応じた内部抵抗値RESRを正確に推定することができる。
(4)制御装置1は、インバータ回路100が有する各相のスイッチング素子110a~110fがオンまたはオフしている状態の組み合わせを表す出力電圧ベクトルVごとに、入力電圧Vdcの変動量を表す出力電圧誤差ベクトルΔVをステップS4で算出して、各相の電圧指令補償量Vucomp、Vvcomp、Vwcompを算出する(ステップS5)。このようにしたので、インバータ回路100の動作状態に応じて各制御周期中に発生する出力電圧の誤差を確実に補償できるように、出力電圧補償量を算出することができる。
(5)制御装置1は、電流指令演算部10と、dq軸電流制御部20および座標変換部30と、インバータ回路100が有する各相のスイッチング素子110a~110fのオンオフを制御するためのスイッチング信号を生成するPWM信号生成部40と、出力電圧誤差算出部70とを備える。電流指令演算部10は、インバータ回路100の出力電流指令値であるd軸電流指令値i *およびq軸電流指令値i *を演算する。dq軸電流制御部20および座標変換部30は、電流指令演算部10により演算されたd軸電流指令値i *およびq軸電流指令値i *に基づいて、インバータ回路100の出力電圧指令値であるU相電圧指令値v *、V相電圧指令値v *およびW相電圧指令値v *を演算する。PWM信号生成部40は、dq軸電流制御部20および座標変換部30により演算された各相の電圧指令値v *、v *、v *に基づいてスイッチング信号を生成する。出力電圧誤差算出部70は、d軸電流指令値i *およびq軸電流指令値i *に基づき座標変換部31から出力される各相の電流指令値i *、i *、i *と、各相の電圧指令値v *、v *、v *とに基づいて、各相の電圧指令補償量Vucomp、Vvcomp、Vwcompを算出する。ここで、PWM信号生成部40は、出力電圧誤差算出部70により算出された各相の電圧指令補償量Vucomp、Vvcomp、Vwcompに基づいて各相の電圧指令値v *、v *、v *を補償し、スイッチング信号を生成する。このようにしたので、インバータ回路100を適切に制御しつつ、インバータ回路100に対する出力電圧指令値のフィードフォワード補償を実現することができる。
(第2の実施形態)
図7は、本発明の第2の実施形態に係る制御装置を含むモータ駆動システムの構成を示す図である。図7に示すモータ駆動システムは、第1の実施形態で説明した図1のモータ駆動システムと比較して、直流電源300を制御する電源制御装置2が設けられた点が異なっている。電源制御装置2は、直流電源300の充放電を制御するとともに、直流電源300における内部抵抗310の抵抗値RESRを検出し、抵抗値RESRを表す内部抵抗値信号を制御装置1へ出力する。
本実施形態において、制御装置1は、出力電圧誤差算出部70によりUVW各相の電圧指令補償量Vucomp、Vvcomp、Vwcompを算出する際に、図4のステップS3において、電源制御装置2から出力される内部抵抗値信号に基づいて、直流電源300が有する内部抵抗310の抵抗値RESRを推定する。これ以外の点は、第1の実施形態で説明したのと同様の処理を実施する。
以上説明した本発明の第2の実施形態によれば、制御装置1は、ステップS3において、直流電源300を制御する電源制御装置2から出力される内部抵抗値信号に基づいて、直流電源300の内部抵抗値RESRを推定する。このようにしたので、電源制御装置2で検出した直流電源300の内部抵抗値RESRが制御装置1へ内部抵抗値信号として伝えられるため、直流電源300の運転状態によって内部抵抗値RESRが変化した場合でも、内部抵抗値RESRを正確に推定し、入力電圧Vdcの変動量を精度よく算出することができる。
(第3の実施形態)
次に、本発明の第3の実施の形態について説明する。本実施形態では、電動車両システムへの適用例を説明する。
図8は、本発明の第3の実施形態に係る電動車両システムの構成を示す図である。図8に示す電動車両システムは、ハイブリッド電気自動車の車体700に搭載されており、第1、第2の実施形態でそれぞれ説明したモータ駆動システムを有している。本実施形態の電動車両システムにおいて、インバータ回路100は、制御装置1から出力されるスイッチング信号に基づいて動作し、直流電力から交流電力への電力変換を行う。モータ200は、インバータ回路100から出力される交流電力を用いて駆動する。これにより、モータ200の駆動力を用いて電動車両システムが走行することができる。
さらに、本実施形態の電動車両システムにおいて、モータ200は回転駆動力を発生する電動機としてだけでなく、駆動力を受けて発電する発電機としても作用する。すなわち、図8の電動車両システムは、モータ200をモータ/ジェネレータとして適用したパワートレインを有する。
車体700のフロント部には、前輪車軸701が回転可能に軸支されており、前輪車軸701の両端には、前輪702、703が設けられている。車体700のリア部には、後輪車軸704が回転可能に軸支されており、後輪車軸704の両端には後輪705、706が設けられている。前輪車軸701の中央部には、動力分配機構であるデファレンシャルギア711が設けられており、エンジン710から変速機712を介して伝達された回転駆動力を左右の前輪車軸701に分配するようになっている。
エンジン710とモータ200とは、エンジン710のクランクシャフトに設けられたプーリーとモータ200の回転軸に設けられたプーリーとがベルト730を介して機械的に連結されている。これにより、モータ200の回転駆動力がエンジン710に、エンジン710の回転駆動力がモータ200にそれぞれ伝達できるようになっている。
モータ200は、インバータ回路100によって制御された三相交流電力がステータのステータコイルに供給されることによって、ロータが回転し、三相交流電力に応じた回転駆動力を発生する。すなわち、モータ200は、インバータ回路100によって制御されて電動機として動作する一方、エンジン710の回転駆動力を受けてロータが回転することによって、ステータのステータコイルに起電力が誘起され、三相交流電力を発生する発電機として動作する。
インバータ回路100は、高電圧(例えば42Vあるいは300V)系電源である直流電源300から供給された直流電力を三相交流電力に変換する電力変換装置であり、運転指令値に従ってロータの磁極位置に応じた、モータ200のステータコイルに流れる三相交流電流を制御する。
モータ200によって発電された三相交流電力は、インバータ回路100によって直流電力に変換されて直流電源300を充電する。直流電源300はDC-DCコンバータ724を介して低圧バッテリ723に電気的に接続されている。低圧バッテリ723は、自動車の低電圧(例えば12V)系電源を構成するものであり、エンジン710を初期始動(コールド始動)させるスタータ725や、ラジオ、ライト等の補機類などの電源に用いられる。
車両が信号待ちなどの停車時(アイドルストップモード)にあるとき、エンジン710を停止させ、再発車時にエンジン710を再始動(ホット始動)させる時には、インバータ回路100でモータ200を駆動し、エンジン710を再始動させる。ただし、直流電源300の充電量が不足している場合や、エンジン710が十分に温まっていない場合などにおいては、アイドルストップモードであっても、エンジン710を停止せずに駆動を継続することが好ましい。また、アイドルストップモード中においては、エアコンのコンプレッサなど、エンジン710を駆動源としている補機類の駆動源を確保する必要がある。この場合、エンジン710の代わりにモータ200を駆動させて補機類の駆動源としてもよい。
一方、車両が加速モードや高負荷運転モードにあるときは、モータ200を駆動させてエンジン710の駆動をアシストする。逆に、直流電源300の充電が必要な充電モードにあるときは、エンジン710によってモータ200を発電させて直流電源300を充電する。さらに、車両の制動時や減速時などには回生モードとして、車両の運動エネルギーによりモータ200を発電させて直流電源300を充電してもよい。
以上説明した本発明の第3の実施形態によれば、電動車両システムは、制御装置1と、制御装置1により制御されて直流電力を交流電力に変換するインバータ回路100と、インバータ回路100から出力される交流電力を用いて駆動するモータ200とを備える。このようにしたので、モータ200による駆動時の制御の応答性能が高い電動車両システムを構築することができる。
以上説明した実施形態や各種変形例はあくまで一例であり、発明の特徴が損なわれない限り、本発明はこれらの内容に限定されるものではない。また、上記では種々の実施形態や変形例を説明したが、本発明はこれらの内容に限定されるものではない。本発明の技術的思想の範囲内で考えられるその他の態様も本発明の範囲内に含まれる。
1・・・制御装置
2・・・電源制御装置
10・・・電流指令演算部
20・・・dq軸電流制御部
30,31・・・座標変換部
40・・・PWM信号生成部
50・・・dq変換部
60・・・速度変換部
70・・・出力電圧誤差算出部
100・・・インバータ回路
110a・・・U相上アームスイッチング素子
110b・・・U相下アームスイッチング素子
110c・・・V相上アームスイッチング素子
110d・・・V相下アームスイッチング素子
110e・・・W相上アームスイッチング素子
110f・・・W相下アームスイッチング素子
200・・・モータ
210・・・位置センサ
220・・・電流センサ
300・・・直流電源
310・・・内部抵抗
320・・・電圧源

Claims (7)

  1. インバータ回路の制御を行う制御装置であって、
    前記インバータ回路の出力電流を制御するための出力電流指令値に基づいて前記インバータ回路の入力電流を算出し、算出した前記入力電流に基づいて、前記インバータ回路の入力電圧の変動量に応じた出力電圧補償量を算出する制御装置。
  2. 請求項1に記載の制御装置において、
    前記インバータ回路へ直流電力を供給する電源の内部抵抗値を推定し、推定した前記内部抵抗値と前記入力電流の積に基づいて前記入力電圧の変動量を算出する制御装置。
  3. 請求項2に記載の制御装置において、
    前記電源の状態ごとに予め設定された内部抵抗値に基づいて、前記電源の内部抵抗値を推定する制御装置。
  4. 請求項2に記載の制御装置において、
    前記電源を制御する電源制御装置から出力される内部抵抗値信号に基づいて、前記電源の内部抵抗値を推定する制御装置。
  5. 請求項1に記載の制御装置において、
    前記インバータ回路が有する各相のスイッチング素子がオンまたはオフしている状態の組み合わせごとに、前記入力電圧の変動量を算出して前記出力電圧補償量を算出する制御装置。
  6. 請求項1に記載の制御装置において、
    前記出力電流指令値を演算する電流指令演算部と、
    前記電流指令演算部により演算された前記出力電流指令値に基づいて、前記インバータ回路の出力電圧指令値を演算する電流制御部と、
    前記電流制御部により演算された前記出力電圧指令値に基づいて、前記インバータ回路が有する各相のスイッチング素子のオンオフを制御するためのスイッチング信号を生成するPWM信号生成部と、
    前記出力電流指令値および前記出力電圧指令値に基づいて、前記出力電圧補償量を算出する出力電圧誤差算出部と、を備え、
    前記PWM信号生成部は、前記出力電圧誤差算出部により算出された前記出力電圧補償量に基づいて前記出力電圧指令値を補償し、前記スイッチング信号を生成する制御装置。
  7. 請求項1乃至6のいずれかに記載の制御装置と、
    前記制御装置により制御されて直流電力を交流電力に変換するインバータ回路と、
    前記インバータ回路から出力される前記交流電力を用いて駆動するモータと、を備えた電動車両。
JP2019137903A 2019-07-26 2019-07-26 制御装置、電動車両 Active JP7148463B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2019137903A JP7148463B2 (ja) 2019-07-26 2019-07-26 制御装置、電動車両
PCT/JP2020/027404 WO2021020115A1 (ja) 2019-07-26 2020-07-14 制御装置、電動車両
US17/611,301 US11855564B2 (en) 2019-07-26 2020-07-14 Control device and electric vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019137903A JP7148463B2 (ja) 2019-07-26 2019-07-26 制御装置、電動車両

Publications (2)

Publication Number Publication Date
JP2021023025A JP2021023025A (ja) 2021-02-18
JP7148463B2 true JP7148463B2 (ja) 2022-10-05

Family

ID=74229934

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019137903A Active JP7148463B2 (ja) 2019-07-26 2019-07-26 制御装置、電動車両

Country Status (3)

Country Link
US (1) US11855564B2 (ja)
JP (1) JP7148463B2 (ja)
WO (1) WO2021020115A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007068290A (ja) 2005-08-30 2007-03-15 Toyota Motor Corp 電圧変換システム
JP2011091960A (ja) 2009-10-23 2011-05-06 Toyota Central R&D Labs Inc Dcdcコンバータシステム
JP2011205727A (ja) 2010-03-24 2011-10-13 Toyota Central R&D Labs Inc 電流推定装置およびdcdcコンバータ制御システム

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007068290A (ja) 2005-08-30 2007-03-15 Toyota Motor Corp 電圧変換システム
JP2011091960A (ja) 2009-10-23 2011-05-06 Toyota Central R&D Labs Inc Dcdcコンバータシステム
JP2011205727A (ja) 2010-03-24 2011-10-13 Toyota Central R&D Labs Inc 電流推定装置およびdcdcコンバータ制御システム

Also Published As

Publication number Publication date
US11855564B2 (en) 2023-12-26
US20220311370A1 (en) 2022-09-29
JP2021023025A (ja) 2021-02-18
WO2021020115A1 (ja) 2021-02-04

Similar Documents

Publication Publication Date Title
US8281886B2 (en) Electric motor control device, drive device and hybrid drive device
US6486632B2 (en) Control device for motor/generators
JP6062327B2 (ja) インバータ装置および電動車両
US10778130B2 (en) Control apparatus for alternating-current rotary electric machine
US9590551B2 (en) Control apparatus for AC motor
US9548688B2 (en) Motor control apparatus
US9007009B2 (en) Control apparatus for AC motor
JP6765985B2 (ja) インバータ装置および電動車両
US11114959B2 (en) Electric motor driving system and method
US11218106B2 (en) Electric motor driving system
CN111279607B (zh) 旋转电机的控制装置
JP7148463B2 (ja) 制御装置、電動車両
US20230155534A1 (en) Inverter control device and electric vehicle system
JP2009171641A (ja) モータ駆動装置
JP2001008487A (ja) 電気車の制御装置及び制御方法
US20240042867A1 (en) Motor control device, electromechanical integrated unit, boost converter system, electric vehicle system, and motor control method
JP7278926B2 (ja) 電動機の制御装置、電動車両、電動機の制御方法
WO2024075798A1 (ja) インバータ制御装置、電動車両
US20230141601A1 (en) Motor control device, electromechanical unit, electric vehicle system, and motor control method
JP2002051596A (ja) 交流モーターの駆動制御装置
RU2432663C1 (ru) Контроллер электродвигателя
JP2023051597A (ja) インバータ制御装置、ハイブリッドシステム、機電一体ユニット、電動車両システム、インバータ制御方法
JP2023125302A (ja) 交流電動機の制御装置およびプログラム
CN112166050A (zh) 逆变器控制方法及逆变器控制系统

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220106

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220913

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220922

R150 Certificate of patent or registration of utility model

Ref document number: 7148463

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150