JP7147691B2 - 電子制御装置 - Google Patents

電子制御装置 Download PDF

Info

Publication number
JP7147691B2
JP7147691B2 JP2019108102A JP2019108102A JP7147691B2 JP 7147691 B2 JP7147691 B2 JP 7147691B2 JP 2019108102 A JP2019108102 A JP 2019108102A JP 2019108102 A JP2019108102 A JP 2019108102A JP 7147691 B2 JP7147691 B2 JP 7147691B2
Authority
JP
Japan
Prior art keywords
relay
vehicle
arithmetic unit
inverter
arithmetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019108102A
Other languages
English (en)
Other versions
JP2020202662A (ja
Inventor
豊 小山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2019108102A priority Critical patent/JP7147691B2/ja
Priority to US16/893,618 priority patent/US11305669B2/en
Publication of JP2020202662A publication Critical patent/JP2020202662A/ja
Application granted granted Critical
Publication of JP7147691B2 publication Critical patent/JP7147691B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/0084Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to control modules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • B60L58/20Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules having different nominal voltages
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0007Measures or means for preventing or attenuating collisions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/003Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to inverters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/04Cutting off the power supply under fault conditions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • B60L50/61Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries by batteries charged by engine-driven generators, e.g. series hybrid electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/40DC to AC converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Power Engineering (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Description

本発明は、車両に搭載された高電圧バッテリと、車両走行用モータを駆動するインバータとが、電気的に導通した導通状態と、電気的に非導通となる遮断状態とに切り換え可能なリレー手段を備えた車両に適用される電子制御装置に関する。
例えば、特許文献1には、車両用電動機に接続されたインバータと、インバータに電力を供給する主バッテリと、主バッテリとインバータとの接続を導通又は遮断するメインリレーと、を含むハイブリッド自動車または電気自動車において、メインリレーを制御する車両制御装置が開示されている。
この車両制御装置は、メインリレーが導通状態で、かつ、制御ECUから遮断指令がメインリレーに出力された場合に、メインリレーの導通状態を予め決められた時間保持する保持回路を備えている。この保持回路により、車両の走行中に制御ECUが何らかの異常によりリセットされて遮断指令がメインリレーに出力されても、メインリレーを遮断することなく所定時間の間、導通状態に保持することができる。そのため、保持回路によるメインリレーの保持期間中に、制御ECUが正常に立ち上がれば、運転者にほとんど気付かれずにそのまま車両を走行させることができる。
特開2008-206288号公報
しかしながら、特許文献1の車両制御装置では、制御ECUの異常の態様がリセットによって正常に立ち上がるものではない場合、保持回路による保持期間が経過しても制御ECUが立ち上がらずに、メインリレーが遮断されてしまう虞がある。この場合、インバータに電力が供給されないので、最悪の場合、車両は走行不能となってしまう可能性がある。さらに、仮に保持期間中に制御ECUから導通指示が出力され、メインリレーの導通状態が維持されたとしても、制御ECUの異常に起因して、インバータを適切に制御することができない可能性もある。
本出願人は、このような課題を解決することが可能な電子制御装置を、既に特願2018-49655号によって出願している。この先願に記載の電子制御装置は、第1の演算装置と第2の演算装置とを備える。第1の演算装置は、車両の走行中、高電圧バッテリの正極側とインバータとの間に接続された第1システムメインリレーと、高電圧バッテリの負極側とインバータとの間に接続された第3システムメインリレーとを導通状態に維持するための第1リレー制御信号を出力する。また、第1の演算装置は、車両走行用モータによって車両を走行可能とするために、車両走行用モータを駆動するインバータに制御信号を出力する。
第2の演算装置も、第1の演算装置と同様に、第1及び第3システムメインリレーを導通状態に維持するための第2リレー制御信号を出力する。また、第2の演算装置は、第1の演算装置の動作を監視し、第1の演算装置に異常が発生したと判定すると、第1の演算装置に代わって、インバータに制御信号を出力する。従って、第1の演算装置に異常が生じて、第1の演算装置から第1及び第3システムメインリレーに第1リレー制御信号が出力されなくなっても、第2の演算装置によるリレー制御及びインバータ制御により、車両は走行を継続することが可能となる。
ここで、第1の演算装置に異常が生じたときに、例えば、メータクラスター内の警告灯を点灯させるなどして、運転者に異常の発生を通知することが考えられる。この際、運転者は、その異常通知に驚いて、車両の起動スイッチ(イグニッションスイッチ)をオフさせてしまう可能性も否定できない。車両の起動スイッチがオフされたことによって、第2の演算装置から第2リレー制御信号の出力が停止されると、第1及び第3システムメインリレーは導通状態から遮断状態に切り換わる。この状態では、車両走行用モータによって車両を走行させることができない。そのため、運転者が、車両を走行させようとして、車両の起動スイッチを再度オンすることが考えられる。しかしながら、先願の電子制御装置では、再び、第1及び第3システムメインリレーを導通状態に切り換えることができない虞がある。その理由は以下の通りである。
先願の電子制御装置では、起動スイッチがオンされた起動時には、第1の演算装置が、最初に、高電圧バッテリの正極側に接続された第1システムメインリレーと、高電圧バッテリの負極側とインバータとの間に設けられ、抵抗と直列に接続された第2システムメインリレーと、を導通状態に切り換えるように構成されている。これは、起動時の突入電流により大電流が流れて、リレー接点の溶着等の不具合が発生することを防止するためである。そして、第1の演算装置は、第2システムメインリレーが導通状態に切り換えられてから所定時間が経過すると、高電圧バッテリの負極側に接続された第3システムメインリレーを導通状態に切り換えるとともに、第2システムメインリレーを遮断状態に切り換える接続シーケンスを実行する。
先願の電子制御装置では、第2の演算装置が、第2システムメインリレーに対してリレー制御信号を出力できるようには構成されていない。このため、第2の演算装置が、第1の演算装置に代わって、第1~第3システムメインリレーの接続シーケンスを実行することはできない。従って、第1の演算装置が、発生した異常により、第1~第3システムメインリレーの接続シーケンスを正常に実行できない場合には、運転者が起動スイッチをオンしても、第1及び第3システムメインリレーを導通状態に切り換えることができない状況に陥ってしまう可能性がある。
これを解決するため、第2の演算装置が、第1~第3システムメインリレーの接続シーケンスを実行可能に構成することが考えられる。しかしながら、この場合、第2の演算装置から第2システムメインリレーへの通電回路の追加と、第2の演算装置への接続シーケンス実行プログラムの実装とが必要となり、電子制御装置のコストアップを招いてしまう。
本発明は、上述した点に鑑みてなされたもので、第1の演算装置の異常発生時に、運転者が起動スイッチをオフし、その後、起動スイッチをオンした場合に、コストアップを招くことなく、車両走行用モータを駆動するインバータへ電源を供給することが可能な電子制御装置を提供することを目的とする。
上記目的を達成するために、本発明による電子制御装置は、
車両に搭載された高電圧バッテリ(5)と、車両走行用モータ(31)を駆動するインバータ(30)とが、電気的に導通した導通状態と、電気的に非導通となる遮断状態とに切り換え可能なリレー手段(SMRB、SMRG、SMRP)を備えた車両に適用される電子制御装置(10)であって、
リレー手段は、車両が走行する間、導通状態に維持される第1のリレー手段(SMRB、SMRG)と、車両の起動スイッチ(3)がオンされる起動時に導通状態となって、高電圧バッテリとインバータとの間に、第1のリレー手段が導通状態となったときに流れる電流よりも制限された電流を流す第2のリレー手段(SMRB、SMRP)と、を含み、
インバータには、高電圧バッテリからリレー手段を介して供給される電圧によって充電され、車両走行用モータを駆動するための電源電圧を安定化させる平滑コンデンサ(32)が設けられており、
インバータに対してインバータ制御信号を出力することにより車両走行用モータを駆動して車両の走行を制御するとともに、車両の起動スイッチがオンされた起動時に第2のリレー手段を導通状態とし、その後、第2のリレー手段に代えて第1のリレー手段を導通状態に切り換えるとともに第1のリレー手段を導通状態に維持するように、第1及び第2のリレー手段を制御する第1の演算装置(13)と、
第1の演算装置とは独立して設けられ、第1の演算装置の異常時に第1の演算装置に代わって車両の走行を制御するために、インバータに対してインバータ制御信号を出力するとともに、第1のリレー手段を導通状態とするためのリレー制御信号を出力する第2の演算装置(14)と、を備え、
第1の演算装置の異常時に車両の起動スイッチがオフされ、その後、車両の起動スイッチがオンされたとき、第2の演算装置は、平滑コンデンサの電圧が、第1のリレー手段の接続条件を満たしているか判定し、満たしていると判定した場合、第1のリレー手段にリレー制御信号を出力して、第1のリレー手段を導通状態とし、インバータ制御信号により車両の走行を制御可能とすることを特徴とする。
上記のように、インバータには平滑コンデンサが設けられる。インバータに設けられた平滑コンデンサの電圧がある程度高ければ、第2のリレー手段を導通状態とせずに、直接、第1のリレー手段を導通状態としても、リレー接点の溶着等の不具合の発生を招くような大電流が流れる虞は低い。そこで、本発明による電子制御装置では、車両の起動スイッチがオフされ、その後、車両の起動スイッチがオンされたとき、第2の演算装置は、平滑コンデンサの電圧が第1のリレー手段の接続条件を満たしているか判定する。そして、第2の演算装置は、平滑コンデンサの電圧が第1のリレー手段の接続条件を満たしていると判定すると、第1のリレー手段にリレー制御信号を出力して第1のリレー手段を導通状態とする。これにより、車両走行用モータを駆動するインバータへ電源が供給される。従って、第2の演算装置は、インバータ制御信号により車両の走行を制御することが可能となる。
なお、運転者が第1の演算装置の異常時に誤って車両の起動スイッチをオフしてしまった場合、いまだ車両を走行させる必要がある状況であれば、運転者は短時間のうちに起動スイッチをオンするものと考えられる。このため、運転者が起動スイッチをオンしたとき、平滑コンデンサには高電圧が維持されている可能性が高い。従って、平滑コンデンサに蓄積されている高電圧を利用して、第2の演算装置は、第1のリレー手段を導通状態にすることができる。
上記括弧内の参照番号は、本開示の理解を容易にすべく、後述する実施形態における具体的な構成との対応関係の一例を示すものにすぎず、なんら発明の範囲を制限することを意図したものではない。
また、上述した特徴以外の、特許請求の範囲の各請求項に記載した技術的特徴に関しては、後述する実施形態の説明及び添付図面から明らかになる。
実施形態による電子制御装置を含む制御システム全体の構成を示す構成図である。 電子制御装置の第1の演算装置及び第2の演算装置にて実行される制御処理を示すフローチャートである。 第1の演算装置及び第2の演算装置にて実行される制御について説明するためのタイミングチャートである。 第1の演算装置の動作が異常となったときに、第2の演算装置によって実行される異常時処理2の詳細を示すフローチャートである。 第2の演算装置にて実行される異常時処理2の作用について説明するためのタイミングチャートである。 第1の演算装置の動作が異常となったときに、第2の演算装置によって実行される異常時処理1の詳細を示すフローチャートである。 第2の演算装置にて実行される異常時処理1の作用について説明するためのタイミングチャートである。
以下、本発明に係る実施形態を図面に基づいて説明する。図1は、本実施形態による電子制御装置10及びその電子制御装置10の制御対象である走行用モータ31や各々のシステムメインリレーSMRB、SMRG、SMRPなどを含む制御システム全体の構成を示す構成図である。図1に示すように、本実施形態による電子制御装置10が適用される車両は、3相交流の走行用モータ31を駆動力源として有する電動車両である。車両は、車両の駆動力源として、他に内燃機関を備えていてもよく、また、走行用モータ31とは別のモータを車両の駆動力源としてさらに備えていてもよい。
走行用モータ31は、高電圧バッテリ5から供給される電力を用いてインバータ30によって駆動される。高電圧バッテリ5は、例えばリチウム電池やニッケル電池であり、数百ボルト(例えば、300V)の直流の高電圧を供給可能なものである。なお、高電圧バッテリ5とインバータ30との間に昇圧コンバータを設け、インバータ30に、昇圧コンバータが昇圧した高電圧を供給可能に構成してもよい。
本実施形態においては、図1に示すように、インバータ30には、高電圧バッテリ5からシステムメインリレーSMRB、SMRG、SMRPを介して供給される電圧によって充電される平滑コンデンサ32が設けられている。この平滑コンデンサ32は、インバータ30が走行用モータ31を駆動するための電源電圧を安定化させる役割を有している。
インバータ30は、平滑コンデンサ32を介して供給される直流高電圧に応じた直流電流を3相の交流電流に変換して走行用モータ31に出力する。走行用モータ31は、インバータ30から出力される3相交流電流により回転駆動される。この際、インバータ30において、出力する3相交流電流の電流値を変化させることにより、走行用モータ31の出力トルクを制御することができ、車両を所望の速度で走行させることができる。
なお、車両の車輪の回転が車軸を介して走行用モータ31に伝達されて走行用モータ31のロータが回転させられる場合、走行用モータ31は発電機として機能して交流電流を発電する。走行用モータ31が発電した交流電流は、インバータ30により直流に変換される。高電圧バッテリ5は二次電池であり、インバータ30によって直流に変換された電流による電力を蓄電することができる。
高電圧バッテリ5の正極側とインバータ30との間には、正極側システムメインリレーSMRBが設けられている。高電圧バッテリ5の負極側とインバータ30との間には、負極側システムメインリレーSMRGが設けられている。さらに、負極側システムメインリレーSMRGと並列に、起動用システムメインリレーSMRPと抵抗Rとの直列回路が接続されている。起動用システムメインリレーSMRPが電流制限リレーに相当する。これら3個のシステムメインリレーSMRB、SMRG、SMRPは、それぞれ、リレースイッチとリレーコイルとを有する。
3個のシステムメインリレーSMRB、SMRG、SMRPは、後述する第1の演算装置13及び/又は第2の演算装置14からの第1のリレー制御信号及び/又は第2のリレー制御信号によってリレーコイルにリレー駆動信号が通電されると、リレースイッチを遮断状態から導通状態に切り換える。例えば、第1のリレー手段としての、正極側及び負極側システムメインリレーSMRB、SMRGの各々のリレースイッチが導通状態に切り替えられると、高電圧バッテリ5とインバータ30とが電気的に接続され、高電圧バッテリ5からインバータ30へ高電圧を供給すること、及びインバータ30によって直流に変換された電流によって高電圧バッテリ5を充電することが可能となる。逆に、正極側及び負極側システムメインリレーSMRB、SMRGが導通状態であるときに、第1のリレー制御信号及び/又は第2のリレー制御信号が停止してリレー駆動信号が通電されなくなると、各々のシステムメインリレーSMRB、SMRGは遮断状態に切り替えられる。この場合、高電圧バッテリ5とインバータ30とは電気的に遮断される。
電子制御装置10は、高電圧バッテリ5よりも低い電圧を発生する車載バッテリ4から供給される電力を用いて動作し、例えばインバータ30を構成する各スイッチング素子を駆動するための駆動信号(例えば、PWM信号)を指示する指示信号を出力したり、各々のシステムメインリレーSMRB、SMRG、SMRPへリレー駆動信号を出力したりする。
電子制御装置10は、図1に示すように、入力回路11、12、第1の演算装置13、第2の演算装置14、CAN(登録商標、以下同様)通信回路15、監視IC16、出力回路17、18、及び、電源回路19などを備えている。
入力回路11、12は、例えば、増幅回路、サンプリング回路、A/D変換回路などの入力処理を行うための回路を備えている。そして、入力回路11は、ブレーキペダルセンサ1、アクセルペダルセンサ2、車速センサ、レゾルバ、車両の起動スイッチ3などの各種のセンサやスイッチからの信号の入力処理を行って第1の演算装置13に出力する。同様に、入力回路12も、各種センサやスイッチからの入力処理を行い、第2の演算装置14に出力する。さらに、入力回路12は、平滑コンデンサ32から信号を入力し、平滑コンデンサ32に充電されている電圧の大きさを示す信号を第2の演算装置14に出力するように構成されている。なお、第1の演算装置13と第2の演算装置14とで個別に入力回路11、12を設けるのではなく、第1の演算装置13と第2の演算装置14とで、同じ入力回路を共用してもよい。第1の演算装置13及び第2の演算装置14は、入力された各種のセンサやスイッチからの信号に基づいて、後述するインバータ制御やリレー制御を実行する。
ブレーキペダルセンサ1は、ブレーキペダルの踏み込み力を検出する。この踏み込み力は、たとえば、ブレーキ油圧から検出してもよい。もしくは、ブレーキペダルの踏み込み力としてブレーキペダルの踏み込み量を検出してもよい。アクセルペダルセンサ2は、アクセルペダルの踏み込み量を検出する。車速センサは、車両の走行速度すなわち車速を検出する。レゾルバは、走行用モータ31が備えるロータの機械角を検出する。これらのセンサからの信号は、直接、電子制御装置10に入力されてもよいが、他のECUから電子制御装置10に提供されてもよい。
CAN通信回路15は、第1の演算装置13又は第2の演算装置14から出力される、インバータ30の各スイッチング素子を駆動するための駆動信号を指示する指示信号をインバータ30に送信する。インバータ30では、受信した指示信号に応じた駆動信号を生成し、その駆動信号を用いて各スイッチング素子をオン、オフ駆動する。なお、第1の演算装置13及び第2の演算装置14が、例えば駆動信号としてのPWM信号を生成し、直接、インバータ30の各スイッチング素子に出力するように構成してもよい。
第1の演算装置13は、CPU、RAM、ROM、I/O、およびこれらの構成を接続するバスラインなどを備えたコンピュータを有する。この第1の演算装置13は、CPUが、RAMの一時記憶機能を利用しつつ、ROMなどの非遷移的実体的記録媒体(non-transitory tangible storage medium)に記憶されているプログラムを実行することで、インバータ制御機能や、3個のシステムメインリレーSMRB、SMRG、SMRPに対するリレー制御機能を発揮するように構成されている。これらの機能が発揮されることにより、プログラムに対応する方法が実行される。
第2の演算装置14も、第1の演算装置13と同様に、CPU、RAM、ROM、I/O、およびこれらの構成を接続するバスラインなどを備えたコンピュータを有する。また、第2の演算装置14も、CPUがROMに記憶されているプログラムを実行することで、インバータ制御機能、正極側及び負極側システムメインリレーSMRB、SMRGに対するリレー制御機能に加え、第1の演算装置13の監視機能を発揮するように構成されている。例えば、第2の演算装置14による監視機能は、第1の演算装置13から定期的に出力されるサービスパルスの間隔を計時するウォッチドッグ機能を採用してもよい。あるいは、第2の演算装置14による監視機能は、第1の演算装置13におけるインバータ制御のための指示信号と、自身が算出した指示信号とを対比して、その差異が基準値内に収まっているか否かを判定する手法を採用してもよい。
ただし、本実施形態では、第2の演算装置14が有するコンピュータの演算処理能力は、第1の演算装置13が有するコンピュータの演算処理能力よりも低い。そのため、通常は、第1の演算装置13がインバータ制御機能を実行して走行用モータ31を駆動し、第2の演算装置14は、インバータ制御機能を停止しつつ、第1の演算装置13の動作が正常であるかを監視する監視機能を作動させるよう、それぞれプログラムされている。そして、第2の演算装置14が、その監視機能により第1の演算装置13の動作が異常であると判定すると、第2の演算装置14は、第1の演算装置13に代わって、インバータ制御機能を実行する。この際、第2の演算装置14は、例えば走行用モータ31により車両を安全なエリアまで走行させるためのいわゆる縮退走行が可能となるように、第1の演算装置13に比較して簡易的なインバータ制御を実行するようにプログラムされている。ただし、第2の演算装置14は、第1の演算装置13と同等の演算処理能力を備え、第1の演算装置13と同様のインバータ制御を行うように構成してもよい。
第2の演算装置14が第1の演算装置13の動作は異常であると決定した場合、第2の演算装置14は、第1の演算装置13に継続的にリセット信号を出力する。このため、第2の演算装置14がインバータ制御を実行するときに、第1の演算装置13からインバータ制御のための指示信号が出力されることはない。このようにして、本実施形態では、第1の演算装置13と第2の演算装置14との双方から、同時に、インバータ制御のための指示信号が出力されることを防止している。
各システムメインリレーSMRB、SMRG、SMRPに対するリレー制御機能に関しては、車両の走行中に、インバータ30への電力供給が途絶えることを確実に防止すべく、第1の演算装置13と第2の演算装置14とが、車両の起動から停止までの間、ともに実行するようにプログラムされている。第1及び第2の演算装置13、14による各々のシステムメインリレーSMRB、SMRG、SMRPに対するリレー制御に関しては、後に詳細に説明する。
監視IC16は、いわゆるASIC(Application Specific Integrated Circuit)であり、第2の演算装置14が正常に動作しているかどうかを監視する。例えば、監視IC16は、第2の演算装置14から定期的に出力されるサービスパルスの間隔を計時するウォッチドッグタイマーとして構成される。この場合、監視IC16は、計時時間がサービスパルスの出力予定間隔を超えた場合、第2の演算装置14の動作が異常とみなし、第2の演算装置14へリセット信号を出力する。一方、第2の演算装置14から出力予定間隔で定期的にサービスパルスが出力されている場合には、監視IC16は、第2の演算装置14の動作が正常であることを示す正常信号を第2の演算装置14に出力する。なお、監視IC16による第2の演算装置14の動作の監視手法は、上述した手法に限られず、適用できるかぎり、公知のいかなる監視手法を用いてもよい。
第2の演算装置14は、自身の監視機能によって第1の演算装置13の動作異常を判定したとき、監視IC16から自身が正常に動作していることを示す監視結果(正常信号)を受信しているか確認する。そして、監視IC16から正常信号を受信していることが確認できた場合、第2の演算装置14は、第1の演算装置13の動作が異常であることを決定する。このように、本実施形態の電子制御装置10は監視IC16を有しているので、例えば第2の演算装置14の動作異常に起因して、第1の演算装置13が正常に動作しているにも拘らず、第2の演算装置14が誤って第1の演算装置13の動作異常と決定してしまうことを防止することができる。
出力回路17は、第1の演算装置13が各システムメインリレーSMRB、SMRG、SMRPの接続シーケンスを実行するために、第1の演算装置13から出力される第1リレー制御信号に応じて、各々のシステムメインリレーSMRB、SMRG、SMRPへリレー駆動信号を出力する。より具体的には、出力回路17は、正極側システムメインリレーSMRBにリレー駆動信号を出力するための出力部としての第1トランジスタTr1と、起動用システムメインリレーSMRPにリレー駆動信号を出力するための出力部としての第2トランジスタTr2と、負極側システムメインリレーSMRGにリレー駆動信号を出力するための出力部としての第3トランジスタTr3とを有する。第1の演算装置13は、第1リレー制御信号として、第1~第3トランジスタTr1~Tr3をオンするための駆動信号をそれぞれ出力する。
さらに、出力回路17は、第1トランジスタTr1のソースと正極側システムメインリレーSMRBとを接続する接続線において、出力回路18の出力が合流する合流地点よりも第1トランジスタTr1のソース側に挿入されたダイオードD1を有している。また、出力回路17は、第3トランジスタTr3のソースと負極側システムメインリレーSMRGとの接続線において、出力回路18の出力が合流する合流地点よりも第3トランジスタTr3のソース側に挿入されたダイオードD2を有している。これらのダイオードD1、D2は、出力回路18からの電流の回り込みを防止するために設けられている。
そして、それぞれのダイオードD1、D2の両端電位を計測するために、ダイオードD1、D2の両端にそれぞれモニタ線の一端が接続され、それらのモニタ線の他端は、第1の演算装置13及び第2の演算装置14のポートA~Dに接続されている。具体的には、ダイオードD1のアノード側に一端が接続されたモニタ線の他端は、第1の演算装置13及び第2の演算装置14のポートAに接続されている。ダイオードD1のカソード側に一端が接続されたモニタ線の他端は、第1の演算装置13及び第2の演算装置14のポートCに接続されている。ダイオードD2のアノード側に一端が接続されたモニタ線の他端は、第1の演算装置13及び第2の演算装置14のポートBに接続されている。ダイオードD2のカソード側に一端が接続されたモニタ線の他端は、第1の演算装置13及び第2の演算装置14のポートDに接続されている。
第1の演算装置13及び第2の演算装置14は、ポートA~Dから取り込んだダイオードD1、D2の両端電位を用いて、出力回路17から出力されるリレー駆動信号を監視し、その監視結果に基づき、第1トランジスタTr1のオフ故障や、第3トランジスタTr3のオフ故障を検出する。例えば、第1トランジスタTr1が導通している状態からオフ故障した場合、第1トランジスタTr1から正極側システムメインリレーSMRBへ流れていた電流が遮断される。この場合、正極側システムメインリレーSMRBのリレーコイルによる誘起電圧によって、ダイオードD1のアノード電圧Vaよりもカソード電圧Vcの方が大きくなる場合がある。そのため、第1の演算装置13及び第2の演算装置14は、Va<Vcとなったとの監視結果をもって、第1トランジスタTr1のオフ故障を検出することができる。あるいは、第1の演算装置13及び第2の演算装置14は、ダイオードD1のアノード電圧Vaとカソード電圧Vcとの電位差が、ダイオードD1による順方向降下電圧に合致しないとの監視結果をもって、第1トランジスタTr1のオフ故障を検出してもよい。第1の演算装置13及び第2の演算装置14は、同様にして、第2トランジスタTr2のオフ故障も検出することができる。
出力回路18は、第2の演算装置14から出力される第2リレー制御信号に応じて、正極側及び負極側システムメインリレーSMRB、SMRGへリレー駆動信号を出力する。具体的には、出力回路18は、正極側システムメインリレーSMRBにリレー駆動信号を出力するための出力部としての第4トランジスタTr4と、負極側システムメインリレーSMRGにリレー駆動信号を出力するための出力部としての第5トランジスタTr5とを有する。第2の演算装置14は、第2リレー制御信号として、第4及び第5トランジスタTr4、Tr5をオンするための駆動信号をそれぞれ出力する。このように、第2の演算装置14からの第2リレー制御信号に従って、各システムメインリレーSMRB、SMRGにリレー駆動信号を出力する通電回路である出力回路18は、起動用システムメインリレーSMRPに対してリレー駆動信号を出力するための構成を有していない。
出力回路18の第4トランジスタTr4のソースからの出力は、出力回路17の第1トランジスタTr1と正極側システムメインリレーSMRBとを接続する接続線に接続される。出力回路18は、第4トランジスタTr4のソースからの出力が上記接続線に接続される合流地点よりも第4トランジスタTr4のソース側に、ダイオードD3を有している。同様に、出力回路18の第5トランジスタTr5のソースからの出力は、第3トランジスタTr3と負極側システムメインリレーSMRGとを接続する接続線に接続される。出力回路18は、第5トランジスタTr5のソースからの出力が上記接続線に接続される合流地点よりも第5トランジスタTr5のソース側に、ダイオードD4を有している。これらのダイオードD3、D4は、出力回路17からの電流の回り込みを防止するために設けられている。なお、図1には示していないが、出力回路18についても、ダイオードD3、D4の両端の電位を第1の演算装置13及び第2の演算装置14に取り込んで、各トランジスタTr4、Tr5のオフ故障を検出するようにしてもよい。
電源回路19は、電源IC20と、OR回路21と、トランジスタ22と、リレー回路23とを備えている。この電源回路19は、車両の起動スイッチ3がオフされても、第1の演算装置13及び第2の演算装置14を含む電子制御装置10内の各回路に電源供給を継続可能とするために設けられている。
電源IC20は、車載バッテリ4より常時電源が供給されており、起動スイッチ3がオフされたときにも動作可能である。電源IC20は、第1の演算装置13及び/又は第2の演算装置14からの電源供給指示信号を受けている間、後述するOR回路21に対して、トランジスタ22をオンするためのオン信号を出力する。
OR回路21には、上述した電源IC20から出力されるオン信号の他に、起動スイッチ3を介して、車載バッテリ4からの電圧信号が入力される。OR回路21の出力は、リレー回路23のコイルに接続されたトランジスタ22のベースに接続されている。OR回路21は、電源IC20からのオン信号と車載バッテリ4からの電圧信号の少なくとも一方が入力されると、ハイレベル信号を出力する。OR回路21からハイレベル信号が出力されることによって、トランジスタ22がオンする。すると、リレー回路23のコイルに電流が流れて、リレー回路23の接点がオンする。これにより、図1に示すように、出力回路17、18の他、第1の演算装置13及び第2の演算装置14を含む電子制御装置10内の各回路へ電源が供給され、各回路は動作可能となる。なお、出力回路17、18については、起動スイッチ3を介して電源が供給される構成であってもよい。
一方、OR回路21に、電源IC20からのオン信号と車載バッテリ4からの電圧信号のいずれも入力されなくなると、OR回路21からの出力信号がローレベルになる。すると、トランジスタ22がオフするので、リレー回路23のコイルへの通電が停止する。その結果、リレー回路23の接点がオフして、電子制御装置10内の各回路への電源供給が停止する。なお、図1に示す例では、電源回路19は、電子制御装置10内に設けられているが、電源回路19は、電子制御装置10の外部に設けられてもよい。
また、図1に示すように、起動スイッチ3を介しての車載バッテリ4からの電圧信号は、入力回路11、12にも与えられる。これにより、第1の演算装置13及び第2の演算装置14は、起動スイッチ3がオフされたことを検出することができる。第1の演算装置13及び第2の演算装置14は、起動スイッチ3がオンされて電源供給が開始されると、電源IC20に対して、電源供給指示信号を出力する。これにより、起動スイッチ3がオフされても、第1の演算装置13及び第2の演算装置14を含む電子制御装置10内の各回路は動作を継続することができる。
次に、上記した構成を有する電子制御装置10において、第1の演算装置13及び第2の演算装置14にて実行される制御処理を図2、図4、図6のフローチャート、及び図3、図5、図7のタイミングチャートなどを参照しつつ説明する。図2に示すフローチャートは、第1の演算装置13と第2の演算装置14とが連携して実行する処理を示している。
まず、最初のステップS100において、第1及び第2の演算装置13,14は、車両の起動スイッチ3がオンされたか否かを判定する。起動スイッチ3がオンされたと判定すると、上述したように、第1及び第2の演算装置13、14は、電源IC20に対して、電源供給指示信号を出力する。そして。処理は、次のステップS110に進む。一方、起動スイッチ3がオンされていない場合には、起動スイッチ3がオンされるまで、ステップS100の処理が繰り返される。
ステップS110では、第2の演算装置14が、第1の演算装置13は正常に動作しているか否かを判定する。この判定処理において、第1の演算装置13が正常に動作していると判定すると、ステップS130の処理に進む。一方、第1の演算装置13が正常に動作していないと判定すると、ステップS120の処理に進む。なお、ステップS120の「異常時処理1」の詳細は、後に、図6のフローチャートを参照して詳細に説明する。
ステップS130では、第1の演算装置13が、第1トランジスタTr1をオンするための駆動信号を出力する。それにより、正極側システムメインリレーSMRBのリレーコイルに電流が通電され、正極側システムメインリレーSMRBのリレースイッチがオンされる。次に、ステップS140において、第1の演算装置13は、第2トランジスタTr2をオンするための駆動信号を出力する。それにより、起動用システムメインリレーSMRPのリレーコイルに電流が通電され、起動用システムメインリレーSMRPのリレースイッチがオンされる。第1の演算装置13が第2トランジスタTr2へ駆動信号を出力するタイミングは、正極側システムメインリレーSMRBがオンされてから所定時間(例えば、100~150ms)後に起動用システムメインリレーSMRPがオンするように設定される。
正極側システムメインリレーSMRBと起動用システムメインリレーSMRPがオンされることにより、高電圧バッテリ5とインバータ30とが電気的に接続され、両者の間に電流が流れる。ただし、起動用システムメインリレーSMRPには直列に抵抗Rが接続されている。このため、起動時の突入電流により、起動用システムメインリレーSMRPがオンされた直後から大きな電流が流れることを抑制することができ、リレー接点の溶着等の不具合の発生を防止することができる。そして、抑制された電流が通電されることにより、図3のタイミングチャートに示すように、平滑コンデンサ32の電圧は、緩やかに高圧バッテリ電圧に向けて上昇する。
次に、ステップS150において、第1の演算装置13は、第3トランジスタTr3をオンするための駆動信号を出力する。それにより、負極側システムメインリレーSMRGのリレーコイルに電流が通電され、負極側システムメインリレーSMRGのリレースイッチがオンされる。第1の演算装置13が第3トランジスタTr3へ駆動信号を出力するタイミングも、起動用システムメインリレーSMRPがオンされてから所定時間(例えば、100~150ms)後に負極側システムメインリレーSMRGがオンするように設定される。
続くステップS160では、第1の演算装置13は、第2トランジスタTr2へ出力していた駆動信号を停止して第2トランジスタTr2をオフする。これにより、起動用システムメインリレーSMRPがオフされる。第2トランジスタTr2への駆動信号を停止するタイミングは、負極側システムメインリレーSMRGがオンされてから所定時間(例えば、20~30ms)後に起動用システムメインリレーSMRPがオフとなるように設定される。
そして、ステップS170において、第2の演算装置14が、第4トランジスタTr4及び第5トランジスタTr5をオンするための駆動信号をそれぞれ出力する。より詳しくは、第1の演算装置13は、例えば、第2トランジスタTr2をオフした後、第2の演算装置14に対して、正極側及び負極側システムメインリレーSMRB、SMRGは導通状態である旨を通知する。この通知に基づき、第2の演算装置14は、第4及び第5トランジスタTr4、Tr5をオンするための駆動信号をそれぞれ出力する。これにより、第2の演算装置14は、正極側及び負極側システムメインリレーSMRB、SMRGが導通状態であることを確認した上で、第4及び第5トランジスタTr4、Tr5をオンすることができる。
その結果、正極側システムメインリレーSMRBのリレーコイルへの通電は、第1トランジスタTr1を経由する系統と、第4トランジスタTr4を経由する系統との2系統で行われることになる。また、負極側システムメインリレーSMRGのリレーコイルへの通電は、第3トランジスタTr3を経由する系統と、第5トランジスタTr5を経由する系統との2系統で行われることになる。従って、例えば、どちらか1系統のトランジスタがオフ故障しても、正極側及び負極側システムメインリレーSMRB、SMRGのオン状態を維持することができる。さらに、例えば第1の演算装置13に異常が生じて、第2の演算装置14によってリセットがかかり、第1の演算装置13から第1及び第3トランジスタTr1、Tr3をオンするための駆動信号(第1リレー制御信号)が出力されなくなっても、第2の演算装置14から出力される駆動信号(第2リレー制御信号)により、第4及び第5トランジスタTr4、Tr5はオンしたままとすることができる。このため、第1の演算装置13の異常発生時にも、正極側及び負極側システムメインリレーSMRB、SMRGのオン状態は維持することができる。この結果、上述したような故障や異常が生じても、走行用モータ31を駆動するインバータ30へ継続して電力を供給することができる。
なお、第2の演算装置14は、必ずしも第4及び第5トランジスタTr4、Tr5を同時にオンする必要はない。例えば、第2の演算装置14は、第1の演算装置13が正極側システムメインリレーSMRBをオンした後の任意のタイミングで第4トランジスタTr4をオンさせることができる。同様に、第2の演算装置14は、第1の演算装置13が負極側システムメインリレーSMRGをオンした後の任意のタイミングで第5トランジスタTr5をオンさせることができる。
上述したステップS130及びS140の処理により、正極側システムメインリレーSMRBと起動用システムメインリレーSMRPがオンされて、抑制された電流により平滑コンデンサが充電される状態(図3における「プリチャージ」)となる。また、ステップS150及びS160の処理によりが、正極側システムメインリレーSMRBと負極側システムメインリレーSMRGがオンされ、システムメインリレーSMRの状態は、図3の「導通」状態となる。SMR状態が、「プリチャージ」を経て「導通」状態になると、車両は、走行用モータ31を駆動力源として走行可能となる。
続くステップS180では、第2の演算装置14が、第1の演算装置13の動作は正常であるかどうかを判定する。この判定処理において、第2の演算装置14は、上述したように、自身の監視機能により第1の演算装置13の動作が異常である旨判定し、かつ、監視IC16から正常信号を受信している場合に、第1の演算装置13の動作は異常であると決定する。それ以外の場合、第2の演算装置14は、第1の演算装置13の動作は正常であると決定する。ステップS180の処理で、第1の演算装置13の動作は正常と判定すると、ステップS190の処理に進む。一方、第1の演算装置13の動作は異常と判定すると、ステップS200の処理に進む。なお、ステップS200の「異常時処理2」の詳細は、後に、図5のフローチャートを参照して詳細に説明する。
ステップS190では、第1の演算装置13がインバータ制御を実行する。この場合、第2の演算装置14も正常に動作していれば、車両の走行中、正極側システムメインリレーSMRBのリレーコイルには、第1トランジスタTr1を経由する系統と、第4トランジスタTr4を経由する系統との2系統から通電が行われる。また、負極側システムメインリレーSMRGのリレーコイルには、第3トランジスタTr3を経由する系統と、第5トランジスタTr5を経由する系統との2系統から通電が行われる。従って、インバータ30には、高電圧バッテリ5から走行用モータ31を駆動するための電力が供給されている状態となっている。その状態において、第1の演算装置13は、入力した各種のセンサに基づき、走行用モータ31が発生すべき目標トルクを算出する。そして、その目標トルクを発生させるための駆動信号を示す指示信号をインバータ30に出力する。これにより、走行用モータ31は、通常走行制御として、運転者によるアクセルペダル操作やブレーキペダル操作に対応したトルクを発生することができる。
続くステップS210では、第1の演算装置13は、車両の起動スイッチ3がオフされたか否かを判定する。起動スイッチ3がオフされたと判定した場合、ステップS220の処理に進む。一方、起動スイッチ3がオフされていないと判定した場合、走行用モータ31の制御を継続するため、ステップS180の処理に戻る。
ステップS220では、負極側システムメインリレーSMRGをオフするために、第1の演算装置13は第3トランジスタTr3への駆動信号を停止し、第2の演算装置14は第5トランジスタTr5への駆動信号を停止する。これらの駆動信号の停止は、第1及び第2の演算装置13、14においてほぼ同時期に行われる。この結果、負極側システムメインリレーSMRGがオフされる。
次に、ステップS230において、正極側システムメインリレーSMRBをオフするために、第1の演算装置13は第1トランジスタTr1への駆動信号を停止し、第2の演算装置14は第4トランジスタTr4への駆動信号を停止する。これらの駆動信号の停止は、第1及び第2の演算装置13、14においてほぼ同時期に行われる。この結果、正極側システムメインリレーSMRBがオフされる。これにより、システムメインリレーSMRの状態は、図3のタイミングチャートに示す「遮断」状態になる。
さらに、ステップS240において、第1の演算装置13は、平滑コンデンサ32に充電された高電圧を急速に放電するための放電処理を実行する。具体的には、例えば、第1の演算装置13は、放電処理として、走行用モータ31のいずれか1相のモータコイルを介して平滑コンデンサ32の両端が接続されるように、インバータ30におけるスイッチング素子の所定のペアをオンさせる指示信号を所定時間出力する。これにより、モータコイルを抵抗成分として平滑コンデンサ32から電流が流れるため、平滑コンデンサ32の電圧は、図3のタイミングチャートに示すように、急速に0Vまで低下する。この結果、通常制御終了後に、平滑コンデンサ32に蓄積されていた高電圧を即座に解消することができる。なお、上述の場合、図1に示すごとく、インバータ30及び走行用モータ31が放電回路としての役割を果たし、第1の演算装置13が放電制御部としての役割を果たす。しかしながら、放電回路として、インバータ30および走行用モータ31を利用するのではなく専用の放電回路を設けてもよい。また、第1の演算装置13ではなく、第2の演算装置14が放電制御部としての役割を果たしてもよい。あるいは、放電制御部として、第1及び第2の演算装置13、14とは別に、専用の制御部を設けてもよい。
次に、図1のフローチャートにおけるステップS200の「異常時処理2」について、図4のフローチャートを参照して詳しく説明する。
「異常時処理2」は、上述したように、第1の演算装置13が通常走行制御を実施している途中で、第1の演算装置13の動作が異常と判定されたときに実行されるものである。このとき、少なくとも第2の演算装置14から第2リレー制御信号が出力されており、正極側及び負極側システムメインリレーSMRB、SMRGはオンされている。すなわち、システムメインリレーSMRの状態は、図5のタイミングチャートに示すように「導通」状態であり、インバータ30には電源が供給されている。従って、第2の演算装置14は、車両の走行を継続するためには、第1の演算装置13からインバータ制御を引き継げばよい。
第2の演算装置14は、第1の演算装置13からインバータ制御を引き継ぐために、まず、ステップS300において、第1の演算装置13に異常が発生したことを、メータクラスターに設けた警告灯の点灯などによってユーザに通知する。続くステップS310において、第2の演算装置14は、第1の演算装置13に継続的にリセット信号を出力する。これにより、第2の演算装置14がインバータ制御を実行するときに、第1の演算装置13からインバータ制御のための指示信号が出力されることを防止する。
なお、第1の演算装置13は、第2の演算装置14によって継続的にリセットされることにより、第1トランジスタTr1への駆動信号と第3トランジスタTr3への駆動信号も停止することになる。しかし、第2の演算装置14による、第4トランジスタTr4を経由する系統からのリレーコイルへの通電により、正極側システムメインリレーSMRBは導通状態を維持することができ、第5トランジスタTr5を経由する系統からのリレーコイルへの通電により、負極側システムメインリレーSMRGは導通状態を維持することができる。従って、インバータ30に高電圧バッテリ5から走行用モータ31を駆動するための電力が供給される状態が維持される。その状態において、第2の演算装置14は、ステップS320において、入力した各種のセンサに基づき、走行用モータ31により車両を安全なエリアまで走行させるためのいわゆる縮退走行を行うためのインバータ制御を実行する。これにより、第1の演算装置13に異常が発生しても、車両がその時点で停車してしまうことを防ぐことが可能となる。
続くステップS330では、第2の演算装置14は、正極側及び負極側システムメインリレーSMRB、SMRGを即座に遮断する必要があるかどうかを判定する。より具体的には、第2の演算装置14は、高電圧バッテリ5や平滑コンデンサ32などの回路の高電圧部分が外部に露出される可能性がある状況か否かに基づき、即座に遮断する必要があるかどうかを判定する。例えば、第2の演算装置14は、自車両が何らかに衝突したことを判定する、もしくは、他の演算装置からその旨の情報を受信した場合に、その衝突により高電圧部分が露出される可能性があると判定することができる。また、第2の演算装置14は、点検や整備などのサービス作業のために、高電圧部分を覆っているカバーをロックしているインターロックが解除されたことを検出したとき、高電圧部分が露出される可能性があると判定することができる。ステップS330において、即座に遮断する必要があると判定されると、第2の演算装置14は、ステップS340の処理に進む。一方、即座に遮断する必要はないと判定されると、第2の演算装置14は、ステップS370の処理に進む。
ステップS340において、第2の演算装置14は、負極側システムメインリレーSMRGをオフするために、第5トランジスタTr5への駆動信号を停止する。さらに、ステップS350において、第2の演算装置14は、正極側システムメインリレーSMRBをオフするために、第4トランジスタTr4への駆動信号を停止する。これにより、システムメインリレーSMRの状態は、「遮断」状態になる。さらに、ステップS360において、第2の演算装置14は、平滑コンデンサ32に充電された高電圧を急速に放電するための放電処理を実行する。これにより、平滑コンデンサ32に蓄積されていた高電圧を即座に解消して、高電圧部分が外部に露出された場合に、感電などの事態の発生を防止する。
一方、ステップS370では、第2の演算装置14は、車両の起動スイッチ3がオフされたか否かを判定する。起動スイッチ3がオフされたと判定した場合、ステップS380の処理に進む。一方、起動スイッチ3がオフされていないと判定した場合、縮退走行制御を継続するため、ステップS300の処理に戻る。
ステップS380では、第2の演算装置14は、負極側システムメインリレーSMRGをオフするために、第5トランジスタTr5への駆動信号を停止する。さらに、ステップS390において、第2の演算装置14は、正極側システムメインリレーSMRBをオフするために、第4トランジスタTr4への駆動信号を停止する。ただし、この場合、図5のタイミングチャートに示すように、放電処理は行わず、平滑コンデンサ32の高電圧を保持する。つまり、第1の演算装置13に異常が生じているとき、換言すると、第2の演算装置14が第1の演算装置13からインバータ制御を引き継いでいるときに、起動スイッチ3がオフされた場合には、放電処理を実施しないのである。なお、平滑コンデンサ32の高電圧は、図5のタイミングチャートに示すように、自然放電によって緩やかに低下していく。
平滑コンデンサ32に高電圧が保持されている状態で、起動スイッチ3が再びオンされた場合、第1の演算装置13の異常が継続していると、図2のフローチャートのステップS100及びS110の処理を経て、ステップS120の「異常時処理1」が実行される。以下に、「異常時処理1」の詳細を、図6のフローチャートを参照して説明する。
まず、ステップS400では、第1の演算装置13に異常が発生したことを、メータクラスターに設けた警告灯の点灯などによってユーザに通知する。そして、ステップS410において、第2の演算装置14は、第1の演算装置13に継続的にリセット信号を出力する。
続くステップS420では、平滑コンデンサ32に保持されている電圧が、高電圧バッテリ5の電圧を基準として定められる再起動許可電圧よりも大きいか否かが判定される。平滑コンデンサ32の電圧が再起動許可電圧よりも大きければ、正極側及び起動用システムメインリレーSMRB、SMRPを導通状態としてプリチャージを行わずに、直接、正極側及び負極側システムメインリレーSMRB、SMRGを導通状態としても、リレー接点の溶着等の不具合の発生を招くような大電流が流れる虞は低い。そのため、第1の演算装置13に異常が発生していると判定されたとき、第2の演算装置14による正極側及び起動用システムメインリレーSMRB、SMRP(第1のリレー手段)の接続条件として、平滑コンデンサ32の電圧が、再起動許可電圧よりも大きいか否かを判定するのである。再起動許可電圧よりも大きいと判定された場合には、ステップS430の処理に進み、再起動許可電圧以下であると判定された場合には、ステップS510の処理に進む。
なお、正極側及び起動用システムメインリレーSMRB、SMRPの接続条件は、上記の再起動許可電圧より大きいとの条件に限られない。例えば、接続条件として、自然放電による平滑コンデンサ32に保持される高電圧の低下速度に基づき、再接続許可時間を定めてもよい。そして、起動スイッチ3がオフされてからオンされるまでの時間が、再接続許可時間未満であれば、平滑コンデンサ32の電圧は接続条件を満たしているとみなしてもよい。
ステップS430では、第2の演算装置14は、正極側及び負極側システムメインリレーSMRB、SMRGを即座に遮断する必要があるかどうかを判定する。この判定処理は、前述した図4のフローチャートのステップS330と同様である。このように、本実施形態では、第1の演算装置13の異常時に、車両の起動スイッチ3がオフされ、その後、起動スイッチ3がオンされたとき、第2の演算装置14は、正極側及び負極側システムメインリレーSMRB、SMRGを即座に遮断する必要があるかどうかの判定、つまり、高電圧部分が外部に露出される可能性がある状況であるか否かの判定を、正極側及び負極側システムメインリレーSMRB、SMRGを導通状態に切り替える前に実行する。このため、サービス作業が行われる際などに、より安全を確保しやすくなる。ステップS430において、即座に遮断する必要はないと判定された場合ステップS440の処理に進み、即座に遮断する必要があると判定された場合ステップS510の処理に進む。
ステップS440では、第2の演算装置14は、正極側システムメインリレーSMRBをオンするために、第4トランジスタTr4へ駆動信号を出力する。さらに、ステップS450において、第2の演算装置14は、負極側システムメインリレーSMRGをオンするために、第5トランジスタTr5への駆動信号を出力する。これにより、図5のタイミングチャートに示すように、システムメインリレーSMRの状態は、「導通」状態となる。また、平滑コンデンサ32の電圧は、自然放電によって僅かに低下していた状態から、高電圧バッテリ5の電源電圧に向けて急速に充電される。ただし、このときに流れる電流量はそれほど大きくはないので、リレー接点の溶着等の不具合が発生する虞は生じない。
ステップS460~S500までの処理は、図4のフローチャートのステップS320~S390までの処理とほぼ同様であるため、説明を省略する。ステップS460~S500までの処理により、起動スイッチ3がオンされた直後から、第2の演算装置14が縮退走行制御を実施している間に、何らかの理由で起動スイッチ3がオフされても、平滑コンデンサ32には高電圧が保持されるようになっている。従って、さらに起動スイッチ3がオンされた場合にも、第2の演算装置14による縮退走行制御により、車両を走行させることが可能となる。また、車両の走行中に、衝突などによって、高電圧部分が外部に露出される可能性がある状況が発生した場合には、速やかに、正極側及び負極側システムメインリレーSMRB、SMRGを遮断状態に切り替えるとともに、放電処理を実行することができる。
一方、上述したステップS420において、平滑コンデンサ32の電圧が再起動許可電圧以下であると判定された場合に実行されるステップS510では、第2の演算装置14は、第5トランジスタTr5への駆動信号を停止する(あるいは、すでに停止している状態を維持する)。また、ステップS520において、第2の演算装置14は、第4トランジスタTr4への駆動信号を停止する(あるいは、すでに停止している状態を維持する)。さらに、ステップS530において、第2の演算装置14は、図7のタイミングチャートに示すように、放電処理を実行する。これにより、平滑コンデンサ32の電圧は、図7のタイミングチャートに示すように、急速に0Vまで低下する。このような処理により、平滑コンデンサ32の電圧が再起動許可電圧以下となっている場合、第2の演算装置が、正極側及び負極側システムメインリレーSMRB、SMRGを接続することが回避される。
このように、本実施形態の電子制御装置10によれば、起動スイッチ3がオフされ、その後、起動スイッチ3がオンされたとき、第2の演算装置14は、平滑コンデンサ32の電圧が正極側及び負極側システムメインリレーSMRB、SMRGの接続条件を満たしているか判定する。そして、第2の演算装置14は、平滑コンデンサ32の電圧が接続条件を満たしていると判定すると、正極側及び負極側システムメインリレーSMRB、SMRGを導通状態とする。これにより、走行用モータ31を駆動するインバータ30へ電源が供給される。従って、第2の演算装置14は、インバータ制御信号により車両の走行を制御することが可能となる。
以上、本発明の好ましい実施形態について説明したが、本発明は上述した実施形態になんら制限されることなく、本発明の主旨を逸脱しない範囲において、種々変形して実施することが可能である。
上述した実施形態による電子制御装置10では、出力回路18が、正極側システムメインリレーSMRBへリレー駆動信号を出力するための第4トランジスタTr4と、負極側システムメインリレーSMRGへリレー駆動信号を出力するための第5トランジスタTr5とを有していた。しかしながら、出力回路18において、正極側システムメインリレーSMRBへリレー駆動信号を出力するためのトランジスタと、負極側システムメインリレーSMRGへリレー駆動信号を出力するためのトランジスタとを、1つのトランジスタによって兼用してもよい。これにより、出力回路18の構成をシンプルにすることができる。
また、上述した実施形態による電子制御装置10では、第1の演算装置13からの第1リレー制御信号に応じてリレー駆動信号を出力する出力回路17と、第2の演算装置14からの第2リレー制御信号に応じてリレー駆動信号を出力する出力回路18とがそれぞれ設けられていた。しかしながら、1つの出力回路が、第1の演算装置13と第2の演算装置14とで共用されてもよい。換言すると、正極側システムメインリレーSMRBへリレー駆動信号を出力するための第1共用トランジスタの同じゲートに、第1の演算装置13からの駆動信号線と第2の演算装置14からの駆動信号線を接続し、負極側システムメインリレーSMRGへリレー駆動信号を出力するための第2共用トランジスタの同じゲートにも、第1の演算装置13からの駆動信号線と第2の演算装置14からの駆動信号線を接続するようにしてもよい。このような構成によっても、第1の演算装置13に異常が発生した場合に、高電圧バッテリ5からインバータ30への電力の供給ができなくなる事態の発生を回避することができる。
また、上述した実施形態では、高電圧バッテリ5とインバータ30との間に、起動時には、正極側システムメインリレーSMRBと起動用システムメインリレーSMRPとの2つのリレーを介在させ、走行中には、正極側システムメインリレーSMRBと負極側システムメインリレーSMRGとの2つのリレーを介在させていた。しかしながら、起動時および走行中に介在させるリレーの数は1個であってもよい。この場合、起動時は、高電圧バッテリ5とインバータ30との間に、抵抗が直列に接続されたシステムメインリレーを介在させて電流を制限し、走行中には、抵抗が接続されていないシステムメインリレーを介在させればよい。
本明細書に記載の演算装置及びその手法は、コンピュータプログラムにより具体化された一つ乃至は複数の機能を実行するようにプログラムされたプロセッサ及びメモリを構成することによって提供された専用コンピュータにより、実現されてもよい。あるいは、本明細書に記載の演算装置及びその手法は、一つ以上の専用ハードウエア論理回路によってプロセッサを構成することによって提供された専用コンピュータにより、実現されてもよい。もしくは、本明細書に記載の演算装置及びその手法は、コンピュータプログラムを実行する一つ乃至は複数の機能を実行するようにプログラムされたプロセッサ及びメモリと一つ以上のハードウエア論理回路によって構成されたプロセッサとの組み合わせにより構成された一つ以上の専用コンピュータにより、実現されてもよい。また、コンピュータプログラムは、コンピュータにより実行されるインストラクションとして、コンピュータ読み取り可能な非遷移有形記録媒体に記憶されていてもよい。
1:ブレーキペダルセンサ、2:アクセルペダルセンサ、3:起動スイッチ、4:車載バッテリ、5:高電圧バッテリ、10:電子制御装置、11、12:入力回路、13:第1の演算装置、14:第2の演算装置、15:CAN通信回路、17、18:出力回路、19:電源回路、30:インバータ、31:走行用モータ、32:平滑コンデンサ、SMRB:正極側システムメインリレー、SMRG:負極側システムメインリレー、SMRP:起動用システムメインリレー

Claims (10)

  1. 車両に搭載された高電圧バッテリ(5)と、車両走行用モータ(31)を駆動するインバータ(30)とが、電気的に導通した導通状態と、電気的に非導通となる遮断状態とに切り換え可能なリレー手段(SMRB、SMRG、SMRP)を備えた前記車両に適用される電子制御装置(10)であって、
    前記リレー手段は、前記車両が走行する間、導通状態に維持される第1のリレー手段(SMRB、SMRG)と、前記車両の起動スイッチ(3)がオンされる起動時に導通状態となって、前記高電圧バッテリと前記インバータとの間に、前記第1のリレー手段が導通状態となったときに流れる電流よりも制限された電流を流す第2のリレー手段(SMRB、SMRP)と、を含み、
    前記インバータには、前記高電圧バッテリから前記リレー手段を介して供給される電圧によって充電され、前記車両走行用モータを駆動するための電源電圧を安定化させる平滑コンデンサ(32)が設けられており、
    前記インバータに対してインバータ制御信号を出力することにより前記車両走行用モータを駆動して前記車両の走行を制御するとともに、前記車両の起動スイッチがオンされた起動時に前記第2のリレー手段を導通状態とし、その後、前記第2のリレー手段に代えて前記第1のリレー手段を導通状態に切り換えるとともに前記第1のリレー手段を導通状態に維持するように、前記第1及び第2のリレー手段を制御する第1の演算装置(13)と、
    前記第1の演算装置とは独立して設けられ、前記第1の演算装置の異常時に前記第1の演算装置に代わって前記車両の走行を制御するために、前記インバータに対してインバータ制御信号を出力するとともに、前記第1のリレー手段を導通状態とするためのリレー制御信号を出力する第2の演算装置(14)と、を備え、
    前記第1の演算装置の異常時に前記車両の起動スイッチがオフされ、その後、前記車両の起動スイッチがオンされたとき、前記第2の演算装置は、前記平滑コンデンサの電圧が、前記第1のリレー手段の接続条件を満たしているか判定し、満たしていると判定した場合、前記第1のリレー手段にリレー制御信号を出力して、前記第1のリレー手段を導通状態とし、前記インバータ制御信号により前記車両の走行を制御可能とする電子制御装置。
  2. 前記平滑コンデンサに充電された電荷を放電させる放電処理を実施する放電手段(13、14、30、31)を備え、
    前記放電手段は、前記第1の演算装置の正常時に前記車両の起動スイッチがオフされた場合、前記放電処理を実施して、即座に前記平滑コンデンサの電荷を放電させる一方で、前記第1の演算装置の異常時に前記車両の起動スイッチがオフされた場合には、前記放電処理を実施しない請求項1に記載の電子制御装置。
  3. 前記第2の演算装置は、前記第1の演算装置の異常時に前記車両の起動スイッチがオフされ、その後、前記車両の起動スイッチがオンされたときに、前記平滑コンデンサの電圧が、前記第1のリレー手段の接続条件を満たしていないと判定した場合、前記放電手段に前記放電処理を実施させる請求項2に記載の電子制御装置。
  4. 前記放電手段は、
    前記平滑コンデンサの両端を抵抗成分を介して接続する放電回路(30、31)と、
    前記放電回路中に設けられたスイッチ素子をオン、またはオフする放電制御部(14)と、を備え、
    前記放電制御部は、少なくとも前記第2の演算装置が兼ねる請求項2に記載の電子制御装置。
  5. 前記第2の演算装置は、高電圧部分が外部に露出される可能性がある状況か否かを判定し、高電圧部分が外部に露出される可能性がある状況と判定した場合、前記放電手段に前記放電処理を実施させる請求項2に記載の電子制御装置。
  6. 前記第1の演算装置の異常時に前記車両の起動スイッチがオフされ、その後、前記車両の起動スイッチがオンされたとき、前記第2の演算装置は、前記高電圧部分が外部に露出される可能性がある状況であるか否かの判定を、前記第1のリレー手段を導通状態に切り替える前に実行する請求項5に記載の電子制御装置。
  7. 前記第2の演算装置は、前記高電圧部分が外部に露出される可能性がある状況であるか否かの判定を、前記第1のリレー手段を導通状態に切り替えた後に実行し、高電圧部分が外部に露出される可能性がある状況と判定した場合、前記放電手段に前記放電処理を実施させることに加え、前記第1のリレー手段を遮断状態にする請求項5に記載の電子制御装置。
  8. 前記第2の演算装置は、前記平滑コンデンサの電圧が、前記高電圧バッテリの電圧を基準とする所定電圧以上である場合に、前記第1のリレー手段の接続条件が満たされていると判定する請求項1乃至7のいずれか1項に記載の電子制御装置。
  9. 前記第2の演算装置は、前記第1の演算装置の動作が正常であるかを監視する監視機能を有し、
    前記第2の演算装置は、前記第1の演算装置の動作が異常と決定すると、前記第1の演算装置にリセットをかけるとともに、前記第1の演算装置に代わって、インバータ制御を実行する請求項1乃至8のいずれか1項に記載の電子制御装置。
  10. 前記第1のリレー手段は、前記高電圧バッテリの正極側と前記インバータとの間に設けられた正極側リレー(SMRB)と、前記高電圧バッテリの負極側と前記インバータとの間に設けられた負極側リレー(SMRG)とを含み、
    前記第2のリレー手段は、前記高電圧バッテリの正極側と前記インバータとの間に設けられた正極側リレー(SMRB)と、前記高電圧バッテリの負極側と前記インバータとの間に設けられ、抵抗が直列に接続された電流制限リレー(SMRP)とを含む請求項1乃至9のいずれか1項に記載の電子制御装置。
JP2019108102A 2019-06-10 2019-06-10 電子制御装置 Active JP7147691B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2019108102A JP7147691B2 (ja) 2019-06-10 2019-06-10 電子制御装置
US16/893,618 US11305669B2 (en) 2019-06-10 2020-06-05 Electronic control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019108102A JP7147691B2 (ja) 2019-06-10 2019-06-10 電子制御装置

Publications (2)

Publication Number Publication Date
JP2020202662A JP2020202662A (ja) 2020-12-17
JP7147691B2 true JP7147691B2 (ja) 2022-10-05

Family

ID=73650320

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019108102A Active JP7147691B2 (ja) 2019-06-10 2019-06-10 電子制御装置

Country Status (2)

Country Link
US (1) US11305669B2 (ja)
JP (1) JP7147691B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210143535A (ko) * 2020-05-20 2021-11-29 주식회사 엘지에너지솔루션 릴레이 제어 장치 및 방법

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005176580A (ja) 2003-12-15 2005-06-30 Nissan Motor Co Ltd 電気車の制御装置
JP2006166495A (ja) 2004-12-02 2006-06-22 Nissan Motor Co Ltd インバータ制御装置
JP2012060841A (ja) 2010-09-13 2012-03-22 Denso Corp 車両用電子制御装置
JP2016100965A (ja) 2014-11-20 2016-05-30 トヨタ自動車株式会社 電動車両

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3145313B2 (ja) 1996-07-08 2001-03-12 株式会社日立製作所 電気自動車制御装置
JP2008206288A (ja) 2007-02-20 2008-09-04 Toyota Motor Corp 車両制御装置、車両制御方法及び車両制御プログラム
JP6365112B2 (ja) * 2014-08-20 2018-08-01 株式会社デンソー 車載電動機用の制御装置
JP6664363B2 (ja) * 2017-10-27 2020-03-13 本田技研工業株式会社 電力供給装置及び車両
JP2019161991A (ja) 2018-03-16 2019-09-19 株式会社デンソー 電子制御装置
JP6965830B2 (ja) * 2018-05-24 2021-11-10 トヨタ自動車株式会社 車両用電源装置
JP7172499B2 (ja) 2018-11-26 2022-11-16 株式会社デンソー 電子制御装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005176580A (ja) 2003-12-15 2005-06-30 Nissan Motor Co Ltd 電気車の制御装置
JP2006166495A (ja) 2004-12-02 2006-06-22 Nissan Motor Co Ltd インバータ制御装置
JP2012060841A (ja) 2010-09-13 2012-03-22 Denso Corp 車両用電子制御装置
JP2016100965A (ja) 2014-11-20 2016-05-30 トヨタ自動車株式会社 電動車両

Also Published As

Publication number Publication date
JP2020202662A (ja) 2020-12-17
US11305669B2 (en) 2022-04-19
US20200384890A1 (en) 2020-12-10

Similar Documents

Publication Publication Date Title
CN108454544B (zh) 电源系统
JP7172499B2 (ja) 電子制御装置
US11458844B2 (en) Power supply system for vehicle
JP5526613B2 (ja) 車両用電源供給制御装置、及び車両用電源供給制御方法
JP6378267B2 (ja) 車両
JP2010200455A (ja) 自動車および平滑コンデンサの放電方法
JP2012086591A (ja) シリーズ式ハイブリッド車両の制御装置
WO2017203807A1 (ja) ブレーキシステムおよび電動ブレーキ駆動装置
US11919579B2 (en) Power supply system
JP7147691B2 (ja) 電子制御装置
JP2019071754A (ja) モータ駆動制御装置及びモータ電力供給線の異常検知方法
JP2019161991A (ja) 電子制御装置
WO2015190421A1 (ja) 電子制御装置
JP4166669B2 (ja) 車両用電力制御装置
CN114123458A (zh) 电源装置
JP2010154594A (ja) 電子制御システムの故障診断装置
JP6224530B2 (ja) 油圧供給装置
JP6819193B2 (ja) 車両の充電システム
JP6151944B2 (ja) 給電システム
US11077754B2 (en) In-vehicle control apparatus and program
JP2013091424A (ja) 電子制御装置
US10291157B2 (en) Controller for electric rotating machine that interrupts a current flow to an inverter
JP2020015339A (ja) 故障検出装置
JP2014141112A (ja) 電源システム
WO2023095342A1 (ja) 電源システム及び電源システムの制御方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210825

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210825

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220809

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220823

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220905

R151 Written notification of patent or utility model registration

Ref document number: 7147691

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151