JP7127247B2 - 粒子センサ、および粒子濃度を測定する方法 - Google Patents

粒子センサ、および粒子濃度を測定する方法 Download PDF

Info

Publication number
JP7127247B2
JP7127247B2 JP2019544063A JP2019544063A JP7127247B2 JP 7127247 B2 JP7127247 B2 JP 7127247B2 JP 2019544063 A JP2019544063 A JP 2019544063A JP 2019544063 A JP2019544063 A JP 2019544063A JP 7127247 B2 JP7127247 B2 JP 7127247B2
Authority
JP
Japan
Prior art keywords
particle
particle sensor
gas phase
sensor structure
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019544063A
Other languages
English (en)
Other versions
JP2020510821A (ja
Inventor
マイアー、ガンサー
クレイナー、ルドルフ
コック、アントン
Original Assignee
マテリアルズ センター レオーベン フォルシャン ゲーエムベーハー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by マテリアルズ センター レオーベン フォルシャン ゲーエムベーハー filed Critical マテリアルズ センター レオーベン フォルシャン ゲーエムベーハー
Publication of JP2020510821A publication Critical patent/JP2020510821A/ja
Application granted granted Critical
Publication of JP7127247B2 publication Critical patent/JP7127247B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume, or surface-area of porous materials
    • G01N15/06Investigating concentration of particle suspensions
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume, or surface-area of porous materials
    • G01N15/06Investigating concentration of particle suspensions
    • G01N15/0606Investigating concentration of particle suspensions by collecting particles on a support
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume, or surface-area of porous materials
    • G01N15/02Investigating particle size or size distribution
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume, or surface-area of porous materials
    • G01N15/02Investigating particle size or size distribution
    • G01N15/0255Investigating particle size or size distribution with mechanical, e.g. inertial, classification, and investigation of sorted collections
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume, or surface-area of porous materials
    • G01N2015/0038Investigating nanoparticles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume, or surface-area of porous materials
    • G01N2015/0042Investigating dispersion of solids
    • G01N2015/0046Investigating dispersion of solids in gas, e.g. smoke

Description

本発明は、気相中の粒子を、特にその濃度を測定する装置に関し、少なくとも1つの粒子センサ構造が設けられる。
さらに本発明は、このような装置の利用法に関する。
さらに本発明は、気相中の粒子を、特にその濃度を測定する方法に関し、装置を、特に冒頭に述べた種類の装置を有している。
従来技術より、気相中の粒子濃度を検出する装置が知られている。公知の測定システムは、たとえば粒子がセンサに堆積したときの導電性の変化を測定する抵抗性の粒子センサである。これに加えて圧電結晶をベースとする測定システムが知られており、同じく粒子がセンサに堆積しなければならない。さらに、気相の粒子での光散乱が粒子濃度の決定のために利用される光学式の測定システムが知られている。
このような装置で欠点となるのは、一方では、測定時に少なくとも部分的に粒子の堆積が起こり、このことが粒子センサの再生をコスト高にし、または粒子センサの耐用寿命を短くすることにある。他方では、たとえば光源を含む光学系などの、高いコストのかかる高価な構造が必要となることがある。測定結果に対する大きな粒子の影響が、小さい粒子に比べて高くなることも頻繁にある。
したがって本発明の課題は、少なくとも粒子濃度の高感度で確実な測定のために、洗浄コストや再生コストが削減され、製造に関して低コストであるとともにほぼメンテナンスフリーであるコンパクトな粒子センサを提供することにある。
本発明のさらに別の目的は、本発明による装置の利用法を提供することにある。
本発明のさらに別の課題は、使用される粒子センサの洗浄コストが最小化される、少なくとも粒子濃度を測定するための高感度で確実な方法を提供することにある。
この課題は本発明により、冒頭に述べた種類の装置において、流動通路が設けられ、この流動通路を通して気相を案内可能であり、粒子センサ構造は、流動通路を通って流れる気相を測定するために位置決めされた少なくとも1つのセンサを有することによって解決される。このとき気相は、たとえば微細ダスト(たとえばPM10,PM2.5)、超微細ダストなどの粒子を運ぶことができる。
本発明による装置によって実現される1つの利点は、特に、粒子を運ぶ気相を、流動通路を通して、粒子センサ構造のすぐそばを通るように案内できるという点に見ることができる。それによってコンパクトな、特に小型化された構造が可能となり、装置がさらに大きな流動システムの一部として構成されていなくてもよく、ただしそのように構成されていてもよい。
少なくとも1つの粒子センサ構造が流動通路の領域に、好ましくは流動通路の内部および/または表面に位置決めされることが意図されていてよい。粒子センサ構造は流動通路の内面に位置決めされるのが特別に好ましい。それにより、非常にコンパクトな設計形態で、粒子を運ぶ気相が必然的に粒子センサ構造のそばを流れることが保証される。その代替として、粒子センサ構造が流動通路の端部に後続して位置決めされていてよい。
少なくとも1つの粒子センサ構造のセンサが加熱部材として、特に少なくとも1つの温度センサを有する、好ましくはそれぞれ温度センサを有する加熱部材として構成されると好ましい。温度センサは加熱部材に直接的に組み込まれるのが好ましい。それにより、加熱部材を特定の温度にすることが可能であり、加熱部材の温度の変化を測定可能であり、および/または加熱部材の温度を一定に保つことができることが保証される。それぞれ個々の加熱部材の温度を別々に測定可能であり、そのために相応の手段が設けられるのも好ましい。粒子センサ構造の加熱部材はサイズに関して変更することができ、たとえばマイクロヒートプレートやナノ加熱部材として、たとえばナノワイヤとして構成されていてよい。温度センサはたとえば熱電対またはサーモエレメント、ダイオードなどとして構成されていてよい。
少なくとも1つの粒子センサ構造のセンサがそれぞれ少なくとも1つのナノワイヤを有していると、好ましい場合があり得る。ナノワイヤはたとえば当たった粒子によって振動させることができ、その後にこの振動を、たとえば圧電効果を利用したうえで測定可能である。その代替として、ナノワイヤの導電性を測定可能であってもよい。
粒子サイズに依存して粒子濃度を測定するために、粒子センサ構造のセンサがアレイとして、好ましくは線形のアレイとして配置されると好ましく、センサがチップの上に配置されるのが好ましい。このとき、一方ではセンサは一列に配置されていてよく、他方ではそのような列が複数でたとえば並列に配置されていてよい。チップの上へのセンサの配置によって、特別にコンパクトな、特に小型化された設計形態が可能となる。
たとえば気相などの流体を流動通路を通して案内するために、少なくとも1つの流体加速手段が設けられていると好ましい。少なくとも1つの流体加速手段は、たとえば流動通路の前および/または後に配置されていてよい。その代替として、少なくとも1つの流体加速手段は流動通路の内部および/または表面に位置決めされていてよい。流体加速手段はたとえばファン、ベンチレータなどであってよい。
少なくとも1つの流体加速手段は加熱装置として構成されるのが特別に好ましく、加熱装置は少なくとも1つの加熱部材と好ましくは温度センサとを有し、少なくとも1つの加熱部材はチップの上に配置されるのが好ましい。このとき、たとえば加熱装置は気相を流動通路の中で加熱し、特にその気体粒子および/または気体分子を加速させ、それによって熱による対流が生じ、気相が煙突効果に従って流動通路を通って流れる。1つまたは複数の加熱部材を一定の温度に保つために温度センサが設けられていてよく、そのために必要な加熱出力を測定することができ、または、たとえば一定の加熱出力のもとで、1つまたは複数の加熱部材の温度変化を測定することができる。その代替として、温度の的確な変化を、たとえば温度ランプを生起することもでき、そのために必要な出力を測定することができる。そのために基本的に任意の出力上昇、たとえば連続的、段階的、もしくは鋸刃状の上昇を生成することができる。各々の加熱部材についてそれぞれ1つの温度センサが設けられるのが特別に好ましい。チップの上への加熱部材の配置によって加熱装置が特別にコンパクトに、特に小型化して構成されていてよい。加熱装置はたとえば粒子センサ構造と類似または同一の構成となっていてよく、加熱装置ではさらに高い動作温度が意図される。このとき加熱部材はたとえばマイクロヒートプレートとして構成されていてよい。
少なくとも1つの偏向装置が設けられていると好ましく、少なくとも1つの偏向装置は流動通路の領域に、特別に好ましくは流動通路の内部および/または表面に位置決めされる。このような偏向装置は、気相および/または気相中の粒子を粒子センサ構造に向かって誘導するために設けられていてよい。偏向装置は、たとえば流動通路の中で斜めに配置されたプレートのような案内部材として構成されていてよい。その代替または追加として、粒子を偏向させるための静電場を生成する装置が設けられていてもよい。
少なくとも1つの偏向装置は少なくとも1つの粒子センサ構造に向かい合うように位置決めされるのが特別に好ましく、それにより、気相および/または気相中の粒子を簡単な仕方により粒子センサ構造に向かって誘導可能である。このような偏向装置は、たとえば加熱装置として構成されていてよい。それによって流動通路の中で温度勾配が生じることができ、気相中の粒子が熱泳動により粒子センサ構造に向かって偏向される。
流動速度を減速させないために、流動通路の第1の開口部が第2の開口部と少なくとも同じ大きさの、特にこれよりも大きい断面積を有していると好ましい。たとえば流動通路が流動方向で連続的および/または段階的に先細になるように構成されることが意図されていてよい。このとき流動方向は第1の開口部から第2の開口部へと定義され、気相の流入は第1の開口部を通して行われ、気相の流出は第2の開口部を通して行われる。このとき粒子は気相によって共に運ばれる。
粒子の堆積を防止するために、少なくとも1つの粒子センサ構造は少なくとも部分的にコーティング、たとえば付着防止コーティングを有することが意図されていてよい。これに加えて、流動通路および/または加熱装置も付着防止コーティングを有することができる。このようなコーティングの付着作用が温度依存的であるのが好ましい場合があり得る。それに応じて測定をするために、コーティングが、付着作用が高くなり粒子が粒子センサ構造に付着する温度にされる。再生をするために、コーティングを、付着作用が低くなり粒子が粒子センサ構造から剥離する別の温度にすることができる。後者の場合、コーティングは付着防止コーティングとしての役目を果たす。電気泳動効果を回避するために、コーティングが静電気防止コーティングとして構成されていてもよい。このようなコーティングは、他のコーティングに追加して設けられていてもよい。温度はたとえば加熱部材または少なくとも1つの冷却装置によって、たとえばペルチエ素子によって、調整することができる。連続式の測定を保証するために、複数のセンサでたとえばセンサペアが設けられることが意図されていてもよく、それぞれ1つのセンサが再生されて、1つのセンサが測定動作になる。その代替として2つの粒子センサ構造が設けられていてもよく、そのつど1つの粒子センサ構造が再生され、それに対して他方が測定動作になる。
加熱部材を制御するための少なくとも1つの制御ユニットが設けられると好ましい。それにより、加熱装置および/または粒子センサ構造の加熱部材を一定の温度に保つことができ、および/または一定の出力で作動させることができる。このとき周囲への熱放出は粒子濃度に依存し、したがって一定の出力での作動時には、加熱部材の温度の変化が粒子濃度に依存する。さらに制御ユニットは、測定結果に対応できるようにするために、またはそれに応じて加熱出力を適合化するために、読取・評価ユニットを含むことができ、または読取・評価ユニットと接続することができる。
本発明の別の目的は、気相中の粒子濃度を測定するための本発明による装置の利用法で達成される。
本発明の別の目的は、冒頭に述べた種類の方法において、特に粒子を運ぶ気相が流動通路を通るように案内され、気相中の粒子が少なくとも部分的に特に的確に、少なくとも1つのセンサを有する少なくとも1つの粒子センサ構造に向かって案内され、少なくとも1つの物理量が、たとえば少なくとも1つの温度の変化および/または振動が少なくとも1つのセンサによって測定されることによって達成される。このとき測定は、たとえば弾性表面波測定(SAW)や圧電薄膜共振子(FBAR)など、さまざまな測定原理に依拠することができる。その代替として、容量式または静電式の測定として測定を行うこともできる。物理量の測定のさらに別の選択肢は圧電効果の活用にある。
本発明の方法によって得られる利点は、特に、少なくとも1つのセンサで、または測定のために使用される装置のその他の部品で、粒子の堆積が起こらないという点に見ることができる。
少なくとも1つの粒子センサ構造の少なくとも1つのセンサが200℃よりも低い温度に、特に50℃から150℃の間の温度に、特別に好ましくは約100℃に加熱されると好ましい。
粒子センサ構造の少なくとも1つのセンサは少なくとも一時的に一定の出力で加熱され、もしくは暖められるのが特別に好ましい。それにより、センサ温度または粒子センサ構造の加熱部材の温度が粒子濃度に依存して変化することが可能である。たとえば粒子がセンサに当たるとセンサが冷却される。加熱出力は一定のままであるのに対して、熱が粒子に運び出されるからである。このような温度の変化を測定することができる。温度の変化から、粒子濃度を判定することができる。パルス動作のとき、またはは少なくとも一時的に一定の出力での動作のとき、たとえば加熱部材を特定の時間帯の間一定の出力で加熱することができ、またはインターバルをおいて加熱することができる。その代替として、加熱部材を階段状の出力上昇をもって加熱することもでき、それぞれの段階で出力が一定に保たれる。
粒子の熱泳動または熱拡散を引き起こすために、少なくとも1つの加熱装置が少なくとも1つの粒子センサ構造よりも高い温度に、たとえば少なくとも200℃に、特に230℃から400℃の範囲内の温度に、好ましくは250℃から350℃の範囲内の温度に、特別に好ましくは約300℃にされると好ましい。加熱装置が粒子センサ構造よりも高い温度を有しているとき、加熱装置から粒子センサ構造へと温度勾配が延びていき、この温度勾配に沿って熱泳動効果が生じ、その際に、気相中の粒子が粒子センサ構造の方向へと偏向される。
粒子濃度をサイズ依存的に測定できるようにするために、複数のセンサの信号が互いに別々に読み取られると好ましい。たとえば個々のセンサまたは加熱部材の温度を読み取って分析することができる。それに応じて粒子濃度をそれぞれ個々のセンサについて決定し、その後に、気相中の粒子の濃度を気相中の粒子のサイズに依存して決定することができる。
堆積した粒子を粒子センサ構造から取り除くために、粒子センサを洗浄するために粒子センサの加熱部材が少なくとも200℃、特に250℃から400℃の範囲内の温度、特別に好ましくは300℃にされると好ましい。このとき加熱装置が作動していないか、または200℃よりも低い温度にされると、熱泳動効果の逆転を行うことができ、それによって粒子が粒子センサ構造から離れるように案内される。その代替として、粒子をセンサ表面から剥離するために、またはは粒子を燃焼するために、粒子センサ構造で高い温度を設定することもできる。これに加えてセンサ冷却のための装置、たとえばペルチエ素子が設けられていてよい。
以下において、本発明について詳細に説明する。その際に参照する図面には次のものが示されている。
本発明による装置を示す断面図である。 代替的な実施形態を示す断面図である。 装置の別の代替的な実施形態である。 流動通路を示す模式図である。 加熱部材を示す模式図である。 加熱部材の別の実施形態である。 加熱部材の別の実施形態である。 加熱部材を示す断面図である。 チップの写真である。 出力変化の考えられるモードを示す模式図である。
図1aは、本発明による装置1の断面図を示している。装置1は、流動通路2と、加熱装置3と、粒子センサ構造4とを含んでおり、少なくとも1つの部材21が流動通路を構成する。これに加えて図1aは、破線で図示する、たとえば隆起部31として構成されていてよい任意選択の偏向装置を示している。このような偏向装置は、種類および/または機能形態に応じて、流動通路2のさまざまな位置に配置されていてよい。偏向装置の機能形態はたとえば機械式であってよく、それは、気相の流れを偏向させる隆起部31、凹部、および/または偏向プレートが設けられることによる。その代替として偏向装置の機能形態は、たとえば熱泳動効果などのこれ以外の効果に依拠することができる。そのために、加熱装置3が偏向装置としての役目を果たすことができる。本実施形態では、第1の開口部5は第2の開口部6よりも大きい断面積を有している。両方の開口部5,6は、ここでは長方形の断面を有している。第1の開口部5の辺の長さ、特に短いほうの辺の長さは基本的に任意に、好ましくは20mmよりも短く、特に3mmから5mmで構成されていてよい。流動通路2の第2の開口部6の辺の長さ、特に短いほうの辺の長さは基本的に任意に、好ましくは10mmよりも短く、特に1mmから2mmで構成されていてよい。開口部5,6が円形状である場合、これらの辺の長さはそれぞれ開口部5,6の直径に相当する。第1の開口部5を通って気相が、たとえば粒子を運ぶ周囲空気が、流動通路2の中に入ることができる。そのために、第1の開口部5は流動配管系を介して、たとえば管および/またはホースを介して、周囲と接続されることが意図されていてよく、それにより、気相を周囲から、たとえば側方および/または上方から追加案内し、またはは吸い込むことができる。気相はその後の過程で、流動通路2の他方の端部のところで、第2の開口部6を通って再び流動通路2から外に出る。流動方向は、一般に、第1の開口部5から第2の開口部6へと延びている。流動方向は垂直方向であるのが好ましいが、水平方向であってもよく、それは特に、流動通路2がさらに大きな流動システムの一部である場合である。流動通路2の高さは原則として任意であり、好ましくは50mmよりも小さく、特に10mmから25mmであってよい。
加熱装置3の領域では、加熱装置3と粒子センサ構造4との間に温度勾配が生じ、それによって気相中の粒子が熱泳動効果を受ける。それにより、加熱装置3が粒子に対する偏向装置として作用する。気相中の粒子の動きが図1aでは矢印で示唆されており、直径が大きい粒子は基本的に短い矢印に従い、それに対して直径が小さい粒子は基本的に長い矢印に従う。それに応じて、矢印の長さは粒子の直径と相関関係にある。粒子の平均直径は、典型的には0.1μmから5μmの間である。それに応じて熱泳動は、大きい粒子を小さい粒子よりも強く偏向させる。それによって流動方向で粒子のサイズ分別が生じるので、このような装置1で粒子濃度をサイズ依存的に測定することができる。そのために、粒子センサ構造4が線形のアレイとして構成されていると好ましく、個々のセンサが流動方向に沿って配置される。このとき各センサが一列に配置されると好都合であり、複数の列が相並んで配置されていてよい。それに応じて大きい粒子は第1の開口部5の近くに位置決めされたセンサに向かって誘導され、小さい粒子は第1の開口部5からさらに離れて第2の開口部6の近くにあるセンサに向かって誘導される。
図1bに示す実施形態では、流動通路2はシリコン貫通電極(Through-Silicon-Via)として構成されている。複数の基板、好ましくはシリコンウェーハが相上下して積層されるこのような取り組みにより、装置1をウェーハスケールで提供することができる。このとき流動通路2はサブミリメートル範囲の直径、たとえば10μmから250μmの間、特に約80μmの直径を有することができる。このようなウェーハスケールの装置1では流動通路2の高さが明らかに縮小される。たとえばこの高さはシリコンウェーハのオーダーであり、たとえば1mmまたはこれ以下である。本実施例では、第1の開口部5と第2の開口部6の断面積は実質的に等しい大きさである。このような流動通路2を作成するために、シリコン貫通電極をシリコンの少なくとも1つの層にエッチングすることができる。これに加えて、さらに長い流動通路2を構成するために、シリコンの複数の層が相上下して積層されていてよい。さらに同じくシリコンの上に、またはこれに接して装着され、または取り付けられた加熱装置3ならびに粒子センサ構造4が設けられている。加熱装置3と粒子センサ構造4はサイズと形状に関して、流動通路2の中で気相が周囲を流れることができるように構成される。加熱装置3と粒子センサ構造4は、そのためにたとえば図3aから図3cに示すような加熱プレート7またはバー11を含むことができる。図1bに示す実施例では、加熱装置3と粒子センサ構造4の間の温度勾配は下から上に向かって気相の流動方向に沿って延びており、したがって、サイズに応じた粒子の分別を行うことはできない。
図1cに示す実施形態では、流動通路2は同じくシリコン貫通電極を含んでおり、特にそれぞれ直径の異なるシリコン貫通電極を含んでいる。ここでは流動通路2は3つの区域を含んでおり、第1の区域は第2の区域によって第3の区域と結合される。第1および第3の区域は実質的に同じ構成となっていて、ほぼ等しい直径を有している。ただし第1および第3の区域のシリコン貫通電極は、互いにオフセットされて位置決めされている。流動方向はこれらの区域で垂直方向に延びている。第2の区域は、直径がこれよりも大きいシリコン貫通電極を含んでいる。流動方向はこの区域では水平方向に延びる。加熱装置3ならびに粒子センサ構造4は、ここでは第2の区域で互いに向き合うように水平方向に位置決めされる。温度勾配は、ここでは流動方向に対して実質的に垂直方向に延びるので、粒子のサイズ分別を行うことができる。
熱泳動によるサイズ分別を可能にするためには、一般に、加熱装置3と粒子センサ構造4が流動通路2のそれぞれ異なる側面に、好ましくは流動通路2の向かい合う側面に、特に互いに近似的に向き合うように位置決めされることが必要である。これに加えて温度勾配が流動方向を横切っていると好ましく、すなわち、温度勾配と流動方向が平行に延びるのではないと好ましい。温度勾配が流動方向に対してほぼ垂直方向に延びるのが特別に好ましい。ここで説明している実施形態は、サイズ分別をするための最小コンフィグレーションである。当然ながら装置1が、少なくとも1つの加熱装置3と少なくとも1つの粒子センサ構造4からなる任意の組み合わせを含むこともできる。
なお、図1aから図1cに示す実施形態は任意の向きであってよく、または回転させることができ、それによって流動方向が水平方向または垂直方向から相違する。
図2には、流動通路2の実施形態の模式図が示されている。流動通路2はその代替としてさらに大きい流動システムの一部であってもよく、流動通路2を介して外に出る気相を、流動通路2の周囲から再供給することができる。
図3aは、加熱部材7の実施形態の模式図を示しており、基板12に凹部8がエッチングされている。凹部8のほぼ中央に加熱プレート9が配置されている。凹部8はたとえば基板12の全面に及ぶことができ、その後に粒子センサ構造4または加熱部材3が図1bに示すように準備されていてよい。加熱プレート9はたとえば熱抵抗器として構成されていてよい。たとえば電流を加熱プレート9に通すことができる。これに加えて加熱プレート9の抵抗を測定することができる。図3aに示す加熱プレート9は正方形に構成されているが、これ以外の形状、たとえば長方形、多角形、あるいは円形または楕円形などが意図されていてもよい。加熱装置3の加熱プレート9はマイクロヒートプレートとして構成されていてよく、500μmよりも小さい、特に約5μmから100μmの辺の長さを有することができる。このような加熱プレートの厚みは50μmよりも小さく、特に約0.5μmから10μmであってよい。さらに、このような加熱プレート9は引込線アーム10と接続される。引込線アーム10はたとえば5μmよりも大きい、特に10μmから300μmの長さと、100μmよりも小さい、特に5μmから50μmの幅とを有することができる。引込線アーム10の厚みは50μmよりも小さく、特に約0.5から10μmであってよい。加熱装置3の加熱プレート9はそれぞれ異なるサイズを有することができ、すなわち、加熱装置3のすべての加熱プレート9が等しい大きさでなくてよい。同じことは、粒子センサ構造4の加熱プレート9にも当てはまる。これに加えて粒子センサ構造4の加熱プレート9は、加熱装置3の加熱プレート9よりも明らかに小さく、たとえばナノワイヤなどのナノ加熱部材として構成されていてよく、電流がこのようなナノ加熱部材に通されて、任意選択として電気抵抗を測定することができる。加熱プレート9は少なくとも部分的にシリコン、金属酸化物、たとえば酸化亜鉛、酸化銅、酸化タングステンなどの半導体材料、および/または白金などの金属から構成されていてよい。温度センサは、加熱プレート9や引込線アーム10と同じオーダーで構成されていてよい。
その代替として、図3bに示すように、2つの引込線アーム10だけが加熱プレート9まで設けられていてよい。2つの引込線アーム10は、図3bのように、180°の角度をなすことができる。当然ながら、2つの引込線アーム10がこれ以外の角度をなすこともでき、たとえば約90°の角度をなすことができる。任意の数の引込線アーム10が設けられることも考えられる。
その代替として、加熱プレート9の寸法が引込線アーム10の寸法と同じであってよい。それによって連続するバー11がもたらされる。このようなバー11が図3cに示されている。当然のことながら、このような複数のバー11が設けられていてもよい。複数のバー11は互いに平行に配置されるのが好ましい。このような種類のバー11は寸法設定に関して、すなわち幅、長さ、および厚みに関してそれぞれ相違していてよく、あるいは特に引込線アーム10と同じように構成されていてよい。バー11がナノワイヤ11として、サブマイクロメートル範囲の、特に10nmから500nmの間の幅および/または厚みを有するように構成されていてよいのが特別に好ましい。ナノワイヤはたとえばトランスファプロセスを通じて、たとえば析出や酸化によって、基板12または加熱プレート9に転移させることができる。加熱プレート9が電極を有することが意図されていてもよく、たとえばナノワイヤがそれぞれ2つの電極の間に配置されていてよい。それにより、たとえばそれぞれの電極の間の電気抵抗を測定し、それに伴ってたとえば温度効果を測定することができる。ナノワイヤは少なくとも部分的に金属酸化物から、たとえば酸化亜鉛から構成されるのが好ましい。
図3aから図3cに示す直線状の引込線アーム10および/またはバー11の代替として、引込線アーム10および/またはバー11が任意に、たとえば湾曲して、および/またはジグザグ状に延びることもできる。
図3dは加熱部材7を断面図で示しており、凹部8が基板12にエッチングされ、その上に連続するバー11が配置されている。
加熱部材7は、図3aから図3dに示すように、粒子センサ構造4および/または加熱装置3に設けられていてよい。
加熱装置3では加熱部材7が一定の温度に保たれ、好ましくは300℃に保たれ、それにより、たとえば熱による対流によって気相を流動通路2を通るように案内し、および/または温度勾配を生成する。そのために加熱装置3をたとえば1mW超、好ましくは5mWから20mW、特に約10mWで作動させることができ、所望の温度を一定に保つために出力が適合化されて、測定の過程で調節される。加熱部材7は均等に、たとえば直流電流で、またはパルス式に作動させることができる。
粒子センサ構造4の均等な動作のとき、加熱部材7は一定の出力で、たとえば1mWまたはこれ以上で作動して特定の温度にされ、たとえば100℃である所望の測定温度を実現するために出力が適合化される。測定の過程では、たとえば出力が一定に保たれる。温度の変化を温度センサによって検出することができる。温度の変化から、その後に粒子濃度を判定することができる。
図5は、加熱部材7を作動させるときの考えられるモードを示している。たとえば測定の過程を通じて出力が一定に保たれるべきである場合、このことは、区域14または15に示すように、パルス式または連続式に行うことができる。測定の過程を通じて出力が変更されるべきである場合、このことは、区域16に示すように、同じくパルス式に行うことができ、この場合、それぞれ特定の時間の間温度が一定に保たれる。その代替として、区域17に示すように、測定の過程を通じて出力の変更を連続的に行うことができる。それぞれの区域は任意の長さであってよく、異なる測定の途中および/または間で任意に組み合わされていてよい。個々のパルも同じく任意の長さであってよい。これに加えて、それぞれ2つのパルスの間にポーズが任意の長さであってよく、かつ特に省略されていてもよく、それによって出力の段階的な変更が行われる。変更可能な温度での動作のとき、またはそれぞれ異なる温度サイクルでの動作のとき、たとえば環境の影響、たとえば気相の湿度の影響や気相の相違する組成も判定することができ、それによって粒子濃度の測定を修正することができる。それにより、たとえば測定の精度を高めることができる。出力の変更は図5に示すモードに限定されるものではなく、たとえば鋸刃形状などのこれ以外の形態に従うこともできる。
粒子センサ構造4のパルス式の動作では、加熱部材7がたとえば200℃まで急速に、たとえば20ms以内に加熱される。事前設定された時間の後、典型的には数秒後、加熱部材7が再びスイッチオフされる。加熱時間と冷却時間はそのつど周囲への熱放出に依存し、すなわち粒子濃度に依存する。したがって加熱曲線および/または冷却曲線の勾配と形状から、粒子濃度を判定することができる。
別の実施形態では、ナノワイヤとして構成されたバー11を有する加熱部材7が粒子センサ構造4に設けられていてよい。このとき粒子濃度の判定は、同じく温度の変化を通じて行うことができる。その代替として、当たった粒子によってナノワイヤを振動させることができる。このとき粒子濃度は、圧電効果を活用したうえで決定することができる。
制御をするために、粒子センサ構造4の加熱部材7を測定動作に比べて高い一定の温度にし、たとえば300℃にすることができる。そのために、加熱部材7を加熱装置3の場合と同じように作動させることができる。
図4は、8つの加熱部材7を含むCMOS集積アレイを有するチップ13の写真を示している。このような種類のチップ13は、たとえば5mmの辺の長さを有することができる。
1つの実施形態では、測定の精度を高めるために、たとえば装置1の学習段階またはキャリブレーションが意図されていてもよい。差異測定を具体化するために、複数の装置1がたとえばマルチセンサプレートの上に設けられていてもよい。

Claims (21)

  1. 少なくとも1つの粒子センサ構造が設けられている、気相中の粒子を測定する装置において、流動通路が設けられ、この流動通路を通して気相を案内可能であり、前記粒子センサ構造は前記流動通路を通って流れる気相を測定するために位置決めされた少なくとも1つのセンサを有し、少なくとも1つの前記粒子センサ構造の前記センサはそれぞれ少なくとも1つの温度センサを有する加熱部材として構成され、前記加熱部材の温度が一定に維持可能であり、前記気相中の粒子の濃度に依存する前記加熱部材の温度の変化が測定可能である、装置
  2. 前記気相中の前記粒子の濃度を測定する、請求項1に記載の装置。
  3. 少なくとも1つの前記粒子センサ構造は前記流動通路の領域位置決めされる、請求項1または2に記載の装置。
  4. 前記粒子センサ構造の前記センサはそれぞれ少なくとも1つのナノワイヤを有する、請求項1から3のいずれか一項に記載の装置。
  5. 前記粒子センサ構造の前記センサはアレイとして配置され、前記センサはチップの上に配置される、請求項1からのいずれか1項に記載の装置。
  6. 少なくとも1つの流体加速手段が設けられる、請求項1からのいずれか1項に記載の装置。
  7. 少なくとも1つの前記流体加速手段は加熱装置として構成され、前記加熱装置は少なくとも1つの加熱部材と温度センサとを有し、少なくとも1つの前記加熱部材はチップの上に配置される、請求項に記載の装置。
  8. 少なくとも1つの偏向装置が設けられ、少なくとも1つの前記偏向装置は前記流動通路の領域に位置決めされる、請求項1からのいずれか1項に記載の装置。
  9. 少なくとも1つの前記偏向装置は少なくとも1つの前記粒子センサ構造と向かい合うように位置決めされる、請求項に記載の装置。
  10. 前記流動通路の第1の開口部は第2の開口部と少なくとも同じ大きさの断面積を有する、請求項1からのいずれか1項に記載の装置。
  11. 少なくとも1つの前記粒子センサ構造は少なくとも部分的にコーティングを有する、請求項1から10のいずれか1項に記載の装置。
  12. 加熱部材を制御するための少なくとも1つの制御ユニットが設けられる、請求項1から11のいずれか1項に記載の装置。
  13. 請求項1から10のいずれか1項に記載の装置の利用法において、気相中の粒子濃度を測定するための利用法。
  14. 相中の粒を測定する方法において、粒子を運ぶ気相が流動通路を通るように案内され、前記気相中の前記粒子が少なくとも部分的に、少なくとも1つのセンサを有する少なくとも1つの粒子センサ構造に向かって案内され、前記少なくとも1つのセンサは加熱部材として構成され、前記粒子センサ構造の少なくとも1つの前記センサは一定の出力で加熱され、前記粒子センサ構造の前記少なくとも1つのセンサの温度は前記気相中の粒子の濃度に依存して変化し、少なくとも1つの温度の変化が前記少なくとも1つのセンサを用いて測定される、方法。
  15. 前記気相中の前記粒子の濃度を測定する、請求項14に記載の方法
  16. 少なくとも1つの前記粒子センサ構造の少なくとも1つの前記センサは200℃よりも低い温度に加熱される、請求項14または15に記載の方法。
  17. 少なくとも1つの加熱装置が少なくとも1つの前記粒子センサ構造よりも高い温度にされる、請求項14から16のいずれか一項に記載の方法。
  18. 複数のセンサの信号が互いに別々に読み取られる、請求項14から17のいずれか1項に記載の方法。
  19. 前記粒子センサ構造を洗浄するために前記粒子センサ構造の加熱部材が少なくとも200℃にされる、請求項14から18のいずれか1項に記載の方法。
  20. 前記気相中の前記粒子が少なくとも部分的に、的確に、前記少なくとも1つの粒子センサ構造に向かって案内される、請求項14から19のいずれか一項に記載の方法。
  21. 請求項1から12のいずれか一項に記載の装置を用いる、請求項14から20のいずれか一項に記載の方法。
JP2019544063A 2017-03-14 2018-03-13 粒子センサ、および粒子濃度を測定する方法 Active JP7127247B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
ATA50204/2017A AT519716B1 (de) 2017-03-14 2017-03-14 Partikelsensor und Verfahren zur Messung von Partikelkonzentrationen
ATA50204/2017 2017-03-14
PCT/AT2018/060064 WO2018165689A1 (de) 2017-03-14 2018-03-13 Partikelsensor und verfahren zur messung von partikelkonzentrationen

Publications (2)

Publication Number Publication Date
JP2020510821A JP2020510821A (ja) 2020-04-09
JP7127247B2 true JP7127247B2 (ja) 2022-08-31

Family

ID=61832224

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019544063A Active JP7127247B2 (ja) 2017-03-14 2018-03-13 粒子センサ、および粒子濃度を測定する方法

Country Status (5)

Country Link
EP (1) EP3596445A1 (ja)
JP (1) JP7127247B2 (ja)
KR (1) KR102492249B1 (ja)
AT (1) AT519716B1 (ja)
WO (1) WO2018165689A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10948391B2 (en) * 2017-11-14 2021-03-16 Aerodyne Microsystems Inc., a Delaware Corporation Airborne particle detection system with orientation-dependent particle discrimination
CN110595971A (zh) * 2019-10-16 2019-12-20 恒天益科技(深圳)有限公司 一种超低粉尘仪
US20210123849A1 (en) * 2019-10-28 2021-04-29 Navpreet Singh Methods and devices for mems based particulate matter sensors

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003035651A (ja) 2001-07-19 2003-02-07 Kotobuki Giken Kogyo Kk 粒度測定装置及び粒度測定方法
JP2008261820A (ja) 2007-04-13 2008-10-30 Toyota Motor Corp 内燃機関の排気微粒子測定装置に関する。
US20130036793A1 (en) 2011-08-08 2013-02-14 University Of California Microfabricated particulate matter monitor
JP2015218580A (ja) 2014-05-14 2015-12-07 日野自動車株式会社 Pm検出装置
WO2016198321A1 (en) 2015-06-12 2016-12-15 Koninklijke Philips N.V. Particle sensor and particle sensing method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6123819A (en) * 1997-11-12 2000-09-26 Protiveris, Inc. Nanoelectrode arrays
WO2003046536A1 (en) * 2001-11-26 2003-06-05 Sony International (Europe) Gmbh The use of 1d semiconductor materials as chemical sensing materials, produced and operated close to room temperature
US7168292B2 (en) * 2003-05-15 2007-01-30 The Regents Of The University Of California Apparatus for particulate matter analysis

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003035651A (ja) 2001-07-19 2003-02-07 Kotobuki Giken Kogyo Kk 粒度測定装置及び粒度測定方法
JP2008261820A (ja) 2007-04-13 2008-10-30 Toyota Motor Corp 内燃機関の排気微粒子測定装置に関する。
US20130036793A1 (en) 2011-08-08 2013-02-14 University Of California Microfabricated particulate matter monitor
JP2015218580A (ja) 2014-05-14 2015-12-07 日野自動車株式会社 Pm検出装置
WO2016198321A1 (en) 2015-06-12 2016-12-15 Koninklijke Philips N.V. Particle sensor and particle sensing method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
DOINA LUTIC; ET AL,DETECTION OF SOOT USING A RESISTIVITY SENSOR DEVICE EMPLOYING THERMOPHORETIC PARTICLE DEPOSITION,JOURNAL OF SENSORS,米国,2010年12月31日,VOL:2010,PAGE(S):1 - 6,http://dx.doi.org/10.1155/2010/421072

Also Published As

Publication number Publication date
AT519716B1 (de) 2019-01-15
WO2018165689A1 (de) 2018-09-20
AT519716A1 (de) 2018-09-15
JP2020510821A (ja) 2020-04-09
KR20190127679A (ko) 2019-11-13
EP3596445A1 (de) 2020-01-22
KR102492249B1 (ko) 2023-01-27

Similar Documents

Publication Publication Date Title
JP7127247B2 (ja) 粒子センサ、および粒子濃度を測定する方法
US10948392B2 (en) Airborne particle detection system with thermophoretic scanning
US7360416B2 (en) Non-contact condensation detecting apparatus
JP5160631B2 (ja) 空気汚染センサシステム
JP5312590B2 (ja) 流動媒体のパラメータを決定するためのセンサ装置
US11841307B2 (en) Particulate matter sensor
EP1992917A3 (en) Thermal flowmeter
JP4152949B2 (ja) 液体状のマイクロシステムにおけるインピーダンスの測定方法
JP2020523601A (ja) 粒子センサ及び粒子感知方法
US20200233006A1 (en) Multi-component fast-response velocity sensor
CN104792378B (zh) 红外气体浓度计、微流传感器、温敏电阻结构及其制造方法
JP2017067643A (ja) 流量センサ
Leung et al. Gold nano-particle-based thermal sensors fabricated using microspotting and DEP techniques
JP2008096453A (ja) センサ用発熱装置、センサ及び加速度センサ
JP6656021B2 (ja) 流量センサ
Tarapata et al. Novel dew point hygrometer fabricated with inkjet printing technology
US20200393396A1 (en) Bubble detection module comprising a nanowire
JP2000035438A (ja) 流れ場の流速計測装置
JP2017161313A (ja) 流量測定方法
JP2580011B2 (ja) 液滴粒径測定装置
KR101193563B1 (ko) 온도진동 측정장치
JPS62191720A (ja) フロ−センサ

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201215

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211015

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211026

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20220121

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220328

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220719

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220729

R150 Certificate of patent or registration of utility model

Ref document number: 7127247

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150