JP4152949B2 - 液体状のマイクロシステムにおけるインピーダンスの測定方法 - Google Patents

液体状のマイクロシステムにおけるインピーダンスの測定方法 Download PDF

Info

Publication number
JP4152949B2
JP4152949B2 JP2004525341A JP2004525341A JP4152949B2 JP 4152949 B2 JP4152949 B2 JP 4152949B2 JP 2004525341 A JP2004525341 A JP 2004525341A JP 2004525341 A JP2004525341 A JP 2004525341A JP 4152949 B2 JP4152949 B2 JP 4152949B2
Authority
JP
Japan
Prior art keywords
focusing
impedance
electrode
electrodes
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004525341A
Other languages
English (en)
Other versions
JP2005534911A (ja
Inventor
シュネッレ、トーマス
ミュラー、トルシュテン
シャーリー、スティーブン
Original Assignee
エボテック・テヒノロギーズ・ゲーエムベーハー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by エボテック・テヒノロギーズ・ゲーエムベーハー filed Critical エボテック・テヒノロギーズ・ゲーエムベーハー
Publication of JP2005534911A publication Critical patent/JP2005534911A/ja
Application granted granted Critical
Publication of JP4152949B2 publication Critical patent/JP4152949B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N15/1031Investigating individual particles by measuring electrical or magnetic effects
    • G01N15/12Investigating individual particles by measuring electrical or magnetic effects by observing changes in resistance or impedance across apertures when traversed by individual particles, e.g. by using the Coulter principle
    • G01N15/131Details
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N15/1031Investigating individual particles by measuring electrical or magnetic effects
    • G01N15/12Investigating individual particles by measuring electrical or magnetic effects by observing changes in resistance or impedance across apertures when traversed by individual particles, e.g. by using the Coulter principle
    • G01N15/131Details
    • G01N2015/133Flow forming
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
    • G01N15/10Investigating individual particles
    • G01N15/1031Investigating individual particles by measuring electrical or magnetic effects
    • G01N15/12Investigating individual particles by measuring electrical or magnetic effects by observing changes in resistance or impedance across apertures when traversed by individual particles, e.g. by using the Coulter principle
    • G01N2015/135Electrodes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Description

本発明は、液体状のマイクロシステムでインピーダンスを測定するための方法、特に、インピーダンスの測定によって液体状のマイクロシステムで粒子を検出するための方法及びこのような方法を実施するための測定装置に関する。
生物学細胞をいわゆるクールター計数器原理でカウントすることは知られている。この場合、細胞は2つの空間の間の小さな開口部を通って移動される。これらの空間には2つ電極が設けられている。複数の電極の間の電気抵抗の変化の際に、細胞は開口部で検出かつカウントされる。この原理は、まず、巨視的な液体状のシステム(mm乃至cmの範囲の典型的なパイプ型ディメンション)のために開発され、液体状のマイクロシステムに益々用いられた(WO 00/37628,S・ガワット等「医学及び生物学におけるマイクロ技術に関するIEEE-EMBSの会議」(2000年、フランス、リヨン)及びM・コッホ等『J. Micromech. Microeng.』(第9巻、1999年、159−161頁)を参照せよ)。
例えば、WO 00/37628には、細胞を透過するための(又は細胞を融合するための)マイクロシステムが記載されている。このマイクロシステムには、透過の前に、電気抵抗測定によって細胞の検出がなされる。寸法に従って細胞を透過するためには、粒子は、マイナスの誘電泳動によって、その寸法に従って、マイクロシステムの種々の部分流路に運ばれる。各々の部分流路では、粒子は、流れる液体と共に、抵抗測定がなされる電極対の傍らを移動される。WO 00/37628に記載の検出技術の欠点は、粒子が各々の電極対へ向けられないということである。集束は提案されていない。従って、検出信号は減じられた再現性を有している。検出は信頼性がない。
ガワット等によって、同様に、平面状のインピーダンス・センサ又は電極対が、マイクロシステムのコンパートメントの向かい合っている壁に用いられる。細胞は、センサの方に向けるために、ノズル(例えば、20μm・20μmの横断面を有している流路)によって運ばれる。その目的は、良好に評価可能なインピーダンス信号を得るためである。すなわち、インピーダンス方法の信号対雑音比は、実質的に、細胞の半径対流路の横断面比に従う(コッホ等を参照せよ)。しかし、この場合、狭いノズル又は流路が、詰まりの危険性の増大を特徴とする。更に、これらは細胞の流量を減少させる。
更に、液体状のマイクロシステムにおけるインピーダンスの測定を基準電極システムの使用下で実行すること(ガワット等を参照せよ)は知られている。インピーダンスの測定は、通常、数10kHz乃至MHzの範囲の少なくとも1つの固定周波数で、なされる。複数の周波数の使用によって、検出された細胞に関する追加の情報を得ることができる。単一細胞インピーダンス分光器の場合、所定の周波数スペクトルのためのインピーダンスの測定がなされる(H・G・L・コスター等、『BioElectroChem. BioEnerg.』第40巻、1996年、79−98頁を参照せよ)。
詰まりの危険性を回避することができるのは、ノズルの代わりに、流体力学的な集束手段が設けられているときである。しかし、流体力学的な集束手段の原理的な欠点は、複数の測定電極が、通常、流路の壁部に取着されているが、集束手段が縁部領域では不可能であるか、大きな技術的コストをもってのみ実現されることにある。流体力学的な集束手段は、更に、限定的にしか使用できない。この集束手段は、特に、システムの形状寸法(流路の僅かな長さ)又は僅かなポンプ率によって妨げられる。更に、集束手段の場合、流体力学的応力が生じる。この流体力学的応力は、特に、敏感な生物学細胞の場合に、望ましくない。
独自に実現されるか、インピーダンスの測定と組み合わされる他の検出原理も知られている。例えば、光学式方法は、検出される粒子の光散乱の測定に基づいている。しかし、このことは、マイクロシステムに所定の形状寸法及び透明な壁部材料の使用を前提とする。磁気的な集束手段の場合、外部の磁界によって細胞の測定電極への接近がなされる。しかし、この目的のためには、細胞に、磁気的な粒子が結合されねばならない。更に、これらの粒子は、インピーダンス分光的な測定にとって欠点である。局部的な加熱手段による熱的集束手段も欠点である。何故ならば、この場合、細胞が望ましくない温度変化に晒されるからである。
本発明の課題は、液体状のマイクロシステムでインピーダンスを測定するための改善された方法であって、従来の検出方法の欠点を解消し、検出電極の付近で粒子の改善された集束を可能にする方法を提供することである。本発明の課題は、また、液体状のマイクロシステムでのインピーダンスの測定を、粒子をカウントするのみならず、該粒子に関する詳しい情報を得るように改善することである。更に、本発明の課題は、液体状のマイクロシステムでインピーダンスを測定するための改善された測定装置を提供することである。
この課題は、請求項1又は14に記載の特徴を有している方法及び測定装置によって解決される。本発明の好都合な実施の形態及び使用は、従属請求項から明らかである。
本発明の基本思想は、液体状のマイクロシステムのコンパートメントで少なくとも1つのインピーダンス検出器によって検出されることが意図される懸濁された粒子を、コンパートメントで作用する、誘電泳動による電場の力の、その作用の下で、インピーダンス検出器の付近に集束させることにある。少なくとも2つの集束電極によって、高周波数の電場が発生される。この電場の作用の下で、マイナスの誘電泳動によって、粒子は、コンパートメント内の液流に対し流れの部分領域に移動され、従って、所定の方法で、インピーダンス検出器に対し位置決めされる。粒子は、コンパートメント内で、誘電泳動による集束によって定められる所定の経路に沿って、インピーダンス検出器の傍らを通過される。インピーダンス検出器を少なくとも2つの集束電極と本発明に基づいて組み合わせることによって、従来の集束技術の欠点が解消される。機械的な又は流体力学的な力による望ましくない負荷が回避される。更に、誘電泳動的による集束を、その時々に検出される粒子に最適に適合させることができる。
本発明に基づき、少なくとも1つのインピーダンス検出器によってインピーダンスの測定がなされる。このインピーダンス検出器は、液流が貫流する、マイクロシステムのコンパートメントに設けられている。コンパートメントは、一般的には、マイクロシステム内のパイプ構造、例えば流路又は液流が貫流するリザーバである。コンパートメントの典型的な横断面寸法は、例えば、200μm乃至800μm(幅)、20μm乃至100μm(高さ)の範囲にある。コンパートメントは、固い材料(例えば、半導体、セラミック、プラスチック等)からなるチップ本体に形成されている。少なくとも1つのインピーダンス検出器は、少なくとも2つの検出電極を有し、該検出電極は、コンパートメントの1つの壁部又は種々の壁部に取着されている。本発明に係わる、粒子の、誘電泳動による集束は、一般的に、流れの部分領域(流れ区分)への粒子の移動を含む。この部分領域では、粒子は、インピーダンス検出器の傍らの通過の際に、複数の検出電極のうちの1からの所定の、好ましくは狭められた間隔を有している。
本発明では、集束はインピーダンス検出器に対し上流でなされることができる。この実施の形態は、集束電極と検出電極の別々の起動の故に、好都合であり得る。その代わりに、インピーダンス検出器での集束がなされることができる。この場合、複数の利点は、簡単な電極構造によって生じることができる。
本発明の第1の好都合な実施の形態では、誘電泳動による集束は、流れの部分領域(例えば、流れの中央)への移動を含む。この部分領域は、コンパートメントの向かい合っている壁部に設けられた2つの検出電極の間の接続線上にあるか、部分領域の、コンパートメントの壁部への垂直方向の投影線上に、少なくとも1つの検出電極が設けられている。この移動は、すべての粒子が、ノズル状に又は漏斗状に形成された場のバリヤを通るように、所定の窓で、少なくとも検出電極の傍らを通過するという利点を有している。従来の技術と異なって、窓での通過は、機械的な硬い部材同士の接触なしに、及び流れの集束する力を回避しつつなされる。かくて、信号対騒音比(SNR)の改善が達成されることは好都合である。検出電極の傍らでの、側方にずれた通過が回避される。その代わりに又は追加して、誘電泳動による集束は、粒子の移動を含むことができる。それ故に、複数の検出電極のうちの少なくとも1の傍らを通過する粒子の垂直方向の間隔が狭められる。この場合、検出電極の傍らにおける粒子の通過の、垂直方向の間隔は、所定の方法で、調整される。
本発明では、粒子の集束は、1つの壁部、例えばコンパートメントの底部に設けられている少なくとも2つの集束電極によって、なされる。2つの電極によって、粒子を、コンパートメントの向かい合っている壁部の方に検出器付近に移動することができる。このことが好都合であり得るのは、例えばインピーダンスの分光のために、増大した測定時間(又は:低下した流速)が望ましい場合である。このことは流れの縁部で与えられている。
その代わりに、3つの集束電極を用いることができる。これらの集束電極のうち2つがコンパートメントの1つの壁部に、細まり状態で、例えば、漏斗状の場のバリヤを形成するために、設けられている。第3の電極は、対電極として、コンパートメントの向かい合う壁部に設けられている。この実施の形態は好都合であり得る。何故ならば、コンパートメント内での3次元の集束は、比較的少ない電極数によって達成されるからである。
しかし、本発明を2つの集束電極対により実現することは特に好ましい。これらの集束電極対はコンパートメントの向かい合う側(例えば、底部、上面)に設けられている。
各々の集束電極対は、例えば、細まりの電極ストリップの形の、2つの集束電極からなる。2つの集束電極対の使用は、漏斗状の場のバリヤによる径路の調整のために、好都合であり得る。
本発明の他の実施の形態では、少なくとも1つの測定されたインピーダンス値は粒子の存在に関してのみならず、その時々に検出される粒子の誘電特性に関しても評価される。従って、流れる粒子に関する追加の情報、例えば細胞の生命力状態等に関する情報を得ることができる。
本発明の他の好都合な実施の形態では、少なくとも1つのインピーダンス検出器によって、多数のインピーダンス値が検出され、該インピーダンス値の時間経過が、少なくとも1つの粒子の、インピーダンス検出器の傍らでの通過の時点、方向及び/又は速度に関して評価される。かくて、従来のインピーダンス-粒子カウントの適用領域が、粒子の又はマイクロシステムの他の特徴の検出に拡大されることは好都合である。この目的のために、非対称の電極の形状が実現化される。この形状は、一般的には、電極の形状が通過方向又は流れ方向に平行な方向で、通過方向又は流れ方向に垂直な軸に関して鏡面対称的でないことを特徴とする。
各々の検出電極を有しているインピーダンス検出器が用いられ、該検出電極が流れ方向に関して非対称的な電極の形状を常に特徴とするとき、簡単化された構成の場合に、インピーダンス値の時間経過から前記測定値を導き出す可能性が生じる。互いから離隔して設けられた複数のインピーダンス検出器が用いられるとき、非対称的な電極形状は不必要である。
本発明の好ましい実施の形態では、インピーダンス値が、検出電極を有しているインピーダンス検出器によって検出され、複数の検出電極のうちの少なくとも1の形状が、液体状の流れ方向に平行な方向で変化し及び/又は複数の検出電極がコンパートメントの向かい側に設けられており、種々の形状を有していることが提案されている。かくて、1つのインピーダンス検出器のみによって、粒子の通過の間に、インピーダンスの変化の時間依存性を記録しかつ評価することができる。
本発明の主題は、液体状のマイクロシステムでインピーダンスを測定するための測定装置であって、マイクロシステムの、液流が貫流するコンパートメントに設けられている少なくとも1つのインピーダンス検出器と、コンパートメントを流れる懸濁された粒子に誘電泳動力を加えるための少なくとも2つの集束電極を有している少なくとも1つの集束手段とを具備する測定装置でもある。少なくとも2つの集束電極の準備は、粒子を集束するための漏斗状の場のバリヤの形成を可能にし、以下の利点、すなわち、フルイディクス・チップに基づいて本発明に係わる測定装置を知られた流体状のマイクロシステムに最適に組み込むことができるという利点を有している。
測定装置の好都合な実施の形態では、集束手段は、漏斗状の場のバリヤをコンパートメントに形成する少なくとも2対の集束電極を有している。場のバリヤは、高周波の場の分配によって形成される。これらの場は集束電極から出て、誘電泳動による押出し力を粒子に加える。漏斗状の場のバリヤは以下の場の分配を特徴とする。この場の分配は、(例えばコンパートメントの中央における)場の極小(Feldminimun)を除いて保持力を形成し、それ故に、粒子は液流と共に通過することができず、場の極小によって強制される。漏斗状の場のバリヤによって、粒子が所定の位置でインピーダンス検出器を通過することができることは好都合である。
インピーダンス検出器は常に少なくとも2つの検出電極を有している。好ましくは平面状の形状を有しているこれらの検出電極は、コンパートメントの1つの壁部に又は種々の、例えば向かい合った壁部に取着されている。複数の平面状の検出電極のうちの1が流れ方向に対し不均一な形状を有しているとき、インピーダンス検出器は、インピーダンス値の時系列の記録の際に、検出された粒子又はマイクロシステムに関する追加の情報を供給する。検出電極の形状は、検出電極の外形によって又は構造によって決められる。該外形は、例えば、四角形の、卵形の、矩形の、又は円形の形状あるいは、これらの形状から構成された形状を含む。構成としては、例えば電極開口部又はパッシベーション層が電極に設けられている。その代わりには、インピーダンス検出器自体が、流れ方向に不均一な又は非対称的な形状を有してもよい。何故ならば、検出電極は、種々に形成され又は互いにずれて設けられているからである。この実施の形態でも、1つの粒子の通過の際の、複数の検出電極の間の容量の変化は、特徴的な時間依存性を有している。この時間依存性は、インピーダンス値中に、例えば流れ方向に関する、追加の情報を供する。
少なくとも1つの電極構造体が少なくとも1つの検出電極によって形成され、この検出電極の面には部分電極が組み込まれているとき、特に高い感度で測定がなされることは好都合である。この場合、部分電極が特徴的な大きさを有していることは好ましい。この大きさは、部分電極を有している検出電極への通過する粒子の垂直方向の投影の大きさと同じであるか、その大きさよりも小さい。
インピーダンス検出器が、コンパートメントの少なくとも1つの壁部に設けられておりかつコンパートメントの幅に亘って流れ方向に直角に延びている少なくとも2つの検出電極を有しているとき、インピーダンス検出器の特に簡単な構造が生じる。この場合、複数の検出電極が真っ直ぐな電極ストリップによって形成されていることは好ましい。これらの電極ストリップは流れ方向に平行にコンパートメントの複数の壁部に上下に設けられており、種々の幅及び/又は構造化の縁部を有している複数の電極ストリップを具備する。構造化の縁部は流れ方向に直角にずれて設けられている。
本発明は以下の利点を有している。誘電泳動による集束は、細胞の検出のための使用の際には、特に保護する。集束を、粒子の種類の交換の際に又は運転条件の際に、容易に変化することができる。測定装置は、知られたパッシベーション技術によって、知られたフルイディクス・チップの部分として製造される。
本発明の他の詳細及び利点は、添付された図面の以下の記載から読み取れる。
図1乃至4は、液体状のマイクロシステムの1つの流路に夫々設けられている集束手段及びインピーダンス検出器の、本発明に係わる組合せの、異なった実施の形態を示す。特に生物学細胞を操作するための、液体状のマイクロシステムは知られているので、ここでは詳述しない。
図1は、マイクロシステムの流路10を平面図(a)及び側面図(b)で示す。流路10は、側壁11,12、底部13及び上面14によって区画されている。側壁11、12の面間の間隔は好ましくは100μm乃至1mmの範囲、例えば200乃至800μm(流路の幅)の範囲にあり、他方、底部13と上壁14の面との間の間隔は好ましくは約5μm乃至200μmであり、例えば20乃至100μm(流路の高さ)である。流路10には液流が矢印方向に貫流している。液流は、典型的には、図示した速度分布15を有し、かつ例えば20μm/s乃至20mm/sの範囲の流速を有している層流である。液流には粒子16が懸濁されている。粒子を本発明に係わる方法で検出することが意図されている。粒子16は、液体と同一の速度で流れ方向に移動する。本発明に係わる集束の前に、粒子は液体に対し静止している。
粒子16は、例えば合成の粒子(例えば合成物質ビーズ)又は生物学細胞又は細胞成分又は生物学的に重要な有機高分子を含んでいる。
流路(又はコンパートメント)10には、本発明に係わる測定装置20が設けられている。この測定装置は、誘電泳動式の集束手段30及びインピーダンス検出器40を有している。集束手段30は、インピーダンス検出器40に対し上流に設けられている。流路の側壁は、集束手段30とインピーダンス検出器40との間で連続的であり、側方の開口部を有していない。
集束手段30は、少なくとも2つの集束電極31,32を有している。図示した実施の形態では、2対の集束電極31乃至34が設けられている。これら集束電極のうち、第1の対の収束電極31,32は、例えば上壁14の面に設けられており、第2の対の収束電極33,34は、底部13に設けられている。各々の集束電極は真っ直ぐな電極ストリップを有している。各々の電極ストリップは、上壁14又は底部13で、流路縁部から流路中央へ向けられている。これらの集束電極の端部35は互いに離隔している。各々の集束電極は、接続線(図示せず)を介して、(高周波電圧源を有している)制御手段に接続されている。
インピーダンス検出器40は、流れ方向で、好ましくは、集束手段30から10μm乃至2mmの範囲の間隔をあけて設けられている。インピーダンス検出器は少なくとも2つの検出電極41,42を有し、これらの検出電極は流路10の底部13及び上壁14に設けられている。各々の検出電極41,42は、電解質での従来のインピーダンス測定について知られているように、構成されていてもよい。これらの検出電極が、夫々、非対称的な又は不均一な形状を有している平らな電極面を有していることは好ましい(下を参照せよ)。
粒子16は、液体と共に一般的には非整然と流路10の中を流れて、遂には、集束手段30に達する。この集束手段には、電圧印加が同形の場合には、集束電極31乃至34によって、漏斗状の場のバリヤが形成される。この場のバリヤは流れ方向に狭まる。集束電極31乃至34の端部35は、粒子16が通り抜けることができる場の極小があってなる四角を規定する。続いて、粒子16は、流れの部分領域では、場の極小の位置に応じて、例えば流路の中央で並べられる。この並びで、粒子は検出電極41,42を通過する。該検出電極では、知られた原理に基づいてインピーダンスの測定がなされる。
図1に示した構造では、対称的な集束電極31乃至34によって、集束が、流路の中央で、水平方向すなわち側壁11、12の面間の中央で並びに垂直方向すなわち底部13と上壁14の面間の中央でなされる。常に夫々水平方向及び垂直方向に集束することは必要不可欠というわけではない。粒子16が流路中央で集束された状態で並べられることも必要不可欠というわけではない。一般的には、粒子16が並べられている、流れの部分領域は、検出電極41,42を有している底面及び上面への垂直方向の投影の際に、並べられている。垂直方向では、集束は電場の力と重力の間のバランスから生じる。電場の力と重力が同一に作用するとき、粒子16は、バランスにあって、底部13と上壁14の面との間に並べられている。その代わりに、他のバランス位置を、特に、場のバリヤの形状及び/又は高さによって、調整することができる。場のバリヤは集束電極31乃至34によって形成される(図4も参照せよ)。
集束及び検出は,夫々、高周波数電圧の使用中になされる。集束及び検出の、場合によって妨害的な相互影響を、回避することができることは、発明者の重要なかつ意外な知識の一部をなす。このためには、少なくとも1つの粒子の集束及び少なくとも1つのインピーダンス値の測定は種々の周波数の場合になされる。例えば種々の(分離した)周波数範囲が用いられる。細胞を保護するような集束を、数100kHzより上の集束周波数の使用によって達成することができる。インピーダンスの測定のためには、この範囲を除外することができる。インピーダンスの測定が、例えば100kHzより下の周波数の場合になされることは好ましい。インピーダンスの測定は、その代わりに、より高い周波数(例えば1MHz)の場合になされることができる。その目的は、粒子の内部、例えば細胞内の電解質成分に関する情報を得るためである。これに対応して、集束電極は、一層高い周波数又は場合によってはより低い周波数の場合に、作動されるだろう。その代わりに又は集束と検出の間の更なる分離のために、インピーダンス検出器40は、周波数フィルタ、例えば低域フィルタ又は帯域フィルタを有していることができる。周波数フィルタによって、集束電極が作動される際の周波数が検出から除かれる。
集束手段30とインピーダンス検出器40との間の相互作用を、流れ方向における相互間隔の拡大によっても減少することができる。この間隔が約10μm乃至2mmであることは好ましい。このことが流路10における流れの層によって可能であることは好都合である。間隔を、例えば、3mmまで拡大することができる。
前記インピーダンス検出器40は、図2の平面図に示すように、複数の異なった検出電極41,42及び43から構成されていてもよい。底部13及び上壁14には、2つの比較的広い検出器電極41,42からなる検出電極対が設けられている。2つの検出電極41,42は同一の外形を有している。平面略図では、上方の電極42のみが完全に示されている。図2の下部では、図解の目的で、下方の電極41が示されている。上方の検出電極42が電極構造体を有しているのは、上方の検出電極に第3の検出電極43(部分電極43)が組み込まれていることによってである。検出電極は、上方の電極42の電極面のリセスに、上方の電極から間隔をあけて設けられている。この間隔によって、下方の電極41が部分的に見分けられる。例えば、より大きな検出電極41,42は約120・150μmの寸法を有し、他方、より小さな単独の部分電極43は、生物学での典型的な細胞の大きさに対応する例えば2乃至20μmの大きさを有している。
図2に示した3つの検出電極41乃至43が、図3に示した原理に基づいて接続されていることは好ましい。下方の検出電極41には、所定の測定周波数を有している駆動電圧が印加される(例えばU<1V,f=50kHz)。上方の検出電極42は大地電位にある。上方の検出電極42と第3の検出電極(部分電極)43との間には電気抵抗Rが設けられている。この電気抵抗は、コンパートメント内を流れる液体の抵抗に応じた大きさである。測定電圧Uは、第3の部分電極43で、大地電圧に比べて低下される。本発明に係わるインピーダンスの測定は、電圧Uが連続的に検出されかつインピーダンスが算出されるように、なされる。粒子が第3の部分電極の上方にあるや否や、この部分電極は遮蔽される。それ故に、電圧Uが上昇する。
測定される粒子が小さな部分電極43の上方に運ばれるとき、かくて、電極42と43の間の電位差が生じる。この測定が特に敏感であることは好ましい。何故ならば、高い解像度及び感度の測定範囲が、部分電極43によって及び仮想開口部によって形成されるからである。従って、部分電極43が、粒子の電極面への投影よりも好ましくは著しく大きくはないほうがよい。更に、集束電極による正確な集束は好都合である。漏斗状の集束電極との組合せで、かくて、粒子のインピーダンス及び貫通方向を、より高い正確度及び再現性をもって測定することができる(図7を参照せよ)。
図2及び3に示された本発明の実施の形態の利点は、粒子を、小さな第3の電極43によって高い正確度で運ぶ可能性にある。誘電泳動による集束(dielektrophoretische Fokussierung)によって、従来のクールター・ノズルの代わりに、「仮想の」窓が形成される。この窓は第3の電極43の方に正確に向けられている。このことによって、特に高い信号対雑音比を達成することができる。
図4(a)(平面図)及び4(b)(側面図)では、垂直方向の集束が略示されている。この実施の形態では、インピーダンス検出器40は、検出電極対44を有している。該検出電極対は上壁14にのみ設けられている。集束手段30として、2対の集束電極31,32及び33,34が用いられる。これらの集束電極のうち、下方の集束電極33,34は、上方の集束電極31,32よりも、流れ方向で区間dxだけ長く形成されている。このことによって、場のバリヤは歪まされ、場の極小は流路の中央から上面14へ移動される。それ故に、粒子16は、検出電極対44の付近にある、流れの部分領域へ集束される。粒子16と検出電極対44との最小の間隔は、例えば1μmである。
流れ方向にずれて設けられており又は種々の長さに形成された電極を有している、図4に示した実施の形態は、以下の利点を有していることができる。すなわち、粒子が、不変の(水平の)集束の際に、複数の側面の間で、垂直方向に、電極44の又は図2では部分電極43の付近に運ばれ、そこでは、粒子が第1によりゆっくりと動き、第2に、増大されたインピーダンス信号を示すことである。このプロセスは、フィードバック(Rueckkopplung)によって、自己較正で実現されることができる。それ故に、インピーダンス信号が、粒子の通過の際に、複数の電極面のうちの1の振幅の変化によって、流速及び/又は粒子の特性に従って、最適化及び最大化される。
電極のずれた設置の代わりに又はそれに追加して、粒子とインピーダンス検出器の電極との垂直の間隔を調整するためには、集束電極が、2つの電極面の、強さの異なる起動(振幅、周波数)で作動され、及び/又は集束電極が流れ方向に対し種々の角度で形成されていることが提案されていることができる。
本発明では、測定装置は、その上、図4a及び4bの右部分に略示されている集束ずれ手段50を有してもよい。集束ずれ手段50は、粒子を測定後に再度流れ分布全体で分配するか、最大の流速の範囲で増加させるという課題を有している。かくて、(特に生物学細胞の)粒子同士の付着可能性を減じて、流量を増大させることができる。集束ずれ手段50は、集束ずれ電極51乃至54を有している。これらの集束ずれ電極は、上記の原理に似て、液体中の粒子の移動をマイナスの誘電泳動(Dielektrophorese)によって引き起こさせる。
本発明に係わる測定装置の集束電極又は、集束ずれ電極が、所望の場のバリヤに対応する配列を有している電極ストリップとして形成されていることは好ましい。上記実施の形態とは異なり、電極ストリップは、図5の部分図(a)に示されているように、(例えば底面における)各々の壁面で湾曲されていてもよい。細まりの電極部分35,36には、2つの、真っ直ぐな、平行な電極部分37,38が接続している。真っ直ぐな、平行の電極部分が、集束電極の、流れ方向に位置している端部に形成されていることは、場のバリヤの有効性に関して好都合であることができる。
部分図(b)及び(c)では、3つの部分電極からなる集束電極の実施の形態が示されている。例えば図5(b)では、集束電極31,32がコンパートメントの上面に設けられており、他方、集束式の対電極39が底面に設けられている。この配列を用いて、コンパートメント内の3次元的な集束を、3つのみの電極によって達成することができることは好都合である。場のバリヤは、例えば、その時々にずれた位相位置を有している、高周波の交流電圧を供給することによって、発生される。位相位置は、例えば、31では0°、32では120°、39では240°又は31では0°、32では180°、39では大地電圧である。図5(b)に示した配列は、図5(a)に示した集束電極の実施の形態で変更可能である(図5(c)を参照せよ)。
本発明の他の実施の形態では、集束電極の配列を、同時に、検出手段として用いることができる。この目的のためには、漏斗状の場のバリヤを発生させるための複数の電極ストリップを、電極の先端が、流れ方向で、ほぼ流路の高さに対応する僅かな間隔を有するように、細まりの状態で集める。(例えば図1に示した)集束電極に、集束すべく高周波数電圧が印加される。インピーダンスは、対角線で、すなわち、例えば、電極31と34と又は32と33の間で測定される。図5(b)又は5(c)に示した形状では、インピーダンスの測定は電極31,32のうちの1と対電極39との間でなされる。
粒子がインピーダンス検出器の際を通過する際に、測定されたインピーダンス信号は、粒子の及び懸濁液の誘電特性(特に誘電率、導電性)の他に、複数の測定電極の間の粒子のボリューム・フラクションに依存する。測定電極が、例えば図6に示すように、流れ方向に対し不均一に又は非対称的に構成されているとき、粒子が一定の流速で通過する間、時間経過中に不均一なインピーダンス信号が測定される。インピーダンス信号は極大に関して非対称である。曲線コースからは、流速の他に、流れ方向も定めることができる(図7を参照せよ)。不均一な又は非対称的な測定電極を準備するために、これらの測定電極は所定の電極形状及び/又は電極構造体を得る。電極構造体は、電極面に、例えば開口部又は穴を有している。その代わりに、パッシベーション層によってパッシベーションも、電極面に設けられていてもよい。図6(a)及び6(b)は、例えば、円形の開口部45(又はパッシベーション層)を有している電極面44を示している。本発明に係わるインピーダンス検出器の非対称的な電極面が与えられているのは、有効な電極面が流れ方向に変化するときである。このことは、ここでは、例えば、開口部45の並設によって与えられている。その代わりに、図6(c)乃至6(f)に示した電極面のバリエーションは外形の変化によっても準備することができる。電極面の縁の囲繞は、三角形の、四角形の、卵形の又は円形の構造を特徴としている。
測定電極は、不活性の、導電性の材料、例えばプラチナ又は金のような金属から形成されている。パッシベーション層は、絶縁材料、例えば二酸化ケイ素から形成されている。
図7は、例えば、図2に示した非対称的なインピーダンス検出器によって記録されたインピーダンス信号の、その時間経過を示している。曲線は、時間に応じたインピーダンス信号(任意の単位)を示している。上方に記した丸は、粒子の、ビデオ制御によって算出された通過を示している。粒子の通過毎に、インピーダンス曲線はその時々の極大に対する特徴的な非対称を示している。極大の両面には2つの副極大(ショルダー)が測定されることができる。これらの副極大のうち、時間経過中で第2のショルダーが、第1のショルダーよりも少ない振幅を有している。このことから、流れ方向が導き出される。複数の極小の間、ショルダーと極大との間の間隔dtからは、更に、流速を導き出すことができる。何故ならば、dtは粒子の通過時間に対応し、測定電極の大きさが知られているからである。
図2又は図6に示した非対称の電極の実施の形態の代わりに、図7に示した特徴は、流れ方向に互いに間隔をあけた複数の測定方法の組合せによっても、検出される。
図8(a)及び(b)は、流れ方向に直角に(矢印を参照せよ)流路全体の幅に亘って延びている2つのインピーダンス・センサの実施の形態を示す。例えば、破線で書いた電極42は、上方に設けられており、実線で書かれた電極41は下方で上面及び底面(上を参照せよ)に又はその逆に設けられている(概略的に又は拡大して示してある)。粒子の及び特に生物学細胞の通過の際に、これらの検出器によって、非対称的なインピーダンス信号が発生される。該インピーダンス信号によって、粒子が数えられ、あるいはインピーダンス信号は通過の方向の測定を可能にする。
図8に示した構成では、信号対雑音比は上記の単独センサの場合よりも不都合であり得る。しかし、このことは、適切なブリッジ測定装置の使用によって補償されることは好都合である。
本発明に係わるインピーダンスの測定を、以下のように、変更することができる。集束電極は、場のバリヤの所定の経過を準備するためのマイクロシステム技術から知られているように、構成されることができる。集束式の場のバリヤを、電圧の制御及び/又は集束手段における高周波電場の位相によっても、変更することができる。
本発明に係わる測定装置の実施の形態を示す。 本発明に係わる測定装置の他の実施の形態を示す。 本発明に係わる測定装置の他の実施の形態を示す。 本発明に係わる測定装置の他の実施の形態を示す。 本発明に基づいて使用された集束電極の種々の実施の形態を示す。 本発明に基づいて使用された検出電極の種々の実施の形態を示す。 実験で算出されたインピーダンス曲線の図を示す。 本発明に基づいて使用された検出電極の他の実施の形態を示す。

Claims (28)

  1. コンパートメントを有している液体状のマイクロシステムでインピーダンスを測定する方法であって、前記コンパートメント中に、懸濁された少なくとも1つの粒子を有している液体の流れを生じさせ、前記コンパートメント内には、少なくとも1つのインピーダンス検出器が設けられており、該インピーダンス検出器を用いて、前記粒子のインピーダンス値が検出される方法において、
    前記集束は、少なくとも2つの集束電極により前記粒子に加えられる誘電泳動力による、前記コンパートメントを流れる液体に対する、前記粒子の移動によりなされ、
    前記インピーダンス値の検出は、前記集束された粒子に対してなされることを特徴とする方法。
  2. 前記集束は、前記インピーダンス検出器に対し上流でなされる、請求項1に記載の方法。
  3. 前記集束は、前記インピーダンス検出器の直ぐ近くでなされる、請求項1に記載の方法。
  4. 前記集束は、前記流れる液体の部分領域への前記少なくとも1つの粒子の移動を果し、前記部分領域の、前記コンパートメントの壁部への垂直方向の投影線上である、液体の流れの方向に対して垂直な線上に、この部分領域に面するように前記インピーダンス検出器の検出電極が設けられている、請求項1又は2に記載の方法。
  5. 前記集束は、前記粒子と前記インピーダンス検出器との垂直方向での間隔が、流路の中心とインピーダンス検出器との垂直方向での間隔よりも狭められるような、前記少なくとも1つの粒子の移動を果す、請求項1乃至4のいずれか1に記載の方法。
  6. 前記少なくとも1つの粒子として、合成の又は生物学的な粒子が、前記インピーダンス検出器の傍を通過する、請求項1乃至5のいずれか1に記載の方法。
  7. 前記インピーダンス値は、検出器の近くを通過する前記粒子の誘電特性に関して評価される、請求項1乃至6のいずれか1に記載の方法。
  8. 前記インピーダンス値は、時間経過に従って検出され、前記粒子の通過の時点、方向及び/又は速度に関し評価される、請求項1乃至7のいずれか1に記載の方法。
  9. 前記インピーダンス値の時間経過の検出から、前記液体の流速が検出される、請求項8に記載の方法。
  10. 前記インピーダンス検出器は、夫々測定面を有する複数の検出電極を有し、前記複数の検出電極のうちの少なくとも1つの測定面の幅は、前記液体の流れ方向で変化している請求項8又は9に記載の方法。
  11. 前記インピーダンス検出器は、複数の検出電極を有し、これら検出電極は、前記コンパートメントの、互いに向かい合っている両側に互いに対向するように設けられており、互いに異なる形状を有している、請求項8乃至10のいずれか1に記載の方法。
  12. 前記少なくとも1つのインピーダンス検出器は、互いに流れ方向に間隔をあけて設けられている複数のインピーダンス検出器であり、前記インピーダンス値は、これらインピーダンス検出器によって検出される、請求項8乃至11のいずれか1に記載の方法。
  13. 前記少なくとも1つの粒子の集束と前記インピーダンス値の測定とは、異なった周波数の電圧が粒子に印加されることによりなされる、請求項1乃至12のいずれか1に記載の方法。
  14. 液体状のマイクロシステムでインピーダンスを測定するための測定装置であって、
    前記マイクロシステムの、液体が流れるコンパートメントに設けられている少なくとも1つのインピーダンス検出器と、
    前記液体中の少なくとも1つの粒子を前記インピーダンス検出器の付近に移動させることができる集束手段とを具備する測定装置において、
    前記集束手段は、誘電泳動力を前記少なくとも1つの粒子に加えて集束させるための少なくとも2つの集束電極を有し、これら集束電極は、前記コンパートメントに漏斗状の場のバリヤを形成し、
    前記インピーダンス検出器は、集束された粒子のインピーダンス値を検出することを特徴とする測定装置。
  15. 前記集束手段は、前記インピーダンス検出器に対し上流に設けられている、請求項14に記載の測定装置。
  16. 前記インピーダンス検出器は、前記集束手段の部分である、請求項14に記載の測定装置。
  17. 前記少なくとも2つの集束電極は、少なくとも2対の集束電極であり、対をなす集束電極相互は、前記コンパートメントの向かい合っている両壁部に設けられており、これら少なくとも2対の集束電極が前記漏斗状の場のバリヤを形成する、請求項14乃至16のいずれか1に記載の測定装置。
  18. 前記少なくとも2つの集束電極は、流れ方向で異なる長さを有している、請求項14乃至17のいずれか1に記載の測定装置。
  19. 前記インピーダンス検出器は、少なくとも2つの検出電極を有し、これら検出電極は、前記コンパートメントの1つの壁部又は前記コンパートメントの互いに異なる壁部に設けられている、請求項14乃至18のいずれか1に記載の測定装置。
  20. 前記少なくとも2つの検出電極の少なくとも一方の流れ方向に直交する方向の長さが、流れ方向に沿って変化する形状を有している、請求項19に記載の測定装置。
  21. 前記少なくとも2つの検出電極のうち少なくとも1つは、少なくとも1つの三角形、少なくとも1つのストリップ-面の組合せ及び/又は少なくとも1つの電極構造体を含む構成を有している、請求項20に記載の測定装置。
  22. 前記少なくとも1つの電極構造体は、電極開口部又はパッシベーション層を有している、請求項21に記載の測定装置。
  23. 前記少なくとも1つの電極構造体は、少なくとも1つの検出電極によって形成されており、該検出電極の面には部分電極が組み込まれている、請求項21に記載の測定装置。
  24. 前記部分電極は、該部分電極を有している前記検出電極の面への前記粒子の垂直方向の投影の大きさと実質的に同じか、小さい大きさを有している、請求項23に記載の測定装置。
  25. 前記インピーダンス検出器は、少なくとも2つの検出電極を有し、これら検出電極は、前記コンパートメントの少なくとも1つの壁部に設けられており、前記液体の流れ方向に直交するこのコンパートメントの幅方向に延びている、請求項14乃至18のいずれか1に記載の測定装置。
  26. 前記少なくとも2つの検出電極は、真っ直ぐな電極ストリップを有し、これら電極ストリップは、前記流体の流れ方向に延びるように、前記コンパートメントの上下の壁部に設けられており、また、これら電極ストリップは、流れ方向に対して直交する方向に互いにずれて設けられており、異なった幅及び/又は構造化の縁部を有している、請求項25に記載の測定装置。
  27. 前記少なくとも1つのインピーダンス検出器は、互いに流れ方向に間隔をあけて設けられている複数のインピーダンス検出器を含む、請求項14乃至26のいずれか1に記載の測定装置。
  28. 前記少なくとも1つのインピーダンス検出器は、前記集束手段を作動させる電圧の周波数成分を濾過することができる周波数フィルタを有している、請求項14乃至27のいずれか1に記載の測定装置。
JP2004525341A 2002-07-29 2003-07-28 液体状のマイクロシステムにおけるインピーダンスの測定方法 Expired - Fee Related JP4152949B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10234487A DE10234487A1 (de) 2002-07-29 2002-07-29 Impedanzmessung in einem fluidischen Mikrosystem
PCT/EP2003/008312 WO2004013614A1 (de) 2002-07-29 2003-07-28 Impedanzmessung in einem fluidischen mikrosystem

Publications (2)

Publication Number Publication Date
JP2005534911A JP2005534911A (ja) 2005-11-17
JP4152949B2 true JP4152949B2 (ja) 2008-09-17

Family

ID=30774943

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004525341A Expired - Fee Related JP4152949B2 (ja) 2002-07-29 2003-07-28 液体状のマイクロシステムにおけるインピーダンスの測定方法

Country Status (6)

Country Link
US (1) US20060243594A1 (ja)
EP (1) EP1525449A1 (ja)
JP (1) JP4152949B2 (ja)
AU (1) AU2003253345A1 (ja)
DE (1) DE10234487A1 (ja)
WO (1) WO2004013614A1 (ja)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2956645A1 (en) 2003-07-12 2005-03-31 David A. Goldberg Sensitive and rapid biodetection
US20120077206A1 (en) 2003-07-12 2012-03-29 Accelr8 Technology Corporation Rapid Microbial Detection and Antimicrobial Susceptibility Testing
FR2876045B1 (fr) * 2004-10-04 2006-11-10 Commissariat Energie Atomique Dispositif pour realiser la separation dielectrophoretique de particules contenues dans un fluide
DE102005012128A1 (de) * 2005-03-16 2006-09-21 Evotec Technologies Gmbh Mikrofluidisches System und zugehöriges Ansteuerverfahren
DE102006002462A1 (de) * 2006-01-18 2007-07-19 Evotec Technologies Gmbh Elektrischer Feldkäfig und zugehöriges Betriebsverfahren
US8029657B1 (en) * 2006-03-14 2011-10-04 University Of Tennessee Research Foundation Parallel plate electrodes for particle concentration or removal
US20090051372A1 (en) * 2006-10-30 2009-02-26 Palaniappan Sethu 3D fluid confined sample stream coulter flow cytometry
US7678256B2 (en) * 2006-11-03 2010-03-16 Sandia Corporation Insulator-based DEP with impedance measurements for analyte detection
US20080297169A1 (en) * 2007-05-31 2008-12-04 Greenquist Alfred C Particle Fraction Determination of A Sample
GB2479687B (en) * 2009-02-10 2013-11-20 Panasonic Corp Device and method for measuring microspheres
JP5617530B2 (ja) * 2010-10-29 2014-11-05 ソニー株式会社 細胞分取装置及び細胞分取方法
US10254204B2 (en) 2011-03-07 2019-04-09 Accelerate Diagnostics, Inc. Membrane-assisted purification
ES2551922T3 (es) 2011-03-07 2015-11-24 Accelerate Diagnostics, Inc. Sistemas rápidos de purificación celular
US9677109B2 (en) 2013-03-15 2017-06-13 Accelerate Diagnostics, Inc. Rapid determination of microbial growth and antimicrobial susceptibility
US10023895B2 (en) 2015-03-30 2018-07-17 Accelerate Diagnostics, Inc. Instrument and system for rapid microogranism identification and antimicrobial agent susceptibility testing
US10253355B2 (en) 2015-03-30 2019-04-09 Accelerate Diagnostics, Inc. Instrument and system for rapid microorganism identification and antimicrobial agent susceptibility testing
EP3877502A4 (en) * 2018-11-08 2022-08-03 Georgia Tech Research Corporation MANUFACTURING COMPATIBLE WITH SOFT PARALLEL ELECTRODE LITHOGRAPHY IN MICROFLUIDIC DEVICES
EP3674003A1 (en) * 2018-12-28 2020-07-01 IHP GmbH - Innovations for High Performance Microelectronics / Leibniz-Institut für innovative Mikroelektronik Identifying and counting particles using dielectrophoresis

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2201894A1 (de) * 1972-01-15 1973-07-19 Licentia Gmbh Verfahren zum zaehlen und klassieren von in einer untersuchungsfluessigkeit suspendierten partikeln
US4420720A (en) * 1981-06-29 1983-12-13 Coulter Electronics, Inc. Field focused particle sensing zone
GB9622304D0 (en) * 1996-10-26 1996-12-18 Univ Manchester Sensor
DE19860118C1 (de) * 1998-12-23 2000-09-28 Evotec Biosystems Ag Elektrodenanordnungen zur Erzeugung funktioneller Feldbarrieren in Mikrosystemen
DE19860117A1 (de) * 1998-12-23 2000-07-13 Evotec Biosystems Ag Elektrodenanordnung zur dielektrophoretischen Partikelablenkung
DE19859459A1 (de) * 1998-12-22 2000-06-29 Evotec Biosystems Ag Mikrosysteme zur Zellpermeation und Zellfusion
DE19903001A1 (de) * 1999-01-26 2000-08-24 Evotec Biosystems Ag Verfahren und Vorrichtung zur Detektion mikroskopisch kleiner Objekte
DE10059152C2 (de) * 2000-11-29 2003-03-27 Evotec Ag Mikrosystem zur dielektrischen und optischen Manipulierung von Partikeln
US6835552B2 (en) * 2000-12-14 2004-12-28 The Regents Of The University Of California Impedance measurements for detecting pathogens attached to antibodies
ATE261114T1 (de) * 2002-02-01 2004-03-15 Leister Process Tech Mikrofluidisches bauelement und verfahren für die sortierung von partikeln in einem fluid

Also Published As

Publication number Publication date
AU2003253345A1 (en) 2004-02-23
JP2005534911A (ja) 2005-11-17
EP1525449A1 (de) 2005-04-27
WO2004013614A1 (de) 2004-02-12
US20060243594A1 (en) 2006-11-02
DE10234487A1 (de) 2004-02-26

Similar Documents

Publication Publication Date Title
JP4152949B2 (ja) 液体状のマイクロシステムにおけるインピーダンスの測定方法
US10948392B2 (en) Airborne particle detection system with thermophoretic scanning
US6426615B1 (en) Apparatus and method for analyzing particles
De Ninno et al. Coplanar electrode microfluidic chip enabling accurate sheathless impedance cytometry
Grenvall et al. Two-dimensional acoustic particle focusing enables sheathless chip Coulter counter with planar electrode configuration
US7777476B2 (en) Dynamic modulation for multiplexation of microfluidic and nanofluidic based biosensors
KR101338349B1 (ko) 미세입자 분리 장치 및 이의 제작 방법
Mernier et al. Characterization of a novel impedance cytometer design and its integration with lateral focusing by dielectrophoresis
US20210331169A1 (en) Microfluidic apparatus for separation of particulates in a fluid
JP2003287519A (ja) ミクロ流体成分と流体内の粒子を選別する方法
WO2004074814A2 (en) Dielectric particle focusing
JP2009540332A (ja) 電解質系内の時変イオン電流を検知するための方法及び装置
WO2020202172A1 (en) Modified microfluidic impedance based lab on chip for individual cell counting and a process for fabrication thereof
US11648558B2 (en) Biosensor apparatus, method of fabricating biosensor apparatus, biosensor chip, and method of detecting target molecule
US20230358663A1 (en) Microfluidic impedance cytometry apparatus
TW201525461A (zh) 微流體裝置
Demircan et al. Detection of imatinib resistance in K562 leukemia cells by 3D-electrode contactless dielectrophoresis
Tang et al. An impedance microsensor with coplanar electrodes and vertical sensing apertures
JP7003640B2 (ja) 粒子検出装置及び粒子検出方法
US20230241610A1 (en) Devices and Methods for Flow Control of Single Cells or Particles
Altinagac et al. Single cell array impedance analysis for cell detection and classification in a microfluidic device
US8778160B2 (en) Method and apparatus for separating particles by dielectrophoresis
Jagtiani et al. AC Measurements and Multiplexed Detection of Microparticles Using Parallel Channel Coulter Counter
JP2019117064A (ja) 粒子検出装置及び粒子検出方法
Bahrieh et al. Dielectric analysis of changes in electric properties of doxorubicin resitant K562 leukemic cells through electrorotation with 3-D electrodes

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060512

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20070330

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070330

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070911

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071211

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080212

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080512

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080603

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080702

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110711

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees