JP7123014B2 - ドロス検知システム - Google Patents

ドロス検知システム Download PDF

Info

Publication number
JP7123014B2
JP7123014B2 JP2019131325A JP2019131325A JP7123014B2 JP 7123014 B2 JP7123014 B2 JP 7123014B2 JP 2019131325 A JP2019131325 A JP 2019131325A JP 2019131325 A JP2019131325 A JP 2019131325A JP 7123014 B2 JP7123014 B2 JP 7123014B2
Authority
JP
Japan
Prior art keywords
dross
infrared
molten metal
intensity
change
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019131325A
Other languages
English (en)
Other versions
JP2021014632A (ja
Inventor
忠 稲谷
雄一 立石
真 山口
武士 原田
勇介 土佐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Nippon Steel Texeng Co Ltd
Original Assignee
Nippon Steel Corp
Nippon Steel Texeng Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp, Nippon Steel Texeng Co Ltd filed Critical Nippon Steel Corp
Priority to JP2019131325A priority Critical patent/JP7123014B2/ja
Publication of JP2021014632A publication Critical patent/JP2021014632A/ja
Application granted granted Critical
Publication of JP7123014B2 publication Critical patent/JP7123014B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Coating With Molten Metal (AREA)

Description

本発明は、ドロス検知システムに関する。
亜鉛などの金属を鋼板などのめっき対象物にめっきする連続溶融金属めっき設備の溶融金属めっき槽において、収容される溶融金属の表面が酸化されるなどして、溶融金属の表面にドロスが継続して発生するという問題がある。溶融金属の表面にドロスが発生すると、めっき対象の表面にドロスが付着するために、製造されためっき製品に重大な欠陥をもたらす。したがって、溶融金属めっき槽においては、溶融金属の表面に発生するドロスを継続して除去する必要がある。
溶融金属の表面に発生し、浮遊するドロスは、たとえば特許文献1に示されるドロス除去装置により除去することができる。特許文献1のドロス除去装置は、ドロスを捕集するためのドロス捕集網を万遍なく溶融金属めっき槽内を移動させて、溶融金属の表面に浮遊するドロスを除去する。
特開平5-302157号公報
ところが、特許文献1のドロス除去装置のように、ドロスの有無にかかわらず溶融金属めっき槽内でドロス捕集網を万遍なく移動させると、たとえばドロスの無い場所であってもドロス捕集金網に向かってドロスが集まってくるため、かえって溶融金属の表面にドロスを散在させる結果となってしまう。したがって、溶融金属の表面に浮遊するドロスを効率的に除去するためには、溶融金属の表面におけるドロスの有無を確認し、ドロスが位置する場所を確認する必要がある。
溶融金属の表面に浮遊するドロスの有無の確認や、ドロスの分布の確認は、目視によって行なわれることが多い。しかし、目視による確認は、ドロス除去の効率化や自動化の阻害要因になる。
本発明は、上記問題に鑑みなされたもので、溶融金属の表面に浮遊するドロスの位置を検知するドロス検知システムを提供することを目的とする。
本発明者らは、鋭意検討した結果、溶融金属の波立つ表面においてドロスが存在する位置とドロスが存在しない位置とで波立ちの程度が異なることに着目するとともに、溶融金属の表面から放射される赤外線の強度が赤外線の放射角度に対して特異的に変化する傾向があることを利用して、溶融金属の表面におけるドロスが存在する位置における波立ちの程度の違いを検知することで、ドロスを検知することができることを見出した。
本発明のドロス検知システムは、溶融金属の表面に浮遊するドロスを検知するドロス検知システムであって、前記溶融金属の表面から放射される赤外線を検出する赤外線検出装置と、前記赤外線検出装置を制御して、前記溶融金属の表面から放射される前記赤外線の赤外線強度を所定期間に亘って測定するように構成される測定部と、測定された赤外線強度の、前記溶融金属の表面の波立ちに起因した時間変化に基づいて、前記ドロスを検知するように構成される検知部とを備えることを特徴とする。
また、前記検知部が、測定された前記赤外線強度から、前記溶融金属の表面の波立ちに起因した前記赤外線強度の変化量を算出するように構成される算出部と、前記赤外線強度の変化量が所定値よりも小さい場合に、前記ドロスが存在していると判定するように構成される判定部とを備えることが好ましい。
また、前記測定部が、前記赤外線検出装置を制御して、前記溶融金属の表面の複数の位置のそれぞれから放射される赤外線の赤外線強度を所定期間に亘って測定し、前記赤外線強度の分布を測定するように構成され、前記判定部が、前記複数の位置のうち、前記赤外線強度の変化量が所定値よりも小さい位置において、前記ドロスが存在していると判定するように構成されることが好ましい。
また、前記ドロス検知システムが、前記複数の位置のそれぞれに対応する前記赤外線強度の変化量を前記複数の位置のそれぞれに対応させて表示するように構成される表示部をさらに備えることが好ましい。
また、前記赤外線強度の変化量が、前記所定期間における前記赤外線強度の最大値と最小値との差であることが好ましい。
本発明によれば、溶融金属の表面に浮遊するドロスの位置を検知するドロス検知システムを提供することができる。
本発明の一実施形態に係るドロス検知システムと、ドロス検知システムが組み込まれた連続溶融亜鉛めっき設備とを模式的に示す図である。 図1に示された連続溶融亜鉛めっき設備の溶融亜鉛めっき槽の内部の一部を模式的に示す図であり、(a)は、溶融金属の表面から見た図であり、(b)は、溶融金属を側面から見た図である。 本発明の一実施形態に係るドロス検知システムを模式的に示すブロック図である。 図2(b)に示された溶融金属の表面において、ドロスが存在しない位置(A)およびドロスが存在する位置(B)について測定される赤外線強度の時間変化を示す例示的なグラフを模式的に示す図である。 本発明の一実施形態に係るドロス検知システムの表示部を模式的に示す図である。 本発明の一実施形態に係るドロス検知方法を示すフローチャートである。 図6に示されるドロス検知方法における検知工程の詳細を示すフローチャートである。
以下、添付図面を参照して、本発明の一実施形態に係るドロス検知システムおよびドロス検知方法を説明する。ただし、以下に示す実施形態は一例であり、本発明のドロス検知システムおよびドロス検知方法は以下の例に限定されることはない。
本実施形態のドロス検知システムおよびドロス検知方法は、溶融金属の表面に浮遊するドロスを検知するために用いられる。以下では、図1に示されるような連続溶融亜鉛めっき設備100の溶融亜鉛めっき槽101における亜鉛系溶融金属M(以下では、「溶融金属M」ともいう)の表面に浮遊するドロスDを検知するのに適用した例を挙げて、本実施形態のドロス検知システムおよびドロス検知方法を説明する。ただし、本発明のドロス検知システムおよびドロス検知方法は、以下の例に限定されることはなく、たとえばアルミニウム系、錫系、鉛系など、他の溶融金属めっき槽における溶融金属の表面に浮遊するドロスの検知や、めっき設備以外における溶融金属の表面に浮遊するドロスの検知も含めて、溶融金属の表面に浮遊するドロスを検知する必要のある他の用途にも適用可能である。
連続溶融亜鉛めっき設備100は、図1に示されるように、めっき対象である帯状の鋼板Sを連続的に、亜鉛系溶融金属M中を通過させることで、亜鉛系金属を鋼板S上に付着させる設備である。連続溶融亜鉛めっき設備100は、亜鉛系溶融金属Mが収容される溶融亜鉛めっき槽101と、スナウト105を通って亜鉛系溶融金属M内に連続して導かれる鋼板Sの進行方向を転換するシンクロール102と、鋼板Sを支持するピンチロール103と、鋼板S上に付着する亜鉛系金属のめっき量を調整するガスワイピングノズル104とを備えている。連続溶融亜鉛めっき設備100では、鋼板Sは、図1中の矢印の向きに沿って亜鉛系溶融金属M中に斜め下方に侵入し、亜鉛系溶融金属M中でシンクロール102によって方向転換され、亜鉛系溶融金属Mから鉛直方向上方に引き上げられ、その間に亜鉛系金属が表面に付着される。
溶融亜鉛めっき槽101に収容される亜鉛系溶融金属Mは、溶融亜鉛を主成分として、所望に応じてアルミニウムなどの他の成分が添加される溶融金属である。亜鉛系溶融金属Mは、鋼板Sが連続して外部から高速で侵入し、外部へ高速で脱出する。鋼板Sが亜鉛系溶融金属Mから脱出する際には、高速で脱出する鋼板Sに引きずられるように亜鉛系溶融金属Mが持ち上げられるとともに、鋼板Sに付着しない亜鉛系溶融金属Mが鋼板S表面に沿って流れ落ちる。したがって、亜鉛系溶融金属Mの表面は、鋼板Sの高速通過や、亜鉛系溶融金属Mの上下動により、図2(a)、(b)に示されるように、常に波立って、波Maが生じた状態となっている。その一方で、亜鉛系溶融金属Mは、その表面が酸化されるなどして、亜鉛の酸化物などにより構成されるドロスDが表面に発生する。亜鉛系溶融金属Mの波立つ表面においてドロスDが存在する位置では、ドロスDによってその表面の波立ちが抑制される。以下で詳しく述べるように、本実施形態のドロス検知システムおよびドロス検知方法は、ドロスDの有無によって溶融金属Mの表面の波立ちの程度に差異が生じる現象を利用してドロスDを検知しようとするものである。
なお、ドロスという用語は、本明細書では、一般的に用いられている用語の意味に限定されることはなく、溶融金属Mを構成する成分とは異なる成分を含むか、溶融金属Mを構成する成分と同じで、組成が異なる成分を含み、溶融金属Mの表面に浮遊することで、少なくとも溶融金属Mの表面の波立ちを抑制する浮遊物の意味で用いられる。また、浮遊という用語は、図1および図2(b)に示されるように、ドロスDの表面が溶融金属Mの表面から外部に露出して浮遊している状態だけでなく、溶融金属Mの表面から露出しないで溶融金属Mの表面からわずかに下方に沈んだ状態で浮遊している状態を含む意味でも用いられる。つまり、「溶融金属Mの表面にドロスDが浮遊している」とは、溶融金属Mの表面に生じる波立ちが抑制されるように、溶融金属Mの表面の近傍にドロスDが存在していることを意味している。
<ドロス検知システム>
本実施形態のドロス検知システム1は、以上に説明したような亜鉛系溶融金属Mの表面に浮遊するドロスDを検知するために、図1に示されるように、連続溶融亜鉛めっき設備100に組み込まれて使用される。
ドロス検知システム1は、図1に示されるように、溶融金属Mの表面から放射される赤外線を検出する赤外線検出装置2と、赤外線検出装置2により検出される赤外線の赤外線強度に基づいてドロスDを検知するように構成される情報処理装置3とを備えている。
赤外線検出装置2は、浮遊するドロスDを含めた溶融金属Mの表面から放射される赤外線を検出する。赤外線検出装置2は、本実施形態では、図1に示されるように、溶融金属Mの鉛直方向上方に配置され、溶融金属Mの表面から鉛直方向上方に放射される赤外線を検出する。赤外線検出装置2は、情報処理装置3にデータ通信可能に接続される。赤外線検出装置2と情報処理装置3とは、特に限定されることはなく、有線LANケーブル、無線LAN、USBケーブル、ブルートゥース(登録商標)などの公知の通信手段により接続することができる。なお、赤外線検出装置2は、溶融金属Mに対して所定の位置で溶融金属Mの表面から所定の方向に放射される赤外線を検出することができれば、設置される位置は特に限定されることはなく、たとえば溶融金属Mの表面に対して垂直方向から傾斜した位置に設けられてもよい。
赤外線検出装置2としては、たとえば公知の赤外線サーモグラフィカメラを用いることができる。赤外線サーモグラフィカメラは、溶融金属Mの表面から放射される赤外線の赤外線強度の2次元分布を検出することができる。ただし、赤外線検出装置2は、溶融金属Mの表面から放射される赤外線を検出することができればよく、たとえば、溶融金属Mの表面の特定の位置から放射される赤外線だけを検出する装置であってもよいし、溶融金属Mの表面の全体から放射される赤外線を全体として検出する装置であってもよい。なお、赤外線検出装置2として公知の赤外線サーモグラフィカメラなどを用いる場合には、測定される赤外線強度は温度値に変換されて出力されるので、出力される温度値を赤外線強度の代わりに用いることができる。
赤外線は、溶融金属Mの表面から放射される電磁波である。一般的に、対象物の表面から放射される赤外線の強度は、対象物の表面の温度変化に応じて変化する。したがって、一般的な赤外線サーモグラフィカメラでは、このような原理を利用して、対象物の表面から放射される赤外線の強度から、対象物の表面の温度分布を調べることができる。その一方で、対象物の表面から放射される赤外線の強度は、対象物そのものが有する放射率に依存して変化するため、対象物の種類(成分など)の変化によっても変化する。さらに、その放射率は、対象物の表面から放射される赤外線の放射角度の変化に対しても特異的に変化する傾向があり、たとえば、対象物の種類によっては、対象物の表面に対して垂直方向からの傾斜角度が約50°まではほぼ一定の値を示すが、50°を超えると急激に低下するという変化を示す。したがって、測定される赤外線強度は、赤外線検出装置2に対する対象物の表面の角度の変化によって大きく変化する。このように、対象物の表面から放射される赤外線の強度は、対象物の温度、対象物の種類、対象物からの放射角度に依存している。
本実施形態では、対象物である溶融金属M(およびドロスD)の温度および種類は、赤外線の検出期間に亘って大きく変動することがない。それに対して、上述したように、溶融金属Mの表面は波立っており、溶融金属Mの表面の赤外線検出装置2に対する角度が常に変化している。つまり、溶融金属Mの表面からの赤外線の放射角度が常に変化し、それによって検出される赤外線の強度は常に変化している。ここで、上述したように、溶融金属Mの表面においては、ドロスDが存在している位置で波立ちが抑制されている。したがって、溶融金属Mの表面において、ドロスDが存在する位置と、ドロスDが存在しない位置とでは、波立ちの程度が異なり、検出される赤外線の強度の変化量が異なる。本実施形態のドロス検知システム1は、後述するドロス検知方法も含めて、このような原理に基づいて、溶融金属Mの表面に浮遊するドロスDを検知しようとするものである。
なお、ドロス検知システム1は、ドロス検知方法も含めて、本実施形態では表面が波立つ亜鉛系溶融金属の表面に浮遊するドロスDの検知に適用されるが、他の溶融金属の表面であっても、表面が波立っていれば適用可能であり、本実施形態に限定されることはなく、表面が波立つ他の溶融金属の表面に浮遊するドロスを検知するために用いることができる。
情報処理装置3は、赤外線検出装置2と情報通信可能に接続され、赤外線検出装置2により検出される赤外線の赤外線強度に基づいてドロスDを検知するように構成される。情報処理装置3は、本実施形態では、図3に示されるように、赤外線検出装置2により検出される赤外線の赤外線強度に基づいてドロスDを検知するように構成される演算処理部31と、演算処理部31に対する命令などを入力するための入力部32と、赤外線検出装置2により検出された赤外線に関する情報や、演算処理部31により得られた結果などを記憶するための記憶部33と、赤外線検出装置2により検出された赤外線に関する情報や、演算処理部31により得られた結果などを表示するための表示部34とを備えている。情報処理装置3としては、特に限定されることはなく、たとえば、演算処理部31として公知のCPUなどの演算処理装置を、入力部32としてキーボード・マウスなどの入力装置を、記憶部33としてハードディスクなどの記憶装置を、表示部34として液晶ディスプレイなどの表示装置を備えたパーソナルコンピュータなどの公知の計算装置を用いることができる。演算処理部31、入力部32、記憶部33および表示部34は、本実施形態ではすべてが情報処理装置3に備えられているが、たとえばそれぞれが別々の装置に備えられていてもよい。
演算処理部31は、図3に示されるように、赤外線検出装置2を制御して、溶融金属Mの表面から放射される赤外線の赤外線強度を測定するように構成される測定部31aと、測定された赤外線強度に基づいてドロスDを検知するように構成される検知部31bとを備えている。測定部31aおよび検知部31bは、本実施形態ではともに同じ演算処理部31に備えられているが、たとえば、それぞれ別の演算処理部や別の情報処理装置に備えられていてもよいし、赤外線検出装置2に一体として備えられていてもよい。
測定部31aは、赤外線検出装置2を制御して、溶融金属Mの表面から放射される赤外線の赤外線強度を所定期間t0に亘って測定するように構成される。測定部31aは、溶融金属Mの表面から放射される赤外線を検出し、赤外線強度を測定するように赤外線検出装置2を操作し、測定された赤外線強度を検知部31b(後述する算出部31c)および/または記憶部33に送信する。赤外線強度の測定は、特に限定されることはなく、たとえば15秒などの所定期間t0に亘って、たとえば1回の測定時間が150msなどで、連続的に複数回行なわれる。測定が継続される所定期間t0は、特に限定されることはなく、溶融金属Mの表面の波立ちに起因した赤外線強度の変化を捉えることが可能な時間範囲で適宜選択することができる。
測定される赤外線強度の時間変化を示す例示的なグラフを図4に示す。図4中の左上のグラフは、溶融金属Mの表面のうちドロスDが存在しない位置(A)から測定される典型的な赤外線強度の時間変化の例を示し、図4中の右下のグラフは、溶融金属Mの表面のうちドロスDが存在している位置(B)から測定される典型的な赤外線強度の時間変化の例を示す。それぞれの横軸は経過時間を示し、それぞれの縦軸は赤外線強度(または温度値)を示している。図4から分かるように、ドロスDが存在していない溶融金属Mの表面(A)では、相対的に大きな波立ちの存在により、赤外線強度の変化量が相対的に大きく、ドロスDが存在する溶融金属Mの表面(B)では、ドロスDが存在しない表面と比べて波立ちが抑制されているので、赤外線強度の変化量が相対的に小さい。
赤外線の検出は、溶融金属Mの表面の特定の領域のみから行なってもよいし、溶融金属Mの表面の全体から行なってもよい。溶融金属Mの表面における赤外線強度の分布を得るという目的のためには、測定部31aは、赤外線検出装置2を制御して、溶融金属Mの表面の複数の位置のそれぞれから放射される赤外線の赤外線強度を所定期間に亘って測定し、赤外線強度の分布を測定するように構成されることが好ましい。測定部31aは、たとえば赤外線検出装置2として公知の赤外線サーモグラフィカメラを用いることで、溶融金属Mの表面の複数の位置から放射される赤外線を同時に検出し、複数の位置に対応する複数の赤外線強度の分布を測定することができる。測定部31aは、測定された複数の赤外線強度と、それぞれに対応する位置情報とを、検知部31b(算出部31c)および/または記憶部33に送信する。なお、赤外線検出装置2として公知の赤外線サーモグラフィカメラを用いる場合には、赤外線強度に対応する温度値の分布画像が得られるが、その場合は、分布画像の各画素における温度値を抽出することで、複数の位置のそれぞれについての温度値を得て、その温度値を赤外線強度の代わりに用いることができる。
検知部31bは、測定部31aにより測定された赤外線強度の、溶融金属Mの表面の波立ちに起因した時間変化に基づいて、ドロスDを検知するように構成される。検知部31bは、測定部31aまたは記憶部33から、所定期間t0に亘って測定された複数の赤外線強度を受信し、所定期間t0に亘る赤外線強度の時間変化に基づいてドロスDを検知する。このように、ドロス検知システム1では、溶融金属Mの表面から放射される赤外線の赤外線強度が溶融金属Mの表面の波立ちに起因して変化することに着目し、ドロスDの有無によって溶融金属Mの表面の波立ちの程度が異なるという現象を利用して、検知部31bによって、赤外線強度の時間変化に基づいて溶融金属Mの表面に浮遊するドロスDを検知するので、溶融金属Mの表面に浮遊するドロスDをより正確に検知することができる。検知部31bは、本実施形態では、図3に示されるように、算出部31cおよび判定部31dを備えている。ただし、検知部31bは、赤外線強度の時間変化に基づいてドロスDを検知することができればよく、以下で詳しく述べるような算出部31cおよび判定部31dを備えた構成に限定されることはない。
算出部31cは、測定部31aにより測定された赤外線強度から、溶融金属Mの表面の波立ちに起因した赤外線強度の変化量を算出するように構成される。算出部31cは、測定部31aまたは記憶部33から、所定期間t0に亘って測定された複数の赤外線強度を受信し、所定期間t0内の赤外線強度の変化量を算出する。算出部31cは、算出した赤外線強度の変化量を、判定部31dおよび/または記憶部33および/または表示部34に送信する。算出部31cにより赤外線強度の変化量を算出することで、溶融金属Mの表面の波立ちの程度を評価することができる。算出する赤外線強度の変化量は、図4に示されるように、所定期間t0における赤外線強度の最大値と最小値との差ΔTであることが好ましい。赤外線強度の変化量として、所定期間t0内の赤外線強度の最大値と最小値との差ΔTを採用することにより、変化量の算出が単純で、変化量の算出を迅速に行なうことができる。ただし、赤外線強度の変化量は、溶融金属Mの表面の波立ちに起因した変化を表す量であれば、特に限定されることはなく、たとえば所定期間t0内における赤外線強度の標準偏差値、変動周期、中心値からの偏差値などであってもよい。
算出部31cは、測定部31aによって溶融金属Mの表面の複数の位置について赤外線強度が測定される場合には、測定された複数の赤外線強度のそれぞれについて赤外線強度の変化量を算出する。これにより、溶融金属Mの表面における赤外線強度の変化量の分布を求めることができる。さらに、算出部31cは、溶融金属Mの表面を隣接する複数の位置を含むより広い範囲に区切って、その範囲に含まれる複数の位置の変化量の平均を算出することで、より広い範囲についての変化量を算出してもよい。算出される複数の赤外線強度の変化量と、それぞれに対応する位置情報とは、判定部31dおよび/または記憶部33および/または表示部34に送信される。
判定部31dは、算出部31cにより算出される赤外線強度の変化量が所定値よりも小さい場合に、ドロスDが存在していると判定するように構成される。判定部31dは、算出部31cまたは記憶部33から、所定期間t0内における赤外線強度の変化量を受信し、赤外線強度の変化量と所定値とを比較して、赤外線強度の変化量が所定値よりも小さい場合に、溶融金属Mの表面にドロスDが存在していると判定する。また、判定部31dは、赤外線強度の変化量が所定値以上である場合に、溶融金属Mの表面にドロスDが存在していないと判定してもよい。判定結果は、記憶部33に送られ、および/または、表示部34に表示され、および/または、図示しないドロス除去装置の制御装置に送信される。
判定部31dは、算出部31cによって溶融金属Mの表面の複数の位置のそれぞれについて赤外線強度の変化量を算出する場合には、複数の位置のうち、赤外線強度の変化量が所定値よりも小さい位置において、ドロスDが存在していると判定するように構成される。判定部31dは、算出部31cまたは記憶部33から、所定期間t0内における複数の位置のそれぞれに対応する赤外線強度の変化量を受信し、それぞれの赤外線強度の変化量と所定値とを比較して、赤外線強度の変化量が所定値よりも小さい、溶融金属Mの表面上の位置において、ドロスDが存在していると判定する。また、判定部31dは、赤外線強度の変化量が所定値以上である、溶融金属Mの表面上の位置において、ドロスDが存在していないと判定してもよい。判定結果は、対応する位置情報ととともに、上述したのと同様に、記憶部33に送られ、および/または、表示部34に表示され、および/または、図示しないドロス除去装置の制御装置に送信される。
ドロスDの存在の判定基準となる所定値は、赤外線強度が溶融金属の種類や温度で変化するため、特に限定されることはなく、たとえば、予め測定され、算出される、ドロスDが存在する場合の赤外線強度の変化量に基づいて適宜設定することが可能である。たとえば、所定値は、ドロスDが存在する場合の変化量と、ドロスDが存在しない場合の変化量との中間値などに設定することができる。
表示部34は、たとえば、図5に示されるように、複数の位置のそれぞれに対応する赤外線強度の変化量を複数の位置のそれぞれに対応させて表示するように構成されてもよい。表示部34は、算出部31cまたは記憶部33から、所定期間t0内における複数の位置のそれぞれに対応する赤外線強度の変化量と、それぞれの変化量に対応する位置情報を受信し、複数の位置のそれぞれに対応する表示領域34aに、それぞれに対応する変化量を表示する。これにより、どの表示領域34aの、すなわち溶融金属Mの表面のどの位置の赤外線強度の変化量が小さいかを視覚的に捉えることができる。このとき、判定部31dによってドロスDが存在していると判定された位置に対応する表示領域34aを赤く点灯させることで、ドロスDの存在位置をより確認しやすくなる。また、表示部34は、隣接する複数(図示された例では4つ)の表示領域34aを1つの表示範囲34bとして取り扱い、表示範囲34bに含まれる表示領域34aに対応する赤外線強度の変化量の平均値を表示範囲34bごとに表示するようにしてもよい。複数の位置についての赤外線強度の変化量の平均値を表示することで、ノイズの影響を軽減でき、より正確にドロスDの存在を判定することができる。
<ドロス検知方法>
つぎに、本実施形態のドロス検知方法を、図6および図7に示されるフローチャートも含めて説明する。本実施形態のドロス検知方法は、上述した本実施形態のドロス検知システム1を用いて実施することができるが、他の公知の赤外線検出装置および情報処理装置を組み合わせて実施することもできる。
本実施形態のドロス検知方法は、図6に示されるように、測定工程S1および検知工程S2を含んでいる。測定工程S1において、溶融金属Mの表面から放射される赤外線の赤外線強度を所定期間t0に亘って測定する。測定された赤外線強度は、図4に示されるように、溶融金属Mの表面の波立ちに起因して、所定期間t0内で時間変化する。特に、溶融金属Mの表面にドロスDが存在しない位置(A)と、ドロスDが存在する位置(B)とでは、波立ちの程度に差があるために、赤外線強度の時間変化に違いが現れる。そして、検知工程S2において、測定された赤外線強度の、溶融金属Mの表面の波立ちに起因した時間変化に基づいて、ドロスDを検知する。上述したように、対象物の表面から放射される赤外線の赤外線強度は、対象物の表面形状の変化にともなう赤外線の放射角度の変化に応じて大きく変化する。本実施形態のドロス検知方法は、このような原理に基づいて、溶融金属Mの表面の波立ちに起因した赤外線強度の時間変化に基づいてドロスDを検知することにより、溶融金属Mの表面に浮遊するドロスDを検知することができる。
検知工程S2は、本実施形態では、図7に示されるように、算出工程S21および判定工程S22を含んでいる。算出工程S21において、測定された赤外線強度から、溶融金属Mの表面の波立ちに起因した赤外線強度の変化量を算出する。算出工程S21において算出する赤外線強度の変化量は、本実施形態では、図4に示されるように、所定期間t0における赤外線強度の最大値と最小値との差ΔTである。そして、判定工程S22において、赤外線の変化量と所定値とを比較し、赤外線強度の変化量が所定値よりも小さい場合に、溶融金属Mの表面にドロスDが存在していると判定する。これにより、溶融金属Mの表面にドロスDが存在しているか否かを確認することができる。なお、判定工程S22では、赤外線強度の変化量が所定値以上である場合に、溶融金属Mの表面にドロスDが存在していないと判定してもよい。
測定工程S1における赤外線強度の測定は、溶融金属Mの表面の特定の領域のみから行なってもよいし、溶融金属Mの表面の全体から行なってもよい。溶融金属Mの表面における赤外線強度の分布を得るという目的のために、測定工程S1は、溶融金属Mの表面の複数の位置のそれぞれから放射される赤外線の赤外線強度を所定期間に亘って測定し、赤外線強度の分布を測定する工程を含んでいてもよい。その場合、判定工程S22において、複数の位置のうち、赤外線強度の変化量が所定値よりも小さい位置において、ドロスDが存在していると判定する。これにより、溶融金属Mの表面において、ドロスDが存在する領域の分布を確認することができる。なお、判定工程22において、複数の位置のうち、赤外線強度の変化量が所定値以上である位置において、ドロスDが存在していないと判定してもよい。
本実施形態のドロス検知方法は、複数の位置のそれぞれに対応する赤外線強度の変化量を複数の位置のそれぞれに対応させて表示する表示工程をさらに含んでいてもよい。この表示工程では、図5を例に説明すると、複数の位置のそれぞれに対応する表示領域34aに、それぞれに対応する変化量を表示する。これにより、どの表示領域34aの、すなわち溶融金属Mの表面のどの位置の赤外線強度の変化量が小さいかを視覚的に捉えることができる。このとき、判定工程S22によってドロスDが存在していると判定された位置に対応する表示領域34aを赤く点灯させることで、ドロスDの存在位置をより確認しやすくなる。また、表示工程において、隣接する複数の表示領域34aを1つの表示範囲34bとして取り扱い、表示範囲34bに含まれる表示領域34aに対応する赤外線強度の変化量の平均値を表示範囲34bごとに表示してもよい。複数の位置についての赤外線強度の変化量の平均値を表示することで、ノイズの影響を軽減でき、より正確にドロスDの存在を判定することができる。
1 ドロス検知システム
2 赤外線検出装置
3 情報処理装置
31 演算処理部
31a 測定部
31b 検知部
31c 算出部
31d 判定部
32 入力部
33 記憶部
34 表示部
34a 表示領域
34b 表示範囲
100 連続溶融亜鉛めっき設備
101 溶融亜鉛めっき槽
102 シンクロール
103 ピンチロール
104 ガスワイピングノズル
105 スナウト
D ドロス
M 亜鉛系溶融金属(溶融金属)
Ma 波
S 鋼板

Claims (5)

  1. 溶融金属の表面に浮遊するドロスを検知するドロス検知システムであって、
    前記溶融金属の表面から放射される赤外線を検出する赤外線検出装置と、
    前記赤外線検出装置を制御して、前記溶融金属の表面から放射される前記赤外線の赤外線強度を所定期間に亘って測定するように構成される測定部と、
    前記所定期間内の赤外線強度の変化量が所定値よりも小さい場合に、前記ドロスが存在していると判定するように構成される検知部と
    を備える、ドロス検知システム。
  2. 前記検知部が、
    測定された前記所定期間内の前記赤外線強度の変化量を算出するように構成される算出部と、
    前記赤外線強度の変化量が所定値よりも小さい場合に、前記ドロスが存在していると判定するように構成される判定部と
    を備える、請求項1記載のドロス検知システム。
  3. 前記測定部が、前記赤外線検出装置を制御して、前記溶融金属の表面の複数の位置のそれぞれから放射される赤外線の赤外線強度を所定期間に亘って測定し、前記赤外線強度の分布を測定するように構成され、
    前記判定部が、前記複数の位置のうち、前記赤外線強度の変化量が所定値よりも小さい位置において、前記ドロスが存在していると判定するように構成される、
    請求項2記載のドロス検知システム。
  4. 前記ドロス検知システムが、前記複数の位置のそれぞれに対応する前記赤外線強度の変化量を前記複数の位置のそれぞれに対応させて表示するように構成される表示部をさらに備える、
    請求項3記載のドロス検知システム。
  5. 前記赤外線強度の変化量が、前記所定期間における前記赤外線強度の最大値と最小値との差である、
    請求項2~4のいずれか1項に記載のドロス検知システム。
JP2019131325A 2019-07-16 2019-07-16 ドロス検知システム Active JP7123014B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019131325A JP7123014B2 (ja) 2019-07-16 2019-07-16 ドロス検知システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019131325A JP7123014B2 (ja) 2019-07-16 2019-07-16 ドロス検知システム

Publications (2)

Publication Number Publication Date
JP2021014632A JP2021014632A (ja) 2021-02-12
JP7123014B2 true JP7123014B2 (ja) 2022-08-22

Family

ID=74531777

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019131325A Active JP7123014B2 (ja) 2019-07-16 2019-07-16 ドロス検知システム

Country Status (1)

Country Link
JP (1) JP7123014B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7089076B1 (ja) 2021-02-01 2022-06-21 イビデン株式会社 組電池及び電池パック

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005220404A (ja) 2004-02-05 2005-08-18 Nisshin Steel Co Ltd 表面外観に優れた溶融メッキ鋼板の製造方法および装置
JP2014530960A (ja) 2011-10-20 2014-11-20 アルセロルミタル・インベステイガシオン・イ・デサロジヨ・エセ・エレ 鋼帯材に熱浸漬被覆する方法およびそれを実現する設備

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101186190B1 (ko) * 2010-05-28 2012-10-08 레드원테크놀러지 주식회사 용융아연도금조의 부유물 제거를 위한 위치인식 시스템

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005220404A (ja) 2004-02-05 2005-08-18 Nisshin Steel Co Ltd 表面外観に優れた溶融メッキ鋼板の製造方法および装置
JP2014530960A (ja) 2011-10-20 2014-11-20 アルセロルミタル・インベステイガシオン・イ・デサロジヨ・エセ・エレ 鋼帯材に熱浸漬被覆する方法およびそれを実現する設備

Also Published As

Publication number Publication date
JP2021014632A (ja) 2021-02-12

Similar Documents

Publication Publication Date Title
TWI425205B (zh) 用以偵測材料中缺陷之方法以及用於該方法之系統
RU2549913C2 (ru) Термографический способ контроля и контрольная установка для осуществления способа
JP2019504277A (ja) コンベヤ上の原料の質量を決定するための方法およびシステム
KR102518982B1 (ko) 드로스 제거 장치, 드로스 제거 방법, 드로스 검출 장치 및 드로스 검출 방법
JP7123014B2 (ja) ドロス検知システム
JP2007002306A (ja) 高炉出銑流速測定方法、出銑流速測定装置、及び出銑量測定方法
JP4714607B2 (ja) 高炉出銑流測定システム、高炉出銑流測定方法、及びコンピュータプログラム
CN111678603B (zh) 一种浸入式水口堵塞程度的检测装置及其方法
JP2007248148A (ja) 高炉出銑温度測定システム、高炉出銑温度測定方法、及びコンピュータプログラム
JP5176667B2 (ja) 溶融亜鉛めっき鋼板の製造方法及び溶融亜鉛めっき浴内の堆積物高さ監視装置
JP4873902B2 (ja) 金属ストリップの連続処理設備における操業支援装置、操業支援方法、コンピュータプログラム、及びコンピュータ読み取り可能な記録媒体
CN105807795B (zh) 基于视频图像处理的eb炉钛液液位监控系统及方法
KR20140066856A (ko) 외판용 gi 강판의 애쉬 결함 개선을 위한 용융아연 도금 장치 및 이를 이용한 스나우트 내의 부유이물 배출 제어 방법
KR102065222B1 (ko) 용선 공취 상태 모니터링 장치
JP5712572B2 (ja) 薄鋼板用連続鋳造鋳片の欠陥検出方法および欠陥検出装置
JP7493093B2 (ja) 底部ブロックからのインゴット分離を監視するためのシステム及び方法
JP4299619B2 (ja) スパングルサイズ制御システム
US20230286037A1 (en) System and method for monitoring metal level during casting
JP5824826B2 (ja) めっき浴内の温度分布推定装置、温度分布推定方法、及び連続溶融金属めっきプロセスの操業方法
JP4912899B2 (ja) 金属ストリップの連続処理設備における操業支援装置、操業支援方法、コンピュータプログラム、及びコンピュータ読み取り可能な記録媒体
KR101295592B1 (ko) 압연공정에서의 소재 온도 예측방법
JP2005091266A (ja) スパングルサイズ測定装置
JP2015017293A (ja) 搬送状態検出装置、搬送状態検出方法、及びコンピュータプログラム
JPWO2018150590A1 (ja) 板エッジ検出装置及び板エッジ検出方法

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7426

Effective date: 20190802

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20190802

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210824

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220623

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220628

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220721

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220802

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220809

R150 Certificate of patent or registration of utility model

Ref document number: 7123014

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150