JP7116400B2 - truss girder - Google Patents

truss girder Download PDF

Info

Publication number
JP7116400B2
JP7116400B2 JP2019012536A JP2019012536A JP7116400B2 JP 7116400 B2 JP7116400 B2 JP 7116400B2 JP 2019012536 A JP2019012536 A JP 2019012536A JP 2019012536 A JP2019012536 A JP 2019012536A JP 7116400 B2 JP7116400 B2 JP 7116400B2
Authority
JP
Japan
Prior art keywords
diagonal
upper chord
chord member
deformation
main body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019012536A
Other languages
Japanese (ja)
Other versions
JP2020118004A (en
Inventor
寛 江頭
浩之 原田
学 川島
祥一 吉敷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Institute of Technology NUC
Sumitomo Mitsui Construction Co Ltd
Original Assignee
Tokyo Institute of Technology NUC
Sumitomo Mitsui Construction Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Institute of Technology NUC, Sumitomo Mitsui Construction Co Ltd filed Critical Tokyo Institute of Technology NUC
Priority to JP2019012536A priority Critical patent/JP7116400B2/en
Publication of JP2020118004A publication Critical patent/JP2020118004A/en
Application granted granted Critical
Publication of JP7116400B2 publication Critical patent/JP7116400B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Joining Of Building Structures In Genera (AREA)
  • Rod-Shaped Construction Members (AREA)

Description

本開示は、地震時の変形能力が高いトラス梁に関する。 TECHNICAL FIELD The present disclosure relates to truss beams with high deformability during earthquakes.

トラス梁は、弦材及び斜材の個材で構成され、弾性域では個々の部材に生じる軸力で抵抗する部材であり、一般的に弦材は直線や曲線、斜材は直線であることが多い。 A truss girder consists of individual members of chord members and diagonal members, and is a member that resists the axial force generated in each member in the elastic region. Generally, the chord members are straight or curved, and the diagonal members are straight. There are many.

鉄骨部材の変形能力は、主に個材の幅厚比によって構造特性係数(以下、「Ds値」と記す)が決まり、H形鋼などの単材の充腹材部材に適用されている。変形性能が大きいほどDs値は小さな値となり、設計用の地震力が小さくなる。しかし、トラス梁の個材の幅厚比には適用できず、トラス梁自体の部材種別が存在しないため、現時点では特別な検討をしない限り、トラス梁の設計にはDs値を大きく定めることが慣例である。従って、トラス梁を設ける場合には、変形性能に乏しい「建物」として、地震力を大きく(Ds値を大きく)して設計する必要があり、トラス梁だけでなく、その他の柱・梁も含めて、不経済な設計になっていた。 The deformability of steel members is determined mainly by the width-to-thickness ratio of individual members, and is applied to single material filling members such as H-shaped steel. The higher the deformation performance, the smaller the Ds value, and the smaller the seismic force for design. However, it cannot be applied to the width-thickness ratio of individual members of the truss beam, and since there is no member type for the truss beam itself, it is not possible to set a large Ds value in the design of the truss beam unless special consideration is given at this time. It is customary. Therefore, when a truss beam is installed, it is necessary to design it as a "building" with poor deformation performance with a large seismic force (large Ds value). It was an uneconomical design.

非特許文献1には、ラーメン骨組に組み込まれた平面トラス部材において、塑性化する部材を座屈拘束部材や、安定した履歴特性を有する部材に交換することにより、トラス架構全体に安定された履歴特性を与える設計が可能で、個材座屈の影響を考慮せず、充腹材(H形鋼等)と同様に架構を扱うことが可能になると記されている。 In Non-Patent Document 1, in a plane truss member incorporated in a Rahmen frame, by replacing the plasticizing member with a buckling restraint member or a member having stable hysteresis characteristics, the hysteresis is stabilized throughout the truss frame. It is written that it is possible to design to give characteristics, and it is possible to treat the frame in the same way as filling materials (H-shaped steel, etc.) without considering the effects of individual buckling.

例えば特許文献1に、座屈拘束部材が記載されている。この座屈拘束部材は、建物の柱と梁の軸組構造に斜めに配置される制振ブレースとして使用されるものであり、鋼管と、両端部が突出するように鋼管に挿通された鋼製の芯材と、芯材に付着しないように鋼管内に充填された充填材とを有する。鋼管及び充填材によって塑性化する芯材の座屈が拘束されている。 For example, Patent Literature 1 describes a buckling restraint member. This buckling restraint member is used as a vibration damping brace that is placed obliquely in the frame structure of the columns and beams of a building. and a filling material filled in the steel pipe so as not to adhere to the core material. The buckling of the plasticized core material is restrained by the steel pipe and the filler material.

特開2005-146773号公報JP 2005-146773 A

日本建築学会著「鋼構造座屈設計指針」日本建築学会、2009年11月Architectural Institute of Japan, "Steel Structure Buckling Design Guidelines", Architectural Institute of Japan, November 2009

図9(A)は、トラス梁の下弦材の一部の区間に座屈拘束部材を適用したときにおける、座屈拘束部材の上方の、上弦材と2つの斜材との接合部を示す。FEM解析を行ったところ、座屈拘束部材が伸長したとき、接合部では、H形鋼からなる上弦材の上フランジや、斜材における斜材をガセットプレートに締結するボルトの近傍の領域が降伏域となり、他の部分は弾性域であった。このように、上弦材の上フランジや斜材の一部に応力が集中した。 FIG. 9(A) shows the joint between the top chord and two diagonal members above the buckling restraint when the buckling restraint is applied to a section of the bottom chord of the truss girder. According to FEM analysis, when the buckling restraint member is elongated, the upper flange of the upper chord member made of H-shaped steel and the region near the bolt that fastens the diagonal member to the gusset plate yield at the joint. The other part was the elastic region. In this way, the stress was concentrated on the upper flange of the upper chord member and part of the diagonal members.

このような問題に鑑み、本発明は、地震時の変形能力が高いトラス梁であって、地震時に弦材や斜材に応力が集中することが抑制されたトラス梁を提供することを目的とする。 In view of such problems, it is an object of the present invention to provide a truss beam that has a high deformability during an earthquake and that suppresses concentration of stress on chord members and diagonal members during an earthquake. do.

本発明の少なくともいくつかの実施形態は、上弦材(2)、下弦材(3)及び複数の斜材(4)を有するトラス梁(1,31)であって、前記下弦材は、長尺材を有する本体部(6)と、該下弦材の延在方向の一部の区間において前記本体部に置き換わるように配置され、少なくとも所定の規模以上の地震時に該下弦材の延在方向への単位長さ当たりの変形が前記本体部よりも大きい変形許容部材(7)とを有し、前記斜材は、互いの上端側が下端側よりも近接するように互いに隣り合う第1斜材(17)及び第2斜材(18)を含み、前記第1斜材及び/又は前記第2斜材の下方に、前記変形許容部材の少なくとも一部が延在し、前記上弦材は、前記第1斜材の上端側が接合する第1上弦材(15)と、前記第2斜材の上端側が接合する第2上弦材(16)とを有し、前記第1上弦材及び前記第2上弦材は、少なくとも所定の規模以上の地震時にピン接合とみなせる第1ピン接合構造(19,32)によって互いに接合していることを特徴とする。前記変形許容部材は、所定の荷重を受けたときに前記本体部よりも先に塑性化するとともに座屈が拘束された部材(10)を含む座屈拘束部材(7)であることが好ましい。 At least some embodiments of the present invention are truss beams (1, 31) having a top chord (2), a bottom chord (3) and a plurality of diagonals (4), said bottom chord being elongated a body portion (6) having a lower chord member, and a main body portion (6) arranged to replace the main body portion in a part of the section in the extending direction of the lower chord member, and at least in the event of an earthquake of a predetermined scale or more, the body portion (6) in the extending direction of the lower chord member and a deformation-permitting member (7) whose deformation per unit length is larger than that of the main body portion. ) and a second diagonal member (18), wherein at least a portion of the deformation-allowing member extends below the first diagonal member and/or the second diagonal member, and the upper chord member includes the first diagonal member It has a first upper chord member (15) to which the upper end side of the diagonal member is joined, and a second upper chord member (16) to which the upper end side of the second diagonal member is joined, wherein the first upper chord member and the second upper chord member are are connected to each other by a first pin joint structure (19, 32) that can be regarded as a pin joint at least in the event of an earthquake of a predetermined magnitude or more. The deformation-permitting member is preferably a buckling restraint member (7) including a member (10) that is plasticized before the main body and whose buckling is restrained when a predetermined load is applied.

この構成によれば、地震時に変形許容部材(座屈拘束部材)が伸縮しても、第1ピン接合構造よって第1上弦材及び第2上弦材が相対的に回転するため、上弦材及び斜材の変形許容部材(座屈拘束部材)の上方に位置する部分に応力が集中することが抑制される。 According to this configuration, even if the deformation-permitting member (buckling restraint member) expands and contracts during an earthquake, the first pin joint structure causes the first upper chord member and the second upper chord member to rotate relative to each other. Concentration of stress on a portion of the material located above the deformation permitting member (buckling restraint member) is suppressed.

本発明の少なくともいくつかの実施形態に係るトラス梁(1)は、上記構成において、前記第1上弦材及び前記第2上弦材は、それぞれ、H形鋼を含み、前記第1ピン接合構造(19)は、スプライスプレート(14)と前記第1上弦材及び前記第2上弦材のウェブ(9)に前記スプライスプレートを締結する締結具(20)とを含み、前記スプライスプレート及び前記ウェブに設けられた通し穴(24)が前記締結具の軸部を遊びをもって挿通させ、前記第1上弦材及び前記第2上弦材のフランジ(8)が実質的に互いに接合されないように構成されたことを特徴とする。 In the truss beam (1) according to at least some embodiments of the present invention, in the above configuration, the first upper chord member and the second upper chord member each include H-shaped steel, and the first pin joint structure ( 19) includes a splice plate (14) and a fastener (20) for fastening the splice plate to the web (9) of the first top chord and the second top chord; through-holes (24) are configured such that the shanks of the fasteners are inserted with play and the flanges (8) of the first upper chord and the second upper chord are substantially not joined together; Characterized by

この構成によれば、比較的安価な構成で第1ピン接合構造を作成することができる。 According to this configuration, the first pin joint structure can be produced with a relatively inexpensive configuration.

本発明の少なくともいくつかの実施形態に係るトラス梁(1)は、上記構成において、前記第1ピン接合構造は、前記第1上弦材及び前記第2上弦材の前記ウェブに溶接され、前記スプライスプレートが当接する補強板(23)を有することを特徴とする。 In the truss beam (1) according to at least some embodiments of the present invention, in the above configuration, the first pin joint structure is welded to the webs of the first top chord member and the second top chord member, and the splice It is characterized by having a reinforcing plate (23) against which the plate abuts.

第1上弦材及び第2上弦材のフランジが互いに接合されていないため、軸力がウェブに集約されるところ、この構成によれば、ウェブは、補強板によって補強されるため、集約された軸力に耐えることができる。 Since the flanges of the first upper chord member and the second upper chord member are not joined together, the axial force is concentrated on the web. can withstand force.

本発明の少なくともいくつかの実施形態に係るトラス梁(1,31)は、上記構成の何れかにおいて、前記変形許容部材の両端部は、それぞれ、前記第1斜材と前記本体部との接合部、及び前記第2斜材と前記本体部との接合部に接合し、前記変形許容部材の両端部と前記本体部との接合は、少なくとも所定の規模以上の地震時にピン接合とみなせる第2ピン接合構造(25)を含むことを特徴とする。 According to at least some embodiments of the truss beam (1, 31) of the present invention, in any one of the above configurations, both ends of the deformation-allowing member are respectively connected to the first diagonal member and the main body. and the joints between the second diagonal members and the main body, and the joints between both ends of the deformation-allowing member and the main body can be regarded as pin joints at least in the event of an earthquake of a predetermined scale or more. It is characterized by including a pin junction structure (25).

この構成によれば、地震時に変形許容部材が伸縮しても、第2ピン接合構造よって本体部と第1斜材及び第2斜材とが相対的に回転するため、その接合部の近傍に応力が集中することが抑制される。 According to this configuration, even if the deformation-allowing member expands and contracts during an earthquake, the main body and the first diagonal member and the second diagonal member rotate relative to each other due to the second pin joint structure. Concentration of stress is suppressed.

本発明の少なくともいくつかの実施形態に係るトラス梁(1,31)は、上記構成の何れかにおいて、前記第1ピン接合構造(19,32)及び前記変形許容部材は、前記トラス梁の両端部にそれぞれ設けられ、前記第1斜材及び前記第2斜材は、それぞれ、前記トラス梁の端部から2番目及び3番目の前記斜材であることを特徴とする。 At least some embodiments of the truss beam (1, 31) according to any of the above configurations, wherein the first pin joint structure (19, 32) and the deformation-allowing member are The first diagonal member and the second diagonal member are the second and third diagonal members from the end of the truss beam, respectively.

この構成によれば、比較的応力が高くなりやすい端部近傍に変形許容部材が配置されるため、効率的に地震時のエネルギーを吸収できる。 According to this configuration, since the deformation-allowing member is arranged in the vicinity of the end where stress tends to be relatively high, it is possible to efficiently absorb the energy during an earthquake.

本発明によれば、地震時の変形能力が高く、地震時に弦材や斜材に応力が集中することが抑制されたトラス梁を提供することができる。 Advantageous Effects of Invention According to the present invention, it is possible to provide a truss beam that has a high deformability during an earthquake and that suppresses concentration of stress on chord members and diagonal members during an earthquake.

実施形態に係るトラス梁を示す正面図The front view which shows the truss beam which concerns on embodiment 実施形態に係るトラス梁における第1ピン接合部を示す正面図The front view which shows the 1st pin joint part in the truss girder which concerns on embodiment 実施形態に係るトラス梁における第1ピン接合部を示す平面図The top view which shows the 1st pin joint part in the truss beam which concerns on embodiment 実施形態に係るトラス梁における第1ピン接合部を示す正面図(スプライスプレート及び締結具の図示を省略したもの)The front view which shows the 1st pin joint part in the truss girder which concerns on embodiment (illustration of a splice plate and a fastener is abbreviate|omitted) 実施形態に係るトラス梁における第1ピン接合部を示す平面図(スプライスプレート及び締結具の図示を省略したもの)A top view showing the 1st pin joint part in the truss girder concerning an embodiment (illustration of a splice plate and a fastener is omitted) 実施形態に係るトラス梁における第2ピン接合部を示す正面図The front view which shows the 2nd pin joint part in the truss beam which concerns on embodiment 変形例に係るトラス梁を示す正面図The front view which shows the truss beam which concerns on a modification 実施例に係るトラス梁を模式的に示す正面図The front view which shows typically the truss beam which concerns on an Example 比較例及び実施例に係るトラス梁における接合部のFEM解析結果を示す正面図(A:比較例、B:実施例)Front views showing FEM analysis results of joints in truss beams according to comparative examples and examples (A: comparative example, B: example)

以下、図面を参照して本発明の実施形態に係るトラス梁1ついて説明する。以下の説明において、トラス梁1の延在方向を左右方向とする。 A truss beam 1 according to an embodiment of the present invention will be described below with reference to the drawings. In the following description, the extending direction of the truss beam 1 is defined as the horizontal direction.

図1は、実施形態に係るトラス梁1を示す。トラス梁1は、上弦材2と、上弦材2の下方に配置された下弦材3と、両端部がそれぞれ上弦材2及び下弦材3に接合された複数の斜材4とを有し、両端部が柱5に支持されている。トラス梁1は、概ね左右対称形をなすため、両端部の一方を例に説明するが、他方の端部も同様の構成を有する。 FIG. 1 shows a truss beam 1 according to an embodiment. The truss beam 1 has an upper chord member 2, a lower chord member 3 arranged below the upper chord member 2, and a plurality of diagonal members 4 having both ends joined to the upper chord member 2 and the lower chord member 3, respectively. is supported by the pillar 5. Since the truss beam 1 is generally bilaterally symmetrical, one of both ends will be described as an example, but the other end has the same configuration.

上弦材2及び下弦材3は、概ね水平方向に沿って互いに平行に配置されている。本実施形態の上弦材2及び下弦材3は、直線状の部材であるが、曲線状の部材でもよい。上弦材2は、複数のH形鋼等の長尺材を連結することによって形成される。下弦材3は、複数のH形鋼等の長尺材を連結することによって形成された本体部6と、下弦材3の延在方向の両端部の近傍において本体部6に置き換わるように配置されて両端部が本体部6に接続された座屈拘束部材7等の変形許容部材とを有する。すなわち、本体部6は、下弦材3の左右両端部の近傍で分離しており、3つに分かれた本体部6が、左右方向に延在する2つの座屈拘束部材7によって連結されている。上弦材2の全体及び下弦材3の本体部6に用いられるH形鋼は、1対のフランジ8が上下方向に対向し、ウェブ9が鉛直面に沿うように配置される。 The upper chord members 2 and the lower chord members 3 are arranged parallel to each other along the generally horizontal direction. Although the upper chord member 2 and the lower chord member 3 of the present embodiment are straight members, they may be curved members. The upper chord member 2 is formed by connecting a plurality of elongated members such as H-shaped steel. The lower chord member 3 is arranged so as to replace the main body portion 6 formed by connecting a plurality of long members such as H-shaped steel, and the vicinity of both end portions in the extending direction of the lower chord member 3. and a deformation permitting member such as a buckling restraint member 7 having both ends connected to the body portion 6 . That is, the body portion 6 is separated near the left and right ends of the lower chord member 3, and the three divided body portions 6 are connected by two buckling restraint members 7 extending in the left-right direction. . The H-section steel used for the entire upper chord member 2 and the main body portion 6 of the lower chord member 3 is arranged such that a pair of flanges 8 face each other vertically and a web 9 extends along a vertical plane.

複数の斜材4は、トラス梁1の延在方向の一端側から他端側に向かうにつれ、斜め下方に向かうものと斜め上方に向かうものとが交互に配置される。各々の斜材4は、互いに平行に配置された1対の溝形鋼等の鋼製の長尺材からなる。各々の斜材4の上弦材2及び下弦材3に対する角度は互いに略等しい。 The plurality of diagonal members 4 are alternately arranged diagonally downward and diagonally upward from one end side to the other end side in the extending direction of the truss beam 1 . Each diagonal member 4 consists of a pair of steel strips, such as channel steels, arranged parallel to each other. The angles of each diagonal member 4 with respect to the upper chord member 2 and the lower chord member 3 are approximately equal to each other.

座屈拘束部材7は、両端部が本体部6に接合される芯材10と、両端部のそれぞれから芯材10の端部が突出するように芯材10を挿通させる筒状体11と、芯材10に付着しないように筒状体11に充填されたグラウト等の充填材(図示せず)とを有する。芯材10は、所定の荷重を受けたときに本体部6よりも先に塑性化する部材であり、延在方向に直交する断面形状が十字になるように、鋼板の両表面に直角に他の鋼板を溶接した鋼材からなる。筒状体11は、角形や円形の鋼管からなり、充填材と協働して芯材10の座屈を拘束する。地震時に芯材10が座屈せずに伸縮することにより、芯材10にエネルギーが吸収され、トラス梁1の他の部材への負荷が軽減される。なお、変形許容部材は、少なくとも所定の規模以上の地震時に下弦材3の延在方向への単位長さ当たりの変形が本体部6よりも大きい部材である。座屈拘束部材7以外の変形許容部材の例として制振ダンパーが挙げられる。 The buckling restraint member 7 includes a core material 10 having both ends joined to the body part 6, a cylindrical body 11 through which the core material 10 is inserted so that the ends of the core material 10 protrude from the both ends, A filling material (not shown) such as grout is filled in the cylindrical body 11 so as not to adhere to the core material 10 . The core material 10 is a member that plasticizes before the body part 6 when a predetermined load is applied. It consists of a steel material welded with a steel plate. The cylindrical body 11 is made of a rectangular or circular steel pipe and restrains the buckling of the core material 10 in cooperation with the filler. When the core member 10 expands and contracts without buckling during an earthquake, energy is absorbed by the core member 10 and the load on other members of the truss beam 1 is reduced. The deformation-allowing member is a member that deforms more per unit length in the extending direction of the lower chord member 3 than the main body portion 6 at least during an earthquake of a predetermined scale or more. An example of a deformation-allowing member other than the buckling restraint member 7 is a vibration damper.

上弦材2を構成するH形鋼同士の接合及び下弦材3の本体部6を構成するH形鋼同士の接合は、座屈拘束部材7の上方の接合を除いて、剛接合構造13である。剛接合構造13は、互いに接合されるH形鋼の端部のウェブ9及びフランジ8のそれぞれの表面にスプライスプレート14を添え、ウェブ9及びフランジ8のそれぞれと、これに添えられたスプライスプレート14とをボルト及びナット等の締結具(図示せず)で締結することによって構成される。 The joints between the H-section steels forming the upper chord member 2 and the joints between the H-section steels forming the body portion 6 of the lower chord member 3 are rigid joint structures 13 except for the joint above the buckling restraint member 7. . The rigid joint structure 13 applies a splice plate 14 to the respective surfaces of the web 9 and the flange 8 of the end of the H-beam to be joined together, and the web 9 and the flange 8 respectively and the splice plate 14 attached thereto. are fastened with fasteners (not shown) such as bolts and nuts.

上弦材2は座屈拘束部材7の上方で互いに接合される第1上弦材15及び第2上弦材16を有する。第1上弦材15は最も端部に配置されたH形鋼であり、第2上弦材16は端部から2番目に配置されたH形鋼である。斜材4は、上端側において互いに近接するように隣り合い、互いの下端部の間に座屈拘束部材7が配置された、第1斜材17及び第2斜材18を有する。第1斜材17は、トラス梁1の端部から2番目に配置された斜材4であり、第2斜材はトラス梁1の端部から3番目に配置された斜材4である。第1斜材17及び第2斜材18の上端部の上弦材2への接合部において、第1上弦材15と第2上弦材16とが互いに接合する。第1上弦材15と第2上弦材16との互いの接合は、通常時は剛接合とみなせるが、所定以上の規模の地震時にはピン接合とみなせる第1ピン接合構造19である。 The top chord 2 has a first top chord 15 and a second top chord 16 joined together above the buckling restraint member 7 . The first upper chord member 15 is the H-section steel arranged at the end, and the second upper chord member 16 is the H-section steel arranged second from the end. The diagonal member 4 has a first diagonal member 17 and a second diagonal member 18 which are adjacent to each other on the upper end side and have the buckling restraint member 7 arranged between their lower ends. The first diagonal member 17 is the second diagonal member 4 from the end of the truss beam 1 , and the second diagonal member is the third diagonal member 4 from the end of the truss beam 1 . The first upper chord member 15 and the second upper chord member 16 are joined to each other at the joining portions of the upper ends of the first diagonal member 17 and the second diagonal member 18 to the upper chord member 2 . The joint between the first top chord member 15 and the second top chord member 16 is a first pin joint structure 19 that can be regarded as a rigid joint in normal times, but can be regarded as a pin joint in the event of an earthquake of a predetermined scale or larger.

図2及び図3に示すように、第1上弦材15及び第2上弦材16において、第1ピン接合構造19によって接合された端部同士は、ウェブ9の両表面に添えられたスプライスプレート14が、ボルト及びナット等の締結具20によって締結されるが、フランジ8同士は接合されていない。また、第1斜材17の上端部が締結されたガセットプレート21及び第2斜材18の上端部が締結されたガセットプレート21は互いに別体であり、それぞれ、第1上弦材15及び第2上弦材16に溶接されている。第1斜材17及び第2斜材18の上端部のガセットプレート21を介した第1上弦材15及び第2上弦材16への接合は、剛接合とみなせる。なお、図1に示すように、第1斜材17及び第2斜材18の上端部以外の、上端側において互いに近接するように隣り合う2つ斜材4の上弦材2への接合は、一体であるガセットプレート22を介してなされる。同様に下端側において互いに近接するように隣り合う2つの斜材4の下弦材3への接合は、一体であるガセットプレート22を介してなされる。 As shown in FIGS. 2 and 3 , the ends of the first top chord member 15 and the second top chord member 16 joined by the first pin joining structure 19 are splice plates 14 attached to both surfaces of the web 9 . are fastened by fasteners 20 such as bolts and nuts, but the flanges 8 are not joined together. The gusset plate 21 to which the upper end portion of the first diagonal member 17 is fastened and the gusset plate 21 to which the upper end portion of the second diagonal member 18 is fastened are separate members, and are the first upper chord member 15 and the second upper chord member 15, respectively. It is welded to the top chord material 16 . The joining of the upper ends of the first diagonal member 17 and the second diagonal member 18 to the first upper chord member 15 and the second upper chord member 16 via the gusset plate 21 can be regarded as a rigid joint. As shown in FIG. 1, joining two diagonal members 4 adjacent to each other on the upper end side other than the upper ends of the first diagonal member 17 and the second diagonal member 18 to the upper chord member 2 is Through the gusset plate 22, which is integral. Similarly, two diagonal members 4 adjacent to each other on the lower end side are joined to the lower chord member 3 via an integral gusset plate 22 .

図2及び図3に示すように、ガセットプレート21は、トラス梁1の左右方向及び上下方向に平行に配置された第1鋼板21aと、左右方向に直交するように配置されて、取り付けられる第1斜材17又は第2斜材18の左右方向外側に当たる第1鋼板21aの端部に溶接された第2鋼板21bとを有し、上端において第1上弦材15又は第2上弦材16に溶接されている。同様に、図1に示すように、ガセットプレート22は、左右方向及び上下方向に平行に配置された第1鋼板22aと、左右方向に直交するように配置されて、第1鋼板22aの表面の左右中央に溶接された第2鋼板22bとを有し、上端において上弦材2に溶接され、又は、下端において下弦材3に溶接されている。各々の斜材4を構成する1対の溝形鋼は、第1鋼板21a,22aを挟むように配置される。 As shown in FIGS. 2 and 3, the gusset plate 21 is arranged and attached to the first steel plate 21a arranged parallel to the horizontal direction and the vertical direction of the truss beam 1 so as to be perpendicular to the horizontal direction. and a second steel plate 21b welded to the end portion of the first steel plate 21a on the laterally outer side of the first diagonal member 17 or the second diagonal member 18, and welded to the first upper chord member 15 or the second upper chord member 16 at the upper end. It is Similarly, as shown in FIG. 1, the gusset plate 22 is arranged so as to be perpendicular to the first steel plate 22a arranged in the left-right direction and the up-down direction in parallel with the surface of the first steel plate 22a. It has a second steel plate 22b welded to the center of the left and right, and is welded to the upper chord member 2 at its upper end or welded to the lower chord member 3 at its lower end. A pair of channel steels forming each diagonal member 4 are arranged so as to sandwich the first steel plates 21a, 22a.

図2及び図3に示すように、第1ピン接合構造19では、第1上弦材15及び第2上弦材16のフランジ8同士が接合されておらず、ウェブ9同士でのみ接合されているため、第1上弦材15及び第2上弦材16間で伝達される軸力がウェブに集約される。そこで、図4及び図5に示すように、第1上弦材15及び第2上弦材16の第1ピン接合構造19側の端部において、ウェブ9の両表面に補強板23が溶接されている。補強板23は上下のフランジ8と等価であり、例えば、補強板23とフランジ8との材質が互いに同じならば、左右方向に直交する断面において、2枚の補強板23の合計断面積は、上下のフランジ8の合計断面積に略等しい。このため、第1上弦材15及び第2上弦材16において、中間部ではフランジ8によって伝達されていた軸力が第1ピン接合構造19でウェブ9に向かい、軸力がウェブ9に集中しても、補強板23で補強されたウェブ9はその力に耐えることができる。 As shown in FIGS. 2 and 3, in the first pin joint structure 19, the flanges 8 of the first upper chord member 15 and the second upper chord member 16 are not joined together, but are joined only by the webs 9. , the axial forces transmitted between the first top chord 15 and the second top chord 16 are concentrated in the web. Therefore, as shown in FIGS. 4 and 5, reinforcing plates 23 are welded to both surfaces of the web 9 at the ends of the first upper chord member 15 and the second upper chord member 16 on the first pin joint structure 19 side. . The reinforcing plate 23 is equivalent to the upper and lower flanges 8. For example, if the reinforcing plate 23 and the flange 8 are made of the same material, the total cross-sectional area of the two reinforcing plates 23 in a cross section perpendicular to the left-right direction is Approximately equal to the total cross-sectional area of the upper and lower flanges 8 . Therefore, in the first upper chord member 15 and the second upper chord member 16, the axial force transmitted by the flange 8 in the intermediate portion is directed to the web 9 by the first pin joint structure 19, and the axial force is concentrated on the web 9. However, the web 9 reinforced by the reinforcing plate 23 can withstand the force.

第1上弦材15及び第2上弦材16のウェブ9と補強板23とには、締結具20を構成するボルトの軸部を挿通させる通し穴24が設けられている。通し穴24の直径は軸部の直径よりも大きいため、通し穴24と軸部との間には遊びが生じている。通常時は、締結具20、スプライスプレート14及び補強板23間の摩擦力によって剛接合状態が維持される。所定以上の規模の地震時には、締結具20を構成するボルトの頭部及びナットとスプライスプレート14との間、又はスプライスプレート14と補強板23との間にすべりが生じる。この時、通し穴24とボルトの軸部との間に遊びがあるため、第1上弦材15及び第2上弦材16は、左右方向及び上下方向に直交する方向を軸に相対的に所定の範囲で回転可能となる。所望の回転範囲に応じて、遊びの大きさは決定される。通し穴24を長孔としてもよい。 The web 9 of the first upper chord member 15 and the second upper chord member 16 and the reinforcing plate 23 are provided with through holes 24 through which the shaft portions of the bolts constituting the fasteners 20 are inserted. Since the diameter of the through hole 24 is larger than the diameter of the shank, there is play between the through hole 24 and the shank. Normally, the rigid joint state is maintained by the frictional force between the fastener 20, the splice plate 14 and the reinforcing plate 23. FIG. During an earthquake of a predetermined magnitude or greater, slippage occurs between the bolt heads and nuts constituting the fastener 20 and the splice plate 14 or between the splice plate 14 and the reinforcing plate 23 . At this time, since there is play between the through-hole 24 and the shaft portion of the bolt, the first upper chord member 15 and the second upper chord member 16 move relative to each other with respect to the direction orthogonal to the left-right direction and the up-down direction. Can rotate within range. The amount of play is determined according to the desired range of rotation. The through hole 24 may be an elongated hole.

図6に示すように、本体部6と座屈拘束部材7との接合は、通常時は剛接合とみなせるが、所定以上の規模の地震時にはピン接合とみなせる第2ピン接合構造25である。H形鋼によって構成されている本体部6における座屈拘束部材7と接合する側の端部には、座屈拘束部材7の芯材10の十字の断面形状に対応するように、ウェブ9の両表面に第3鋼板26が溶接されている。十字状の断面を有する芯材10の表面と、本体部6のウェブ9及び第3鋼板26の表面とには、スプライスプレート14が添えられ、締結具20によって締結されている。本体部6のウェブ9と、これに連結される芯材10の鋼材の厚さが相違する場合はフィラープレート(図示せず)が用いられる。芯材10及び本体部6、並びにスプライスプレート14の通し穴(図示せず)の直径は、締結具20を構成するボルトの軸部の直径よりも大きい。このため、第1ピン接合構造19と同様の理由により、第2ピン接合構造25は、通常時は剛接合とみなせ、所定以上の規模の地震時にはピン接合とみなせる。 As shown in FIG. 6, the joint between the main body 6 and the buckling restraint member 7 is a second pin joint structure 25 which can be regarded as a rigid joint in normal times, but can be regarded as a pin joint in the event of an earthquake of a predetermined magnitude or larger. At the end of the main body 6 made of H-shaped steel on the side joined to the buckling restraint member 7, a web 9 is formed so as to correspond to the cross-shaped cross-sectional shape of the core material 10 of the buckling restraint member 7. A third steel plate 26 is welded to both surfaces. A splice plate 14 is attached to the surface of the core material 10 having a cross-shaped cross section and the surfaces of the web 9 and the third steel plate 26 of the main body 6 and fastened with fasteners 20 . A filler plate (not shown) is used when the web 9 of the main body 6 and the steel material of the core material 10 connected thereto have different thicknesses. The core member 10 , the main body 6 , and the through holes (not shown) of the splice plate 14 have diameters larger than the diameter of the shaft of the bolt that constitutes the fastener 20 . Therefore, for the same reason as the first pin-joint structure 19, the second pin-joint structure 25 can be regarded as a rigid joint in normal times, and can be regarded as a pin-joint in the event of an earthquake of a predetermined magnitude or greater.

また、芯材10から第3鋼板26に伝わった軸力を受けるように、第3鋼板26における芯材10とは反対側の端部に、第4鋼板27が溶接されている。第4鋼板27は、左右方向に直交するように配置され、端縁が本体部6のフランジ8及びウェブ9に溶接されている。第4鋼板27によって、芯材10から本体部6に伝わる軸力が、本体部6のウェブ9だけでなくフランジ8に伝わりやすくなり、また、本体6部のフランジ8で伝達されていた軸力が芯材10に伝わりやすくなる。なお、第4鋼板27は、芯材10から左右方向に離間するにつれて上下のフランジ8に近づくように、正面視でV字形状に変更してもよい。 A fourth steel plate 27 is welded to the end of the third steel plate 26 opposite to the core material 10 so as to receive the axial force transmitted from the core material 10 to the third steel plate 26 . The fourth steel plate 27 is arranged so as to be orthogonal to the left-right direction, and its edge is welded to the flange 8 and the web 9 of the body portion 6 . The fourth steel plate 27 makes it easier for the axial force transmitted from the core material 10 to the main body 6 to be transmitted not only to the web 9 of the main body 6 but also to the flange 8, and the axial force that was transmitted by the flange 8 of the main body 6 is easily transmitted to the core material 10. In addition, the fourth steel plate 27 may be changed into a V shape in a front view so as to approach the upper and lower flanges 8 as it is separated from the core member 10 in the left-right direction.

トラス梁1の作用効果について説明する。第1上弦材15と第2上弦材16との互いの接合部が剛接合の場合や、上弦材2の一部を構成する1本の長尺材の中間部に第1斜材17及び第2斜材18の上端が接合する場合、地震時の芯材10の伸縮によって、上弦材2におけるこの部分や、第1上弦材15と第2上弦材16の上端に大きな曲げ応力が発生する。一方、第1上弦材15と第2上弦材16との互いの接合部を第1ピン接合構造19とすることにより、地震時に芯材10が伸縮しても、この接合部が回転するため、上弦材2、第1上弦材15及び第2上弦材16に曲げ応力が集中することを抑制できる。同様に、下弦材3の本体部6と座屈拘束部材7との互いの接合部を第2ピン接合構造25とすることにより、この接合部の近傍における本体部6、芯材10及び斜材4に曲げ応力が集中することを抑制できる。 The effects of the truss beam 1 will be described. In the case where the joint portion between the first upper chord member 15 and the second upper chord member 16 is a rigid joint, or the intermediate portion of one elongated member that constitutes a part of the upper chord member 2, the first diagonal member 17 and the second diagonal member 17 are connected to each other. When the upper ends of the two diagonal members 18 are joined, large bending stress is generated at this portion of the upper chord member 2 and the upper ends of the first upper chord member 15 and the second upper chord member 16 due to expansion and contraction of the core member 10 during an earthquake. On the other hand, by forming the first pin joint structure 19 at the joint between the first upper chord member 15 and the second upper chord member 16, even if the core member 10 expands and contracts during an earthquake, this joint rotates. Concentration of bending stress on the upper chord member 2 , the first upper chord member 15 and the second upper chord member 16 can be suppressed. Similarly, by forming the joint portion between the main body portion 6 of the lower chord member 3 and the buckling restraint member 7 as the second pin joint structure 25, the main body portion 6, the core member 10, and the diagonal members in the vicinity of this joint portion are formed. Concentration of bending stress on 4 can be suppressed.

図7は、変形例に係るトラス梁31を示す。説明に当たって、上記実施形態と共通する構成は、その説明を省略し同一の符号を付す。このトラス梁31では、第1上弦材15と第2上弦材16との互いの接合が、クレビスによって構成された第1ピン接合構造32となっている。すなわち、第1上弦材15と第2上弦材16との互いの接合は、地震時だけでなく、通常時もピン接合とみなせる。 FIG. 7 shows a truss beam 31 according to a modification. In the explanation, the same reference numerals are given to the configurations common to the above-described embodiment, and the explanation thereof is omitted. In this truss beam 31, the first upper chord member 15 and the second upper chord member 16 are joined to each other by a first pin joint structure 32 formed by a clevis. That is, the joining of the first upper chord member 15 and the second upper chord member 16 can be regarded as pin joining not only during an earthquake but also during normal times.

図8に示すモデルのFEM解析結果を図9(B)に示す。また、図9(A)は、比較例として、上弦材2の一部を構成する1本の長尺材の中間部に第1斜材17及び第2斜材18の上端が接合する場合のFEM解析結果を示す。図9は、その下方に配置された座屈拘束部材7の芯材10(図1参照)が伸長した状態を示しており、ドットパターンで示した部分が、応力が集中して降伏域に達した部分である。 The FEM analysis result of the model shown in FIG. 8 is shown in FIG. 9(B). FIG. 9A shows, as a comparative example, a case where the upper ends of the first diagonal member 17 and the second diagonal member 18 are joined to the intermediate portion of one elongated member forming part of the upper chord member 2. An FEM analysis result is shown. FIG. 9 shows a state in which the core material 10 (see FIG. 1) of the buckling restraint member 7 arranged below is stretched, and the portion indicated by the dot pattern reaches the yield zone due to concentrated stress. This is the part where

図9(A)に示す比較例では、上弦材2の上側のフランジ8、並びに第1斜材17及び第2斜材18の上端近傍が降伏域に達している。一方、図9(B)に示す実施例では、スプライスプレート14、及び第1上弦材15及び第2上弦材16のウェブ9におけるスプライスプレート14の近傍で降伏域に達している。スプライスプレート14が降伏域に達したのは、ボルトが滑って通し穴24(図4参照)の縁にぶつかるためだと思われ、ウェブ9の一部が降伏域に達したのは、このスプライスプレート14から応力が伝達されたためと思われる。よって、スプライスプレート14を強化することにより、トラス梁1の耐震性を高めることができる。 In the comparative example shown in FIG. 9A, the upper flange 8 of the upper chord member 2 and the vicinity of the upper ends of the first diagonal member 17 and the second diagonal member 18 reach the yield region. On the other hand, in the embodiment shown in FIG. 9B, the yield zone is reached near the splice plate 14 and the web 9 of the first top chord 15 and the second top chord 16 . It is believed that the splice plate 14 reached the yield zone because the bolt slipped against the edge of the through hole 24 (see FIG. 4) and a portion of the web 9 reached the yield zone at this splice. It is believed that stress was transmitted from the plate 14 . Therefore, by strengthening the splice plate 14, the earthquake resistance of the truss beam 1 can be improved.

以上で具体的実施形態の説明を終えるが、本発明は上記実施形態に限定されることなく幅広く変形実施することができる。トラス梁は、柱以外の建物の構造部材、例えば梁等に支持されてもよい。 Although the specific embodiments have been described above, the present invention is not limited to the above embodiments and can be widely modified. A truss beam may be supported by structural members of a building other than columns, such as beams.

1,31:トラス梁
2:上弦材
3:下弦材
4:斜材
6:本体部
7:座屈拘束部材(変形許容部材)
8:フランジ
9:ウェブ
10:芯材
14:スプライスプレート
15:第1上弦材
16:第2上弦材
17:第1斜材
18:第2斜材
19,32:第1ピン接合構造
20:締結具
23:補強板
24:通し穴
25:第2ピン接合構造
1, 31: truss beam 2: upper chord member 3: lower chord member 4: diagonal member 6: body portion 7: buckling restraint member (deformation permitting member)
8: Flange 9: Web 10: Core 14: Splice plate 15: First upper chord member 16: Second upper chord member 17: First diagonal member 18: Second diagonal member 19, 32: First pin joint structure 20: Fastening Tool 23: Reinforcing plate 24: Through hole 25: Second pin joint structure

Claims (6)

上弦材、下弦材及び複数の斜材を有するトラス梁であって、
前記下弦材は、長尺材を有する本体部と、該下弦材の延在方向の一部の区間において前記本体部に置き換わるように配置され、少なくとも所定の規模以上の地震時に該下弦材の延在方向への単位長さ当たりの変形が前記本体部よりも大きい変形許容部材とを有し、
前記斜材は、互いの上端側が下端側よりも近接するように互いに隣り合う第1斜材及び第2斜材を含み、
前記第1斜材及び/又は前記第2斜材の下方に、前記変形許容部材の少なくとも一部が延在し、
前記上弦材は、前記第1斜材の上端側が接合する第1上弦材と、前記第2斜材の上端側が接合する第2上弦材とを有し、
前記第1上弦材及び前記第2上弦材は、少なくとも所定の規模以上の地震時にピン接合とみなせる第1ピン接合構造によって互いに接合していることを特徴とするトラス梁。
A truss girder having a top chord, a bottom chord and a plurality of diagonal members,
The lower chord member has a main body portion having a long member, and is arranged to replace the main body portion in a part of the section in the extending direction of the lower chord member. a deformation-allowing member having a deformation per unit length in a direction greater than that of the main body,
The diagonal member includes a first diagonal member and a second diagonal member that are adjacent to each other such that the upper end side is closer than the lower end side,
At least part of the deformation-allowing member extends below the first diagonal member and/or the second diagonal member,
The upper chord member has a first upper chord member to which the upper end side of the first diagonal member is joined, and a second upper chord member to which the upper end side of the second diagonal member is joined,
A truss girder, wherein the first upper chord member and the second upper chord member are joined to each other by a first pin joint structure that can be regarded as a pin joint in the event of an earthquake of at least a predetermined scale or more.
前記変形許容部材は、所定の荷重を受けたときに前記本体部よりも先に塑性化するとともに座屈が拘束された部材を含む座屈拘束部材であることを特徴とする請求項1に記載のトラス梁。 2. The deformation-permitting member according to claim 1, wherein the deformation-permitting member is a buckling restraint member including a member that is plasticized before the main body and whose buckling is restrained when a predetermined load is applied. truss girder. 前記第1上弦材及び前記第2上弦材は、それぞれ、H形鋼を含み、
前記第1ピン接合構造は、スプライスプレートと前記第1上弦材及び前記第2上弦材のウェブに前記スプライスプレートを締結する締結具とを含み、前記スプライスプレート及び前記ウェブに設けられた通し穴が前記締結具の軸部を遊びをもって挿通させ、前記第1上弦材及び前記第2上弦材のフランジが実質的に互いに接合されないように構成されたことを特徴とする請求項1又は2に記載のトラス梁。
The first upper chord member and the second upper chord member each include an H-section steel,
The first pin connection structure includes a splice plate and a fastener for fastening the splice plate to the webs of the first upper chord member and the second upper chord member, and the splice plate and the web have through holes. 3. The fastener according to claim 1, wherein the shaft portion of the fastener is inserted with play so that the flanges of the first upper chord member and the second upper chord member are substantially not joined to each other. truss beam.
前記第1ピン接合構造は、前記第1上弦材及び前記第2上弦材の前記ウェブに溶接され、前記スプライスプレートが当接する補強板を有することを特徴とする請求項3に記載のトラス梁。 4. The truss girder according to claim 3, wherein said first pin joint structure includes a reinforcing plate welded to said web of said first top chord member and said second top chord member and against which said splice plate abuts. 前記変形許容部材の両端部は、それぞれ、前記第1斜材と前記本体部との接合部、及び前記第2斜材と前記本体部との接合部に接合し、
前記変形許容部材の両端部と前記本体部との接合は、少なくとも所定の規模以上の地震時にピン接合とみなせる第2ピン接合構造を含むことを特徴とする請求項1~4の何れか一項に記載のトラス梁。
both ends of the deformation-allowing member are respectively joined to a joint portion between the first diagonal member and the main body portion and to a joint portion between the second diagonal member and the main body portion;
5. The connection between both ends of the deformation-allowing member and the main body includes a second pin connection structure that can be regarded as a pin connection at least in the event of an earthquake of a predetermined magnitude or more. truss girder described in .
前記第1ピン接合構造及び前記変形許容部材は、前記トラス梁の両端部にそれぞれ設けられ、前記第1斜材及び前記第2斜材は、それぞれ、前記トラス梁の端部から2番目及び3番目の前記斜材であることを特徴とする請求項1~5の何れか一項に記載のトラス梁。 The first pin joint structure and the deformation-allowing member are provided at both ends of the truss girder, and the first diagonal member and the second diagonal member are respectively second and third from the end of the truss girder. The truss girder according to any one of claims 1 to 5, characterized in that it is the second diagonal member.
JP2019012536A 2019-01-28 2019-01-28 truss girder Active JP7116400B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019012536A JP7116400B2 (en) 2019-01-28 2019-01-28 truss girder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019012536A JP7116400B2 (en) 2019-01-28 2019-01-28 truss girder

Publications (2)

Publication Number Publication Date
JP2020118004A JP2020118004A (en) 2020-08-06
JP7116400B2 true JP7116400B2 (en) 2022-08-10

Family

ID=71890263

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019012536A Active JP7116400B2 (en) 2019-01-28 2019-01-28 truss girder

Country Status (1)

Country Link
JP (1) JP7116400B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113774780A (en) * 2021-09-06 2021-12-10 四川省公路规划勘察设计研究院有限公司 Segment unit of super-large span concrete-filled steel tube arch bridge and arch bridge
CN115262986A (en) * 2022-07-22 2022-11-01 中国建筑第八工程局有限公司 Installation method of large-span steel truss

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3199581B2 (en) 1994-09-13 2001-08-20 積水ハウス株式会社 Special high strength bolt
JP2004300681A (en) 2003-03-28 2004-10-28 Kajima Corp Frame structure
JP2006183324A (en) 2004-12-27 2006-07-13 Ohbayashi Corp Response controlled structure

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03199581A (en) * 1989-12-28 1991-08-30 Nippon Steel Corp Vibration suppressing device for building

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3199581B2 (en) 1994-09-13 2001-08-20 積水ハウス株式会社 Special high strength bolt
JP2004300681A (en) 2003-03-28 2004-10-28 Kajima Corp Frame structure
JP2006183324A (en) 2004-12-27 2006-07-13 Ohbayashi Corp Response controlled structure

Also Published As

Publication number Publication date
JP2020118004A (en) 2020-08-06

Similar Documents

Publication Publication Date Title
JP7116400B2 (en) truss girder
KR101226766B1 (en) A device for coupling beam on column
JP4664997B2 (en) Buildings with joint hardware
JP7228344B2 (en) Joint structure of reinforced concrete frame and brace and precast member
JP6763653B2 (en) Unit building
KR102034116B1 (en) Damage controlled coupling structure and reinforcement method for steel beam to column connection
JP4719119B2 (en) Seismic retrofitting method for existing building structures
JP6447777B2 (en) Column beam connection structure and steel reinforced concrete column
JP7051597B2 (en) Truss beam
JP2010276080A (en) Energy absorbing member and structure in which the energy absorbing member is installed
JP5251933B2 (en) Buildings with joint hardware
JP2010216153A (en) Joint reinforcing structure
JP5654060B2 (en) Damper brace and damping structure
JP7426253B2 (en) truss beam
JPH0776953A (en) Damping structure
JP7234084B2 (en) Steel beam with floor slab and its reinforcement method
JP4829714B2 (en) Damping wall structure of steel house
JP7019499B2 (en) Truss beam
JP5421236B2 (en) Building wall damping structure construction method
KR20000040240A (en) Steel frame forming damper joint
JP3215633U (en) Brace mounting structure
JP5292881B2 (en) Vibration control panel
JP3638142B2 (en) Column and beam joining device
JP3906351B2 (en) Seismic reinforcement structure for existing buildings
JP7314030B2 (en) Steel frame beam with floor slab having opening and its reinforcement method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210727

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220627

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220705

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220715

R150 Certificate of patent or registration of utility model

Ref document number: 7116400

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150