JP3906351B2 - Seismic reinforcement structure for existing buildings - Google Patents

Seismic reinforcement structure for existing buildings Download PDF

Info

Publication number
JP3906351B2
JP3906351B2 JP26100498A JP26100498A JP3906351B2 JP 3906351 B2 JP3906351 B2 JP 3906351B2 JP 26100498 A JP26100498 A JP 26100498A JP 26100498 A JP26100498 A JP 26100498A JP 3906351 B2 JP3906351 B2 JP 3906351B2
Authority
JP
Japan
Prior art keywords
seismic
frame
existing building
vertical
braces
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP26100498A
Other languages
Japanese (ja)
Other versions
JP2000073584A (en
Inventor
康司 夜船
英治 松井
斉 清水
泰夫 東端
重雄 嶺脇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takenaka Corp
Original Assignee
Takenaka Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takenaka Corp filed Critical Takenaka Corp
Priority to JP26100498A priority Critical patent/JP3906351B2/en
Publication of JP2000073584A publication Critical patent/JP2000073584A/en
Application granted granted Critical
Publication of JP3906351B2 publication Critical patent/JP3906351B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
この発明は、既存建物の制震補強構造、特に、既存建物の制震補強すべき部分の近傍に既存建物に固着して門型制震メガフレームを設けて補強する既存建物の制震補強構造に関する。
【0002】
【従来の技術】
従来の既存建物の耐震補強構造には、例えば、
(1)柱、梁、床等を備えた多層の既存建物の外側に、既存建物の両側に接近して対の立体トラス型の耐震立体縦メガフレームが構築され、各耐震立体縦メガフレームの上端間に立体トラス型の横メガ連結体が構築され、各耐震立体縦メガフレームの上端と横メガ連結体とを一体に結合してなる門型メガストラクチャーが構築され、上記各耐震立体縦メガフレームは、既存建物の外側と間隔をおいて建てられ多数の柱と、既存建物の床の位置に対応させて配された多数の梁と、多数のブレースとからなる純ラーメン構造の立体構造を備えており、前記横メガ連結体は、上下方向に既存建物の階高に略等しい間隔をおいて配した多数の梁と、前記梁間に間隔をおいて配された多数の束材と、多数のブレースとからなる立体トラス型の立体構造を備えており、各階の床に対応する既存建物の外周囲に鍔状に形成され突条部に対応する各耐震立体縦メガフレームの部分が前記突条部に連結されて、既存建物の両側面及び上面に間隔をおいて構築された門型メガストラクチャーが既存建物に結合されている耐震補強構造(例えば、特開平9−203217号公報参照)、および
(2)柱、梁、床等を備えた多層の既存建物の内側に、複数の矩形枠を上下方向に複数階にわたって連ねてなる大フレームを設けるとともに、この大フレーム内に長大なブレースを設けてなる大耐震架構を構築し、前記大フレームの各矩形枠が、既存建物の床下又は該床に対応する梁位置に接近して配された横架材と既存建物の柱に沿って配された縦部材とを結合して構成され、各矩形枠の縦部材が既存建物の床にあけた孔に通されて互いに連結され、長大なブレースも既存建物の床にあけた孔に通したブレース部材を連結して組み立てられ、前記矩形枠の横部材が既存建物の床又は梁に固着され、各矩形枠の縦部材が既存建物の柱等に固着されている耐震補強構造(例えば、特開平9−209579号公報参照)がある。
【0003】
【発明が解決しようとする課題】
上記(1)の耐震補強構造は、既存建物の耐震性を高めるために、その門型メガストラクチャーが既存建物の外側に構築され、そのメガストラクチャーの各耐震立体縦メガフレームが、既存建物の外側に間隔をおいて樹立した多数の柱と、既存建物の床の位置に対応させて配された多数の梁と、多数のブレースとからなる純ラーメン構造の立体構造を備えているため、既存建物の周囲に立体構造の耐震立体縦メガフレームを構築するだけの広い敷地がなければ適用できない耐震補強構造である。また、耐震立体縦メガフレームの上部間を連結する立体トラス状の横メガ連結体もその成が既存建物の階高に相当する大きさになっているため、極めて多くの鋼材を必要とし、既存建物の耐震補強に多くの資材や手間を要する補強構造である。そして、各耐震立体縦メガフレームは、高い耐震性を有していても、制震能(地震力を部材の塑性変形についやさせて、地震力を吸収する能力)を有していない。
上記(2)の既存建物の耐震補強構造は、多層の既存建物の内側に、既存建物に接近して、複数の矩形枠を上下方向に複数階にわたって連ねてなる大フレームを設けるとともに、この大フレーム内に長大なブレースを設けて大耐震架構を構築し、前記大フレームの各矩形枠が、既存建物の床下又は該床に対応する梁位置に接近して配された横架材と既存建物の柱に沿って配された縦部材とを結合して構成され、各矩形枠の縦部材が既存建物の床にあけた孔に通されて互いに連結され、長大なブレースも既存建物の床にあけた孔に通したブレース部材を連結して組み立てられ、前記矩形枠の横部材が既存建物の床又は梁に固着され、各矩形枠の縦部材が既存建物の柱等に固着されているため、各階の耐震性能に応じた耐震補強ができない耐震補強構造であり、また、長大ブレースは、地震時に変形するように構成されていないから、大フレームと長大ブレースとからなる大耐震架構は、高い耐震性を有していても、制震能を有していない。
この発明の解決しようとする課題は、従来技術の上記のような欠点を有しない既存建物の制震補強構造を提供すること、換言すると、門型制震メガフレームの1対の制震縦メガフレームを構成する制震架構中に設けた制震部材にて地震力を吸収して、制震効果を有効に発揮することができ、その構造が簡単で、少ない資材で施工性よく構築できる既存建物の制震補強構造を提供することにある。
【0004】
【課題を解決するための手段】
この発明の既存建物の制震補強構造は、柱、梁、床、壁等を備えた多層の既存建物の外壁の内側の制震補強すべき部分の両端に寄った部分に、それぞれ前記部分と平行にかつ床を貫通して制震縦メガフレームを組み付け、1対の制震縦メガフレームの上部をハットビームで連結して、既存建物中に門型制震メガフレームが構築され、各制震縦メガレームは既存建物の制震補強すべき部分の階数と同数の矩形枠を備えた制震架構を屋上に達するように縦方向に連ねて一体に結合して形成され、各制震架構は鋼製の縦部材と鋼製の横部材とを矩形状に結合してなる矩形枠内に制震部材を配して前記矩形枠の地震時の変形により地震力を吸収できるように前記制震部材が矩形枠に設けられており、前記ハットビームは既存建物の制震補強すべき部分の屋上に配されて、その両端が各制震縦メガフレームの上端に結合され、前記門型制震メガフレームの1対の制震縦メガフレームとハットビームとが一つの構面を構成するように配置されており、各制震縦メガフレームの下端が既存建物の制震補強すべき部分の最下階の下側の建物躯体に固定され、各制震架構の矩形枠の縦部材の少なくとも一部が既存建物の縦方向に延びる柱や壁に固着され、各制震架構の矩形枠の横部材の少なくとも一部が既存建物の横方向に延びる床や梁に固着されていることを特徴とするものである。
【0005】
この発明の好ましい形態においては、柱、梁、床、壁等を備えた多層の既存建物の制震補強すべき辺部分の外壁と該外壁に近い柱との間の前記辺部分の両端に寄った部分にそれぞれ前記外壁と平行にかつ床を貫通して上下方向に延在させて制震縦メガフレームを組み付け、各制震縦メガフレームの上部ハットビームで連結して、既存建物中に門型制震メガフレーム構築され、各制震縦メガフレームは既存建物の制震補強すべき辺部分の階数と同数の矩形枠を備えた制震架構を制震補強すべき辺部分の屋上に達するように縦方向に連ねて一体に結合して形成され、各制震架構は鋼製の縦部材と鋼製の横部材とを矩形状に結合してなる矩形枠内に制震部材を配して前記矩形枠の地震時の変形により地震力を吸収できるように前記制震部材が矩形枠に設けられており、上記ハットビームは既存建物の制震補強すべき辺部分の屋上に配されて、その両端が各制震縦メガフレームの上端に結合され、前記門型制震メガフレームの1対の制震縦メガフレームとハットビームとが一つの構面を構成するように配置されており、各制震縦メガフレームの下端が既存建物の制震補強すべき辺部分の最下階の下側の建物躯体に固定され、各制震架構の矩形枠の縦部材の少なくとも一部が既存建物の縦方向に延びる柱や壁に固着され、各制震架構の矩形枠の横部材が既存建物の床に固着されているようにする。
【0006】
ハットビームは、必要に応じて、1対の制震縦メガフレーム間のハットビームの複数の個所で既存建物に固着する。好ましい実施形態では、ハットビームの各制震縦フレームとハットビームの中央との間の部分の下側に束材を固着し、該束材を既存建物の縦方向に延びる柱又は壁に接合する。
また、ハットビームは、地震時の1対の制震縦メガフレームを既存建物と一体になって変形させ易くする機能を発揮できる耐力を備えているだけでよいから、その成が制震補強すべき部分の階高寸法の2分の1程度であるビームで済ますことができる。
各制震縦フレームを構成する制震架構の矩形枠は、その一方の横部材の下側の面と他方の横部材の下側の面との間の間隔を既存建物の制震補強すべき各階の階高寸法と一致させるようにすると、各制震縦メガフレームの矩形枠の既存建物の横方向に延びる床、壁、梁等への取付作業が容易になる。
【0007】
好ましい実施形態では、制震架構として、鋼製の縦部材と鋼製の横部材とを矩形状に結合してなる矩形枠内に極低降伏点鋼からなる制震部材が配され、前記極低降伏点鋼からなる制震部材が前記矩形枠の地震時の変形により塑性変形して地震力を吸収できるように前記矩形枠に設けられている制震架構を使う。例えば、次ぎの▲1▼〜▲3▼のものを用いるが、これらに限定するものではない。
▲1▼ 1対の普通鋼製の横部材と1対の普通鋼製の縦部材とからなる矩形状枠体内に、2対のブレースが配され、上側のV字状に配された1対のブレースの下部と、下側の逆V字状に配された1対のブレースの上部とが一体に結合されて、2対のブレースが略X字型に結合され、前記上側の対のブレースの上部がそれに対応するフレームの上隅部に連結され、前記下側の対のブレースの下部がそれに対応するフレームの下隅部に連結され、2対のブレースの交点となる結合部の中心がフレームの中心より上方又は下方に偏位しており、ブレースの交点と横部材との間の間隔が狭くなっている側にある1対のブレースの全体又は部材の中央の所定長さの範囲の部分が、極低降伏点鋼で構成されていて、ブレースの交点と横部材との間の間隔が広くなっている側にある1対のブレースよりも短くなっている制震架構。
▲2▼ 1対の普通鋼製の横部材と1対の普通鋼製の縦部材とからなる矩形状枠体内に、部材の中央の所定長さの部分が極低降伏点鋼で構成され他の部分が通常鋼で構成されている1対のブレースが逆V字状又はV字状に配され、各ブレースの下部又は上部が開口部の下隅部又は上隅部に固着され、各ブレースの上部又は下部が開口部の上側又は下側の横部材に中央の下側又は上側に固着されている制振構造。
▲3▼ 1対の普通鋼製の横部材と1対の普通鋼製の縦部材とからなる矩形枠内に、1対の普通鋼製のブレースが逆V字型又はV字型に設けられ、逆V字型に配された1対のブレースの上部に固着した支持体と上側の横部材との間に、又はV字型に配された1対のブレースの下部に固着した支持体と下側の横部材との間に、極低降伏点鋼をハニカム型パネルに加工してなるハニカムダンパーが配され、ハニカムダンパーの横部材に面する部分を横部材に固着され、ハニカムダンパーのブレースに固着した支持体に面する部分を前記支持体に固着されている制震架構。
【0008】
上記▲1▼及び▲2▼の矩形制震架構を使う場合は、極低降伏点鋼で構成された部材の座屈を防止するため、例えば、部材の周囲を部材との間に僅かな隙間をあけて補剛材で覆い又は部材内に形成された中空部に移動可能に補剛材を挿入して、極低降伏点鋼で構成された部材が容易に座屈しないようにする。
上記▲1▼の矩形制震架構を使う場合は、例えば、2対のブレースの交点となる結合部が座屈により面外へ移動するのを防止する面外座屈防止体を設け、地震時におけるブレースの交点の面外への移動を防止するようにするとよい。
この発明の既存建物の制震補強構造は、例えば、RC造、SRC造、S造等のラーメン構造を備えた既存建物の制震補強に適用できるものである。
【0009】
【実施例】
実施例を図1〜図24を用いて詳細に説明する。
既存建物1は、地下が2階で地上が9階の柱、梁、床、壁等を備えたラーメン構造のSRC造の建物であり、図2に示すように、その平面視の形状は矩形で、その矩形の二つの短辺の一方の辺が矩形の敷地Siの一方の短辺に接近して建てられている。この既存建物1は、これを耐震診断することにより、矩形の長辺方向は十分な耐震性能を備えているが、矩形の短辺方向は耐震性能が不足してしることがわかった。
実施例は、この既存建物1の短辺方向の制震補強にこの発明を適用し、その短辺方向の耐震性能を改善する例である。実施例では、既存建物1の短辺方向の部分が補強すべき辺部分となる。
【0010】
図1に示すように、既存建物1の地上階の短辺側の外壁5には同じ間隔で開口(窓)Wdがあり、既存建物1の長辺方向の両端の部分の既存建物1の短辺方向の外壁5と短辺方向の外壁5に近い複数の柱2との間には、図2に示されているように、かなりの隙間があり、その隙間にも各階の床4が形成されている。
この実施例においては、既存建物1の両側の短辺方向の外壁5と短辺方向の外壁5に近い複数の柱2との間に門型制震メガフレーム100を構築して、既存建物1の短辺方向の制震補強を行なう。
まず、図2に示すように、既存建物1の地上の3階〜屋上階の短辺方向の外壁5と該外壁5に近い柱2との間の床4の短辺方向の両端に寄った部分に細長い略矩形の仮設開口4aをそれぞれ開設する。この仮設開口4aは、制震縦メガフレームを通し得る大きさにする。
【0011】
既存建物1の短辺方向の地上2階の床を支持する梁2から下の建物躯体の必要部分を補強する。例えば、以下に説明するように補強する。
図3に示すように、既存建物1の短辺方向の一方の端Aの地下1階の壁5Aと一体に鉄筋コンクリート造にて耐震補強部1B5Aを形成し、その短辺方向の両端よりの部分A〜B、D〜Eに対応する地上1階の床4及び該床を支持する梁3と一体に鉄筋コンクリート造にて耐震補強部1Fを設ける。
また、短辺方向の部分B,Dに対応する1階の柱2の上記床の開口4a側に向けて鉄筋コンクリート造にて柱状増設補強部1F2を形成し、かつ既存建物1の短辺方向の両端の部分A,Eの1階の壁5A等と一体に床の開口4aの下方に鉄筋コンクリート造にて柱状増設補強部1F2Aを設ける。その短辺方向の両端よりの部分A〜B、D〜Eに対応する地上2階の床4の前記開口4aに対応する部分の下方に、前記柱状増設補強部1F2,1F2Aの上端、前記床4や梁3と一体に鉄筋コンクリート造にて増設補強梁2F3を設ける。そのうえ、その短辺方向の両端よりの部分A〜B、D〜Eに対応する地上1階の柱状増設補強部1F2,1F2A間に間柱1F2Bを増設し、この柱間1F2Bと短辺方向の両端の部分A,Eの柱状増設補強部1F2Aとの間に短辺方向の耐震壁を鉄筋コンクリート造にて増設する。
【0012】
実施例の門型制震メガフレーム100の制震縦メガフレーム50A,50Bの構成部分となる制震架構10Aの構成を説明する。
横部材を構成する鋼製のH形断面の梁21の左右の端よりの部分の上側に、縦部材を構成する鋼製のH形断面の柱23,24を梁21に対して直角に立て、かつ梁21の両端部が柱23,24の下端から左右に少々突出するようにして、柱23,24の下端を梁21の上側のフランジ21a1に突き合わせ溶接する。柱23,24の上端の上側に、横部材を構成する鋼製のH形断面の梁22を柱23,24に対して直角にかつ梁22の両端部が柱23,24の上端から左右に少々突出するようにして、柱23,24の上端を梁22の下側のフランジ22a2に突き合わせ溶接して、矩形枠20が形成される。
梁21,22及び柱23,24は、その必要部分の両側のフランジ間に鋼製のスチフナー21c1〜21c4,22c1〜22c4,23c1,23c2、24c1,24c2を溶接して補強する。なお、梁21,22及び柱23,24としては、例えば、フランジ幅及び成が同じH形断面の鋼材からなるものを用いる。
【0013】
連結体30は、図4〜図6に示すように、鋼製の5角形のウェブ板31の五つの辺31a〜31eに、梁21,22及び柱23,24のフランジ幅と略同じか又はそれよりも少々幅の狭い鋼製の平らなフランジ板32a、フランジ板32b、へ字状のフランジ板32cd、平らなフランジ板32eを溶接し、ウェブ板31の中央の両側に配したスチフナー33をウェブ板31及びフランジ板32a,32cdに溶接して、連結体30が完成する。
対のブレース36,36は、図4に示すように、同じ構成で、斜め方向に延びる鋼製のウェブ36bの上側及び下側に鋼製のフランジ36a,36aを溶接して製作されている。ブレース36,36のウェブ36bは下部が幅広になっいて、ブレース36,36の下部が矩形枠20の下隅部に溶接され、ブレース36,36の上端が連結体30のフランジ板32aの下側面に溶接されている。
【0014】
対のブレース37,37の主体は、図4に示すように、同じ構成で、全体が極低降伏点鋼で構成され、斜め方向に延びる板状のウェブ37bの上側及び下側にフランジ37a,37aを溶接して製作されている。
上記極低降伏点鋼としては、例えば、Cが0.02%以下、Siが0.02%以下、Mnが0.20%以下、Pが0.030%以下、Sが0.015%以下の鋼で、降伏点又は0.2%耐力が70〜120N/mm、引張強さが200〜280N/mm及び延びが50%以上の機械的性質を有するもの[例えば、川崎製鉄株式会社製のRIVER FLEX100(RF100)]を用いる。
軸力を負担するブレース37,37の主体には、図4及び図5に示すように、その外側に小さな隙間cをあけて鋼製の矩形断面の管体38が被せられ、前記管体38を、少なくとも1箇所で、例えば、ブレース37のウェブ37b等を貫通するボルト39にて、前記ブレース37に止着する。前記管体38の両端にはそれぞれつば38aが形成されている。
図5に示すように、ブレース37,37の下端は連結体30のへ字型のフランジ板32cdの上側の傾斜面に溶接される。ブレース37,37のウェブ36bは上部が幅広になっいて、ブレース37,37の上部を矩形枠20の上隅部に溶接して、制震架構10Aが完成される。
なお、上記の矩形枠20、連結体30、ブレース36及び管体38の製作に用いる鋼としては、一般の溶接構造用圧延鋼材(例えば、JIS G 3106)や一般構造用圧延鋼材(SS400)が用いられ、この鋼材は、降伏点又は耐力が230〜350N/mm、引張強さが400〜600N/mm程度である。
【0015】
図4に示す制震架構10Aにおいては、2対のブレース36,36,37,37の交点となる連結体30の中心30cが矩形枠20の中心20cより上方に偏位しており、ブレースの交点と横部材との間の間隔が狭くなっている上側にある1対のブレース37,37が、極低降伏点鋼で構成されていて、ブレースの交点と横部材との間の間隔が広くなっている下側にある1対のブレース36,36よりも短くなっている。図4に示す制震架構10Aにおいては、1対のブレース37,37の全体が極低降伏点鋼で構成されているが。ブレースの上部及び下部を除く中央部の所定長さの範囲の部分を極低降伏点鋼で構成し、上部及び下部を一般の溶接構造用圧延鋼材や構造用圧延鋼材で製作するようにしてもよい。
【0016】
制震架構10Aの1対のブレース36,36が前述した建物の建造に通常使用する降伏点が高い鋼材で製作されていて、十分な剛性と強度とを備えているから、地震時におけるブレース36,36の交点(連結体30の中心)の水平移動は小さい。これに対して、制震架構10Aの1対のブレース37,37は低降伏点鋼で製作され、降伏点が低く耐力も小さいから、変形し易い。また1対のブレース37,37は水平面に対する傾斜角が小さいから、地震時に制震架構10Aに作用する水平力のブレース37の軸線方向の分力(すなわち、軸力)が大きくなり、かつ地震時のブレース37の剛性も大きくなる。そのうえ、ブレース37の長さがブレース36に比して短いから、ブレース37の変形量が大きくなり、制震架構10Aは、小さな地震時変形から地震エネルギーの履歴吸収が期待でき、制振効果が大きい。
【0017】
図4及び図20に示すように、制震架構10Aの矩形枠20の上側の梁22の中央の下面に鋼製の取付片25を溶接にて固着し、連結体30の上面の中央に鋼製の取付片35を溶接にて固着し、略垂直に配したH形断面の束材41の上部をボルト・ナットにて取付片25に固定し、束材41の下部をボルト・ナットにて取付片35に固定する。
既存建物1の床4の下側に保持板42を植設ボルト・ナットbnにて固着し、保持板42の一端を束材41の上部の梁3側に溶接にて固着したガセットG1にボルト・ナットにて固定し、傾斜させて配した鋼製の面外座屈防止体40の下部を束材41の中央部より少々下方の部分の梁3側に溶接にて固着したガセットG2にボルト・ナットにて固定し、面外座屈防止体40の上部を保持板42の梁3側の部分に溶接にて固着したガセットG3にボルト・ナットにて固定する。そうすると、連結体30等が矩形枠20を含む面に対して直角な方向へ変位し難くなり、地震時におけるブレース36,37の交点の面外への移動を防止することができるようになる。
なお、各ブレース36,37の大きな応力が作用し易い部分は、必要に応じて、リブを設けて補強する。例えば、図8に示すように、ブレース36,37のフランジの屈曲した部分のウェブ36b,37bの両側にリブRbを配し、このリブRbをウェブ及びフランジに溶接する。
【0018】
制震架構10Aを縦方向に連ねて制震縦メガフレームを形成する場合に、制震架構10Aの連設し易いように分割しておく必要がある。例えば、図9に示すように、矩形枠20の成の1/3〜1/4のところで、柱23,24及びブレース36,36を分割した構造のものを、第1の分割架構10Aとして製作する。
なお、図12〜図14に示すように、分割架構10Aの矩形枠20の梁21の柱24の下端に対応する部分に鋼製のH形断面の補強部21A、21Bが溶接され、分割架構10Aの矩形枠20を既存建物に増設した増設補強梁2F3に強固に固定できるようになっている。
また、図9に示すように、制震架構10Aから上記の分割架構10Aを除いたものに、柱23,24の分割された下側の部分に相当する下分割柱23A,24Aを、上側の梁22の両端の上側に溶接し、かつブレース36,36の分割された下側の部分に相当する下分割ブレース36A,36Aの下端を、上側の梁22の両端の上側及び溶接した下分割柱23A,24Aの下端の内側に溶接して、第2の分割架構10Aを製作する。
【0019】
さらに、図10に示すように、分割架構10A2から前記下分割柱23A,24A、下分割ブレース36A,36A及び上側の梁22を除いたもの(すなわち、分割された上側の上分割柱23B,24Bとブレース37,37、連結体30および上分割ブレース36B,36Bからなるもの)の上端をハットビーム60の下面に溶接して第3の分割架構10A3を製作する。
上記ハットビーム60は、図10、図11及び図18に示されているように、制震架構10Aの柱23,24のフランジの幅よりも少し幅広の上側及び下側の鋼製の長い板体60a1,60a2間に既存建物の階高寸法の2分の1程度の左側及び右側の鋼製の長い板体60b1,60b2を配し、板体60b1,60b2の上端及び下端を板体60a1,60a2に溶接してなる断面が矩形のボックス型ビームである。なお、ハットビーム60としてはボックス型ビーム以外のものを用いることもできる。
ハットビーム60には、その両端の制震縦メガフレームとハットビーム60の中央部との中間の既存建物1の柱2に対応する部分の下側に、断面がH形の鋼製の9階の階高寸法と同じ長さの束材61の上端61cが溶接にて固着されている。 そして、ハットビーム60の各制震縦メガフレームの上部の分割架構10A3の上分割柱23B,24Bに対応する部分及び束材61に対応する部分がスチフナー60cで補強されている。
この実施例では制震縦メガフレーム50A,50Bを、1個の第1の分割制震架構10A1と、8個の第2の分割制震架構10A2と、1個の第3の分割制震架構10A3とを上下方向に連ねて連結して構築する。
【0020】
各分割制震架構10A1,10A2,10A3は、図10に示すように、それらの連結すべき柱23,24の端部のウェブ23b,24bに複数のボルト孔を穿設しておき、またそれらの連結すべきブレース36,36の端部のウェブ36bに複数のボルト孔を穿設しておいて、各ボルト孔に対応する部分にボルト孔が穿設されている図10に示されているような添え板Spを、柱23,24及びブレース36,36の接合すべき部分のウェブに当て、添え板Sp、柱23,24及びブレース36,36のウェブのボルト孔にボルトを差し込みボルトのねじ部にナットをねじ込んで、それらを添え板継ぎし、その後に、接合すべき部分を突合せ溶接にて一体に接合する。
【0021】
制震縦メガフレーム50A,50Bの形成の仕方及び前記制震縦メガフレームの既存建物1への接合の仕方を説明する。
第1の分割架構10A1を、クレーンで吊り揚げて、既存建物1の屋上階の床4の仮設開口4aから、各階の床4の仮設開口4aを通して前記開口4aの下方の既存建物1の2階の床4上に配置する。
図12〜図14に示されているように、前記床4の下側には増設補強梁2F3が設けられており、第1の分割架構10A1の矩形枠20の梁21及びその補強部21A,21Bのフランジのボルト孔に対応する前記増設補強梁2F3及びその上の床4の部分にはボルト孔が穿設しあり、梁21及びその補強部21A,21Bのフランジのボルト孔と補強梁2F3及び床4のボルト孔にそれぞれPC鋼棒からなるボルトB1を通し、ボルトB1の両端を引っ張って緊張力を付与し、ボルトB1の両端のねじ部にナットN1をねじ込んで、第1の分割架構10A1を既存建物と一体に設けた床4及び増設補強梁2F3に固定する。
また、最下部の制震架構10A1の矩形枠20の梁21の下側のフランジ21a2を床4に固着する。例えば、図12に示すように、フランジ21a2を、床4に間隔をおいて植設した多数本のボルトB2を、前記フランジ21a2に穿設したボルト孔に通し、各ボルトB2のねじ部にナットN2をねじ込んで固定する。
【0022】
第2の分割架構10A1を、クレーンで吊り揚げて、既存建物1の屋上階の床4の開口4aから、各階の床4の開口4aを通して既存建物1の2階に設置した第1の分割制構10A1の上に位置させ、第1の分割架構10A1の分割柱23A,24A及び分割ブレース36Aの上端と、第2の分割架構10A2の上分割柱23B,24Bの下端及び上分割ブレース36B,36Bの下端とを添え板継ぎする。同様に、既存建物1の屋上階から、各階の床4の開口4aを通して第2の分割架構10A2を既存建物1の2階〜3階に配置した分割架構10A2上に位置させ、下側の分割制震架構10A2の下分割柱23A,24A及び下分割ブレース36Aの上端と、上側の分割制震架構10A2の上分割柱23B,24B及び上分割ブレース36Bの下端と添え板継ぎする。
同様のやり方で、さらに上方に5個の第2の分割制震架構10A2を継ぎ足すと、その上端が9階に位置することになる。次ぎに、第3の分割架構10A3をクレーンで吊り揚げて、第3の分割架構10A3のブレース37,37、連結体30、上分割ブレース36B,36B及び上分割柱23B,24Bを屋上階の床4の開口4aから9階内に差し込み、最も上に位置する第2の分割架構10A2の下分割柱23A,24A及び下分割ブレース36Aの上端と、分割架構10A3の上分割柱23B,24B及び上分割ブレース36B,36Bの下端とを添え板継ぎする。
上記の添え板継ぎした各箇所は、添え板継ぎ後に順次突合せ溶接にて一体的に接合する。
【0023】
なお、分割架構10A3はハットビーム60を接合しない状態で、最も上に位置する分割架構10A2の下分割柱23A,24Aの上端に上分割柱23B,24Bの下端を添え板継ぎし、最も上に位置する分割架構10A2の下分割ブレース36Aの上端に、連結体30を介してブレース37,37が結合されている上分割ブレース36B,36Bの下端を添え板継ぎし、その後、上分割柱23B,24B及びブレース37,37の上端をハットビーム60の下側の板体60a2の下面に溶接にて接合し、かつ下部に面外座屈防止体40が連結されている束材41の上端を前記板体60a2に固着して、最上部の制震架構10Aを構成するようにしてもよい。
制震縦メガフレーム50A,50Aの上下方向に連ねて設けた各制震架構10Aは、その下側の制震架構10Aの矩形枠20の上側の梁がその上側の制震架構10Aの矩形枠20の下側の梁になるものである。
【0024】
次に、各制震架構10Aの矩形枠20の既存建物への取付方を説明する。
各制震架構10Aの矩形枠20の梁21,22の下側のフランジ21a2,22a2及びハットビーム60の下側の板体60a2の下面を、その下側の既存建物のRC造の床4に固定する場合には、例えば、図14、図15及び図18に示すように、前記フランジ21a2,22a2及び板体60a2の下側の面に、先端に大径部のあるスタッド(頭部付きスタッドという)Sd1を間隔をおいて多数本溶接にて植設し、各スタッドSd1を矩形枠20が挿入されている床4の開口4a内に位置させ、開口4aの周囲のコンクリート部分に穿設した横孔内に一端を挿入して接着剤にて固着した複数本の鉄筋Rh1を床の開口4a内に前記面に沿って格子状に配置してから、開口4a内にコンクリートを後打ちして、各矩形枠20を既存建物1の床4に固定する。
【0025】
各制震架構10Aの矩形枠20の柱23,24のウェブ23b,24bに面する既存建物のRC造の外壁5の内側面に固定する場合には、例えば、図16に示すように、前記ウェブ23b,24bの外壁5側の面に、多数本の頭部付きスタッドSd2を間隔をおいて溶接にて植設し、各ウェブ23b,24bに対面する外壁5の内側面から突出させて、かつその基端を壁5のコンクリート部分に穿設した孔に挿入して接着剤にて固着して、外壁5に多数本の頭部付きスタッドSd3を植設し、ウェブ23b,24bと壁5との間の隙間内に間隔をおいて外壁5の上下方向に延びる複数本の鉄筋Rv2と各鉄筋Rv2周囲に上下方向に間隔をおいてフープ状の鉄筋Rh2を配してから、前記隙間内にコンクリートを後打ちして、矩形枠20の柱23,24を既存建物1の壁5に固定する。
【0026】
各制震架構10Aの矩形枠20の柱23,24のフランジ23a,24aをこれに面する既存建物のRC造の外壁5Aに固体し、矩形枠20の柱23,24のウェブ23b,24bをこれに面する既存建物1のSRC造の柱2に固定する場合には、例えば、図17に示すように、前記フランジ23a,24aの外壁5A側の面に、多数本の頭部付きスタッドSd4を間隔をおいて溶接にて植設しておき、前記ウェブ23b,24bの柱2側の面に、多数本の頭部付きスタッドSd5を間隔をおいて溶接にて植設し、前記フランジ23a,24aに対面する外壁5Aの内側面から突出させて、かつその基端を壁5Aのコンクリート部分に穿設した孔に挿入して接着剤にて固着して、外壁5Aに多数本の頭部付きスタッドSd6を植設し、柱2の矩形枠20の柱23,24側の面に上記スタッドSd6と同様のやり方で多数本の頭部付きスタッドSd7を間隔をおいて植設する。フランジ23a,24aと該フランジ23a,24aに対向する壁5Aの内側面との間の隙間内に外壁5Aの上下方向に延びる複数本の鉄筋Rv3を配し、各鉄筋Rv3の周囲に上下方向に間隔をおいてフープ状の鉄筋Rh3を配し、ウェブ23b,24bと既存建物1の柱2との間の隙間内に柱2及び外壁5Aと平行に上下方向に延びる複数本の鉄筋Rv4を間隔をおいて配し、各鉄筋Rv4の周囲に上下方向に間隔をおいてフープ状の鉄筋Rh4を配し、柱23,24のウェブ23b,24bとフランジ23a,24aで囲まれる空間内にウェブ23b,24bの長手方向に間隔をおいて2本の鉄筋Rv5を配し、この2本の鉄筋Rv5の外側に多数本のU字状に曲げた鉄筋Rh5を掛けて、U字状に曲げた各鉄筋Rh5の自由端よりの部分をフープ状の鉄筋Rh4と平面視で交差させて、U字状に曲げた各鉄筋Rh5を前記柱2、外壁5A等の上下方向に間隔をおいて配設し、柱23,24のウェブ23b,24bと柱2との間及びフランジ23a,24aと外壁5Aとの間の隙間内にコンクリートを後打ちして、矩形枠20を柱23,24を既存建物の壁5A及び柱2に固定する。
なお、制震架構10Aの矩形枠20の梁21,22の既存建物のRC造の床4とのコンクリートの後打ちによる固着作業及び前記矩形枠20の柱23,24と既存建物のRC造の外壁5,5AやSRC造の柱2とのコンクリートの後打ちによる固着作業は、順次下方から組み付けられる各分割架構10A1,10A2,10A3の突合せ溶接による本接合後に順次行われる。
【0027】
ハットビーム60のH形断面の束材61を既存建物のSRC造の柱2に固定する場合は、例えば、図19に示すように、束材61に対応する屋上階の床4に、束材61を挿入する開口を設け、この開口から束材61を差し込み、束材61の下端61dを、図10に示すように、9階の床に固定する。
H形断面の束材61のウェブ61bの前記柱2及びRC造の外壁5に面する部分に、図19に示すように、多数本の頭部付きスタッドSd8を間隔をおいて溶接にて植設しておき、各ウェブ61bに対面する外壁5の内側面からウェブ61b側に向けて突出させて、かつその基端を壁5のコンクリート部分に穿設した孔に挿入して接着剤にて固着して、外壁5に多数本の頭部付きスタッドSd3を植設し、ウェブ61bと壁5との間の隙間内に外壁5の上下方向に延びる複数本(例えば、4本)の鉄筋Rv6と各鉄筋Rv6の周囲に上下方向に間隔をおいてフープ状の鉄筋Rh6を多数本配筋する。また、束材61のウェブ61bに対面する9階の柱2の部分に、両端部を柱2のコンクリート部分に穿設した孔に挿入して接着剤にて固着して、前記柱2に多数本のU字方に曲げた鉄筋Rh7を柱2の上下方向に間隔をおいて配設し、ウェブ61bと柱2との間の隙間内の多数本のU字状の鉄筋Rh7の内側にこれと接近させて柱2と平行に複数本(例えば、6本)の鉄筋Rv7を配筋する。また、束材61のウェブ61bと対のフランジ61aで囲まれる空間内にウェブ61bの長手方向に間隔をおいて2本の鉄筋Rv8を配し、この2本の鉄筋Rv8の外側に多数本のU字状に曲げた鉄筋Rh8を掛けて、これらの鉄筋Rh8を、それらの自由端よりの部分をU字状の鉄筋Rh7と平面視で交差させて、前記柱2及び束材61の上下方向に間隔をおいて配筋する。それから、束材61と外壁5との間及び束材61と柱2との間の隙間内にコンクリートを後打ちして、束材61を既存建物の柱2及び外壁5に固定する。
【0028】
通常の耐震補強で補強フレームを門型にすると、従来技術(1)の耐震補強構造のように、耐震立体縦フレームの各階の補強耐力を大きくすることにり、それに伴って生じる両端の耐震立体縦フレームの過大な曲げ変形を拘束するため、既存建物の頂部に階高の約1階分程度の厚さの立体トラス型の横メガ連結体を設けることが必要であった。ところが、実施例のように、両端の制震縦メガフレーム50A,50Bの上部をハットビーム60で連結してなる門型制震メガフレーム100を既存建物の外壁の内側に構築して、制震補強すると、制震縦メガフレーム50A,50Bの各階を構成する制震架構10Aの矩形枠20内に設けた極低降伏点鋼からなるブレース37が早期に塑性変形(降伏)することにより、制震縦メガフレームの各階の補強耐力は上記の耐震補強の場合のように大きくならず、それに伴って生じる両端の制震縦メガフレームの曲げ変形も上記の耐震補強の場合のように大きくならないため、制震縦メガフレームの頂部の拘束は、ある程度の剛性のハットビーム60(例えば、階高の約2分1程度のボックス型ビーム)でまかなうことができる。
また、ハットビーム60は、これに設けた束材61を各制震縦メガフレーム50A,50Bとハットビーム60の中央部との中間の既存建物1の9階の柱2及び外壁5に固定して、門型制震メガフレーム100のハットビーム60を既存建物1に強固に一体化するから、過大な剛性のハットビーム60を使用しなくとも、制震縦メガフレームの頂部を確実に拘束することができる。
【0029】
上記の実施例の場合は、既存建物1の地上階の短辺側の外壁5と短辺側の外壁5に近い柱2との間には、図2に示すようにように、かなりの隙間があり、その隙間に各階の床4が形成されているが、図21に示されているような既存建物1の地上階の短辺側の外壁5に接して短辺側の外壁に近い柱2が設けられている建物においては、床4の短辺方向の両端に寄った部分に細長い略矩形の仮設開口を設けて、その仮設開口内に制震縦メガフレーム50A,50Bを設けることができない。
図21に示す構造の既存建物1を制震補強する場合においては、既存建物の外壁4の外側にこれと近接して制震縦メガフレーム50A,50Bを設ける必要がある。
そのため、既存建物1の地下階の短辺方向の部分A〜B、D〜Eの外壁の外側に柱や梁を増設して補強する。その柱の下端の基礎も必要に応じて補強する。既存建物1の地上1階の短辺方向の部分B,Dの外壁の外側に外壁5、柱2と一体に柱1F2eを増設し、既存建物1の地上1階の短辺方向の部分A,Eの外壁5の外側に外壁5及び柱2と一体に柱1F2Aeを増設し、増設した部分A,B及び部分D,Eの柱1F2Ae及び柱1F2eの上端間を連結する増設梁2F3Aeを増設し、増設梁2F3Aeと既存建物1の外壁5や梁とを一体化する。柱1F2Aeと柱1F2eとの間に間柱1F2Beを増設する。必要に応じて、この柱間1F2Beと柱1F2Aeと増設梁2F3Aeとで囲まれる空間内に、例えば、RC造の耐震壁を短辺方向に向けて増設する。
【0030】
そして、増設梁2F3Aeの上側において、制震縦メガフレーム50A,50Bを、既存建物1の外壁4に近接させて構築し、制震縦メガフレーム50A,50Bの各制震架構10Aの各矩形枠20の柱23,24を既存建物1の外壁4や柱2に接合し、各矩形枠20の梁21,22を既存建物1の外壁4や梁に接合する。制震縦メガフレーム50A,50Bの上端に対応するハットビーム60は既存建物1の屋上階の外壁4や梁に接合する。
また、ハットビーム60の設けた束材61は、これに対応する既存建物1の地上9階の外壁5及び柱2に接合する。
既存建物1がRC造又はSRC造である場合は、制震縦メガフレーム50A,50B及びハットビーム60を既存建物1に取り付ける取付方として、前記取付方([0024]〜[0027]記載)と類似の取付方を採用する。
既存建物1がS造である場合は、制震縦メガフレーム50A,50Bの各制震架構10Aの各矩形枠20の柱23,24と既存建物1のS造の柱2との間、及び各矩形枠20の梁21,22と既存建物1のS造の梁3との間に多数の鋼製の連結部材を配し、各連結部材の一方の端を各矩形枠20の柱23,24及び梁21,22に溶接にて接合し、各連結部材の他方の端を既存建物1のS造の柱2及び梁3に溶接にて接合し、制震縦メガフレーム50A,50Bを既存建物1のS造の躯体に接合する。しかし、図21に示す既存建物1の制振構造は、既存建物1の外観が変わり、既存建物1への付加工事が増す欠点がある。
【0031】
門型制震メガフレーム100の制震縦メガフレームの構成部分となる図22及び図23に示す他の制震架構10Bの構成を説明する。
制震架構10Bの矩形枠70は、1対の横部材を構成する鋼製のH形断面の梁71,72と1対の縦部材を構成する鋼製のH形断面の柱73,74とを使って、前記制震架構10Aの矩形枠20の製作法と同じ方法で、製作されている。
矩形枠20はその梁71,72及び柱73,74の必要部分に鋼製のスチフナー71c〜71c,72c〜72c,73c,74c等を設けて補強されている。
なお、梁71,72及び柱73,74としては、例えば、フランジ幅及び成が同じH形断面の鋼材からなるものを用いる。
【0032】
制震架構10Bは、矩形枠70内に部材の中央の所定長さの部分が極低降伏点鋼で構成され他の部分が通常鋼で構成されている1対のブレース75,75を逆V字状に配し、各ブレース75の下部を開口部の下隅部70aに固着し、各ブレース75の上部を開口部の上側の横部材に略中央の下側に固着して構成される。1対のブレース75,75は、図22に示すように、同じ構成で、上部分75Aと中間部分75Bと下部分75Cとで構成されている。
上部分75A及び下部分75Cは、通常鋼からなる横断面が4角形の管体75A1,75C1で造られ、4角形の管体75A1,75C1の一方の端の両側が長手方向に対して傾斜した面で切断されて先端が直角なV字形先部75A2,75C2とされ、4角形の管体75A1,75C1の他方の端にフランジ75A3,75C3が設けられている。
【0033】
中間部分75Bは、極低降伏点鋼からなる横断面が4角形の管体75B1で造られ、極低降伏点鋼の管体75B1の両端にフランジ75B2,75B3が設けられている。中間部分75Bの管体75B1内に、中間部分75Bより少し長い通常鋼からなる横断面がH形の補剛材75Dが挿入され、前記中間部分75Bの管体75B1と補剛材75Dとが、少なくとも1箇所で、例えば、H形の補剛材75Dのウェブ等を貫通させたボルト75Eにて、前記ブレース37に止着されている。
なお、横断面がH形の補剛材75Dと管体75A1,75B1,75C1との間に小さな隙間が形成されるように、補剛材75Dの寸法が定められている。
各ブレース75は、上部分75Aのフランジ75A3と中間部分75Bのフランジ75B2とがボルト・ナットで固着され、中間部分75Bのフランジ75B3と下部分75Cのフランジ75C3とがボルト・ナットで固着されて形成されている。
【0034】
矩形枠70内に1対のブレース75を逆V字状(ハ字状)に配し、各ブレース75の下部分75CのV字形先部75C2を開口部の下隅部70aに溶接し、各ブレース75の上部分75AのV字形先部75A2を開口部の上側の梁72の略中央のフランジ72a2の下面に溶接し、かつ各ブレース75のV字形先部75A2の傾斜辺同士を溶接し、ブレース75の上部分75AのV字形先部75A2とフランジ72a2との溶接部の近傍の部分、V字形先部75A2とV字形先部75A2との溶接部の近傍の部分及びブレース75の下部分75CのV字形先部75C2と梁71や柱73,74のフランジとの溶接部の近傍の部分をリブRb1〜Rb4で補強する。
【0035】
制震架構10Bを縦方向に連ねて制震縦メガフレーム50A,50Bを形成するときに、制震架構10Bを連設し易い部分で分割する必要がある場合には、例えば、次のようにする。
矩形枠70の成の1/3〜1/4のところで、柱73,74を切断し、かつのフランジ75C3をフランジ75B3から離して分割した構造のものを、第1の分割架構10B1とする。
また、制震架構10Bから分割架構10B1を除いたものに、前記柱73,74の分割された下側の部分の上下方向の寸法に相当する分割柱73A,74Aを、上側の梁72の両端の上側に溶接し、かつブレース75の下部分75CのV字形先部75C2を上側の梁72の両端の上側及び分割柱73A,74Aの下部の内側に溶接したものを、第2の分割架構10A2とする。
さらに、第2の分割制震架構10B2から分割柱73A,74A、ブレース75の下部分75C及び上側の梁72を除いたものの残りの柱73B,74Bの上端及びブレース75の中間部分75Bに連結された上部分75AのV字形先部75A2をハットビーム60の下面に溶接したものを、第3の分割架構10B3とする。
上記のように分割すると、一つの制震縦メガフレーム50A,50Bは、1個の第1の分割架構10B1と、8個の第2の分割架構10B2と、1個の第3の分割架構10B3とを上下方向に連ねて連結することにより構築することができる

【0036】
門型制震メガフレーム100の制震縦メガフレームの構成部分となる図24に示す他の制震架構10Cの構成を説明する。
制震架構10Cの矩形枠80の構成は、制震架構10Bの矩形枠70と同じである。
矩形枠80内に、横断面がH形の通常鋼で構成された1対のブレース85,85を逆V字状(すなわち、ハ字状)に配し、各ブレース85の下部を開口部の下隅部80aに固着し、各ブレース85の上部に、上側の梁82の下側のフランジ82aと平行に開口部内に配さた通常鋼で形成されて平板86に溶接して互いに連結する。
ハニカムダンパー87は、極低降伏点鋼をハニカム型パネルに加工して製作されている。上側の梁82の下側のフランジ82aと前記平板86との間にハニカムダンパー87を配し、ハニカムダンパー87の上側の取付板87aを上側の梁82の中央部の下側のフランジ82aに固着し、その下側の取付板87bを前記平板86の上側面に固着して制震架構10Cが完成する。
1対のブレース85,85の上部と平板86との溶接部、ブレース85の下部と柱83,84及び梁81との接合部の近傍の部分を、そこにリブRb〜Rbを溶接してで補強する。
【0037】
制震架構10Cを縦方向に連ねて制震縦メガフレーム50A,50Bを形成するため、制震架構10Cを連設し易い部分で分割する必要がある場合には、例えば、次のようにする。
矩形枠80の成の1/3〜1/4のところで、柱83,84及びブレース85,85を切断し、その下側のものを第1の分割架構10C1とする。
また、制震架構10Cから分割架構10C1を除いたものに、前記柱83,84の分割された下側の部分の上下方向の寸法に相当する分割柱83A,84Aを、上側の梁82の両端の上側に溶接し、ブレース85,85の分割された下側の部分の上下方向の寸法に相当する分割ブレース85A,85Aを、上側の梁82の両端の隅部80aに溶接して製作したものを、第2の分割架構10C2とする。 さらに、分割架構10C2から柱83A,84A、ブレース85A,85A及び梁82を除いた残りの柱83B,84B、ブレース85の上部85B、平板86及びハニカムダンパー87からなるものをハットビーム60の下側の板体61a2の下面に溶接して製作したものを第3の分割架構10C3とする。
上記のように分割すると、一つの制震縦メガフレーム50A,50Bは、1個の第1の分割制震架構10C1と、8個の第2の分割制震架構10C2と、1個の第3の分割制震架構10C3とを上下方向に連ねて連結することにより構築することができる。
【0038】
【発明の効果】
この発明は、特許請求の範囲の各請求項に記載した構成を備えることにより、次の(イ)〜()の効果を奏する。
(イ)請求項1に係る発明の既存建物の制震補強構造は、柱、梁、床、壁等を備えた多層の既存建物の外壁の内側の制震補強すべき部分の両端に寄った部分に、それぞれ前記部分と平行にかつ床を貫通して制震縦メガフレームを組み付け、1対の制震縦メガフレームの上部をハットビームで連結して、既存建物中に門型制震メガフレームが構築され、各制震縦メガレームは既存建物の制震補強すべき部分の階数と同数の矩形枠を備えた制震架構を屋上に達するように縦方向に連ねて一体に結合して形成され、各制震架構は鋼製の縦部材と鋼製の横部材とを矩形状に結合してなる矩形枠内に制震部材を配して前記矩形枠の地震時の変形により地震力を吸収できるように前記制震部材が矩形枠に設けられており、前記ハットビームは既存建物の制震補強すべき部分の屋上に配されて、その両端が各制震縦メガフレームの上端に結合され、前記門型制震メガフレームの1対の制震縦メガフレームとハットビームとが一つの構面を構成するように配置されており、各制震縦メガフレームの下端が既存建物の制震補強すべき部分の最下階の下側の建物躯体に固定され、各制震架構の矩形枠の縦部材の少なくとも一部が既存建物の縦方向に延びる柱や壁に固着され、各制震架構の矩形枠の横部材の少なくとも一部が既存建物の横方向に延びる床や梁に固着されているから、次の(1)〜(4)の効果を奏する。
(1)簡単な構造で、少ない資材で施工性よく既存建物を制震補強することができる。
(2)通常の耐震補強で補強フレームを門型にすると、前記[従来技術]の欄の(1)の耐震補強構造(以下従来の耐震補強という)のように、耐震立体縦フレームの各階の補強耐力を大きくすることにり、それに伴って生じる両端の耐震立体縦フレームの過大な曲げ変形を拘束するため、既存建物の頂部に階高の約1階分程度の厚さの立体トラス型の横メガ連結体を設けることが必要であるが、既存建物の外壁の内側の制震補強すべき辺部分の両端に寄った部分に、それぞれ前記辺部分と平行にかつ床を貫通して制震縦メガフレームを組み付け、1対の制震縦メガフレームの上部をハットビームで連結して、既存建物中に門型制震メガフレームが構築されて、各制震縦メガフレームの各階を構成する制震架構として、鋼製の縦部材と鋼製の横部材とを矩形状に結合してなる矩形枠内に制震部材を配して前記矩形枠の地震時の変形により地震力を吸収できるように前記制震部材を矩形枠に設けたものを用いて、制振補強すると、地震時に矩形枠内に設けた制震部材が、地震力を吸収して制震するから、制震縦メガフレームの各階の補強耐力が前記従来の耐震補強の場合のように大きくならず、それに伴って生じる両端の制震縦メガフレームの曲げ変形も前記従来の耐震補強の場合のように大きくならないため、制震縦メガフレームの上部の拘束は、ある程度の剛性のハットビームでまかなうことができ、少ない資材で既存建物を制震補強することができる。
【0039】
(3)1対の制震縦メガフレームを既存建物の外壁の内側の補強すべき辺部分の両端に寄った部分に1対の制震縦メガフレームを組み付けるだけで制震補強することができるから、補強工事中の既存建物の使用に対して与える悪影響を少なく抑えることができる。
(4)門型制震メガフレームの1対の制震縦メガフレームとハットビームとを一つの構面を構成するように(略同一の平面内に位置するように)配置されているから、門型制震メガフレームの剛性を高めることができ、また、既存建物の門型制震メガフレームの取付部に加える加工が少なくなり、少ない資材で既存建物を施工性よく制震補強することができる。
(ロ)請求項2の発明の既存建物の制震補強構造は、柱、梁、床、壁等を備えた多層の既存建物の制震補強すべき辺部分の外壁と該外壁に近い柱との間の前記辺部分の両端に寄った部分にそれぞれ前記外壁と平行にかつ床を貫通して上下方向に延在させて制震縦メガフレームを組み付け、各制震縦メガフレームの上部ハットビームで連結して、既存建物中に門型制震メガフレーム構築され、各制震縦メガフレームは既存建物の制震補強すべき辺部分の階数と同数の矩形枠を備えた制震架構を制震補強すべき辺部分の屋上に達するように縦方向に連ねて一体に結合して形成され、各制震架構は鋼製の縦部材と鋼製の横部材とを矩形状に結合してなる矩形枠内に制震部材を配して前記矩形枠の地震時の変形により地震力を吸収できるように前記制震部材が矩形枠に設けられており、上記ハットビーム既存建物の制震補強すべき部分の屋上に配されて、その両端が各制震縦メガフレームの上端に結合され、前記門型制震メガフレームの1対の制震縦メガフレームとハットビームとが一つの構面を構成するように配置されており、各制震縦メガフレームの下端が既存建物の制震補強すべき辺部分の最下階の下側の建物躯体に固定され、各制震架構の矩形枠の縦部材の少なくとも一部が既存建物の縦方向に延びる柱や壁に固着され、各制震架構の矩形枠の横部材が既存建物の床に固着されているから、上記の(1)〜(4)の効果を奏することができるだけでなく、次の(5)の効果を奏する。
(5)1対の制震縦メガフレームを、多層の既存建物の制震補強すべき辺部分の外壁と該外壁に近い柱との間の前記辺部分の両端に寄った部分にそれぞれ組み付けるだけで制震補強することができるから、補強工事中の既存建物の使用に対して与える悪影響を極小に抑えることができる。
【0040】
)請求項の既存建物の制震補強構造は、1対の制震縦メガフレーム間のハットビームの各制震縦メガフレームとハットビームの中央との間の部分の下側に束材を固定し、該束材を既存建物の縦方向に延びる柱や壁に固着するようになっているから、上記の(1)〜(5)の効果を奏することができるだけでなく、次の(6)の効果を奏する。
(6)門型制震メガフレームのハットビームを既存建物に強固に一体化でき、過大な剛性のハットビームを使用しなくとも、制震縦メガフレームの頂部を確実に拘束することができる。
)請求項に係る既存建物の制震補強構造は、ハットビームの成が既存建物の制震補強すべき部分の階高寸法の2分の1程度であるから、上記の(1)〜(6)の効果を奏することができるだけでなく、次の(7)の効果を奏する。
(7)ハットビームの成が階高寸法の2分の1程度ですみ、少ない資材で既存建物を制震補強することができる。
【0041】
)請求項に係る既存建物の制震補強構造は、制震架構として、1対の普通鋼製の横部材と1対の普通鋼製の縦部材とからなる矩形枠内に、2対のブレースが配され、上側のV字状に配された1対のブレースの下部と、下側の逆V字状に配された1対のブレースの上部とが一体に結合されて、2対のブレースが略X字型に結合され、前記上側の対のブレースの上部がそれに対応する矩形枠の上隅部に連結され、前記下側の対のブレースの下部がそれに対応する矩形枠の下隅部に連結され、2対のブレースの交点となる結合部の中心が矩形枠の中心より上方又は下方に偏位しており、ブレースの交点と横部材との間の間隔が狭くなっている側にある1対のブレースの全体又は部材の中央の所定長さの範囲の部分が、極低降伏点鋼で構成されていて、ブレースの交点と横部材との間の間隔が広くなっている側にある1対のブレースよりも短くなっている制震架構を使用するから、上記の(1)〜(7)の効果を奏することができるだけでなく、次の(8)の効果を奏する。
(8)部材全体又はその部材の中央の所定長さの範囲の部分を極低降伏点鋼で構成されている1対のブレースは、その水平面に対する傾斜角が小さく、地震時に作用する軸力が大きく、かつ地震時の剛性も大きくなるため、履歴吸収を期待できる変形範囲が広くなり、小さな地震時変形からエネルギーの履歴吸収が期待でき、制振効果が大きい。
【0042】
)請求項に係る既存建物の制震補強構造は、制震架構として、1対の普通鋼製の横部材と1対の普通鋼製の縦部材とからなる矩形枠内に、部材の中央の所定長さの部分が極低降伏点鋼で構成され他の部分が通常鋼で構成されている1対のブレースが逆V字状又はV字状に配され、各ブレースの下部又は上部が開口部の下隅部又は上隅部に固着され、各ブレースの上部又は下部が開口部の上側又は下側の横部材の中央の下側又は上側に固着されている制振架構を使用するから、上記の(1)〜(7)の効果を奏することができるだけでなく、次の(9)の効果を奏する。
(9)極低降伏点鋼で構成された中央部分の長さ、通常鋼で構成された両端部の長さ、剛性等を調節することにより、歪み集中の度合いを調節することができ、地震時の矩形枠の変形により極低降伏点鋼からなる中央の部分が塑性変形して、地震力を効率よく吸収させることができる。
)請求項に係る既存建物の制震補強構造は、制震架構の矩形枠に設けるブレースとして、制震架構の全体が極低降伏点鋼で構成されたブレースの座屈し易い部分の周囲又は極低降伏点鋼で構成されたブレースの中央部分の周囲がこれとの間に僅かな隙間をあけて普通鋼製の筒状体の補剛材で覆われ、あるいは全体が極低降伏点鋼で構成されたブレースの座屈し易い部分の内部又は極低降伏点鋼で構成されたブレースの中央部分の内部に長手方向に延びる中空部が形成され、前記中空部に移動自在に細長い補剛材が挿入されている制震架構を使用するから、上記の(1)〜(7)及び(8)又は(9)の効果を奏することができるだけでなく、次の(10)の効果を奏する。
(10)ブレースの極低降伏点鋼で構成された部分を補剛材で補剛することにより、ブレースの極低降伏点鋼で構成された部分が座屈することがなく、その塑性変形により、地震力を効率よく吸収することができる。
【図面の簡単な説明】
【図1】実施例の既存建物の制震補強すべき部分の正面図
【図2】実施例の制震補強する既存建物の標準階(2階ないし9階)の平面図
【図3】実施例の制震補強する既存建物の内側からみた地階、地上1、2階とその補強のための増設部分を示す正面図
【図4】実施例の制震縦メガフレームの構成部分となる制震架構の正面図
【図5】図4に示す制震架構の連結体の正面図
【図6】図5に示す連結体の側面図
【図7】図4に示す極低降伏点鋼からなるブレースをそのA−A線で断面した断面図
【図8】実施例のブレースのリブによる補強部の断面図
【図9】実施例の制震縦メガフレームを構成する制震架構の分割の仕方の一例を示す正面図
【図10】実施例の制震縦メガフレームとハットビームとの関係等を示す正面図
【図11】実施例の門型制震メガフレームと既存建物との関係を示す正面図
【図12】実施例の制震縦メガフレームの下部の既存建物への取付部等を図13のB−B線にそって断面した正面図
【図13】実施例の制震縦メガフレームの下部を構成する制震架構を図14のC−C線で断面した平面図
【図14】図13に示す制震縦メガフレームの下部を構成する制震架構を図13のD−D線に沿って縦断した側面図
【図15】実施例の制震架構の上側の梁と既存建物の床との関係等を示す縦断面図
【図16】実施例の制震架構の柱と既存建物の外壁との関係等を示す横断面図
【図17】実施例の既存建物の外壁及び柱と制震架構の柱との関係等を示す縦断面図
【図18】実施例の制震縦メガフレームの上端とハットビームとの連結部と既存建物の屋上階の床との関係等を示す縦断面図
【図19】実施例のハットビームの束材の既存建物の9階の柱や外壁への取付部を図10のE−E線に沿って横断した平面図
【図20】実施例の制震架構の面外座屈防止体の構成及び既存建物との関係等を示す縦断面図
【図21】既存建物の外側に門型制震メガフレームを設けて制震補強する場合の平面図
【図22】実施例の他の制震架構の正面図
【図23】図22に示すブレースをそのF−F線で断面した断面図
【図24】実施例のハニカムダンパーを用いる制震架構の正面図
【符号の説明】
1 既存建物
2 柱
3 梁
4 床
4a 仮設開口
5,5A 外壁
10A,10B,10C 制震架構
10A1〜10A3,10B1、10B2,10C1、10C2 分割架構
20,70,80 矩形枠
20c 矩形枠の中心
21,22,71,72 梁
23,24,73,74 柱
30 連結体
30c 連結体の中心(ブレースの交点)
31 ウェブ板
32a〜32e フランジ板
36,37 ブレース
38 管体
40 面外座屈防止体
41 束材
50A,50B 制震縦メガフレーム
60 ハットビーム
61 束材
75,85 ブレース
86 平板
87 ハニカムダンパー
100 門型制震メガフレーム
2F3 増設補強梁
2F3Ae 増設梁
Wd 窓
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an anti-seismic reinforcing structure for an existing building, and more particularly, an anti-seismic reinforcing structure for an existing building that is fixed to an existing building in the vicinity of a portion of the existing building to be anti-seismic strengthened and is reinforced by providing a gate-type seismic mega frame. About.
[0002]
[Prior art]
  For example, conventional seismic reinforcement structures for existing buildings include:
(1) A pair of three-dimensional truss-type seismic solid vertical megaframes are constructed outside the multi-layer existing building with columns, beams, floors, etc., approaching both sides of the existing building. A three-dimensional truss-type horizontal mega-linkage is constructed between the upper ends, and a portal-type megastructure is constructed by integrally connecting the upper end of each seismic solid vertical megaframe and the horizontal mega-linkage. The frame is built outside the existing buildingTheIt has a three-dimensional structure of pure ramen structure consisting of many pillars, many beams arranged according to the position of the floor of the existing building, and many braces. It has a three-dimensional truss-type three-dimensional structure consisting of a large number of beams arranged at substantially equal intervals to the floor height of an existing building, a large number of bundles arranged at intervals between the beams, and a large number of braces. Each of the seismic three-dimensional vertical megaframes corresponding to the ridges, which are formed in the shape of a bowl around the existing building corresponding to the floor of each floor, are connected to the ridges, and both side surfaces and the upper surface of the existing building A seismic reinforcement structure in which gate-type megastructures constructed at intervals are coupled to an existing building (see, for example, Japanese Patent Laid-Open No. 9-203217), and
(2) Inside a multi-layered existing building with pillars, beams, floors, etc., a large frame consisting of a plurality of rectangular frames connected to multiple floors in the vertical direction is provided, and a long brace is provided in the large frame. A large earthquake-resistant frame is constructed, and each rectangular frame of the large frame is arranged along a horizontal member placed near the floor of the existing building or a beam position corresponding to the floor and a column of the existing building. Braces with long rectangular braces passed through holes formed in the floor of the existing building. The vertical members of each rectangular frame are connected to each other through holes formed in the floor of the existing building. Seismic reinforcement structure (for example, Japanese Patent Application Laid-Open No. Hei 9-166) in which the horizontal members of the rectangular frame are fixed to the floor or beam of an existing building and the vertical members of each rectangular frame are fixed to a column of the existing building. No. 9-209579).
[0003]
[Problems to be solved by the invention]
In the seismic reinforcement structure of (1) above, in order to enhance the earthquake resistance of existing buildings, the portal megastructure is constructed outside the existing building, and each seismic solid vertical megaframe of the megastructure is located outside the existing building. The existing building has a three-dimensional structure with a pure ramen structure consisting of a number of pillars established at intervals, a number of beams arranged according to the position of the floor of the existing building, and a number of braces. This is a seismic reinforcement structure that cannot be applied unless there is a large site to build a three-dimensional earthquake-resistant three-dimensional vertical megaframe. In addition, the three-dimensional truss-shaped horizontal mega connecting body connecting the upper parts of the seismic solid vertical mega frame has a size corresponding to the floor height of the existing building. It is a reinforced structure that requires a lot of materials and labor for seismic reinforcement of buildings. And even if each earthquake-resistant solid vertical megaframe has high earthquake resistance, it does not have seismic control ability (ability to absorb seismic force by applying seismic force to plastic deformation of members).
The seismic reinforcement structure for an existing building in (2) above is provided with a large frame inside a multi-layered existing building, which is close to the existing building and has a plurality of rectangular frames connected in the vertical direction across multiple floors. A large seismic frame is constructed by providing a long brace in the frame, and each rectangular frame of the large frame is placed under the floor of the existing building or close to the beam position corresponding to the floor and the existing building. The vertical members of each rectangular frame are connected to each other through holes in the floor of the existing building, and long braces are also attached to the floor of the existing building. Because the brace members passed through the drilled holes are connected and assembled, the horizontal members of the rectangular frame are fixed to the floor or beam of the existing building, and the vertical members of each rectangular frame are fixed to the pillars of the existing building Seismic reinforcement that cannot be seismically strengthened according to the seismic performance of each floor In addition, because the long braces are not designed to be deformed in the event of an earthquake, the large seismic frame consisting of a large frame and long braces has seismic control capability even though it has high earthquake resistance. Not done.
The problem to be solved by the present invention is to provide a seismic retrofit structure for an existing building that does not have the above-mentioned drawbacks of the prior art, in other words, a pair of seismic vertical seismic megaframes. The existing seismic force can be absorbed by the seismic control members provided in the seismic control frame that makes up the frame, and the seismic effect can be effectively demonstrated. The purpose is to provide a seismic reinforcement structure for buildings.
[0004]
[Means for Solving the Problems]
  The seismic retrofit structure of an existing building of the present invention is a multi-layer existing building with columns, beams, floors, walls, etc.Inside the outer wallSeismic reinforcement should be strengthenedNeighborhoodportionThe part which approached both ends ofIn addition,RespectivelySaidNeighborhoodParallel to partAssemble the seismic vertical megaframe through the floor andConnect the upper part of a pair of seismic control vertical megaframes with a hat beamIn an existing buildingGate-type seismic control megaframes have been constructed, and each seismic control vertical mega-frame should be reinforced by existing systemsNeighborhoodThe same number of floorsWith a rectangular frameSeismic frameTo reach the rooftopEach of the vibration control frames is formed by connecting the vertical members and the horizontal members in a rectangular shape. The damping member is provided on the rectangular frame so that the seismic force can be absorbed by the deformation of the rectangular frame at the time of earthquake, and the hat beam should be reinforced by damping the existing buildingNeighborhoodPartialrooftopAre connected to the upper end of each seismic control vertical megaframe.The pair of seismic control vertical megaframes and the hat beam of the gate-type seismic control megaframe are arranged so as to constitute one plane.And the bottom end of each seismic control vertical megaframe should be reinforced with seismic control of existing buildingsNeighborhoodFixed to the building frame on the lowermost floor of the part, at least part of the vertical members of the rectangular frame of each seismic control frame is fixed to the pillars and walls extending in the vertical direction of the existing building, and the rectangular shape of each seismic control frame At least a part of the lateral member of the frame is fixed to a floor or beam extending in the lateral direction of the existing building.
[0005]
In a preferred embodiment of the present invention, a column, a beam, a floor, a wall and the like are provided.Seismic reinforcement for existing multi-layer buildingsSideouter wallAnd the side portion between the column near the outer wallBoth endsI stopped byEach partParallel to the outer wall and through the floorExtends verticallyLet meSeismic vertical mega frameAssembled,Upper part of each seismic control vertical megaframeTheHat beamIn the existing buildingGate-type seismic control mega frameButBuildEach seismic control vertical megaframe is connected in a vertical direction so that the seismic frame with the same number of rectangular frames as the number of sides of the existing building to be seismically reinforced reaches the roof of the side to be seismically reinforced. Each of the seismic control frames is formed by connecting a steel vertical member and a steel horizontal member in a rectangular shape and arranging the vibration control member in a rectangular frame. The damping member is provided in a rectangular frame so that the seismic force can be absorbed by deformation of the time, and the hat beam is arranged on the roof of the side of the existing building where the damping is to be reinforced, and both ends of each are controlled at each end. Coupled to the upper end of the seismic vertical megaframe,Arranged in such a way that a pair of seismic control vertical megaframes and a hat beam constitute a single planeThe lower end of each seismic control vertical megaframe is fixed to the building frame on the lowermost floor of the side of the existing building that should be reinforced, and at least one of the vertical members of the rectangular frame of each seismic control frame The part is fixed to a pillar or wall extending in the vertical direction of the existing building, and the horizontal member of the rectangular frame of each seismic control frame is fixed to the floor of the existing buildingTo do.
[0006]
The hat beam is fixed to an existing building at a plurality of locations of the hat beam between a pair of seismic control vertical megaframes as required. In a preferred embodiment, a bundle is secured to the underside of the portion between each damping vertical frame of the hat beam and the center of the hat beam, and the bundle is joined to a longitudinal column or wall of an existing building. .
In addition, the hat beam only needs to have the strength to demonstrate the function of making a pair of seismic control vertical megaframes at the time of an earthquake integrated with an existing building and easily deforming them, so that its formation provides seismic reinforcement. A beam that is about half the height of the floor of the power part can be used.
The rectangular frame of the seismic control frame that constitutes each seismic control vertical frame should be reinforced by seismic reinforcement of the existing building with the space between the lower surface of one horizontal member and the lower surface of the other horizontal member If it is made to correspond to the floor height dimension of each floor, the attachment work to the floor, wall, beam etc. which extend in the horizontal direction of the existing building of the rectangular frame of each seismic control vertical megaframe becomes easy.
[0007]
In a preferred embodiment, as the vibration control frame, a vibration control member made of extremely low yield point steel is disposed in a rectangular frame formed by connecting a vertical steel member and a horizontal steel member in a rectangular shape. The damping frame provided on the rectangular frame is used so that the damping member made of low yield point steel can be plastically deformed by the deformation of the rectangular frame at the time of earthquake to absorb the seismic force. For example, the following (1) to (3) are used, but are not limited thereto.
(1) A pair of braces arranged in a rectangular frame made up of a pair of ordinary steel transverse members and a pair of ordinary steel longitudinal members, and arranged in a V shape on the upper side The lower part of the upper brace and the upper part of the pair of braces arranged in an inverted V shape on the lower side are integrally joined, and the two pairs of braces are joined in a substantially X shape, The lower part of the lower pair of braces is connected to the lower corner part of the corresponding frame, and the center of the joint that is the intersection of the two pairs of braces is the frame. A portion of a range of a predetermined length in the whole pair of braces or the center of the member on the side where the distance between the intersection of the braces and the lateral member is narrowed, which is offset above or below the center of However, it is made of extremely low yield point steel and the spacing between the brace intersection and the transverse member is wide. A seismic frame that is shorter than a pair of braces on the curled side.
(2) In a rectangular frame consisting of a pair of ordinary steel transverse members and a pair of ordinary steel longitudinal members, the part of the center at a predetermined length is made of ultra-low yield point steel. A pair of braces, each of which is made of steel, are arranged in an inverted V-shape or V-shape, and the lower or upper portion of each brace is fixed to the lower or upper corner of the opening. A vibration damping structure in which an upper portion or a lower portion is fixed to a lower member or an upper portion of a central portion of a lateral member on an upper portion or a lower portion of an opening.
(3) A pair of ordinary steel braces are provided in a reverse V shape or V shape in a rectangular frame consisting of a pair of ordinary steel transverse members and a pair of ordinary steel longitudinal members. A support fixed to the upper part of a pair of braces arranged in an inverted V shape and the upper lateral member, or a support fixed to the lower part of a pair of braces arranged in a V shape; A honeycomb damper formed by processing extremely low yield point steel into a honeycomb-type panel is disposed between the lower lateral member and the portion of the honeycomb damper that faces the lateral member is fixed to the lateral member. A seismic control frame in which a portion facing the support fixed to the base is fixed to the support.
[0008]
When using the rectangular vibration control frame of (1) and (2) above, for example, a slight gap is formed between the member and the member to prevent buckling of the member made of extremely low yield point steel. The stiffener is inserted into the hollow portion formed in the member so as to be movable and covered with the stiffener so that the member made of extremely low yield point steel is not easily buckled.
When using the rectangular vibration control frame of (1) above, for example, an out-of-plane buckling prevention body is provided to prevent the joint at the intersection of two pairs of braces from moving out of plane due to buckling. It is preferable to prevent the intersection of the braces from moving out of the plane.
The seismic reinforcement structure of an existing building according to the present invention can be applied to seismic reinforcement of an existing building having a ramen structure such as an RC structure, an SRC structure, or an S structure.
[0009]
【Example】
  Embodiments will be described in detail with reference to FIGS.
  The existing building 1 is an SRC structure with a ramen structure with columns, beams, floors, walls, etc., with 2 floors underground and 9 floors above ground. As shown in FIG. Thus, one of the two short sides of the rectangle is built close to one short side of the rectangular site Si. This existing building 1 was seismically diagnosed, and it was found that the long side direction of the rectangle had sufficient seismic performance, but the short side direction of the rectangle lacked seismic performance.
  The embodiment is an example in which the present invention is applied to the seismic reinforcement in the short side direction of the existing building 1 and the seismic performance in the short side direction is improved.In an Example, the part of the short side direction of the existing building 1 becomes a side part which should be reinforced.
[0010]
As shown in FIG. 1, the outer wall 5 on the short side of the ground floor of the existing building 1 has openings (windows) Wd at the same interval, and the short side of the existing building 1 at both ends in the long side direction of the existing building 1. As shown in FIG. 2, there is a considerable gap between the outer wall 5 in the side direction and the plurality of pillars 2 close to the outer wall 5 in the short side direction, and the floor 4 of each floor is also formed in the gap. Has been.
In this embodiment, a gate-type seismic control megaframe 100 is constructed between an outer wall 5 in the short side direction on both sides of the existing building 1 and a plurality of pillars 2 close to the outer wall 5 in the short side direction. Seismic reinforcement in the short side direction.
First, as shown in FIG. 2, the both sides of the short side direction of the floor 4 between the outer wall 5 of the short side of the third floor to the roof floor of the existing building 1 and the pillar 2 close to the outer wall 5 were approached. Each part is provided with an elongated, substantially rectangular temporary opening 4a. The temporary opening 4a is sized to allow the seismic control vertical megaframe to pass through.
[0011]
  Reinforce the necessary part of the building frame below the beam 2 that supports the floor on the second floor above the short side of the existing building 1. For example, reinforcement is performed as described below.
  As shown in FIG. 3, the seismic reinforcement part 1B5A is formed of reinforced concrete integrally with the wall 5A on the first basement floor at one end A in the short side direction of the existing building 1, and the portions from both ends in the short side direction Seismic reinforcement part 1F made of reinforced concrete integrally with floor 4 on the first floor corresponding to A to B and D to E and beam 3 supporting the floor3Is provided.
  Further, a columnar reinforcement part 1F2 is formed of reinforced concrete toward the floor opening 4a side of the first floor pillar 2 corresponding to the parts B and D in the short side direction, and in the short side direction of the existing building 1 A columnar reinforcement part 1F2A made of reinforced concrete is provided below the floor opening 4a so as to be integrated with the first floor walls 5A of the ends A and E at both ends. Below the portion corresponding to the opening 4a of the floor 4 on the second floor above the portions A to B and D to E from both ends in the short side direction, the upper ends of the columnar additional reinforcing portions 1F2 and 1F2A, the floor 4 and the beam 3 are integrally provided with an additional reinforcing beam 2F3 made of reinforced concrete. In addition, an inter-column 1F2B is added between the columnar expansion reinforcement portions 1F2 and 1F2A on the ground floor corresponding to the portions A to B and D to E from both ends in the short side direction, and both ends in the short side direction with the inter-column 1F2B. An earthquake-resistant wall in the short side direction is added with a reinforced concrete structure between the part A and E of the columnar extension reinforcement part 1F2A.
[0012]
The structure of the seismic control frame 10A, which is a constituent part of the seismic control vertical megaframes 50A and 50B of the portal seismic control megaframe 100 of the embodiment, will be described.
On the upper side from the left and right ends of the steel H-shaped cross-section beam 21 constituting the horizontal member, steel H-shaped columns 23 and 24 constituting the vertical member are set up at right angles to the beam 21. In addition, both ends of the beam 21 protrude slightly from the lower ends of the columns 23 and 24 to the left and right, and the lower ends of the columns 23 and 24 are connected to the upper flange 21a of the beam 21.1And butt weld. On the upper side of the upper ends of the columns 23 and 24, the steel H-shaped cross-section beam 22 constituting the transverse member is perpendicular to the columns 23 and 24, and both ends of the beam 22 are left and right from the upper ends of the columns 23 and 24. The upper ends of the columns 23 and 24 are made to protrude slightly and the lower flange 22a of the beam 222The rectangular frame 20 is formed by butt welding.
The beams 21 and 22 and the columns 23 and 24 are made of steel stiffener 21c between the flanges on both sides of the necessary portions.1~ 21cFour, 22c1~ 22cFour, 23c1, 23c224c1, 24c2Reinforce by welding. In addition, as the beams 21 and 22 and the columns 23 and 24, for example, those made of steel materials having an H-shaped cross section having the same flange width and the same width are used.
[0013]
  As shown in FIGS. 4 to 6, the connecting body 30 is substantially the same as the flange width of the beams 21 and 22 and the pillars 23 and 24 on the five sides 31 a to 31 e of the steel pentagonal web plate 31, or A flat flange plate 32a, a flange plate 32b, a flange-shaped flange plate 32cd, and a flat flange plate 32e made of steel having a slightly narrower width are welded, and stiffeners 33 arranged on both sides of the center of the web plate 31 are provided. The connecting body 30 is completed by welding to the web plate 31 and the flange plates 32a and 32cd.
  As shown in FIG. 4, the pair of braces 36, 36 have the same configuration, and a steel flange 36a on the upper and lower sides of a steel web 36b extending in an oblique direction.136a2It is manufactured by welding. The lower part of the web 36b of the braces 36, 36 is wide, and the lower part of the braces 36, 36 is the rectangular frame 20.Bottom cornerThe upper ends of the braces 36, 36 are welded to the lower surface of the flange plate 32a of the coupling body 30.
[0014]
  As shown in FIG. 4, the main body of the pair of braces 37, 37 has the same configuration, and is entirely made of extremely low yield point steel. The upper side and the lower side of a plate-like web 37b extending in an oblique direction are flanges 37a.137a2It is manufactured by welding.
  Examples of the ultra low yield point steel include C of 0.02% or less, Si of 0.02% or less, Mn of 0.20% or less, P of 0.030% or less, and S of 0.015% or less. Steel with a yield point or 0.2% yield strength of 70-120 N / mm2, Tensile strength is 200-280 N / mm2In addition, a material having an extension of 50% or more [for example, RIVER FLEX100 (RF100) manufactured by Kawasaki Steel Corporation] is used.
  As shown in FIGS. 4 and 5, the main body of the braces 37, 37 that bear the axial force is covered with a tubular body 38 having a rectangular cross section made of steel with a small gap c on the outside. Is fastened to the brace 37 at least at one place, for example, with a bolt 39 penetrating the web 37b of the brace 37 and the like. Collars 38 a are formed at both ends of the tubular body 38.
  As shown in FIG. 5, the lower ends of the braces 37 are welded to the upper inclined surface of the flange-shaped flange plate 32 cd of the coupling body 30. The web 36b of the braces 37, 37 is wide at the top, and the top of the braces 37, 37 isUpper cornerThe vibration control frame 10A is completed.
  In addition, as steel used for manufacture of said rectangular frame 20, the coupling body 30, the brace 36, and the pipe body 38, general rolled steel materials for welded structures (for example, JIS G 3106) and general rolled steel materials (SS400) are used. This steel material has a yield point or yield strength of 230 to 350 N / mm.2, Tensile strength is 400-600N / mm2Degree.
[0015]
In the seismic control frame 10A shown in FIG. 4, the center 30c of the connecting body 30 that is the intersection of the two pairs of braces 36, 36, 37, and 37 is offset above the center 20c of the rectangular frame 20, and The pair of braces 37 on the upper side where the distance between the intersection and the transverse member is narrow is made of extremely low yield point steel, and the distance between the intersection of the brace and the transverse member is wide. It is shorter than the pair of braces 36, 36 on the lower side. In the seismic control frame 10A shown in FIG. 4, the entire pair of braces 37, 37 are made of extremely low yield point steel. The part of the central part excluding the upper part and the lower part of the brace is made of extremely low yield point steel, and the upper part and the lower part are made of general rolled steel for welded structure or structural rolled steel. Good.
[0016]
The pair of braces 36, 36 of the seismic control frame 10A are made of a steel material having a high yield point, which is normally used for the building construction described above, and has sufficient rigidity and strength. , 36 (the center of the connecting body 30) is small in horizontal movement. On the other hand, the pair of braces 37, 37 of the vibration control frame 10A are made of low yield point steel and have a low yield point and a low yield strength, so that they are easily deformed. Also, since the pair of braces 37, 37 have a small inclination angle with respect to the horizontal plane, the component of the horizontal force brace 37 acting on the vibration control frame 10A during an earthquake (ie, the axial force) increases, and during an earthquake. The rigidity of the brace 37 is also increased. In addition, since the length of the brace 37 is shorter than that of the brace 36, the amount of deformation of the brace 37 is increased, and the vibration control frame 10A can be expected to absorb the history of earthquake energy from the small deformation at the time of the earthquake, and the vibration control effect is achieved. large.
[0017]
As shown in FIGS. 4 and 20, a steel mounting piece 25 is fixed to the lower surface of the center of the upper beam 22 of the rectangular frame 20 of the vibration control frame 10 </ b> A by welding, and the steel is connected to the center of the upper surface of the coupling body 30. The made mounting piece 35 is fixed by welding, and the upper part of the bundle member 41 having a substantially H-shaped cross section is fixed to the attachment piece 25 with bolts and nuts, and the lower part of the bundle member 41 is made with bolts and nuts Fix to the mounting piece 35.
A gusset G in which a holding plate 42 is fixed to the lower side of the floor 4 of the existing building 1 with planting bolts and nuts bn, and one end of the holding plate 42 is fixed to the beam 3 on the upper side of the bundle 41 by welding.1A gusset G in which the lower part of the steel out-of-plane buckling prevention body 40 fixed with bolts and nuts is fixed to the beam 3 side of the part slightly below the center of the bundle 41 by welding.2The gusset G is secured to the beam 3 side portion of the holding plate 42 by welding with the bolt and nut fixed toThreeSecure with bolts and nuts. If it does so, it will become difficult to displace the connection body 30 grade | etc., To the direction orthogonal to the surface containing the rectangular frame 20, and the movement to the out-plane of the intersection of the braces 36 and 37 at the time of an earthquake can be prevented now.
It should be noted that ribs 36 and 37 where the large stress is likely to act are reinforced by providing ribs as necessary. For example, as shown in FIG. 8, ribs Rb are arranged on both sides of the webs 36b, 37b of the bent portions of the braces 36, 37, and the ribs Rb are welded to the web and the flange.
[0018]
  When the seismic control frame 10A is connected in the vertical direction to form a seismic control vertical megaframe, it is necessary to divide the seismic control frame 10A so that it can be easily connected. For example, as shown in FIG. 9, a structure in which the pillars 23 and 24 and the braces 36 and 36 are divided at 1/3 to ¼ of the rectangular frame 20 is used as the first divided frame 10A.1To produce as.
  In addition, as shown in FIGS.1Steel reinforcing portions 21A and 21B having an H-shaped cross section are welded to a portion corresponding to the lower end of the column 24 of the beam 21 of the rectangular frame 20 of the rectangular frame 20 so as to divide the frame 10A.1The rectangular frame 20 can be firmly fixed to the additional reinforcing beam 2F3 added to the existing building.
  Also,As shown in FIG.From the seismic control frame 10A to the above divided frame 10A1The lower divided pillars 23A and 24A corresponding to the lower divided parts of the pillars 23 and 24 are welded to the upper side of both ends of the upper beam 22, and the braces 36 and 36 are divided. The lower divided braces 36A and 36A corresponding to the lower part are welded at the upper ends of both ends of the upper beam 22 and inside the lower ends of the welded lower divided pillars 23A and 24A, so that the second divided frame 10A.2Is produced.
[0019]
Furthermore, as shown in FIG.2From which the lower divided pillars 23A and 24A, the lower divided braces 36A and 36A and the upper beam 22 are removed (that is, the divided upper upper divided pillars 23B and 24B and braces 37 and 37, the connecting body 30 and the upper divided parts). The upper end of the brace 36B, 36B) is welded to the lower surface of the hat beam 60 to provide a third divided frame 10A.ThreeIs produced.
As shown in FIG. 10, FIG. 11 and FIG. 18, the hat beam 60 is an upper and lower steel long plate slightly wider than the flanges of the columns 23 and 24 of the vibration control frame 10A. Body 60a1, 60a2A long steel plate 60b on the left and right sides of about half the floor height of an existing building.1, 60b2The plate 60b1, 60b2The upper and lower ends of the plate 60a1, 60a2This is a box-type beam having a rectangular cross section welded to the substrate. As the hat beam 60, a beam other than the box-type beam can be used.
In the hat beam 60, the 9th floor made of steel with an H-shaped cross section is provided below the portion corresponding to the pillar 2 of the existing building 1 between the seismic control vertical megaframes at both ends and the central portion of the hat beam 60. The upper end 61c of the bundle member 61 having the same length as the floor height dimension is fixed by welding. Then, the divided frame 10A at the top of each seismic control vertical megaframe of the hat beam 60ThreeThe portions corresponding to the upper divided pillars 23B and 24B and the portion corresponding to the bundle member 61 are reinforced by the stiffener 60c.
In this embodiment, the seismic control vertical megaframes 50A and 50B are combined into one first divided seismic control frame 10A.1And 8 second divided seismic frames 10A2And one third divided seismic control frame 10AThreeAnd connected in a vertical direction.
[0020]
Each divided seismic control frame 10A1, 10A2, 10AThreeAs shown in FIG. 10, a plurality of bolt holes are formed in the webs 23b, 24b at the ends of the columns 23, 24 to be connected, and the ends of the braces 36, 36 to be connected are formed. A plurality of bolt holes are formed in the web 36b of the portion, and the splicing plate Sp as shown in FIG. 24 and the braces 36 and 36 are to be joined to the web to be joined, bolts are inserted into the bolt holes of the splice plate Sp, pillars 23 and 24 and the braces 36 and 36, and nuts are screwed into the threaded portions of the bolts. The spliced plate is joined, and then the parts to be joined are joined together by butt welding.
[0021]
A method of forming the vibration control vertical megaframes 50A and 50B and a method of joining the vibration control vertical megaframe to the existing building 1 will be described.
First divided frame 10A1Is suspended from the temporary opening 4a of the floor 4 on the roof floor of the existing building 1 and placed on the floor 4 on the second floor of the existing building 1 below the opening 4a through the temporary opening 4a of the floor 4 of each floor. To do.
As shown in FIGS. 12 to 14, an additional reinforcing beam 2F3 is provided on the lower side of the floor 4, and the first divided frame 10A is provided.1The additional reinforcement beam 2F3 corresponding to the bolt holes of the beams 21 of the rectangular frame 20 and the reinforcements 21A and 21B thereof, and the floor 4 on the upper side thereof are provided with bolt holes. Bolts B made of PC steel rods in the bolt holes of the flanges of the portions 21A and 21B, the reinforcing beam 2F3 and the bolt holes of the floor 4 respectively.1Through the bolt B1Apply tension to both ends of the bolt B1Nut N1Is screwed into the first divided frame 10A1Are fixed to the floor 4 and the extension reinforcing beam 2F3 provided integrally with the existing building.
In addition, the bottom seismic control frame 10A1The lower flange 21a of the beam 21 of the rectangular frame 202Is fixed to the floor 4. For example, as shown in FIG.2A number of bolts B planted at intervals on the floor 42, The flange 21a2Each bolt B is passed through the bolt hole drilled in2Nut N2Screw in and fix.
[0022]
Second divided frame 10A1Is lifted by a crane and installed on the second floor of the existing building 1 from the opening 4a of the floor 4 of the existing building 1 through the opening 4a of the floor 4 of each floor.1The first divided frame 10A1The upper ends of the divided pillars 23A, 24A and the divided braces 36A, and the second divided frame 10A.2The lower ends of the upper divided pillars 23B and 24B and the lower ends of the upper divided braces 36B and 36B are joined together. Similarly, from the roof floor of the existing building 1 through the opening 4a of the floor 4 of each floor, the second divided frame 10A.2Divided frame 10A on the second to third floors of the existing building 12Positioned above, the lower divided seismic frame 10A2The upper divided pillars 23A, 24A and the lower divided brace 36A, and the upper divided seismic control frame 10A2The upper divided pillars 23B, 24B and the lower ends of the upper divided braces 36B are joined to the attached plate.
In the same manner, five second divided seismic frames 10A are further upward.2Will be located on the 9th floor. Next, the third divided frame 10AThreeIs lifted with a crane, and the third divided frame 10AThreeThe braces 37, 37, the connecting body 30, the upper divided braces 36B, 36B and the upper divided pillars 23B, 24B are inserted into the ninth floor from the opening 4a of the floor 4 on the roof floor, and the second divided frame 10A located at the top.2The upper ends of the lower divided pillars 23A, 24A and the lower divided brace 36A, and the divided frame 10AThreeThe upper divided pillars 23B and 24B and the lower ends of the upper divided braces 36B and 36B are joined together.
Each portion where the splicing plate is joined is joined integrally by butt welding sequentially after splicing the splicing plate.
[0023]
Split frame 10AThreeIs the uppermost divided frame 10A in a state where the hat beam 60 is not joined.2The lower divided pillars 23A and 24A are joined to the upper ends of the upper divided pillars 23B and 24B, and the uppermost divided frame 10A is joined.2A lower plate of upper divided braces 36B and 36B to which braces 37 and 37 are coupled via a connecting body 30 is spliced to the upper end of lower divided brace 36A, and then upper divided pillars 23B and 24B and braces 37, The upper end of 37 is the lower plate body 60a of the hat beam 60.2The upper end of the bundle member 41 joined to the lower surface of the steel plate by welding and connected to the lower portion of the out-of-plane buckling prevention body 40 is connected to the plate 60a.2The uppermost seismic control frame 10A may be configured.
Each of the vibration control frames 10A provided in the vertical direction of the vertical vibration control megaframes 50A and 50A is such that the upper beam of the rectangular frame 20 of the lower vibration control frame 10A is the rectangular frame of the upper vibration control frame 10A. 20 is a lower beam.
[0024]
Next, how to attach the rectangular frame 20 of each seismic control frame 10A to an existing building will be described.
The lower flange 21a of the beams 21 and 22 of the rectangular frame 20 of each vibration control frame 10A2, 22a2And the lower plate 60a of the hat beam 602Is fixed to the RC floor 4 of the existing building underneath, for example, as shown in FIG. 14, FIG. 15 and FIG.2, 22a2And plate 60a2Stud with a large diameter part at the tip on the lower surface (referred to as stud with head) Sd1Are installed by welding with a large number of intervals, and each stud Sd1Is located in the opening 4a of the floor 4 in which the rectangular frame 20 is inserted, and a plurality of reinforcing bars Rh which are fixed with an adhesive by inserting one end into a horizontal hole drilled in a concrete portion around the opening 4a.1Are arranged in a lattice pattern along the surface in the opening 4a of the floor, and then concrete is put into the opening 4a to fix each rectangular frame 20 to the floor 4 of the existing building 1.
[0025]
When fixing to the inner side surface of the RC outer wall 5 of the existing building facing the webs 23b, 24b of the pillars 23, 24 of the rectangular frame 20 of each vibration control frame 10A, for example, as shown in FIG. On the surface of the web 23b, 24b on the outer wall 5 side, a plurality of studs Sd with heads2Are installed by welding at intervals, protruded from the inner surface of the outer wall 5 facing each of the webs 23b, 24b, and the base end thereof is inserted into a hole drilled in the concrete portion of the wall 5 and bonded. Studs Sd with many heads on the outer wall 5ThreeA plurality of reinforcing bars Rv extending in the vertical direction of the outer wall 5 with a gap in the gap between the webs 23b, 24b and the wall 52And each rebar Rv2Hoop-shaped rebar Rh with a space in the vertical direction around the circumference2Then, concrete is post-placed in the gap, and the columns 23 and 24 of the rectangular frame 20 are fixed to the wall 5 of the existing building 1.
[0026]
The flanges 23a, 24a of the pillars 23, 24 of the rectangular frame 20 of each vibration control frame 10A are solidified on the RC outer wall 5A of the existing building facing this, and the webs 23b, 24b of the pillars 23, 24 of the rectangular frame 20 are When fixing to the SRC column 2 of the existing building 1 facing this, for example, as shown in FIG. 17, a plurality of studs with heads Sd on the outer wall 5A side of the flanges 23a, 24a.FourAre installed by welding at intervals, and a plurality of studs Sd with heads are formed on the surface of the web 23b, 24b on the pillar 2 side.FiveAre installed by welding at intervals, and protruded from the inner surface of the outer wall 5A facing the flanges 23a, 24a, and the base end thereof is inserted into a hole drilled in the concrete portion of the wall 5A and bonded. A number of studs with heads Sd fixed to the outer wall 5A6And the stud Sd is formed on the surface of the rectangular frame 20 of the column 2 on the columns 23 and 24 side.6Stud Sd with many heads in the same way as7Are planted at intervals. A plurality of reinforcing bars Rv extending in the vertical direction of the outer wall 5A in a gap between the flanges 23a, 24a and the inner surface of the wall 5A facing the flanges 23a, 24a.Three, Each rebar RvThreeHoop-shaped rebar Rh with a vertical spacing aroundThreeA plurality of reinforcing bars Rv extending in the vertical direction in parallel to the pillars 2 and the outer wall 5A in the gaps between the webs 23b, 24b and the pillars 2 of the existing building 1FourAre arranged at intervals, and each rebar RvFourHoop-shaped rebar Rh with a vertical spacing aroundFourThe two reinforcing bars Rv are spaced in the longitudinal direction of the webs 23b and 24b in a space surrounded by the webs 23b and 24b of the pillars 23 and 24 and the flanges 23a and 24a.FiveThe two rebars RvFiveReinforcing bar Rh bent in U shape on the outsideFive, Each rebar Rh bent into a U shapeFiveThe part from the free end of the hoop-shaped rebar RhFourReinforcing bars Rh crossed in a plan view and bent in a U shapeFiveAre disposed in the gap between the webs 23b and 24b of the columns 23 and 24 and the column 2 and between the flanges 23a and 24a and the outer wall 5A. Concrete is post-placed to fix the rectangular frame 20 to the pillars 23 and 24 to the wall 5A and the pillar 2 of the existing building.
It should be noted that the work of adhering the beams 21 and 22 of the rectangular frame 20 of the damping frame 10A to the RC floor 4 of the existing building by concrete and the RC of the pillars 23 and 24 of the rectangular frame 20 and the existing building The work of adhering concrete to the outer walls 5 and 5A and the SRC pillars 2 is performed by dividing each frame 10A sequentially assembled from below.1, 10A2, 10AThreeThese are sequentially performed after the main joining by butt welding.
[0027]
When fixing the bundle material 61 of the H-shaped cross section of the hat beam 60 to the SRC column 2 of the existing building, for example, as shown in FIG. 19, the bundle material is placed on the floor 4 on the roof floor corresponding to the bundle material 61. An opening for inserting 61 is provided, and the bundle material 61 is inserted through the opening, and the lower end 61d of the bundle material 61 is fixed to the floor on the ninth floor as shown in FIG.
As shown in FIG. 19, a plurality of studs Sd with heads are formed on the portion of the web 61b of the bundle member 61 having an H-shaped cross section facing the pillar 2 and the RC outer wall 5.8Are installed by welding at intervals, protruding from the inner surface of the outer wall 5 facing each web 61b toward the web 61b side, and the base end is drilled in the concrete portion of the wall 5. A large number of studs Sd with heads on the outer wall 5 are inserted into the holes and fixed with an adhesive.ThreeA plurality of (for example, four) reinforcing bars Rv extending in the vertical direction of the outer wall 5 in the gap between the web 61b and the wall 56And each rebar Rv6Hoop-shaped rebar Rh with a vertical spacing around6Arrange many bars. Further, both ends of the bundle material 61 facing the web 61b of the bundle 61 are inserted into holes formed in the concrete portion of the pillar 2 and fixed with an adhesive, and a large number of the pillars 2 are attached. Reinforcing bar Rh bent in U-shape7Are arranged at intervals in the vertical direction of the pillar 2, and a plurality of U-shaped reinforcing bars Rh in the gap between the web 61 b and the pillar 2.7A plurality of (for example, six) reinforcing bars Rv parallel to the pillar 2 by being brought close to this inside7Arrange the bars. Further, the two reinforcing bars Rv are spaced in the longitudinal direction of the web 61b in a space surrounded by the web 61b of the bundle 61 and the pair of flanges 61a.8The two rebars Rv8Reinforcing bar Rh bent in U shape on the outside8Multiply these rebars Rh8, The part from the free end of the U-shaped rebar Rh7And in a plan view, the bars 2 and the bundle member 61 are arranged with an interval in the vertical direction. Then, concrete is post-placed in the gaps between the bundle member 61 and the outer wall 5 and between the bundle member 61 and the column 2 to fix the bundle member 61 to the column 2 and the outer wall 5 of the existing building.
[0028]
When the reinforcement frame is made into a gate shape with normal seismic reinforcement, the reinforcement strength of each floor of the seismic solid vertical frame is increased as in the prior art (1) seismic reinforcement structure, and the resulting seismic solid at both ends. In order to constrain excessive bending deformation of the vertical frame, it was necessary to provide a three-dimensional truss-type horizontal mega-couple having a thickness of about one floor height at the top of the existing building. However, as in the embodiment, the gate-type seismic control megaframe 100 formed by connecting the upper portions of the seismic control vertical megaframes 50A and 50B at both ends with the hat beam 60 is constructed on the inner side of the outer wall of the existing building. When reinforced, the brace 37 made of extremely low yield point steel provided in the rectangular frame 20 of the vibration control frame 10A constituting each floor of the vibration control vertical megaframes 50A and 50B is plastically deformed (yield) at an early stage, thereby suppressing the vibration. The reinforcement strength of each floor of the seismic vertical megaframe does not increase as in the case of the above-mentioned seismic reinforcement, and the bending deformation of the seismic vertical megaframe at both ends does not increase as in the case of the above-mentioned seismic reinforcement. The top restraint of the vertical vibration control megaframe can be covered by a hat beam 60 having a certain degree of rigidity (for example, a box-type beam having a height of about one half of the floor height).
In addition, the hat beam 60 fixes the bundle member 61 provided thereto to the pillar 2 and the outer wall 5 on the ninth floor of the existing building 1 in the middle between the vertical vibration control megaframes 50A and 50B and the central portion of the hat beam 60. In addition, since the hat beam 60 of the gate-type seismic control megaframe 100 is firmly integrated into the existing building 1, the top portion of the seismic vertical megaframe is reliably restrained without using an excessively rigid hat beam 60. be able to.
[0029]
In the case of the above embodiment, as shown in FIG. 2, there is a considerable gap between the outer wall 5 on the short side of the ground floor of the existing building 1 and the pillar 2 near the outer wall 5 on the short side. The floor 4 of each floor is formed in the gap, but the pillar close to the outer wall on the short side in contact with the outer wall 5 on the short side of the ground floor of the existing building 1 as shown in FIG. In a building provided with 2, it is possible to provide an elongated, substantially rectangular temporary opening at a portion of the floor 4 that is close to both ends in the short side direction, and to provide the vertical vibration control megaframes 50 </ b> A and 50 </ b> B in the temporary opening. Can not.
When the existing building 1 having the structure shown in FIG. 21 is seismically reinforced, it is necessary to provide the seismic vertical megaframes 50A and 50B on the outside of the outer wall 4 of the existing building in close proximity thereto.
Therefore, columns and beams are added to the outside of the outer walls of the short sides A to B and D to E of the basement floor of the existing building 1 for reinforcement. Reinforce the foundation at the bottom of the column as needed. A column 1F2e is added to the outer wall 5 and the column 2 on the outside of the outer wall of the short side direction B and D of the first floor of the existing building 1, and the short side direction portion A of the first floor of the existing building 1 is A column 1F2Ae is added to the outside of the outer wall 5 of the E integrally with the outer wall 5 and the column 2, and an additional beam 2F3Ae connecting the upper ends of the columns 1F2Ae and 1F2e of the added portions A, B and D, E is added. The extension beam 2F3Ae and the outer wall 5 and the beam of the existing building 1 are integrated. An inter-column 1F2Be is added between the column 1F2Ae and the column 1F2e. If necessary, for example, an RC earthquake-resistant wall is added in the short side direction in a space surrounded by the inter-column space 1F2Be, the column 1F2Ae, and the additional beam 2F3Ae.
[0030]
  Then, on the upper side of the extension beam 2F3Ae, the seismic control vertical megaframes 50A and 50B are constructed close to the outer wall 4 of the existing building 1, and each rectangular frame of each seismic control frame 10A of the seismic control vertical megaframes 50A and 50B. The 20 columns 23 and 24 are joined to the outer wall 4 and the column 2 of the existing building 1, and the beams 21 and 22 of each rectangular frame 20 are joined to the outer wall 4 and the beam of the existing building 1. The hat beam 60 corresponding to the upper ends of the vibration control vertical megaframes 50A and 50B is joined to the outer wall 4 and the beam on the roof floor of the existing building 1.
  Further, the bundle material 61 provided with the hat beam 60 is joined to the outer wall 5 and the pillar 2 on the 9th floor of the existing building 1 corresponding thereto.
  When the existing building 1 is an RC structure or an SRC structure, the mounting method (described in [0024] to [0027]) is used as a mounting method for mounting the vertical vibration control megaframes 50A and 50B and the hat beam 60 to the existing building 1. Use a similar mounting method.
  When the existing building 1 is an S structure, between the pillars 23 and 24 of each rectangular frame 20 of the seismic control frame 10A of the seismic control vertical megaframes 50A and 50B and the S structure pillar 2 of the existing building 1, and A number of steel connecting members are arranged between the beams 21 and 22 of each rectangular frame 20 and the S-shaped beam 3 of the existing building 1, and one end of each connecting member is connected to the column 23 of each rectangular frame 20. 24 and beams 21 and 22 are joined by welding, and the other end of each connecting member is joined to S column 2 and beam 3 of existing building 1 by welding, and seismic vertical megaframes 50A and 50B are existing. It is joined to the S structure of building 1.However, the vibration damping structure of the existing building 1 shown in FIG. 21 has a drawback that the appearance of the existing building 1 changes and additional construction to the existing building 1 increases.
[0031]
  It becomes a component part of the vertical seismic control megaframe 100As shown in FIG. 22 and FIG.The configuration of another seismic control frame 10B will be described.
  The rectangular frame 70 of the vibration control frame 10B includes steel H-shaped cross-section beams 71 and 72 constituting a pair of horizontal members and steel H-shaped cross-section columns 73 and 74 constituting a pair of vertical members. Is used to manufacture the rectangular frame 20 of the seismic control frame 10A.
  The rectangular frame 20 has steel stiffeners 71c at the necessary portions of the beams 71 and 72 and the columns 73 and 74.1~ 71c472c1~ 72c573c174c1Etc. to be reinforced.
  In addition, as the beams 71 and 72 and the columns 73 and 74, for example, those made of a steel material having an H-shaped cross section having the same flange width and the same width are used.
[0032]
The seismic control frame 10B is obtained by inverting a pair of braces 75, 75 in which a portion of a predetermined length in the center of the member is made of extremely low yield point steel and the other portion is made of normal steel in a rectangular frame 70. It is arranged in a letter shape, and the lower part of each brace 75 is fixed to the lower corner part 70a of the opening, and the upper part of each brace 75 is fixed to the transverse member on the upper side of the opening substantially below the center. As shown in FIG. 22, the pair of braces 75 and 75 have the same configuration and are configured by an upper portion 75A, an intermediate portion 75B, and a lower portion 75C.
The upper portion 75A and the lower portion 75C are a tubular body 75A having a square cross section made of ordinary steel.1, 75C1A quadrilateral tubular body 75A1, 75C1A V-shaped tip portion 75A having both ends of one end thereof cut at a plane inclined with respect to the longitudinal direction and the tip at a right angle2, 75C2And a quadrangular tubular body 75A.1, 75C1The other end of the flange 75AThree, 75CThreeIs provided.
[0033]
The intermediate portion 75B is a tubular body 75B having a quadrangular cross section made of extremely low yield point steel.1Made of steel, tube body 75B of ultra-low yield point steel1Flange 75B at both ends2, 75BThreeIs provided. Tube part 75B of intermediate part 75B1A stiffener 75D having an H-shaped cross section made of normal steel slightly longer than the intermediate portion 75B is inserted into the tube 75B of the intermediate portion 75B.1And the stiffener 75D are fastened to the brace 37 at least at one place by, for example, a bolt 75E penetrating the web of the H-shaped stiffener 75D.
Incidentally, a stiffener 75D and a tubular body 75A having an H-shaped cross section.1, 75B1, 75C1The size of the stiffener 75D is determined so that a small gap is formed between the two.
Each brace 75 has a flange 75A on the upper portion 75A.ThreeAnd flange 75B of intermediate part 75B2Are fixed with bolts and nuts, and flange 75B of intermediate portion 75BThreeAnd flange 75C of lower part 75CThreeAre fixed with bolts and nuts.
[0034]
A pair of braces 75 are arranged in an inverted V shape (C shape) in the rectangular frame 70, and a V-shaped tip portion 75C of the lower portion 75C of each brace 75 is provided.2Are welded to the lower corner portion 70a of the opening, and the V-shaped tip portion 75A of the upper portion 75A of each brace 75 is welded.2The flange 72a at the substantially center of the beam 72 above the opening2Welded to the lower surface of each brace and V-shaped tip 75A of each brace 752The inclined sides of the brace 75 are welded to each other, and the upper portion 75A of the brace 75 has a V-shaped tip 75A.2And flange 72a2In the vicinity of the welded portion, a V-shaped tip 75A2And V-shaped tip 75A2V-shaped tip portion 75C of the portion near the welded portion and the lower portion 75C of the brace 752And the portion near the welded portion between the beam 71 and the flanges of the columns 73 and 74 are rib Rb1~ RbFourReinforce with.
[0035]
When the seismic control frame 10B is connected in the vertical direction to form the seismic control vertical megaframes 50A and 50B, when the seismic control frame 10B needs to be divided at a portion where it is easy to connect, for example, To do.
The pillars 73 and 74 are cut at 1/3 to 1/4 of the rectangular frame 70, and the flange 75C is cut.ThreeThe flange 75BThreeThe structure divided apart from the first divided frame 10B1And
Also, from the seismic control frame 10B to the divided frame 10B1The split columns 73A and 74A corresponding to the vertical dimension of the divided lower portion of the columns 73 and 74 are welded to the upper side of both ends of the upper beam 72, and the brace 75 V-shaped tip 75C of lower part 75C2Is welded to the upper side of both ends of the upper beam 72 and the inner side of the lower part of the divided pillars 73A and 74A, the second divided frame 10A.2And
Furthermore, the second divided seismic control frame 10B2V-shaped tip portion 75A of the upper portion 75A connected to the upper ends of the remaining columns 73B and 74B and the intermediate portion 75B of the brace 75 except for the split columns 73A and 74A, the lower portion 75C of the brace 75 and the upper beam 72.2Is welded to the lower surface of the hat beam 60 to form the third divided frame 10B.ThreeAnd
When divided as described above, one seismic control vertical megaframe 50A, 50B is converted into one first divided frame 10B.1And eight second divided frames 10B2And one third divided frame 10BThreeCan be constructed by linking them in the vertical direction.
.
[0036]
  It becomes a component part of the vertical seismic control megaframe 100As shown in FIG.The configuration of another seismic control frame 10C will be described.
  The configuration of the rectangular frame 80 of the vibration control frame 10C is the same as the rectangular frame 70 of the vibration control frame 10B.
  In the rectangular frame 80, a pair of braces 85, 85 made of normal steel having an H-shaped cross section are arranged in an inverted V-shape (that is, a C-shape), and the lower portion of each brace 85 is formed as an opening. Adhering to the lower corner portion 80a, the lower flange 82a of the upper beam 82 is formed on the upper portion of each brace 85.2Are formed of normal steel disposed in the opening in parallel with each other and welded to the flat plate 86 to be connected to each other.
  The honeycomb damper 87 is manufactured by processing extremely low yield point steel into a honeycomb type panel. Lower flange 82a of upper beam 822And the flat plate 86, a honeycomb damper 87 is disposed, and the upper mounting plate 87a of the honeycomb damper 87 is connected to the lower flange 82a of the central portion of the upper beam 82.2And the lower mounting plate 87b is fixed to the upper side surface of the flat plate 86 to complete the vibration control frame 10C.
  The welded portion between the upper portion of the pair of braces 85, 85 and the flat plate 86, the lower portion of the brace 85 and the portion in the vicinity of the joint portion between the pillars 83, 84 and the beam 81 are provided in the rib Rb.1~ Rb4Reinforce with welding.
[0037]
When the seismic control frame 10C is connected in the vertical direction to form the seismic control vertical megaframes 50A and 50B, the seismic control frame 10C needs to be divided at a portion where it is easy to connect, for example, as follows. .
The pillars 83 and 84 and the braces 85 and 85 are cut at 1/3 to ¼ of the rectangular frame 80, and the lower one is the first divided frame 10C.1And
Also, from the seismic control frame 10C to the divided frame 10C1The divided pillars 83A and 84A corresponding to the vertical dimension of the divided lower part of the pillars 83 and 84 are welded to the upper side of both ends of the upper beam 82, and the braces 85 and 85 are removed. The second divided frame 10C is manufactured by welding the divided braces 85A and 85A corresponding to the vertical dimension of the divided lower portion of the upper beam 82 to the corners 80a at both ends of the upper beam 82.2And Furthermore, divided frame 10C2The remaining pillars 83B and 84B excluding the pillars 83A and 84A, the braces 85A and 85A, and the beam 82, the upper part 85B of the brace 85, the flat plate 86, and the honeycomb damper 87 are the plate 61a below the hat beam 60.2What was manufactured by welding to the lower surface of the third divided frame 10CThreeAnd
When divided as described above, one seismic control vertical megaframe 50A, 50B is one first divided seismic control frame 10C.1And 8 second divided seismic frames 10C2And one third divided seismic control frame 10CThreeCan be constructed by connecting them in the vertical direction.
[0038]
【The invention's effect】
  The present invention includes the configurations described in the claims of the claims, thereby enabling the following (a) to (G).
(B) The existing building seismic retrofit structure of the invention according to claim 1 is a multi-layer existing building having columns, beams, floors, walls, etc.Inside the outer wallSeismic reinforcement should be strengthenedNeighborhoodportionThe part which approached both ends ofIn addition,RespectivelySaidNeighborhoodParallel to partAssemble the seismic vertical megaframe through the floor andConnect the upper part of a pair of seismic control vertical megaframes with a hat beamIn an existing buildingGate-type seismic control megaframes have been constructed, and each seismic control vertical mega-frame should be reinforced by existing systemsNeighborhoodThe same number of floorsWith a rectangular frameSeismic frameTo reach the rooftopEach of the vibration control frames is formed by connecting the vertical members and the horizontal members in a rectangular shape. The damping member is provided on the rectangular frame so that the seismic force can be absorbed by the deformation of the rectangular frame at the time of earthquake, and the hat beam should be reinforced by damping the existing buildingNeighborhoodPartialrooftopAre connected to the upper end of each seismic control vertical megaframe.The pair of seismic control vertical megaframes and the hat beam of the gate-type seismic control megaframe are arranged so as to constitute one plane.And the bottom end of each seismic control vertical megaframe should be reinforced with seismic control of existing buildingsNeighborhoodFixed to the building frame on the lowermost floor of the part, at least part of the vertical members of the rectangular frame of each seismic control frame is fixed to the pillars and walls extending in the vertical direction of the existing building, and the rectangular shape of each seismic control frame Because at least a part of the transverse members of the frame is fixed to the floor or beam extending in the lateral direction of the existing building,The following effects (1) to (4) are obtained.
(1)With an easy structure, existing buildings can be seismically reinforced with less work and good workability.
(2) NormalThe seismic reinforcement structure of (1) in the column of [Prior Art] described above, when the reinforcement frame is made into a gate shape by the seismic reinforcement of(Hereafter referred to as conventional seismic reinforcement)To increase the reinforcement strength of each floor of the seismic solid vertical frameYoIn order to constrain excessive bending deformation of the seismic solid vertical frames at both ends, a three-dimensional truss-type horizontal mega-couple with a thickness of about one floor is installed at the top of the existing building. Is necessary,A pair of seismic control vertical megaframes are assembled on the inner wall of the existing building near the ends of the side parts to be damped, parallel to the side parts and penetrating through the floor. The upper part of the frame is connected with a hat beam, and a portal-type seismic control megaframe is built in the existing building. Steel seismic members and steel are used as seismic control frames that constitute each floor of each seismic control vertical megaframe. It is formed by connecting the horizontal members of theThe damping member is provided in the rectangular frame so that the damping member can be absorbed in the rectangular frame by the deformation of the rectangular frame during the earthquake.UsingWhen vibration suppression is reinforced,The damping member provided in the rectangular frame at the time of the earthquakeSince the seismic force is absorbed and controlled, the reinforcing strength of each floor of the seismic vertical megaframe isConventionalAs is the case with the seismic reinforcement of steel, the bending deformation of the seismic vertical megaframes at both ends is also accompanied.ConventionalSince the seismic reinforcement does not become large as in the case of seismic reinforcement, the upper restraint of the seismic vertical megaframe can be covered with a hat beam with a certain degree of rigidity, and the existing building can be seismically reinforced with less material.
[0039]
(3) A pair of seismic control vertical megaframes can be reinforced by simply assembling a pair of seismic control vertical megaframes at the ends of the side portions to be reinforced inside the outer wall of the existing building. Therefore, adverse effects on the use of existing buildings during reinforcement work can be reduced.
(4) A pair of seismic control vertical megaframes and a hat beam of the gate-type seismic control megaframe are arranged so as to constitute one composition plane (so as to be located in substantially the same plane). The rigidity of the gate-type seismic control megaframe can be increased, and the processing applied to the mounting part of the gate-type seismic control megaframe of the existing building is reduced. it can.
(B) The seismic reinforcement structure for an existing building of the invention of claim 2 is:With columns, beams, floors, walls, etc.Seismic reinforcement for existing multi-layer buildingsSideouter wallAnd the side portion between the column near the outer wallBoth endsI stopped byEach partParallel to the outer wall and through the floorExtends verticallyLet meSeismic vertical mega frameAssembled,Upper part of each seismic control vertical megaframeTheHat beamIn the existing buildingGate-type seismic control mega frameButBuildEach seismic control vertical megaframe is connected in a vertical direction so that a seismic control frame with rectangular frames equal to the number of floors of the existing building to be seismically reinforced reaches the roof of the side part to be seismically reinforced. Each of the seismic control frames is formed by connecting a steel vertical member and a steel horizontal member in a rectangular shape and arranging the vibration control member in a rectangular frame. The damping member is provided in the rectangular frame so that the seismic force can be absorbed by deformation at the time,Hat beamIsSeismic reinforcement of existing buildings should be strengthenedNeighborhoodOn the rooftop of the partArranged so that both ends are connected to the upper end of each seismic control vertical megaframe, and a pair of seismic control vertical megaframes and the hat beam constitute one plane. The lower end of each seismic control vertical megaframe is fixed to the building frame on the lowermost floor of the side of the existing building that should be reinforced, and at least one of the vertical members of the rectangular frame of each seismic control frame Are fixed to pillars and walls that extend in the vertical direction of the existing building, and the horizontal members of the rectangular frame of each seismic control frame are fixed to the floor of the existing building.Because the aboveEffects of (1) to (4)As well asThe following effect (5) is achieved.
(5) 1Paired anti-seismic vertical megaframeOf the side part between the outer wall of the side part to be seismically reinforced in the existing multi-layer building and the pillar close to the outer wall.Each of the parts close to both endsAssembleBecause it is possible to reinforce seismic control alone, the adverse effects on the use of existing buildings during reinforcement work can be minimized.wear.
[0040]
(CClaim3The seismic reinforcement structure of the existing building is to fix the bundle material below the part between each seismic longitudinal megaframe of the hat beam between the pair of seismic longitudinal megaframes and the center of the hat beam. Since the bundle is fixed to a column or wall extending in the longitudinal direction of the existing building, the above (1)Effect of (5)As well asThe following effect (6) is achieved.
(6) The hat beam of the gate-type seismic control megaframe can be firmly integrated into the existing building, and the top of the seismic vertical megaframe can be reliably restrained without using an excessively rigid hat beam.
(DClaim4The seismic reinforcement structure for existing buildings should be reinforced with a hat beam.NeighborhoodSince it is about half the floor height of the part,Effects of (1) to (6)As well asThe following effect (7) is obtained.
(7) The hat beam is only about half the height of the floor,The existing building can be reinforced with less material.
[0041]
(HoClaim5The existing building's seismic retrofitting structure has two pairs of braces in a rectangular frame consisting of a pair of ordinary steel transverse members and a pair of ordinary steel longitudinal members as a seismic control frame. The lower part of the pair of braces arranged in the upper V shape and the upper part of the pair of braces arranged in the inverted V shape on the lower side are joined together so that the two pairs of braces are substantially X The upper part of the upper pair of braces is connected to the upper corner of the corresponding rectangular frame, and the lower part of the lower pair of braces is connected to the lower corner of the corresponding rectangular frame; The pair of braces at the intersection of the two pairs of braces is offset above or below the center of the rectangular frame, and the pair of the braces on the side where the distance between the cross member is narrower The entire brace or the part of the member in the range of the predetermined length is made of ultra-low yield point steel, and the brace Since using the vibration control Frames is shorter than a pair of braces on the side where the interval is wider between the intersections and the transverse member,In addition to the effects (1) to (7) described above, the following effect (8) is also achieved.
(8) MemberThe whole or part of the range of a predetermined length in the center of the member is made of ultra low yield point steelA pair ofThe brace has a small inclination angle with respect to the horizontal plane, a large axial force acting during an earthquake, and a large rigidity during an earthquake. Can be expected, and the vibration control effect is great.
[0042]
(FClaim6The seismic retrofit structure of the existing building is a predetermined length at the center of the member in a rectangular frame consisting of a pair of ordinary steel transverse members and a pair of ordinary steel longitudinal members as a damping structure. A pair of braces, each of which is made of extremely low yield point steel and the other part is made of normal steel, are arranged in an inverted V shape or V shape, and the lower or upper portion of each brace is the lower corner of the opening. Use a damping frame that is fixed to the upper part or the upper corner, and the upper or lower part of each brace is fixed to the lower side or upper side of the center of the lateral member on the upper side or lower side of the opening.In addition to the effects (1) to (7) described above, the following effect (9) is achieved.
(9)The degree of strain concentration can be adjusted by adjusting the length of the central part made of ultra-low yield point steel, the length of both ends made of normal steel, the rigidity, etc. Due to the deformation of the frame, the central part made of extremely low yield point steel is plastically deformed, and the seismic force can be absorbed efficiently.
(GClaim7The seismic retrofit structure of the existing building is a brace to be installed in the rectangular frame of the seismic control frame. The entire seismic control frame is composed of extremely low yield point steel. The circumference of the central part of the brace made of steel was covered with a stiffener of ordinary steel cylinder with a slight gap between it, or the whole was made of extremely low yield point steel A hollow portion extending in the longitudinal direction is formed inside the brace's easily buckling portion or inside the central portion of the brace made of extremely low yield point steel, and an elongated stiffener is inserted into the hollow portion so as to be movable. Because we use the seismic control frameIn addition to the effects (1) to (7) and (8) or (9) described above, the following effect (10) can be achieved.
(10) By stiffening the portion of the brace made of ultra low yield point steel with a stiffener,The portion of the brace made of extremely low yield point steel does not buckle, and its plastic deformation can efficiently absorb the seismic force.
[Brief description of the drawings]
FIG. 1 is a front view of a portion of an existing building to be seismically reinforced in an embodiment.
FIG. 2 is a plan view of a standard floor (2nd to 9th floors) of an existing building to which seismic reinforcement is applied according to the embodiment.
FIG. 3 is a front view showing the basement, the first and second floors from the inside of the existing building to be seismically reinforced, and the additional part for reinforcement.
FIG. 4 is a front view of a seismic control frame that is a component part of the vertical seismic control megaframe of the embodiment.
FIG. 5 is a front view of the connected structure of the vibration control frame shown in FIG.
6 is a side view of the connector shown in FIG.
7 is a cross-sectional view taken along line AA of the brace made of the ultra-low yield point steel shown in FIG.
FIG. 8 is a cross-sectional view of a reinforcing portion by a rib of a brace of an embodiment
FIG. 9 is a front view showing an example of how to divide the seismic control frame constituting the seismic control vertical megaframe of the embodiment.
FIG. 10 is a front view showing the relationship between the vertical vibration control megaframe and the hat beam of the embodiment.
FIG. 11 is a front view showing the relationship between the gate-type seismic control megaframe of the embodiment and the existing building.
FIG. 12 is a front view of a section taken along the line BB in FIG.
13 is a plan view of the seismic control frame constituting the lower part of the vertical seismic control megaframe of the embodiment taken along the line CC of FIG.
14 is a side view of the seismic control frame constituting the lower part of the seismic control vertical megaframe shown in FIG. 13 taken along the line DD in FIG.
FIG. 15 is a longitudinal sectional view showing the relationship between the upper beam of the seismic control frame of the embodiment and the floor of an existing building, etc.
FIG. 16 is a cross-sectional view showing the relationship between the columns of the seismic control frame of the embodiment and the outer walls of the existing building, etc.
FIG. 17 is a longitudinal sectional view showing the relationship between the outer walls and columns of the existing building of the example and the columns of the seismic control frame.
FIG. 18 is a longitudinal sectional view showing the relationship between the connection between the upper end of the seismic control vertical megaframe of the embodiment and the hat beam and the floor on the roof floor of the existing building
FIG. 19 is a plan view of a cross section taken along the line EE in FIG. 10 of the attachment portion of the hat beam bundle material of the embodiment to the pillar and outer wall on the ninth floor of the existing building.
FIG. 20 is a longitudinal sectional view showing the configuration of the out-of-plane buckling prevention body of the seismic control frame of the embodiment and the relationship with an existing building, etc.
FIG. 21In the case of seismic reinforcement by installing a gate-type seismic control megaframe outside the existing buildingPlan view
FIG. 22 is a front view of another seismic control frame in the embodiment.
23 is a cross-sectional view of the brace shown in FIG. 22 taken along the line FF.
FIG. 24 is a front view of a vibration control frame using the honeycomb damper of the embodiment.
[Explanation of symbols]
1 Existing building
2 pillars
3 beams
4 floors
4a Temporary opening
5,5A outer wall
10A, 10B, 10C Seismic control frame
10A1-10AThree, 10B110B2, 10C110C2 Divided frame
20, 70, 80 rectangular frame
20c Center of the rectangular frame
21, 22, 71, 72 beams
23, 24, 73, 74 pillars
30 linked body
30c Center of connection (brace intersection)
31 Web board
32a to 32e Flange plate
36, 37 braces
38 tubes
40 Anti-buckling body
41 Bundles
50A, 50B Seismic control vertical megaframe
60 Hat Beam
61 Bundles
75,85 braces
86 flat plate
87 Honeycomb damper
100 Gate-type seismic control megaframe
2F3 additional reinforcement beam
2F3Ae extension beam
Wd window

Claims (7)

柱、梁、床、壁等を備えた多層の既存建物の外壁の内側の制震補強すべき部分の両端に寄った部分に、それぞれ前記部分と平行にかつ床を貫通して制震縦メガフレームを組み付け、1対の制震縦メガフレームの上部をハットビームで連結して、既存建物中に門型制震メガフレームが構築され、各制震縦メガレームは既存建物の制震補強すべき部分の階数と同数の矩形枠を備えた制震架構を屋上に達するように縦方向に連ねて一体に結合して形成され、各制震架構は鋼製の縦部材と鋼製の横部材とを矩形状に結合してなる矩形枠内に制震部材を配して前記矩形枠の地震時の変形により地震力を吸収できるように前記制震部材が矩形枠に設けられており、前記ハットビームは既存建物の制震補強すべき部分の屋上に配されて、その両端が各制震縦メガフレームの上端に結合され、前記門型制震メガフレームの1対の制震縦メガフレームとハットビームとが一つの構面を構成するように配置されており、各制震縦メガフレームの下端が既存建物の制震補強すべき部分の最下階の下側の建物躯体に固定され、各制震架構の矩形枠の縦部材の少なくとも一部が既存建物の縦方向に延びる柱や壁に固着され、各制震架構の矩形枠の横部材の少なくとも一部が既存建物の横方向に延びる床や梁に固着されていることを特徴とする既存建物の制震補強構造。Columns, beams, floors, the closer portion to both ends of the inner side portion to be Seismic reinforcement of the outer wall of the multi-layer existing buildings equipped with a wall or the like, parallel to each of said side portions and through the bed Damping assembling the longitudinal megaframe, connecting the top of the seismic control vertical mega frame of a pair hat beam, portal Damping mega frame is constructed in an existing building, the vibration control vertical Megaremu the Seismic reinforcement of existing buildings the vibration control frames with a rank as many rectangular frame should do side portions are formed by bonding integrally lined vertically to reach the roof, each vibration control frames vertical member and the steel made of steel The damping member is provided in the rectangular frame so that the damping member is arranged in a rectangular frame formed by connecting the horizontal member and the rectangular member, and the seismic force can be absorbed by the deformation of the rectangular frame during the earthquake. The hat beam is arranged on the roof of the side part of the existing building that should be damped. Coupled to the upper end of each seismic vertical megaframe, a pair of seismic vertical megaframes and a hat beam of the gate-type seismic megaframe are arranged so as to form a single plane. the lower end of the vertical mega frame is fixed to the bottom floor below the building structures of the side portion to be Seismic reinforcement of existing buildings, longitudinal least some existing buildings longitudinal member of the rectangular frame of the seismic control frames A seismic reinforcement structure for an existing building, characterized in that it is fixed to a pillar or wall that extends to the wall, and at least a part of the lateral member of the rectangular frame of each vibration control frame is fixed to a floor or beam that extends in the lateral direction of the existing building. . 柱、梁、床、壁等を備えた多層の既存建物の制震補強すべき辺部分の外壁と該外壁に近い柱との間の前記辺部分の両端に寄った部分にそれぞれ前記外壁と平行にかつ床を貫通して上下方向に延在させて制震縦メガフレームを組み付け、各制震縦メガフレームの上部ハットビームで連結して、既存建物中に門型制震メガフレームが構築され、各制震縦メガフレームは既存建物の制震補強すべき部分の階数と同数の矩形枠を備えた制震架構を制震補強すべき辺部分の屋上に達するように縦方向に連ねて一体に結合して形成され、各制震架構は鋼製の縦部材と鋼製の横部材とを矩形状に結合してなる矩形枠内に制震部材を配して前記矩形枠の地震時の変形により地震力を吸収できるように前記制震部材が矩形枠に設けられており、上記ハットビームは既存建物の制震補強すべき部分の屋上に配されて、その両端が各制震縦メガフレームの上端に結合され、前記門型制震メガフレームの1対の制震縦メガフレームとハットビームとが一つの構面を構成するように配置されており、各制震縦メガフレームの下端が既存建物の制震補強すべき部分の最下階の下側の建物躯体固定され、各制震架構の矩形枠の縦部材の少なくとも一部が既存建物の縦方向に延びる柱や壁に固着され、各制震架構の矩形枠の横部材既存建物のに固着されていることを特徴とする既存建物の制震補強構造。 Parallel columns, beams, floors, and each of the outer walls at both ends in the closer portion of the edge portion between the outer wall and close to the outer wall pillar side portion to be Seismic reinforcing multilayer existing building comprises a wall or the like to and assembled Seismic vertical mega frame bed through by a vertically extending, the top of each seismic damping vertical megaframe linked hat beam, portal Damping mega frame constructed in an existing building Each seismic control vertical megaframe is connected in a vertical direction so that the seismic frame with the same number of rectangular frames as the number of sides of the existing building to be seismically reinforced reaches the roof of the side to be seismically reinforced. Each of the seismic control frames is formed by connecting a steel vertical member and a steel horizontal member in a rectangular shape and arranging the vibration control member in a rectangular frame. The damping member is provided in a rectangular frame so that the seismic force can be absorbed by deformation of time, and the hat Arm is disposed on the roof side portion to be Seismic reinforcement of existing buildings, both ends are coupled to the upper end of each seismic damping vertical megaframe, seismic damping vertical mega frame of a pair of the gate-shaped Vibration Control megaframes a hat beam and is arranged so as to constitute one Plane, secured to the underside of the building structures lowest floor of the lower end of the side portion to be Seismic reinforcement of existing buildings in each seismic damping vertical megaframes is, at least a portion of the longitudinal member of the rectangular frame of the seismic control frames are secured to longitudinally extending columns and walls of an existing building, the horizontal members of the rectangular frame of the seismic control frames is secured to the floor of an existing building A seismic retrofitting structure for existing buildings. 1対の制震縦メガフレーム間のハットビームの各制震縦メガフレームとハットビームの中央との間の部分の下側に束材が固定され、該束材が既存建物の縦方向に延びる柱や壁に固着されていることを特徴とする請求項1又は2記載の既存建物の制震補強構造。A bundle is fixed to the lower side of the portion between each control vertical megaframe of the hat beam and the center of the hat beam between the pair of vibration control vertical megaframes, and the bundle extends in the vertical direction of the existing building. The seismic reinforcement structure for an existing building according to claim 1 or 2, wherein the structure is fixed to a column or a wall. ハットビームの成が既存建物の制震補強すべき部分の階高寸法の2分の1程度であることを特徴とする請求項3記載の既存建物の制震補強構造。4. The seismic reinforcement structure for an existing building according to claim 3, wherein the formation of the hat beam is about a half of the floor height of the side portion of the existing building to be seismically reinforced. 制震架構として、1対の普通鋼製の横部材と1対の普通鋼製の縦部材とからなる矩形枠内に、2対のブレースが配され、上側のV字状に配された1対のブレースの下部と、下側の逆V字状に配された1対のブレースの上部とが一体に結合されて、2対のブレースが略X字型に結合され、前記上側の対のブレースの上部がそれに対応する矩形枠の上隅部に連結され、前記下側の対のブレースの下部がそれに対応する矩形枠の下隅部に連結され、2対のブレースの交点となる結合部の中心が矩形枠の中心より上方又は下方に偏位しており、ブレースの交点と横部材との間の間隔が狭くなっている側にある1対のブレースは、その全体又はその部材の中央の所定長さの範囲の部分が極低降伏点鋼で構成されていて、ブレースの交点と横部材との間の間隔が広くなっている側にある1対のブレースよりも短くなっている制震架構を使用することを特徴とする請求項1〜にいずれか一つの項記載の既存建物の制震補強構造。As a seismic control frame, two pairs of braces are arranged in a rectangular frame composed of a pair of ordinary steel transverse members and a pair of ordinary steel longitudinal members. The lower part of the pair of braces and the upper part of the pair of braces arranged in a lower inverted V shape are integrally joined together, and the two pairs of braces are joined together in a substantially X shape. The upper portion of the brace is connected to the upper corner portion of the corresponding rectangular frame, and the lower portion of the lower pair of braces is connected to the lower corner portion of the corresponding rectangular frame, and the connecting portion that is the intersection of the two pairs of braces A pair of braces on the side where the center is offset above or below the center of the rectangular frame and the distance between the intersection of the braces and the transverse member is narrow is the whole or the center of the member. The part of the range of the predetermined length is made of extremely low yield point steel, between the intersection of the brace and the transverse member Seismic reinforcing structure of the existing buildings of any one of the preceding claim 1-4, which septum characterized by using a vibration control Frames is shorter than a pair of braces on the side which is wider . 制震架構として、1対の普通鋼製の横部材と1対の普通鋼製の縦部材とからなる矩形枠内に、部材の中央の所定長さの部分が極低降伏点鋼で構成され他の部分が通常鋼で構成されている1対のブレースが逆V字状又はV字状に配され、各ブレースの下部又は上部が開口部の下隅部又は上隅部に固着され、各ブレースの上部又は下部が開口部の上側又は下側の横部材の中央の下側又は上側に固着されている制振架構を使用することを特徴とする請求項1〜にいずれか一つの項記載の既存建物の制震補強構造。As a seismic control frame, a portion of a predetermined length in the center of the member is made of extremely low yield point steel in a rectangular frame consisting of a pair of ordinary steel transverse members and a pair of ordinary steel longitudinal members. A pair of braces whose other parts are usually made of steel are arranged in an inverted V-shape or V-shape, and the lower or upper part of each brace is fixed to the lower or upper corner of the opening. the top or bottom center of the lower or any one of the preceding described the use of damping Frames are secured to the upper to claim 1-4, characterized in the upper or lower side of the transverse member of the opening Seismic reinforcement structure for existing buildings. 制震架構の全体が極低降伏点鋼で構成されたブレースの座屈し易い部分の周囲又は極低降伏点鋼で構成されたブレースの中央部分の周囲がこれとの間に僅かな隙間をあけて普通鋼製の筒状体の補剛材で覆われ、あるいは全体が極低降伏点鋼で構成されたブレースの座屈し易い部分の内部又は極低降伏点鋼で構成されたブレースの中央部分の内部に長手方向に延びる中空部が形成され、前記中空部に移動自在に細長い補剛材が挿入されていることを特徴とする請求項5又は6記載の既存建物の制震補強構造。There is a slight gap between the seismic control frame and the brace that is made of extremely low yield point steel, or the central part of the brace that is made of extremely low yield point steel. The inner part of a brace that is covered with a cylindrical stiffener made of ordinary steel or that is entirely made of ultra-low yield point steel or that is made of ultra-low yield point steel. hollow portion extending in the longitudinal direction are formed on the, vibration control reinforcing structure of the existing building according to claim 5 or 6, characterized in that movable elongated stiffener is inserted into the hollow portion.
JP26100498A 1998-08-31 1998-08-31 Seismic reinforcement structure for existing buildings Expired - Fee Related JP3906351B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26100498A JP3906351B2 (en) 1998-08-31 1998-08-31 Seismic reinforcement structure for existing buildings

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26100498A JP3906351B2 (en) 1998-08-31 1998-08-31 Seismic reinforcement structure for existing buildings

Publications (2)

Publication Number Publication Date
JP2000073584A JP2000073584A (en) 2000-03-07
JP3906351B2 true JP3906351B2 (en) 2007-04-18

Family

ID=17355731

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26100498A Expired - Fee Related JP3906351B2 (en) 1998-08-31 1998-08-31 Seismic reinforcement structure for existing buildings

Country Status (1)

Country Link
JP (1) JP3906351B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4669122B2 (en) * 2000-11-16 2011-04-13 株式会社間組 Seismic retrofit structure built outside the structure
JP6495584B2 (en) * 2014-06-26 2019-04-03 住友ゴム工業株式会社 Vibration control device

Also Published As

Publication number Publication date
JP2000073584A (en) 2000-03-07

Similar Documents

Publication Publication Date Title
JP4721273B2 (en) Seismic reinforcement method for existing buildings with reinforced concrete frame structures
JP2645365B2 (en) Beam-column joint
JP5124146B2 (en) Seismic control building
KR102217178B1 (en) Non-welding beam-to-column connection structure with reinforcing plate and through bolt
JP7116400B2 (en) truss girder
JP3906351B2 (en) Seismic reinforcement structure for existing buildings
JP2010276080A (en) Energy absorbing member and structure in which the energy absorbing member is installed
JP3170535B2 (en) Damping structure
JP3271239B2 (en) Steel shear wall
JP3896562B2 (en) Assembly method of reinforcement frame to existing building
JP3755119B2 (en) Seismic control frame
JPH1161982A (en) Earthquake resistant reinforcing structure of building
JP3766940B2 (en) Seismic reinforcement method for existing buildings
JP3638142B2 (en) Column and beam joining device
JP3842587B2 (en) Reinforcing method and reinforcing structure of reinforced concrete ramen structure
JP2000291289A (en) Joining structure of earthquake resistant member
JP7361561B2 (en) Brace mounting structure, structure and brace mounting method
JP4379732B2 (en) Seismic reinforcement method for buildings
JP2018184711A (en) Steel column-beam frame consisting of steel pipe column and h-shaped steel beam
JP7371824B2 (en) Building load-bearing wall structure and building load-bearing wall construction method
JP7426253B2 (en) truss beam
JP4449891B2 (en) Unit building
JP2021183765A (en) roof
JPS6134404Y2 (en)
JP4107164B2 (en) Damping structure

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060822

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061023

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061219

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061221

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110126

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110126

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120126

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120126

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130126

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140126

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees