JP3896562B2 - Assembly method of reinforcement frame to existing building - Google Patents

Assembly method of reinforcement frame to existing building Download PDF

Info

Publication number
JP3896562B2
JP3896562B2 JP26100598A JP26100598A JP3896562B2 JP 3896562 B2 JP3896562 B2 JP 3896562B2 JP 26100598 A JP26100598 A JP 26100598A JP 26100598 A JP26100598 A JP 26100598A JP 3896562 B2 JP3896562 B2 JP 3896562B2
Authority
JP
Japan
Prior art keywords
frame
reinforcing
existing building
floor
divided
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP26100598A
Other languages
Japanese (ja)
Other versions
JP2000073583A (en
Inventor
康司 夜船
英治 松井
斉 清水
知史 新村
泰夫 東端
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takenaka Corp
Original Assignee
Takenaka Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takenaka Corp filed Critical Takenaka Corp
Priority to JP26100598A priority Critical patent/JP3896562B2/en
Publication of JP2000073583A publication Critical patent/JP2000073583A/en
Application granted granted Critical
Publication of JP3896562B2 publication Critical patent/JP3896562B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
この発明は、既存建物への補強フレームの組付方法、特に、既存建物の補強すべき部分の近傍の部分に既存建物に固着して補強縦フレームを組み付ける既存建物への補強フレームの組付方法に関する。
【0002】
【従来の技術】
従来の既存建物の耐震補強構造には、例えば、
(1)柱、梁、床等を備えた多層の既存建物の外側に、既存建物の両側に接近して対の立体トラス型の耐震立体縦メガフレームが構築され、各耐震立体縦メガフレームの上端間に立体トラス型の横メガ連結体が構築され、各耐震立体縦メガフレームの上端と横メガ連結体とが一体に結合して門型メガストラクチャーが構成され、上記各耐震立体縦メガフレームは、既存建物の外側と間隔をおいて建てられ多数の柱と、既存建物の床の位置に対応させて配された多数の梁と、多数のブレースとからなる純ラーメン構造の立体構造を備えており、前記横メガ連結体は、上下方向に既存建物の階高に略等しい間隔をおいて配した多数の梁と、前記梁間に間隔をおいて配された多数の束材と、多数のブレースとからなる立体トラス型の立体構造を備えており、各床に対応する既存建物の外周囲に鍔状に形成され突条部に対応する各耐震立体縦メガフレームの部分が前記突条部に連結されて、既存建物の両側面及び上面に間隔をおいて構築された門型メガストラクチャーが既存建物に結合されている耐震補強構造(例えば、特開平9−203217号公報参照)、および
(2)柱、梁、床等を備えた多層の既存建物の内側に、既存建物に接近して、複数の矩形枠を上下方向に複数階にわたって連ねて大フレームを設けるとともに、この大フレーム内に長大なブレースを設けてなる大耐震架構を構築し、前記大フレームの各矩形枠が、既存建物の床下又は該床に対応する梁位置に接近して配された横架材と既存建物の柱に沿って配された縦部材とを結合して構成され、各矩形枠の縦部材が既存建物の床にあけた孔に通されて互いに連結され、長大なブレースも既存建物の床にあけた孔に通したブレース部材を連結して組み立てられ、前記矩形枠の横部材が既存建物の床又は梁に固着され、各矩形枠の縦部材が既存建物の柱等に固着されている耐震補強構造(例えば、特開平9−209579号公報参照)がある。
【0003】
【発明が解決しようとする課題】
上記(1)の耐震補強構造は、既存建物の耐震性を高めるために、その門型メガストラクチャーが既存建物の外側に構築され、そのメガストラクチャーの各耐震立体縦メガフレームが、既存建物の外側に間隔をおいて樹立した多数の柱と、既存建物の床の位置に対応させて配された多数の梁と、多数のブレースとからなる純ラーメン構造の立体構造を備えているため、既存建物の周囲に立体構造の耐震立体縦メガフレームを構築するだけの広い敷地がなければ適用できない耐震補強構造である。また、各耐震立体縦メガフレームの上端間を連結する立体トラス状の横メガ連結体もその成が既存建物の階高に相当する大きさになっているため、極めて多くの鋼材を必要とし、既存建物の耐震補強に多くの資材や手間を要する補強構造である。
上記(2)の既存建物の耐震補強構造は、多層の既存建物の内側に、既存建物に接近して、複数の矩形枠を上下方向に複数階にわたって連ねて大フレームを設けるとともに、この大フレーム内に長大なブレースを設けてなる大耐震架構を構築し、前記大フレームの各矩形枠が、既存建物の床下又は該床に対応する梁位置に接近して配された横架材と既存建物の柱に沿って配された縦部材とを結合して構成され、各矩形枠の縦部材が既存建物の床にあけた孔に通されて互いに連結され、長大なブレースも既存建物の床にあけた孔に通したブレース部材を連結して組み立てられ、前記矩形枠の横部材が既存建物の床又は梁に固着され、各矩形枠の縦部材が既存建物の柱等に固着されているため、各階の耐震性能に応じた耐震補強ができない補強構造である。また、各矩形枠の縦部材が既存建物の床にあけた孔に通されて互いに連結されるが、既存建物の屋上階の床には貫通孔が設けられていないから、吊り揚げた縦部材を貫通孔に通して所定位置に配置することがでず、大フレームと長大ブレースとからなる大耐震架構を施工性よく構築することができなし、既存建物を使いながら補強工事を行なうこともできない。
この発明の解決しようとする課題は、従来技術の上記のような欠点を有しない既存建物への補強フレームの組付方法を提供すること、換言すると、補強工事に必要な施工スペースが小さく限定することができ、既存建物の前記施工スペース以外の空間を使用しながら施工することができ、補強工事の施工性がよい既存建物への補強フレームの組付方法を提供することにある。
【0004】
【課題を解決するための手段】
この発明の既存建物への補強フレームの組付方法は、柱、梁、床、壁等を備えた多層の既存建物の補強すべき部分の外壁の内側の前記辺方向の両端に寄った個所に、前記辺部分の補強すべ階数と同数の矩形枠を備えた補強架構を縦方向に連ねて一体に結合してなる補強縦フレームを既存建物に固着して組み付ける既存建物への補強フレームの組付方法において、補強すべき多数の階の最下階より一つ上の階から屋上階に亘る前記補強すべき辺部分の両端に寄った外壁の内側の床の部分に補強縦フレームを通し得る大きさの前記辺方向に細長い仮設開口を設け、前記補強縦フレームを複数に分割してなる分割架構を予め形成しておき、補強縦フレームの最下部に対応する分割架構を吊り上げて前記の各仮設開口を通して前記補強すべき部分の最下階の既存建物下部上に配置し、それを前記建物下部に固着し、前記最下部の分割架構のその上に配置すべき分割架構を吊り上げて前記仮設開口を通して前記最下部の分割架構上に配置し、分割架構同士を接合し、同様のやり方にて複数分割架構を縦方向に連ねて接合して複数の分割架構からなる補強縦フレームを組み付け、前記仮設開口を後打ちコンクリートで埋め、補強縦フレームと既存建物とを結合させることを特徴とするものである。
【0005】
好ましい実施形態においては、多層の既存建物の補強すべき部分外壁の内側の前記辺方向の両端に寄った個所に、それぞれ前記外壁と平行に配される前記辺部分の補強すべき部分の階数と同数の矩形枠を備えた補強架構を縦方向に連ねて一体に結合してな補強縦フレームを既存建物に固着し、1対の補強縦フレームの上端に屋上階の床上に配したハットビームの両方の端部を結合して門型補強フレームとし、該門型補強フレームを既存建物へ組み付ける。前記門型補強フレームの1対の補強縦フレームとそのハットビームとは一つの構面を構成するように配置される。
既存建物内の補強縦フレームの下部に対応する既存建物の下部には、必要に応じて、既存建物と一体に増設補強部を設け、前記既存建物の下部を補強する。
補強縦フレームの最下部に位置させる分割架構の最下部の横部材に複数のボルト孔が設けられ、既存建物下部に前記ボルト孔に対応させて複数のボルト孔が設けられていて、前記下部の上側に補強縦フレームの最下部に位置させる分割架構の下側の横部材を配置し、前記横部材の各ボルト孔及び前記下部の各ボルト孔にそれぞれボルトを通し、ボルトのねじ部にナットをねじ込んで、分割架構の前記横部材を、前記既存建物の下部に固着して、既存建物と一体化させる。
【0006】
既存建物の補強すべき部分の階数と同数の矩形枠を備えた補強架構を縦方向に連ねて一体に結合してなる補強縦フレームを複数に分割してなる分割架構は、その補強架構の矩形枠の縦部材の中間の部分で分割されていて、補強架構の矩形枠の横部材の少なくとも一つを備えているように構成する。そうすると、接合部分が矩形枠の縦部材と横部材との接合部の付近に集中することがなく、また、仮設開口を通して行う既存建物内への配置等が容易になり、施工性がよくなる。
また、既存建物の補強すべき部分の階数と同数の矩形枠を備えた補強架構を縦方向に連ねて一体に結合してなる補強縦フレームを複数に分割してなる分割架構の補強縦フレームの最上部に位置するものの補強架構の矩形枠の上側の横部材を、ハットビームの対応部分で構成すると、部材の数が少なくなり、門型補強フレームを施工性よく構築することができる。
補強縦フレームの構成部分となる矩形枠を備えた補強架構は、その矩形枠の一方の横部材の下側の面と他方の横部材の下側の面との間の間隔が既存建物の補強すべき各階の階高寸法と一致するように製作し、補強縦フレームをその各補強架構の矩形枠の横部材が既存建物の床上又は床下に位置するように組み付け、仮設開口内にコンクリートを後打ちして矩形枠の横部材を既存建物の床に固着する。
好ましい実施形態においては、既存建物に結合された門型補強フレームの1対の補強縦フレーム間のハットビームは、その複数の箇所を既存建物に固着するようにする
【0007】
好ましい実施形態においては、補強縦フレームの補強架構を矩形枠の横部材の下側又は上側に多数のシアコネクター(例えば、頭部付きスタッド)を間隔をおいて接合しておき、補強縦フレームの各補強架構の矩形枠の横部材の下側又は上側にRC造の床の仮設開口がくるように、補強縦フレームを組み付け、仮設開口の周囲のコンクリート部分に穿設した横孔内に一端を挿入して固着した複数本の鉄筋を床の開口内に床面に沿って格子状に配設してから、仮設開口内にコンクリートを後打ちして、各矩形枠の横部材を既存建物の床に固着する。
また、補強縦フレームの補強架構の矩形枠の縦部材のRC造の外壁又はRC造やSRC造の既存建物の柱に面する部分に、多数本のシアコネクター(例えば、頭部付きスタッド)を間隔をおいて溶接にて植設し、縦部材に対面する外壁の内側面又はRC造やSRC造の既存建物の柱の外側面から突出させて、かつその基端を外壁又は柱に穿設した孔に挿入して固着して、外壁又は柱に多数本のシアコネクター(例えば、頭部付きスタッド)を植設し、縦部材と外壁又は柱との間の隙間内に間隔をおいて縦部材の上下方向に延在させる複数本の鉄筋と該鉄筋の周囲に上下方向に間隔をおいて位置させる複数のフープ状の鉄筋を配筋してから、前記隙間内にコンクリートを後打ちして、矩形枠の縦部材を既存建物の外壁又は柱に固着する。
【0008】
縦方向に連ねて一体に結合して補強縦フレームを構成する補強架構としては、鋼製の縦部材と鋼製の横部材とを矩形状に結合してなる矩形枠内に制震部材を配して、前記矩形枠の地震時の変形により地震力を吸収できるように前記制震部材を矩形枠に設けられている制震補強架構を用いると、既存建物を制震補強することができる。
制震補強架構としては、例えば、次ぎの▲1▼〜▲3▼の制震補強架構を用いるが、これらに限定するものではない。
▲1▼ 1対の普通鋼製の横部材と1対の普通鋼製の縦部材とからなる矩形状枠体内に、2対のブレースが配され、上側のV字状に配された1対のブレースの下部と、下側の逆V字状に配された1対のブレースの上部とが一体に結合されて、2対のブレースが略X字型に結合され、前記上側の対のブレースの上部がそれに対応するフレームの上隅部に連結され、前記下側の対のブレースの下部がそれに対応するフレームの下隅部に連結され、2対のブレースの交点となる結合部の中心がフレームの中心より上方又は下方に偏位しており、ブレースの交点と横部材との間の間隔が狭くなっている側にある1対のブレースの全体又は部材の中央の所定長さの範囲の部分が、極低降伏点鋼で構成されていて、ブレースの交点と横部材との間の間隔が広くなっている側にある1対のブレースよりも短くなっている制震補強架構。
▲2▼ 1対の普通鋼製の横部材と1対の普通鋼製の縦部材とからなる矩形状枠体内に、部材の中央の所定長さの部分が極低降伏点鋼で構成され他の部分が通常鋼で構成されている1対のブレースが逆V字状又はV字状に配され、各ブレースの下部又は上部が開口部の下隅部又は上隅部に固着され、各ブレースの上部又は下部が開口部の上側又は下側の横部材に中央の下側又は上側に固着されている制震補強架構。
▲3▼ 1対の普通鋼製の横部材と1対の普通鋼製の縦部材とからなる矩形枠内に、1対の普通鋼製のブレースが逆V字型又はV字型に設けられ、逆V字型に配された1対のブレースの上部に固着した支持体と上側の横部材との間に、又はV字型に配された1対のブレースの下部に固着した支持体と下側の横部材との間に、極低降伏点鋼をハニカム型パネルに加工してなるハニカムダンパーが配され、ハニカムダンパーの横部材に面する部分を横部材に固着され、ハニカムダンパーのブレースに固着した支持体に面する部分を前記支持体に固着されている制震補強架構。
【0009】
上記▲1▼及び▲2▼の制震補強架構を使う場合は、極低降伏点鋼で構成された部材の座屈を防止するため、例えば、部材の周囲を部材との間に僅かな隙間をあけて補剛材で覆い又は部材内に形成された中空部に移動可能に補剛材を挿入して、極低降伏点鋼で構成された部材が容易に座屈しないようにする。
上記▲1▼の制震補強架構を使う場合は、例えば、2対のブレースの交点となる結合部が座屈により面外へ移動するのを防止する面外座屈防止体を設け、地震時におけるブレースの交点の面外への移動を防止するようにするとよい。
補強架構として、例えば、鋼製の縦部材と鋼製の横部材とを矩形状に結合してなる矩形枠内に、鋼製の対のブレースをV字形又は逆V字形に設け、あるいは、鋼製の2対のブレースをX字形に設けて製作した耐震補強架構を用いて、既存建物を耐震補強するようにしてもよい。
この発明の既存建物への補強縦フレームの組付方法は、例えば、RC造、SRC造のラーメン構造を備えた既存建物の補強に適用できるものである。
【0010】
【実施例】
実施例は、図1〜図23に示され、門型制震補強メガフレームのハットビームで連結された1対の制震補強縦メガフレームを既存建物に組み付ける場合に、この発明の補強フレームの組付方法を適用した例である。
既存建物1は、地下が2階で地上が9階の柱、梁、床、壁等を備えたラーメン構造のSRC造の建物であり、図2に示すように、その平面視の形状は矩形で、その矩形の二つの短辺の一方の辺が矩形の敷地Siの一方の短辺に接近して建てられている。この既存建物1は、これを耐震診断することにより、矩形の長辺方向は十分な耐震性能を備えているが、矩形の短辺方向は耐震性能が不足してしることがわかった。
実施例では、この既存建物1の短辺方向の補強し、その短辺方向の耐震性能を改善する。実施例では既存建物1の短辺方向の部分が補強すべき辺部分になる。
【0011】
図1に示すように、既存建物1の地上階の短辺側の外壁5には同じ間隔で開口(窓)Wdがあり、既存建物1の長辺方向の両端の部分の既存建物1の短辺方向の外壁5と短辺方向の外壁5に近い複数の柱2との間には、図2に示されているように、かなりの隙間があり、その隙間にも各階の床4が形成されている。
この実施例においては、既存建物1の両側の短辺方向の外壁5と短辺方向の外壁5に近い複数の柱2との間に門型制震補強メガフレーム100を組み付けて、既存建物1の短辺方向の補強を行なう。
まず、図2に示すように、既存建物1の地上の3階〜屋上階の短辺方向の外壁5と該外壁5に近い柱2との間の床4の短辺方向の両端に寄った部分に短辺方向に細長い略矩形の仮設開口4aをそれぞれ開設する。この仮設開口4aは、補強縦フレームを構成する制震補強縦メガフレームを通し得る大きさにする。
【0012】
既存建物1の短辺方向の地上2階の床を支持する梁2から下の建物躯体の必要部分を補強する。例えば、以下に説明するように補強する。
図3に示すように、既存建物1の短辺方向の一方の端Aの地下1階の壁5Aと一体に鉄筋コンクリート造にて耐震補強部1B5Aを形成し、その短辺方向の両端よりの部分A〜B、D〜Eに対応する地上1階の床4及び該床を支持する梁3と一体に鉄筋コンクリート造にて耐震補強部1Fを設ける。
また、短辺方向の部分B,Dに対応する1階の柱2の床4の仮設開口4a側に向けてRC造にて柱状増設補強部1F2を形成し、かつ既存建物1の短辺方向の両端の部分A,Eの1階の壁5A等と一体に床の開口4aの下方にRC造にて柱状増設補強部1F2Aを設ける。その短辺方向の両端よりの部分A〜B、D〜Eに対応する地上2階の床4の前記開口4aに対応する部分の下方に、前記柱状増設補強部1F2,1F2Aの上端、前記床4や梁3と一体にRC造にて増設補強梁2F3を設ける。そのうえ、その短辺方向の両端よりの部分A〜B、D〜Eに対応する地上1階の柱状増設補強部1F2,1F2A間に間柱1F2Bを増設し、この柱間1F2Bと短辺方向の両端の部分A,Eの柱状増設補強部1F2Aとの間に短辺方向の耐震壁をRC造にて増設する。
【0013】
実施例の門型制震補強メガフレーム100の制震補強縦メガフレーム50A,50Bの構成部分となる制震補強架構10Aの構成を説明する。
横部材を構成する鋼製のH形断面の梁21の左右の端よりの部分の上側に、縦部材を構成する鋼製のH形断面の柱23,24を梁21に対して直角に立て、かつ梁21の両端部が柱23,24の下端から左右に少々突出するようにして、柱23,24の下端を梁21の上側のフランジ21a1に突き合わせ溶接する。柱23,24の上端の上側に、横部材を構成する鋼製のH形断面の梁22を柱23,24に対して直角にかつ梁22の両端部が柱23,24の上端から左右に少々突出するようにして、柱23,24の上端を梁22の下側のフランジ22a2に突き合わせ溶接して、矩形枠20が形成される。
梁21,22及び柱23,24は、その必要部分の両側のフランジ間に鋼製のスチフナー21c1〜21c4,22c1〜22c4,23c1,23c2、24c1,24c2を溶接して補強する。なお、梁21,22及び柱23,24としては、例えば、フランジ幅及び成が同じH形断面の鋼材からなるものを用いる。
【0014】
連結体30は、図4〜図6に示すように、鋼製の5角形のウェブ板31の五つの辺31a〜31eに、梁21,22及び柱23,24のフランジ幅と略同じか又はそれよりも少々幅の狭い鋼製の平らなフランジ板32a、フランジ板32b、へ字状のフランジ板32cd、平らなフランジ板32eを溶接し、ウェブ板31の中央の両側に配したスチフナー33をウェブ板31及びフランジ板32a,32cdに溶接して、連結体30が完成する。
対のブレース36,36は、図4に示すように、同じ構成で、斜め方向に延びる鋼製のウェブ36bの上側及び下側に鋼製のフランジ36a,36aを溶接して製作されている。ブレース36,36のウェブ36bは下部が幅広になっいて、ブレース36,36の下部が矩形枠20の下隅部に溶接され、ブレース36,36の上端が連結体30のフランジ板32aの下側面に溶接されている。
【0015】
対のブレース37,37の主体は、図4に示すように、同じ構成で、全体が極低降伏点鋼で構成され、斜め方向に延びる板状のウェブ37bの上側及び下側にフランジ37a,37aを溶接して製作されている。
上記極低降伏点鋼としては、例えば、Cが0.02%以下、Siが0.02%以下、Mnが0.20%以下、Pが0.030%以下、Sが0.015%以下の鋼で、降伏点又は0.2%耐力が70〜120N/mm、引張強さが200〜280N/mm及び延びが50%以上の機械的性質を有するもの[例えば、川崎製鉄株式会社製のRIVER FLEX100(RF100)]を用いる。
軸力を負担するブレース37,37の主体には、図4及び図5に示すように、その外側に小さな隙間cをあけて鋼製の矩形断面の管体38が被せられ、前記管体38を、少なくとも1箇所で、例えば、ブレース37のウェブ37b等を貫通するボルト39にて、前記ブレース37に止着する。前記管体38の両端にはそれぞれつば38aが形成されている。
に示すように、ブレース37,37の下端は連結体30のへ字型のフランジ板32cdの上側の傾斜面に溶接される。ブレース37,37のウェブ36bは上部が幅広になっいて、ブレース37,37の上部を矩形枠20の上隅部に溶接して、制震架構10Aが完成される。
なお、上記の矩形枠20、連結体30、ブレース36及び管体38の製作に用いる鋼としては、一般の溶接構造用圧延鋼材(例えば、JIS G 3106)や一般構造用圧延鋼材(SS400)が用いられ、この鋼材は、降伏点又は耐力が230〜350N/mm、引張強さが400〜600N/mm程度である。
【0016】
図4に示す制震補強架構10Aにおいては、2対のブレース36,36,37,37の交点となる連結体30の中心30cが矩形枠20の中心20cより上方に偏位しており、ブレースの交点と横部材との間の間隔が狭くなっている上側にある1対のブレース37,37が、極低降伏点鋼で構成されていて、ブレースの交点と横部材との間の間隔が広くなっている下側にある1対のブレース36,36よりも短くなっている。図4に示す制震補強架構10Aにおいては、対のブレース37,37の全体が極低降伏点鋼で構成されているが。ブレースの上部及び下部を除く中央部の所定長さの範囲の部分を極低降伏点鋼で構成し、上部及び下部を一般の溶接構造用圧延鋼材や構造用圧延鋼材で製作するようにしてもよい。
【0017】
制震補強架構10Aの1対のブレース36,36が前述した建物の建造に通常使用する降伏点が高い鋼材で製作されていて、十分な剛性と強度とを備えているから、地震時におけるブレース36,36の交点(連結体30の中心)の水平移動は小さい。これに対して、制震補強架構10Aの1対のブレース37,37は低降伏点鋼で製作され、降伏点が低く耐力も小さいから、変形し易い。また1対のブレース37,37は水平面に対する傾斜角が小さいから、地震時に制震補強架構10Aに作用する水平力のブレース37の軸線方向の分力(すなわち、軸力)が大きくなり、かつ地震時のブレース37の剛性も大きくなる。そのうえ、ブレース37の長さがブレース36に比して短いから、ブレース37の変形量が大きくなり、制震補強架構10Aは、小さな地震時変形から地震エネルギーの履歴吸収が期待でき、制振効果が大きい。
【0018】
図4及び図20に示すように、制震補強架構10Aの矩形枠20の上側の梁22の中央の下面に鋼製の取付片25を溶接にて固着し、連結体30の上面の中央に鋼製の取付片35を溶接にて固着し、略垂直に配したH形断面の束材41の上部をボルト・ナットにて取付片25に固定し、束材41の下部をボルト・ナットにて取付片35に固定する。
既存建物1の床4の下側に保持板42を植設ボルト・ナットbnにて固着し、保持板42の一端を束材41の上部の梁3側に溶接にて固着したガセットG1にボルト・ナットにて固定し、傾斜させて配した鋼製の面外座屈防止体40の下部を束材41の中央部より少々下方の部分の梁3側に溶接にて固着したガセットG2にボルト・ナットにて固定し、面外座屈防止体40の上部を保持板42の梁3側の部分に溶接にて固着したガセットG3にボルト・ナットにて固定する。そうすると、連結体30等が矩形枠20を含む面に対して直角な方向へ変位し難くなり、地震時におけるブレース36,37の交点の面外への移動を防止することができるようになる。
なお、各ブレース36,37の大きな応力が作用し易い部分は、必要に応じて、リブを設けて補強する。例えば、図8に示すように、ブレース36,37のフランジの屈曲した部分のウェブ36b,37bの両側にリブRbを配し、このリブRbをウェブ及びフランジに溶接する。
【0019】
制震補強架構10Aを縦方向に連ねて制震縦メガフレームを形成する場合に、制震補強架構10Aの連設し易いように分割しておく必要がある。例えば、図9に示すように、矩形枠20の成の1/3〜1/4のところで、柱23,24及びブレース36,36を分割した構造のものを、第1の分割架構10Aとして製作する。
なお、図12〜図14に示すように、分割架構10Aの矩形枠20の梁21の柱24の下端に対応する部分に鋼製のH形断面の補強部21A、21Bが溶接され、分割架構10Aの矩形枠20を既存建物に増設した増設補強梁2F3に強固に固定できるようになっている。
また、図9に示すように、制震補強架構10Aから上記の分割架構10Aを除いたものに、柱23,24の分割された下側の部分に相当する下分割柱23A,24Aを、上側の梁22の両端の上側に溶接し、かつブレース36,36の分割された下側の部分に相当する下分割ブレース36A,36Aの下端を、上側の梁22の両端の上側及び溶接した下分割柱23A,24Aの下端の内側に溶接して、第2の分割架構10Aを製作する。
【0020】
さらに、図10に示すように、分割架構10A2から前記下分割柱23A,24A、下分割ブレース36A,36A及び上側の梁22を除いたもの(すなわち、分割された上側の上分割柱23B,24Bとブレース37,37、連結体30および上分割ブレース36B,36Bからなるもの)の上端をハットビーム60の下面に溶接して第3の分割架構10A3を製作する。
上記ハットビーム60は、図10、図11及び図18に示されているように、制震補強架構10Aの柱23,24のフランジの幅よりも少し幅広の上側及び下側の鋼製の長い板体60a1,60a2間に既存建物の階高寸法の2分の1程度の左側及び右側の鋼製の長い板体60b1,60b2を配し、板体60b1,60b2の上端及び下端を板体60a1,60a2に溶接してなる断面が矩形のボックス型ビームである。なお、ハットビーム60としてはボックス型ビーム以外のものを用いることもできる。
ハットビーム60には、その両端の制震補強縦メガフレームとハットビーム60の中央部との中間の既存建物1の柱2に対応する部分の下側に、断面がH形の鋼製の9階の階高寸法と同じ長さの束材61の上端61cが溶接にて固着されている。 そして、ハットビーム60の各制震補強縦メガフレームの上部の分割架構10A3の上分割柱23B,24Bに対応する部分及び束材61に対応する部分がスチフナー60cで補強されている。
【0021】
この実施例では、1個の第1の分割架構10A1と、8個の第2の分割架構10A2と、1個の第3の分割架構10A3とを上下方向に連ねて連結して、図9に示す制震縦メガフレーム50A,50Bが構築される。
なお、制震補強縦メガフレーム50A,50Bの最下部に位置させる分割架構を、第1の分割架構10A1の上端に1個の第2の分割架構10A2の下端を連結して構成し、制震縦メガフレーム50A,50Bの中間部に位置させる分割架構を、1個の第2の分割架構10A2の上端を他の1個の第2の分割架構10A2の下端を連結して構成し、制震補強縦メガフレーム50A,50Bの最上部に位置させる分割架構を、1個の第3の分割架構10A3の下端に他の1個の第2の分割架構10A2の上端を連結して構成するようにすることもできる。
【0022】
各分割架構10A,10A,10Aは、図に示すように、それらの連結すべき柱23A,23B,24A,24Bの端部のウェブ複数のボルト孔を穿設しておき、またそれらの連結すべきブレース36A,36Bの端部のウェブ複数のボルト孔を穿設しておいて、各ボルト孔に対応する部分にボルト孔が穿設されている図10に示されているような添え板Spを、柱及びブレースの接合すべき部分のウェブに当て、添え板Sp、柱及びブレースのウェブのボルト孔にボルトを差し込みボルトのねじ部にナットをねじ込んで、それらを添え板継ぎし、その後に、接合すべき部分を突合せ溶接にて一体に接合する。
【0023】
制震補強縦メガフレーム50A,50Bの形成の仕方及び前記制震補強縦メガフレームの既存建物1への接合の仕方を説明する。
第1の分割架構10A1を、クレーンで吊り揚げて、既存建物1の屋上階の床4の開口4aから、各階の床4の仮設開口4aを通して前記開口4aの下方の既存建物1の2階の床4上に配置する。
図12〜図14に示されているように、前記床4の下側には増設補強梁2F3が設けられており、第1の分割架構10A1の矩形枠20の梁21及びその補強部21A,21Bのフランジのボルト孔に対応する前記増設補強梁2F3及びその上の床4の部分にはボルト孔が穿設しあり、梁21及びその補強部21A,21Bのフランジのボルト孔と補強梁2F3及び床4のボルト孔にそれぞれPC鋼棒からなるボルトB1を通し、ボルトB1の両端を引っ張って緊張力を付与し、ボルトB1の両端のねじ部にナットN1をねじ込んで、第1の分割架構10A1を既存建物と一体に設けた床4及び増設補強梁2F3に固定する。
また、最下部の分割架構10A1の矩形枠20の梁21の下側のフランジ21a2を床4に固着する。例えば、図12に示すように、フランジ21a2を、床4に間隔をおいて植設した多数本のボルトB2を、前記フランジ21a2に穿設したボルト孔に通し、各ボルトB2のねじ部にナットN2をねじ込んで固定する。
【0024】
第2の分割架構10A1を、クレーンで吊り揚げて、既存建物1の屋上階の床4の開口4aから、各階の床4の開口4aを通して既存建物1の2階に設置した第1の分割制構10A1の上に位置させ、第1の分割架構10A1の分割柱23A,24A及び分割ブレース36Aの上端と、第2の分割架構10A2の上分割柱23B,24Bの下端及び上分割ブレース36B,36Bの下端とを添え板継ぎする。同様に、既存建物1の屋上階から、各階の床4の開口4aを通して第2の分割架構10A2を既存建物1の2階〜3階に配置した分割架構10A2上に位置させ、下側の分割架構10A2の下分割柱23A,24A及び下分割ブレース36Aの上端と、上側の分割架構10A2の上分割柱23B,24B及び上分割ブレース36Bの下端と添え板継ぎする。
同様のやり方で、さらに上方に5個の第2の分割架構10A2を継ぎ足すと、その上端が9階に位置することになる。次ぎに、第3の分割架構10A3をクレーンで吊り揚げて、第3の分割架構10A3のブレース37,37、連結体30、上分割ブレース36B,36B及び上分割柱23B,24Bを屋上階の床4の開口4aから9階内に差し込み、最も上に位置する第2の分割架構10A2の下分割柱23A,24A及び下分割ブレース36Aの上端と、分割架構10A3の上分割柱23B,24B及び上分割ブレース36B,36Bの下端とを添え板継ぎする。
上記の添え板継ぎした各箇所は、添え板継ぎ後に順次突合せ溶接にて一体的に接合する。
【0025】
なお、分割架構10A3はハットビーム60を接合しない状態で、最も上に位置する分割架構10A2の下分割柱23A,24Aの上端に上分割柱23B,24Bの下端を添え板継ぎし、最も上に位置する分割架構10A2の下分割ブレース36Aの上端に、連結体30を介してブレース37,37が結合されている上分割ブレース36B,36Bの下端を添え板継ぎし、その後、上分割柱23B,24B及びブレース37,37の上端をハットビーム60の下側の板体60a2の下面に溶接にて接合し、かつ下部に面外座屈防止体40が連結されている束材41の上端を前記板体60a2に固着して、最上部の制震補強架構10Aを構成するようにしてもよい。
制震補強縦メガフレーム50A,50Aの上下方向に連ねて設けた各制震補強架構10Aは、その下側の制震補強架構10Aの矩形枠20の上側の梁がその上側の制震補強架構10Aの矩形枠20の下側の梁になるものである。
【0026】
次に、各制震補強架構10Aの矩形枠20の既存建物への取付方を説明する。
各制震補強架構10Aの矩形枠20の梁21,22の下側のフランジ21a2,22a2及びハットビーム60の下側の板体60a2の下面を、その下側の既存建物のRC造の床4に固定する場合には、例えば、図14、図15及び図18に示すように、前記フランジ21a2,22a2及び板体60a2の下側の面に、先端に大径部のあるスタッド(頭部付きスタッドという)Sd1を間隔をおいて多数本溶接にて植設し、各スタッドSd1を矩形枠20が挿入されている床4の開口4a内に位置させ、開口4aの周囲のコンクリート部分に穿設した横孔内に一端を挿入して接着剤にて固着した複数本の鉄筋Rh1を床の開口4a内に前記面に沿って格子状に配置してから、開口4a内にコンクリートを後打ちして、各矩形枠20を既存建物1の床4に固定する。
【0027】
各制震補強架構10Aの矩形枠20の柱23,24のウェブ23b,24bに面する既存建物のRC造の外壁5の内側面に固定する場合には、例えば、図16に示すように、前記ウェブ23b,24bの外壁5側の面に、多数本の頭部付きスタッドSd2を間隔をおいて溶接にて植設し、各ウェブ23b,24bに対面する外壁5の内側面から突出させて、かつその基端を壁5のコンクリート部分に穿設した孔に挿入して接着剤にて固着して、外壁5に多数本の頭部付きスタッドSd3を植設し、ウェブ23b,24bと壁5との間の隙間内に間隔をおいて外壁5の上下方向に延びる複数本の鉄筋Rv2と各鉄筋Rv2周囲に上下方向に間隔をおいてフープ状の鉄筋Rh2を配してから、前記隙間内にコンクリートを後打ちして、矩形枠20の柱23,24を既存建物1の壁5に固定する。
【0028】
各制震補強架構10Aの矩形枠20の柱23,24のフランジ23a,24aをこれに面する既存建物のRC造の外壁5Aに固体し、矩形枠20の柱23,24のウェブ23b,24bをこれに面する既存建物1のSRC造の柱2に固定する場合には、例えば、図17に示すように、前記フランジ23a,24aの外壁5A側の面に、多数本の頭部付きスタッドSd4を間隔をおいて溶接にて植設しておき、前記ウェブ23b,24bの柱2側の面に、多数本の頭部付きスタッドSd5を間隔をおいて溶接にて植設し、前記フランジ23a,24aに対面する外壁5Aの内側面から突出させて、かつその基端を壁5Aのコンクリート部分に穿設した孔に挿入して接着剤にて固着して、外壁5Aに多数本の頭部付きスタッドSd6を植設し、柱2の矩形枠20の柱23,24側の面に上記スタッドSd6と同様のやり方で多数本の頭部付きスタッドSd7を間隔をおいて植設する。フランジ23a,24aと該フランジ23a,24aに対向する壁5Aの内側面との間の隙間内に外壁5Aの上下方向に延びる複数本の鉄筋Rv3を配し、各鉄筋Rv3の周囲に上下方向に間隔をおいてフープ状の鉄筋Rh3を配し、ウェブ23b,24bと既存建物1の柱2との間の隙間内に柱2及び外壁5Aと平行に上下方向に延びる複数本の鉄筋Rv4を間隔をおいて配し、各鉄筋Rv4の周囲に上下方向に間隔をおいてフープ状の鉄筋Rh4を配し、柱23,24のウェブ23b,24bとフランジ23a,24aで囲まれる空間内にウェブ23b,24bの長手方向に間隔をおいて2本の鉄筋Rv5を配し、この2本の鉄筋Rv5の外側に多数本のU字状に曲げた鉄筋Rh5を掛けて、U字状に曲げた各鉄筋Rh5の自由端よりの部分をフープ状の鉄筋Rh4と平面視で交差させて、U字状に曲げた各鉄筋Rh5を前記柱2、外壁5A等の上下方向に間隔をおいて配設し、柱23,24のウェブ23b,24bと柱2との間及びフランジ23a,24aと外壁5Aとの間の隙間内にコンクリートを後打ちして、矩形枠20を柱23,24を既存建物の壁5A及び柱2に固定する。
なお、制震補強架構10Aの矩形枠20の梁21,22の既存建物のRC造の床4とのコンクリートの後打ちによる固着作業及び前記矩形枠20の柱23,24と既存建物のRC造の外壁5,5AやSRC造の柱2とのコンクリートの後打ちによる固着作業は、順次下方から組み付けられる各分割架構10A1,10A2,10A3の突合せ溶接による本接合後に順次行われる。
【0029】
ハットビーム60のH形断面の束材61を既存建物のSRC造の柱2に固定する場合は、例えば、図19に示すように、束材61に対応する屋上階の床4に、束材61を挿入する開口を設け、この開口から束材61を差し込み、束材61の下端61dを、図10に示すように、9階の床に固定する。
H形断面の束材61のウェブ61bの前記柱2及びRC造の外壁5に面する部分に、図19に示すように、多数本の頭部付きスタッドSd8を間隔をおいて溶接にて植設しておき、各ウェブ61bに対面する外壁5の内側面からウェブ61b側に向けて突出させて、かつその基端を壁5のコンクリート部分に穿設した孔に挿入して接着剤にて固着して、外壁5に多数本の頭部付きスタッドSd3を植設し、ウェブ61bと壁5との間の隙間内に外壁5の上下方向に延びる複数本(例えば、4本)の鉄筋Rv6と各鉄筋Rv6の周囲に上下方向に間隔をおいてフープ状の鉄筋Rh6を多数本配筋する。また、束材61のウェブ61bに対面する9階の柱2の部分に、両端部を柱2のコンクリート部分に穿設した孔に挿入して接着剤にて固着して、前記柱2に多数本のU字方に曲げた鉄筋Rh7を柱2の上下方向に間隔をおいて配設し、ウェブ61bと柱2との間の隙間内の多数本のU字状の鉄筋Rh7の内側にこれと接近させて柱2と平行に複数本(例えば、6本)の鉄筋Rv7を配筋する。また、束材61のウェブ61bと対のフランジ61aで囲まれる空間内にウェブ61bの長手方向に間隔をおいて2本の鉄筋Rv8を配し、この2本の鉄筋Rv8の外側に多数本のU字状に曲げた鉄筋Rh8を掛けて、これらの鉄筋Rh8を、それらの自由端よりの部分をU字状の鉄筋Rh7と平面視で交差させて、前記柱2及び束材61の上下方向に間隔をおいて配筋する。それから、束材61と外壁5との間及び束材61と柱2との間の隙間内にコンクリートを後打ちして、束材61を既存建物の柱2及び外壁5に固定する。
【0030】
通常の耐震補強で補強フレームを門型にすると、従来技術(1)の耐震補強構造のように、耐震立体縦フレームの各階の補強耐力を大きくすることにり、それに伴って生じる両端の耐震立体縦フレームの過大な曲げ変形を拘束するため、既存建物の頂部に階高の約1階分程度の厚さの立体トラス型の横メガ連結体を設けることが必要であった。ところが、実施例のように、両端の制震補強縦メガフレーム50A,50Bの上部をハットビーム60で連結してなる門型制震補強メガフレーム100を既存建物の外壁の内側に構築して、制震補強すると、制震補強縦メガフレーム50A,50Bの各階を構成する制震補強架構10Aの矩形枠20内に設けた極低降伏点鋼からなるブレース37が早期に塑性変形(降伏)することにより、制震縦メガフレームの各階の補強耐力は上記の耐震補強の場合のように大きくならず、それに伴って生じる両端の制震補強縦メガフレームの曲げ変形も上記の耐震補強の場合のように大きくならないため、制震補強縦メガフレームの頂部の拘束は、ある程度の剛性のハットビーム60(例えば、階高の約2分1程度のボックス型ビーム)でまかなうことができる。
また、ハットビーム60は、これに設けた束材61を各制震補強縦メガフレーム50A,50Bとハットビーム60の中央部との中間の既存建物1の9階の柱2及び外壁5に固定して、門型制震メガフレーム100のハットビーム60を既存建物1に強固に一体化するから、過大な剛性のハットビーム60を使用しなくとも、制震補強縦メガフレームの頂部を確実に拘束することができる。
【0031】
門型制震メガフレーム100の制震縦メガフレームの構成部分となる他の制震補強架構10Bの構成を、図21及び図22を用いて、説明する。
制震補強架構10Bの矩形枠70は、1対の横部材を構成する鋼製のH形断面の梁71,72と1対の縦部材を構成する鋼製のH形断面の柱73,74とを使って、前記制震補強架構10Aの矩形枠20の製作法と同じ方法で、製作されている。
矩形枠20はその梁71,72及び柱73,74の必要部分に鋼製のスチフナー71c〜71c,72c〜72c,73c,74c等を設けて補強されている。
なお、梁71,72及び柱73,74としては、例えば、フランジ幅及び成が同じH形断面の鋼材からなるものを用いる。
【0032】
制震補強架構10Bは、矩形粋70内に部材の中央の所定長さの部分が極低降伏点鋼で構成され他の部分が通常鋼で構成されている1対のブレース75,75を逆V字状に配し、各ブレース75の下部を開口部の下隅部70aに固着し、各ブレース75の上部を開口部の上側の横部材に略中央の下側に固着して構成される。
1対のブレース75,75は、図2に示すように、同じ構成で、上部分75Aと中間部分75Bと下部分75Cとで構成されている。
上部分75A及び下部分75Cは、通常鋼からなる横断面が4角形の管体75A,75Cで造られ、4角形の管体75A,75Cの一方の端の両側が長手方向に対して傾斜した面で切断されて先端が直角なV字形先部75A,75Cとされ、4角形の管体75A,75Cの他方の端にフランジ75A,75Cが設けられている。
【0033】
中間部分75Bは、極低降伏点鋼からなる横断面が4角形の管体75B1で造られ、極低降伏点鋼の管体75B1の両端にフランジ75B2,75B3が設けられている。中間部分75Bの管体75B1内に、中間部分75Bより少し長い通常鋼からなる横断面がH形の補剛材75Dが挿入され、前記中間部分75Bの管体75B1と補剛材75Dとが、少なくとも1箇所で、例えば、H形の補剛材75Dのウェブ等を貫通させたボルト75Eにて、前記ブレース37に止着されている。
なお、横断面がH形の補剛材75Dと管体75A1,75B1,75C1との間に小さな隙間が形成されるように、補剛材75Dの寸法が定められている。
各ブレース75は、上部分75Aのフランジ75A3と中間部分75Bのフランジ75B2とがボルト・ナットで固着され、中間部分75Bのフランジ75B3と下部分75Cのフランジ75C3とがボルト・ナットで固着されて形成されている。
【0034】
矩形枠70内に1対のブレース75を逆V字状(ハ字状)に配し、各ブレース75の下部分75CのV字形先部75C2を開口部の下隅部70aに溶接し、各ブレース75の上部分75AのV字形先部75A2を開口部の上側の梁72の略中央のフランジ72a2の下面に溶接し、かつ各ブレース75のV字形先部75A2の傾斜辺同士を溶接し、ブレース75の上部分75AのV字形先部75A2とフランジ72a2との溶接部の近傍の部分、V字形先部75A2とV字形先部75A2との溶接部の近傍の部分及びブレース75の下部分75CのV字形先部75C2と梁71や柱73,74のフランジとの溶接部の近傍の部分をリブRb1〜Rb4で補強する。
【0035】
制震補強架構10Bを縦方向に連ねて制震縦メガフレーム50A,50Bを形成するときに、制震補強架構10Bを連設し易い部分で分割する必要がある場合には、例えば、次のようにする。
矩形枠70の成の1/3〜1/4のところで、柱73,74を切断し、かつのフランジ75C3をフランジ75B3から離して分割した構造のものを、第1の分割架構10B1とする。
また、制震補強架構10Bから分割架構10B1を除いたものに、前記柱73,74の分割された下側の部分の上下方向の寸法に相当する分割柱73A,74Aを、上側の梁72の両端の上側に溶接し、かつブレース75の下部分75CのV字形先部75C2を上側の梁72の両端の上側及び分割柱73A,74Aの下部の内側に溶接したものを、第2の分割架構10B2とする。
さらに、第2の分割架構10B2から分割柱73A,74A、ブレース75の下部分75C及び上側の梁72を除いたものの残りの柱73B,74Bの上端及びブレース75の中間部分75Bに連結された上部分75AのV字形先部75A2をハットビーム60の下面に溶接したものを、第3の分割架構10B3とする。このように分割すると、一つの制震補強縦メガフレーム50A,50Bは、1個の第1の分割架構10B1と、8個の第2の分割架構10B2と、1個の第3の分割架構10B3とを上下方向に連ねて連結することにより構築することができる。これは、制震補強縦メガフレーム50A,50Bの分割の仕方の1例を示すものに過ぎない。
【0036】
門型制震メガフレーム100の制震縦メガフレームの構成部分となる他の制震補強架構10Cの構成を、図23を用いて、説明する。
制震補強架構10Cの矩形枠80の構成は、制震補強架構10Bの矩形枠70と同じである。
矩形枠80内に、横断面がH形の通常鋼で構成された1対のブレース85,85を逆V字状(すなわち、ハ字状)に配し、各ブレース85の下部を開口部の下隅部80aに固着し、各ブレース85の上部に、上側の梁82の下側のフランジ82aと平行に開口部内に配さた通常鋼で形成されて平板86に溶接して互いに連結する。
ハニカムダンパー87は、極低降伏点鋼をハニカム型パネルに加工して製作されている。上側の梁82の下側のフランジ82aと前記平板86との間にハニカムダンパー87を配し、ハニカムダンパー87の上側の取付板87aを上側の梁82の中央部の下側のフランジ82aに固着し、その下側の取付板87bを前記平板86の上側面に固着して制震補強架構10Cが完成する。
1対のブレース85,85の上部と平板86との溶接部、ブレース85の下部と柱83,84及び梁81との接合部の近傍の部分を、そこにリブRb〜Rbを溶接してで補強する。
【0037】
制震補強架構10Cを縦方向に連ねて制震補強縦メガフレーム50A,50Bを形成するため、制震補強架構10Cを連設し易い部分で分割する必要がある場合には、例えば、次のようにする。
矩形枠80の成の1/3〜1/4のところで、柱83,84及びブレース85,85を切断し、その下側のものを第1の分割架構10C1とする。
また、制震補強架構10Cから分割架構10C1を除いたものに、前記柱83,84の分割された下側の部分の上下方向の寸法に相当する分割柱83A,84Aを、上側の梁82の両端の上側に溶接し、ブレース85,85の分割された下側の部分の上下方向の寸法に相当する分割ブレース85A,85Aを、上側の梁82の両端の隅部80aに溶接して製作したものを、第2の分割架構10C2とする。 さらに、分割架構10C2から柱83A,84A、ブレース85A,85A及び梁82を除いた残りの柱83B,84B、ブレース85の上部85B、平板86及びハニカムダンパー87からなるものをハットビーム60の下側の板体61a2の下面に溶接して製作したものを第3の分割架構10C3とする。
上記のように分割すると、一つの制震補強縦メガフレーム50A,50Bは、1個の第1の分割架構10C1と、8個の第2の分割架構10C2と、1個の第3の分割架構10C3とを上下方向に連ねて連結することにより構築することができる。これは、制震補強縦メガフレーム50A,50Bの分割の仕方の1例を示すものに過ぎない。
【0038】
【発明の効果】
この発明は、特許請求の範囲の各請求項に記載した構成を備えることにより、次の(イ)〜(効果を奏する。
(イ)請求項1に係る発明の既存建物への補強フレームの組付方法は、柱、梁、床、壁等を備えた多層の既存建物の補強すべき部分の外壁の内側の前記辺方向の両端に寄った個所に、前記辺部分の補強すべ階数と同数の矩形枠を備えた補強架構を縦方向に連ねて一体に結合してなる補強縦フレームを既存建物に固着して組み付ける既存建物への補強フレームの組付方法において、補強すべき多数の階の最下階より一つ上の階から屋上階に亘る前記補強すべき辺部分の両端に寄った外壁の内側の床の部分に補強縦フレームを通し得る大きさの前記辺方向に細長い仮設開口を設け、前記補強縦フレームを複数に分割してなる分割架構を予め形成しておき、補強縦フレームの最下部に対応する分割架構を吊り上げて前記の各仮設開口を通して前記補強すべき部分の最下階の既存建物下部上に配置し、それを前記建物下部に固着し、前記最下部の分割架構のその上に配置すべき分割架構を吊り上げて前記仮設開口を通して前記最下部の分割架構上に配置し、分割架構同士を接合し、同様のやり方にて複数分割架構を縦方向に連ねて接合して複数の分割架構からなる補強縦フレームを組み付け、前記仮設開口を後打ちコンクリートで埋め、補強縦フレームと既存建物とを結合させるから、次の(1)〜(3)の効果を奏する。
(1)補強工事に必要な施工スペース、補強縦フレームの下部に対応する既存建物の下部の周囲、すなわち、補強すべき辺部分の最下階の前記辺方向の両端に寄った外壁の内側の床の部分の周囲、及び補強すべき多数の階の最下階より上の各階の床の補強縦フレームの設置部に対応する部分に設けた仮設開口の周囲、すなわち、補強すべき辺部分の最下階より一つ上の階から屋上階に亘る各階の前記辺方向の両端に寄った外壁の内側の床に設けた仮設開口の周囲の狭い範囲に限定することができる。
(2)既存建物の補強工事を前記施工スペース以外の空間を建物の本来の用途に使用しながら施工することができる。
(3)分割架構揚重機にて高く吊り上げてから、それを仮設開口を通して吊り降ろすことにより、分割架構を所定位置に設置でき、補強工事の施工性がよい。
【0039】
(ロ)請求項2の発明の既存建物への補強フレームの組付方法は、柱、梁、床、壁等を備えた多層の既存建物の補強すべき部分外壁の内側の前記辺方向の両端に寄った個所に、それぞれ前記外壁と平行に配される前記辺部分の補強すべき部分の階数と同数の矩形枠を備えた補強架構を縦方向に連ねて一体に結合してな補強縦フレームを既存建物に固着し、1対の補強縦フレームの上端に屋上階の床上に配したハットビームの両方の端部を結合して門型補強フレームとし、該門型補強フレームを既存建物へ組み付ける組付方法において、補強すべき多数の階の最下階より一つ上の階から屋上階に亘る前記補強すべき辺部分の両端に寄った外壁の内側の床の部分に補強縦フレームを通し得る大きさの前記辺方向に細長い仮設開口を設け、前記補強縦フレームを複数に分割してなる分割架構を予め形成しておき、補強縦フレームの最下部に対応する分割架構を吊り上げて前記の各仮設開口を通して前記補強すべき部分の最下階の既存建物下部上に配置し、それを前記建物下部に固着し、前記最下部に配置した分割架構のその上に設置すべき分割架構を吊り上げて前記仮設開口を通して前記最下部に配置した分割架構上に配置し、分割架構同士を接合し、同様のやり方にて複数分割架構を縦方向に連ねて接合して補強縦フレームを組み付け、前記仮設開口を後打ちコンクリートで埋め、対の補強縦フレームとハットビームからなる門型補強フレームと既存建物とを結合させるから、上記(イ)に記載した(1)〜(3)の効果を奏することができるだけでなく、次の(4)及び(5)の効果を奏する。
(4)門型補強フレームのハットビームにより、補強縦フレームの頂部を拘束することができる。また、補強すべき辺部分の外壁の近傍の既存建物の外側の敷地が狭い場合でも、ハットビームが既存建物の屋上階の床上に配されるから、門型補強フレームによる既存建物の補強を施工性よく行なうことができる。
(5)1対の補強縦フレームを既存建物の補強すべき辺部分の外壁の内側の前記辺方向の両端に寄った個所に組み付け、1対の補強縦フレームの上端に既存建物の屋上階の床上に配したハットビームの両方の端部を結合として門型補強フレームとするだけで、既存建物を補強することができ、補強工事中の既存建物の使用に対して与える悪影響極小に抑えることができる。
【0040】
(ハ)請求項3の発明の既存建物への補強フレームの組付方法は、縦方向に連ねて一体に結合して補強縦フレームを構成する矩形枠を備えた補強架構が、鋼製の縦部材と鋼製の横部材とを矩形状に結合してなる矩形枠内に制震部材を配して、前記矩形枠の地震時の変形により地震力を吸収できるように前記制震部材を矩形枠に設けられている制震補強架構であるから、前記(1)〜(3)又は前記(1)〜(5)の効果の他に、次の(6)の効果を奏する。
(6)地震時の補強縦フレームの各制震補強架構の矩形枠の変形により矩形枠内に設けた制震部材が作動して地震力を吸収し、既存建物に作用する地震力を軽減させることができる。
(ニ)請求項4の発明の既存建物への補強フレームの組付方法は、既存建物内の補強縦フレームの下部に対応する既存建物の下部を既存建物と一体に設けた増設補強部で補強するから、前記(1)〜(3)又は(1)〜(5)の効果の他に、次の(7)の効果を奏する。
(7)既存建物内の補強縦フレームの下部に対応する既存建物の下部が強化され、補強縦フレームの下部を既存建物の下部に強固に接合することができ、補強縦フレームを用いて既存建物を補強しても、地震時に既存建物の他の部分が損傷を受けるおそれがなくなる。
【0041】
)請求項の発明の既存建物への補強フレームの組付方法は、既存建物の補強すべき部分の補強すべき階数と同数の矩形枠を備えた補強架構を縦方向に連ねて一体に結合してなる補強縦フレームを複数に分割してなる分割架構が、その補強架構の矩形枠の縦部材の中間の部分で分割されていて、補強架構の矩形枠の横部材の少なくとも一つを備えているから、(1)〜(3)又は(1)〜(5)の効果の他に、次の(8)の効果を奏する。
(8)接合部分が補強架構の矩形枠の縦部材と横部材との接合部の付近に集中することがなく、また、分割架構を吊り上げて仮設開口を通して行う既存建物への配置等が容易になり、施工性もよい。
【0042】
)請求項の発明の既存建物への補強フレームの組付方法は、既存建物の補強すべき部分の階数と同数の矩形枠からなる補強架構を縦方向に連ねて一体に結合してなる補強縦フレームを複数に分割してなる分割架構の最上部に位置するものの補強架構の矩形枠の上側の横部材がハットビームの対応部分で構成されているから、前記(1)〜(5)の効果の他に、次の(9)の効果を奏する
(9)部材の数が少なくなり、かつ門型補強フレームを施工性よく構築することができる。
(ト)請求項7の発明の既存建物への補強フレームの組付方法は、既存建物に結合された門型補強フレームの1対の補強縦フレーム間のハットビームは、その複数の箇所を既存建物に固着するから、前記(1)〜(5)及び(9)の効果の他に、次の(10)の効果を奏する。
(10)1対の補強縦フレーム間のハットビームは、その複数の箇所を既存建物に固着して、既存建物に連結してあるから、過大な剛性のハットビームを使用しなくとも、補強縦フレームの頂部を確実に拘束することができる。
【0043】
(チ)請求項8の発明の既存建物への補強フレームの組付方法では、補強縦フレームの構成部分となる矩形枠を備えた補強架構は、その矩形枠の一方の横部材の下側の面と他方の横部材の下側の面との間の間隔が既存建物の補強すべき各階の階高寸法と一致するように製作され、前記横部材の下側又は上側には多数のシアコネクターが間隔をおいて接合されてあり、補強縦フレームをその各補強架構の矩形枠の横部材が既存建物の床上又は床下に位置するように組み付け、仮設開口内にコンクリートを後打ちして矩形枠の横部材を既存建物の床に固着するから、前記(1)〜(10)の効果の他に、次の(11)の効果を奏する
(11)既存建物への補強縦フレームの組付に使った仮設開口内にコンクリートを後打ちするだけで、補強縦フレームの各補強架構の矩形枠の横部材を既存建物の床へ施工性よく固着することができる。
【図面の簡単な説明】
【図1】実施例の既存建物の補強すべき部分の正面図
【図2】実施例の補強する既存建物の標準階(2階ないし9階)の平面図
【図3】実施例の補強する既存建物の内側からみた地階、地上1、2階とその補強のための増設部分を示す正面図
【図4】実施例の制震補強縦メガフレームの構成部分となる制震補強架構の正面図
【図5】図4に示す制震補強架構の連結体の正面図
【図6】図5に示す連結体の側面図
【図7】図4に示す極低降伏点鋼からなるブレースをそのA−A線で断面した断面図
【図8】実施例のブレースのリブによる補強部の断面図
【図9】実施例の制震補強縦メガフレームを構成する制震架構の分割の仕方の一例を示す正面図
【図10】実施例の制震補強縦メガフレームとハットビームとの関係等を示す正面図
【図11】実施例の門型制震補強メガフレームと既存建物との関係を示す正面図
【図12】実施例の制震補強縦メガフレームの下部の既存建物への取付部等を図13のB−B線にそって断面した正面図
【図13】実施例の制震補強縦メガフレームの下部を構成する制震補強架構を図14のC−C線で断面した平面図
【図14】図13に示す制震補強縦メガフレームの下部を構成する制震補強架構を図13のD−D線に沿って縦断した側面図
【図15】実施例の制震補強架構の上側の梁と既存建物の床との関係等を示す縦断面図
【図16】実施例の制震補強架構の柱と既存建物の外壁との関係等を示す横断面図
【図17】実施例の既存建物の外壁及び柱と制震補強架構の柱との関係等を示す縦断面図
【図18】実施例の制震補強縦メガフレームの上端とハットビームとの連結部と既存建物の屋上階の床との関係等を示す縦断面図
【図19】実施例のハットビームの束材の既存建物の9階の柱や外壁への取付部を図10のE−E線に沿って横断した平面図
【図20】実施例の制震補強架構の面外座屈防止体の構成及び既存建物との関係等を示す縦断面図
【図21】実施例の他の制震補強架構の正面図
【図22】図22に示すブレースをそのF−F線で断面した断面図
【図23】実施例のハニカムダンパーを用いる制震架構の正面図
【符号の説明】
1 既存建物
2 柱
3 梁
4 床
4a 仮設開口
5,5A 外壁
10A,10B,10C 制震補強架構
10A1〜10A3,10B1、10B2,10C1、10C2 分割架構
20,70,80 矩形枠
20c 矩形枠の中心
21,22,71,72 梁
23,24,73,74 柱
30 連結体
30c 連結体の中心(ブレースの交点)
31 ウェブ
32a〜32e フランジ
36,37 ブレース
38 管体
40 面外座屈防止体
41 束材
50A,50B 制震補強縦メガフレーム
60 ハットビーム
61 束材
75,85 ブレース
86 平板
87 ハニカムダンパー
100 門型制震補強メガフレーム
2F3 増設補強梁
Wd 窓
[0001]
BACKGROUND OF THE INVENTION
  This invention applies to existing buildingsReinforcementAssembling method of the frame, especially to the existing building where the reinforcing vertical frame is attached to the existing building in the vicinity of the part to be reinforcedReinforcementThe present invention relates to a method for assembling the frame.
[0002]
[Prior art]
  For example, conventional seismic reinforcement structures for existing buildings include:
(1) A pair of three-dimensional truss-type seismic solid vertical megaframes are constructed outside the multi-layer existing building with columns, beams, floors, etc., approaching both sides of the existing building. A three-dimensional truss-type horizontal mega-connector is constructed between the upper ends, and the upper end of each seismic solid vertical megaframe and the horizontal mega-connector are joined together to form a gate-type megastructure. Is built outside the existing buildingTheIt has a three-dimensional structure of pure ramen structure consisting of many pillars, many beams arranged according to the position of the floor of the existing building, and many braces. It has a three-dimensional truss-type three-dimensional structure consisting of a large number of beams arranged at substantially equal intervals to the floor height of an existing building, a large number of bundles arranged at intervals between the beams, and a large number of braces. The parts of each seismic three-dimensional vertical megaframe that is formed in a bowl shape around the outer periphery of the existing building corresponding to each floor and that corresponds to the protruding portion are connected to the protruding portion, on both sides and the upper surface of the existing building. Seismic reinforcement structure in which portal megastructures constructed at intervals are joined to existing buildings (see, for example, JP-A-9-203217), and
(2) Inside the multi-layer existing building with pillars, beams, floors, etc., close to the existing building and provide a large frame by connecting a plurality of rectangular frames vertically across multiple floors. A large seismic frame with long braces is constructed, and each rectangular frame of the large frame is placed under the floor of the existing building or close to the beam position corresponding to the floor, Combining vertical members arranged along the pillars, the vertical members of each rectangular frame are connected to each other through holes in the floor of the existing building, and long braces are also opened in the floor of the existing building. Seismic reinforcement that is assembled by connecting brace members that pass through the holes, the horizontal member of the rectangular frame is fixed to the floor or beam of the existing building, and the vertical member of each rectangular frame is fixed to the pillar of the existing building There is a structure (for example, see JP-A-9-209579).
[0003]
[Problems to be solved by the invention]
  In the seismic reinforcement structure of (1) above, in order to enhance the earthquake resistance of existing buildings, the portal megastructure is constructed outside the existing building, and each seismic solid vertical megaframe of the megastructure is located outside the existing building. The existing building has a three-dimensional structure with a pure ramen structure consisting of a number of pillars established at intervals, a number of beams arranged according to the position of the floor of the existing building, and a number of braces. This is a seismic reinforcement structure that cannot be applied unless there is a large site to build a three-dimensional earthquake-resistant three-dimensional vertical megaframe. In addition, a solid truss-shaped horizontal mega-link that connects the upper ends of each seismic solid vertical mega-frame has a size corresponding to the floor height of an existing building, so it requires a lot of steel. It is a reinforced structure that requires a lot of materials and labor for seismic reinforcement of existing buildings.
  The seismic reinforcement structure for an existing building in (2) above is provided with a large frame inside a multi-layered existing building, approaching the existing building, and connecting a plurality of rectangular frames in the vertical direction across multiple floors. Build a large earthquake-resistant frame with long braces in it, and each rectangular frame of the large frame is placed under the floor of the existing building or close to the beam position corresponding to the floor and the existing building The vertical members of each rectangular frame are connected to each other through holes in the floor of the existing building, and long braces are also attached to the floor of the existing building. Because the brace members passed through the drilled holes are connected and assembled, the horizontal members of the rectangular frame are fixed to the floor or beam of the existing building, and the vertical members of each rectangular frame are fixed to the pillars of the existing building Reinforced structure that cannot be seismically reinforced according to the seismic performance of each floor It is. In addition, the vertical members of each rectangular frame are connected to each other through holes formed in the floor of the existing building, but since the through-holes are not provided in the floor on the roof floor of the existing building, the lifted vertical members Can not be placed in place through the through-hole, a large earthquake-resistant frame consisting of a large frame and long braces cannot be built with good workability, and reinforcement work cannot be performed while using an existing building .
  The problem to be solved by the present invention is to add to an existing building that does not have the above-mentioned drawbacks of the prior art.ReinforcementProviding a method for assembling the frame, in other words, the construction space required for the reinforcement work can be limited to a small size, and the work can be performed while using a space other than the construction space of the existing building. To existing buildings with good workabilityReinforcementIt is to provide a method for assembling a frame.
[0004]
[Means for Solving the Problems]
  To the existing building of this inventionReinforcementAssembling method of the frame is pillar, beam, floor,OutsideReinforce existing multi-layered buildings with wallsNeighborhoodportionOf the side portion of the outer wall of the side portionReinforcementKiThe same number of floorsWith a rectangular frameTo the existing building, a reinforced vertical frame made by connecting the reinforcing frames in the vertical direction and connecting them together is fixed to the existing building.ReinforcementIn the frame assembly method,Of many floors to be reinforcedFrom the bottom floorThe floor inside the outer wall near the ends of the side part to be reinforced from the upper floor to the roof floor.Large enough to pass the reinforcing vertical frame through the partElongated in the side directionA temporary opening is provided, and a divided frame formed by dividing the reinforcing vertical frame into a plurality of parts is formed in advance, and the divided frame corresponding to the lowermost part of the reinforcing vertical frame is lifted to be reinforced through the temporary openings.NeighborhoodPart of the bottom floorExistingbuildingofPlace it on the bottom and put it in the buildingofThe lower part is fixed to the lower part, the upper part of the lower part of the divided part is lifted andofPlace on the lower divided frame through the temporary opening, join the divided frames,ofSplit frameIt consists of a plurality of divided frames joined in series in the vertical direction.Assemble the reinforcing vertical frameThe temporary opening is filled with post-cast concrete, and the reinforcing vertical frame and the existing building are joined.It is characterized by this.
[0005]
  In a preferred embodiment, multi-layer existing buildings should be reinforcedNeighborhoodportionofInside the outer wallIn the places near both ends in the side direction,Arranged parallel to the outer wallOf the side partThe number of floors to be reinforcedWith a rectangular frameConnect the reinforcing frames vertically and connect them together.RuFasten reinforced vertical frame to existing buildingThen, both ends of the hat beam arranged on the rooftop floor are joined to the upper ends of a pair of reinforcing vertical frames to form a portal reinforcing frame, and the portal reinforcing frame is connected to an existing building.Assemble. The pair of reinforcing vertical frames of the portal reinforcing frame and the hat beam are arranged so as to constitute one plane.
In an existing buildingIn the lower part of the existing building corresponding to the lower part of the reinforcing vertical frame, if necessary, an additional reinforcing part is provided integrally with the existing building to reinforce the lower part of the existing building.
  Multiple bolt holes are provided in the bottom horizontal member of the split frame located at the bottom of the reinforcing vertical frame, and the existing buildingofA plurality of bolt holes corresponding to the bolt holes are provided in the lower part,beneathOf the split frame located at the bottom of the reinforcing vertical frameLower sideA transverse member is arranged, each bolt hole of the transverse member and thebeneathBolts are passed through the respective bolt holes, nuts are screwed into the threaded portions of the bolts, and the transverse members of the divided frame areExisting buildingIt is fixed to the lower part of the building and integrated with the existing building.
[0006]
  Should strengthen existing buildingsNeighborhoodThe same number of floorsWith a rectangular frameA divided frame formed by dividing a reinforcing vertical frame, which is formed by connecting the reinforcing frames in the vertical direction and integrally joining them, is divided at the middle part of the vertical members of the rectangular frame of the reinforcing frame. It comprises so that at least 1 of the horizontal member of a rectangular frame may be provided. Then, the joint portion does not concentrate near the joint portion between the vertical member and the horizontal member of the rectangular frame,Inside an existing building through a temporary openingArrangement and the like are easy, and workability is improved.
  In addition, the number of floors of the existing building to be reinforcedWith a rectangular frameThe horizontal member on the upper side of the rectangular frame of the reinforcement frame is located at the uppermost part of the reinforcement vertical frame of the divided frame formed by dividing the reinforcement vertical frame formed by connecting the reinforcement frames in the vertical direction and integrated into a hat. If it comprises the corresponding part of a beam, the number of members will decrease and a portal reinforcement frame can be constructed with good workability.
  Becomes a component part of reinforced vertical frameWith a rectangular frameThe reinforcement frame is manufactured so that the distance between the lower surface of one horizontal member of the rectangular frame and the lower surface of the other horizontal member matches the floor height of each floor to be reinforced in the existing building. The vertical frame is assembled so that the horizontal member of the rectangular frame of each reinforcing frame is located on the floor or under the floor of the existing building, and concrete is placed in the temporary opening to place the horizontal member of the rectangular frame on the floor of the existing building. It sticks to.
In a preferred embodiment, it is connected to an existing buildingHat beam between a pair of vertical reinforcing frames of a portal reinforcing frameIsThat multiple placesExisting buildingStick toTo do.
[0007]
In a preferred embodiment, the reinforcing frame of the reinforcing vertical frame is joined to the lower side or the upper side of the horizontal member of the rectangular frame with a large number of shear connectors (for example, studs with a head) spaced apart from each other. Assemble the reinforcing vertical frame so that the temporary opening of the RC floor is below or above the horizontal member of the rectangular frame of each reinforcing frame, and place one end in the horizontal hole drilled in the concrete part around the temporary opening After a plurality of reinforcing bars inserted and fixed are arranged in a grid pattern along the floor surface in the opening of the floor, concrete is placed in the temporary opening, and the horizontal member of each rectangular frame is attached to the existing building. Stick to the floor.
In addition, a large number of shear connectors (for example, studs with heads) are attached to the RC outer wall of the vertical member of the rectangular frame of the reinforcing frame of the reinforcing vertical frame or the part facing the pillar of the existing RC or SRC building. Planted by welding at intervals, projecting from the inner surface of the outer wall facing the vertical member or the outer surface of the column of an existing RC or SRC building, and drilling its base end into the outer wall or column And insert a number of shear connectors (e.g., studs with heads) on the outer wall or pillar, and place them vertically in the gap between the vertical member and the outer wall or pillar. After arranging a plurality of reinforcing bars extending in the vertical direction of the member and a plurality of hoop-shaped reinforcing bars positioned at an interval in the vertical direction around the reinforcing bars, the concrete is post-placed in the gap. The vertical member of the rectangular frame is fixed to the outer wall or pillar of the existing building.
[0008]
Reinforced vertical frame is formed by connecting vertically in one pieceAs a reinforcing frame, a damping member is arranged in a rectangular frame formed by connecting a steel vertical member and a steel horizontal member in a rectangular shape, and the seismic force is absorbed by the deformation of the rectangular frame during an earthquake. By using a seismic reinforcement frame in which the damping member is provided in a rectangular frame, the existing building can be seismically reinforced.
  As the seismic reinforcing frame, for example, the following seismic reinforcing frames (1) to (3) are used, but the present invention is not limited to these.
(1) A pair of braces arranged in a rectangular frame made up of a pair of ordinary steel transverse members and a pair of ordinary steel longitudinal members, and arranged in a V shape on the upper side The lower part of the upper brace and the upper part of the pair of braces arranged in an inverted V shape on the lower side are integrally joined, and the two pairs of braces are joined in a substantially X shape, The lower part of the lower pair of braces is connected to the lower corner part of the corresponding frame, and the center of the joint that is the intersection of the two pairs of braces is the frame. A portion of a range of a predetermined length in the whole pair of braces or the center of the member on the side where the distance between the intersection of the braces and the lateral member is narrowed, which is offset above or below the center of Is made of extremely low yield point steel, and the distance between the brace intersection and the transverse member is Kuna' than a pair of braces on the side which is shorter Seismic reinforcement Frames.
(2) In a rectangular frame consisting of a pair of ordinary steel transverse members and a pair of ordinary steel longitudinal members, the part of the center at a predetermined length is made of ultra-low yield point steel. A pair of braces, each of which is made of steel, are arranged in an inverted V-shape or V-shape, and the lower or upper portion of each brace is fixed to the lower or upper corner of the opening. A seismic reinforcing frame in which the upper part or the lower part is fixed to the lower or upper side of the center on the lateral member on the upper or lower side of the opening.
(3) A pair of ordinary steel braces are provided in a reverse V shape or V shape in a rectangular frame consisting of a pair of ordinary steel transverse members and a pair of ordinary steel longitudinal members. A support fixed to the upper part of a pair of braces arranged in an inverted V shape and the upper lateral member, or a support fixed to the lower part of a pair of braces arranged in a V shape; A honeycomb damper formed by processing extremely low yield point steel into a honeycomb-type panel is disposed between the lower lateral member and the portion of the honeycomb damper that faces the lateral member is fixed to the lateral member. A seismic reinforcement frame having a portion facing the support fixed to the support fixed to the support.
[0009]
When using the anti-seismic reinforcement frames (1) and (2) above, in order to prevent buckling of the members made of extremely low yield point steel, for example, a slight gap is formed between the members and the members. The stiffener is movably inserted into the hollow portion formed in the member or covered with the stiffener so that the member made of the extremely low yield point steel is not easily buckled.
When using the anti-seismic reinforcement frame of (1) above, for example, an out-of-plane buckling prevention body that prevents the joint at the intersection of two pairs of braces from moving out of plane due to buckling is provided. It is preferable to prevent the intersection of the braces from moving out of the plane.
As a reinforcing frame, for example, a pair of steel braces are provided in a V shape or an inverted V shape in a rectangular frame formed by connecting a steel vertical member and a steel horizontal member in a rectangular shape, or steel An existing building may be seismically reinforced using a seismic reinforcement frame that is manufactured by providing two pairs of braces in an X shape.
The method of assembling a reinforcing vertical frame to an existing building according to the present invention can be applied to, for example, reinforcement of an existing building having an RC structure or an SRC structure.
[0010]
【Example】
  The embodiment is shown in FIG. 1 to FIG. 23, and the present invention is applied to a case where a pair of seismic reinforcement vertical megaframes connected by a hat beam of a gate type seismic reinforcement megaframe is assembled to an existing building.ReinforcementIt is an example to which a frame assembly method is applied.
  The existing building 1 is an SRC structure with a ramen structure with columns, beams, floors, walls, etc., with 2 floors underground and 9 floors above ground. As shown in FIG. Thus, one of the two short sides of the rectangle is built close to one short side of the rectangular site Si. This existing building 1 was seismically diagnosed, and it was found that the long side direction of the rectangle had sufficient seismic performance, but the short side direction of the rectangle lacked seismic performance.
  In the embodiment, the existing building 1 is reinforced in the short side direction.TheAnd improve the seismic performance in the short side direction.In the embodiment, the part in the short side direction of the existing building 1 is the side part to be reinforced.
[0011]
  As shown in FIG. 1, the outer wall 5 on the short side of the ground floor of the existing building 1 has openings (windows) Wd at the same interval, and the short side of the existing building 1 at both ends in the long side direction of the existing building 1. As shown in FIG. 2, there is a considerable gap between the outer wall 5 in the side direction and the plurality of pillars 2 close to the outer wall 5 in the short side direction, and the floor 4 of each floor is also formed in the gap. Has been.
  In this embodiment, a gate-type seismic reinforcement megaframe 100 is assembled between an outer wall 5 in the short side direction on both sides of the existing building 1 and a plurality of pillars 2 close to the outer wall 5 in the short side direction. Reinforce in the short side direction.
  First, as shown in FIG. 2, the both sides of the short side direction of the floor 4 between the outer wall 5 of the short side of the third floor to the roof floor of the existing building 1 and the pillar 2 close to the outer wall 5 were approached. PartIn the short side directionEach elongated and substantially rectangular temporary opening 4a is opened. The temporary opening 4a is sized so that the seismic reinforcing vertical mega frame constituting the reinforcing vertical frame can pass therethrough.
[0012]
  Reinforce the necessary part of the building frame below the beam 2 that supports the floor on the second floor above the short side of the existing building 1. For example, reinforcement is performed as described below.
  As shown in FIG. 3, the seismic reinforcement part 1B5A is formed of reinforced concrete integrally with the wall 5A on the first basement floor at one end A in the short side direction of the existing building 1, and the portions from both ends in the short side direction Seismic reinforcement part 1F made of reinforced concrete integrally with floor 4 on the first floor corresponding to A to B and D to E and beam 3 supporting the floor3Is provided.
  In addition, a columnar extension reinforcing portion 1F2 is formed by RC construction toward the temporary opening 4a side of the floor 4 of the first floor pillar 2 corresponding to the parts B and D in the short side direction, and the short side direction of the existing building 1 A columnar additional reinforcing portion 1F2A is provided by RC construction below the floor opening 4a integrally with the first floor wall 5A and the like of both end portions A and E. Below the portion corresponding to the opening 4a of the floor 4 on the second floor above the portions A to B and D to E from both ends in the short side direction, the upper ends of the columnar additional reinforcing portions 1F2 and 1F2A, the floor 4 and the beam 3 are provided with an additional reinforcing beam 2F3 by RC construction. In addition, an inter-column 1F2B is added between the columnar expansion reinforcement portions 1F2 and 1F2A on the ground floor corresponding to the portions A to B and D to E from both ends in the short side direction, and both ends in the short side direction with the inter-column 1F2B. A seismic wall in the short side direction is added with RC structure between the part A and E of the columnar extension reinforcement part 1F2A.
[0013]
The structure of the seismic damping reinforcement frame 10A, which is a constituent part of the seismic damping vertical megaframes 50A and 50B of the portal seismic reinforcement megaframe 100 of the embodiment, will be described.
On the upper side from the left and right ends of the steel H-shaped cross-section beam 21 constituting the horizontal member, steel H-shaped columns 23 and 24 constituting the vertical member are set up at right angles to the beam 21. In addition, both ends of the beam 21 protrude slightly from the lower ends of the columns 23 and 24 to the left and right, and the lower ends of the columns 23 and 24 are connected to the upper flange 21a of the beam 21.1And butt weld. On the upper side of the upper ends of the columns 23 and 24, the steel H-shaped cross-section beam 22 constituting the transverse member is perpendicular to the columns 23 and 24, and both ends of the beam 22 are left and right from the upper ends of the columns 23 and 24. The upper ends of the columns 23 and 24 are made to protrude slightly and the lower flange 22a of the beam 222The rectangular frame 20 is formed by butt welding.
The beams 21 and 22 and the columns 23 and 24 are made of steel stiffener 21c between the flanges on both sides of the necessary portions.1~ 21cFour, 22c1~ 22cFour, 23c1, 23c224c1, 24c2Reinforce by welding. In addition, as the beams 21 and 22 and the columns 23 and 24, for example, those made of steel materials having an H-shaped cross section having the same flange width and the same width are used.
[0014]
  As shown in FIGS. 4 to 6, the connecting body 30 is substantially the same as the flange width of the beams 21 and 22 and the pillars 23 and 24 on the five sides 31 a to 31 e of the steel pentagonal web plate 31, or A flat flange plate 32a, a flange plate 32b, a flange-shaped flange plate 32cd, and a flat flange plate 32e made of steel having a slightly narrower width are welded, and stiffeners 33 arranged on both sides of the center of the web plate 31 are provided. The connecting body 30 is completed by welding to the web plate 31 and the flange plates 32a and 32cd.
  As shown in FIG. 4, the pair of braces 36, 36 have the same configuration, and a steel flange 36a on the upper and lower sides of a steel web 36b extending in an oblique direction.136a2It is manufactured by welding. The lower part of the web 36b of the braces 36, 36 is wide, and the lower part of the braces 36, 36 is the rectangular frame 20.Bottom cornerThe upper ends of the braces 36, 36 are welded to the lower surface of the flange plate 32a of the coupling body 30.
[0015]
  As shown in FIG. 4, the main body of the pair of braces 37, 37 has the same configuration, and is entirely made of extremely low yield point steel. The upper side and the lower side of a plate-like web 37b extending in an oblique direction are flanges 37a.137a2It is manufactured by welding.
  Examples of the ultra low yield point steel include C of 0.02% or less, Si of 0.02% or less, Mn of 0.20% or less, P of 0.030% or less, and S of 0.015% or less. Steel with a yield point or 0.2% yield strength of 70-120 N / mm2, Tensile strength is 200-280 N / mm2In addition, a material having an extension of 50% or more [for example, RIVER FLEX100 (RF100) manufactured by Kawasaki Steel Corporation] is used.
  As shown in FIGS. 4 and 5, the main body of the braces 37, 37 that bear the axial force is covered with a tubular body 38 having a rectangular cross section made of steel with a small gap c on the outside. Is fastened to the brace 37 at least at one place, for example, with a bolt 39 penetrating the web 37b of the brace 37 and the like. Collars 38 a are formed at both ends of the tubular body 38.
  Figure42, the lower ends of the braces 37 are welded to the upper inclined surface of the flange-shaped flange plate 32 cd of the coupling body 30. The web 36b of the braces 37, 37 is wide at the top, and the top of the braces 37, 37 isUpper cornerThe vibration control frame 10A is completed.
  In addition, as steel used for manufacture of said rectangular frame 20, the coupling body 30, the brace 36, and the pipe body 38, general rolled steel materials for welded structures (for example, JIS G 3106) and general rolled steel materials (SS400) are used. This steel material has a yield point or yield strength of 230 to 350 N / mm.2, Tensile strength is 400-600N / mm2Degree.
[0016]
4A, the center 30c of the connecting body 30 that is the intersection of the two pairs of braces 36, 36, 37, and 37 is offset above the center 20c of the rectangular frame 20, and the brace The pair of braces 37, 37 on the upper side where the distance between the intersection of the brace and the transverse member is narrow are made of extremely low yield point steel, and the distance between the intersection of the brace and the transverse member is It is shorter than the pair of braces 36, 36 on the lower side which is wide. In the seismic reinforced frame 10A shown in FIG. 4, the entire pair of braces 37, 37 are made of extremely low yield point steel. The part of the central part excluding the upper part and the lower part of the brace is made of extremely low yield point steel, and the upper part and the lower part are made of general rolled steel for welded structure or structural rolled steel. Good.
[0017]
Since the pair of braces 36, 36 of the seismic retrofitting frame 10A are made of a steel material having a high yield point, which is usually used for building construction as described above, and have sufficient rigidity and strength, braces during an earthquake The horizontal movement of the intersection of 36 and 36 (the center of the coupling body 30) is small. On the other hand, the pair of braces 37, 37 of the vibration-damping reinforcement frame 10A are made of low yield point steel and have a low yield point and low proof stress, so that they are easily deformed. Further, since the pair of braces 37, 37 have a small inclination angle with respect to the horizontal plane, the horizontal component of the brace 37 acting on the vibration control reinforcement frame 10A during an earthquake (ie, the axial force) increases, and the earthquake occurs. The rigidity of the brace 37 at the time is also increased. In addition, since the length of the brace 37 is shorter than that of the brace 36, the amount of deformation of the brace 37 is increased, and the seismic reinforcement frame 10A can be expected to absorb the history of seismic energy from small deformations during earthquakes. Is big.
[0018]
As shown in FIGS. 4 and 20, a steel mounting piece 25 is fixed to the lower surface of the center of the upper beam 22 of the rectangular frame 20 of the vibration damping reinforcement frame 10 </ b> A by welding, and is connected to the center of the upper surface of the coupling body 30. The steel mounting piece 35 is fixed by welding, and the upper part of the bundle member 41 having a substantially H-shaped cross section is fixed to the attachment piece 25 with bolts and nuts, and the lower part of the bundle member 41 is fixed to the bolts and nuts. To fix to the mounting piece 35.
A gusset G in which a holding plate 42 is fixed to the lower side of the floor 4 of the existing building 1 with planting bolts and nuts bn, and one end of the holding plate 42 is fixed to the beam 3 on the upper side of the bundle 41 by welding.1A gusset G in which the lower part of the steel out-of-plane buckling prevention body 40 fixed with bolts and nuts is fixed to the beam 3 side of the part slightly below the center of the bundle 41 by welding.2The gusset G is secured to the beam 3 side portion of the holding plate 42 by welding with the bolt and nut fixed toThreeSecure with bolts and nuts. If it does so, it will become difficult to displace the connection body 30 grade | etc., To the direction orthogonal to the surface containing the rectangular frame 20, and the movement to the out-plane of the intersection of the braces 36 and 37 at the time of an earthquake can be prevented now.
It should be noted that ribs 36 and 37 where the large stress is likely to act are reinforced by providing ribs as necessary. For example, as shown in FIG. 8, ribs Rb are arranged on both sides of the webs 36b, 37b of the bent portions of the braces 36, 37, and the ribs Rb are welded to the web and the flange.
[0019]
  ControlReinforcementWhen the vertical vibration control megaframe is formed by connecting the frames 10A in the vertical direction, it is necessary to divide them so that the vibration control reinforcement frames 10A can be easily connected. For example, as shown in FIG. 9, a structure in which the pillars 23 and 24 and the braces 36 and 36 are divided at 1/3 to ¼ of the rectangular frame 20 is used as the first divided frame 10A.1To produce as.
  In addition, as shown in FIGS.1Steel reinforcing portions 21A and 21B having an H-shaped cross section are welded to a portion corresponding to the lower end of the column 24 of the beam 21 of the rectangular frame 20 of the rectangular frame 20 so as to divide the frame 10A.1The rectangular frame 20 can be firmly fixed to the additional reinforcing beam 2F3 added to the existing building.
  Also,As shown in FIG.The above-mentioned divided frame 10A from the seismic reinforcement frame 10A1The lower divided pillars 23A and 24A corresponding to the lower divided parts of the pillars 23 and 24 are welded to the upper side of both ends of the upper beam 22, and the braces 36 and 36 are divided. The lower divided braces 36A and 36A corresponding to the lower part are welded at the upper ends of both ends of the upper beam 22 and inside the lower ends of the welded lower divided pillars 23A and 24A, so that the second divided frame 10A.2Is produced.
[0020]
Furthermore, as shown in FIG.2From which the lower divided pillars 23A and 24A, the lower divided braces 36A and 36A and the upper beam 22 are removed (that is, the divided upper upper divided pillars 23B and 24B and braces 37 and 37, the connecting body 30 and the upper divided parts). The upper end of the brace 36B, 36B) is welded to the lower surface of the hat beam 60 to provide a third divided frame 10A.ThreeIs produced.
As shown in FIG. 10, FIG. 11 and FIG. 18, the hat beam 60 is made of a long steel made of upper and lower steels slightly wider than the width of the flanges of the columns 23 and 24 of the vibration control reinforcement frame 10A. Plate 60a1, 60a2A long steel plate 60b on the left and right sides of about half the floor height of an existing building.1, 60b2The plate 60b1, 60b2The upper and lower ends of the plate 60a1, 60a2This is a box-type beam having a rectangular cross section welded to the substrate. As the hat beam 60, a beam other than the box-type beam can be used.
The hat beam 60 has an H-shaped steel 9 cross section below the portion corresponding to the pillar 2 of the existing building 1 in the middle between the seismic reinforcement vertical megaframes at both ends and the center of the hat beam 60. The upper end 61c of the bundle member 61 having the same length as the floor height dimension is fixed by welding. Then, the divided frame 10A on the upper part of each seismic reinforcement vertical megaframe of the hat beam 60ThreeThe portions corresponding to the upper divided pillars 23B and 24B and the portion corresponding to the bundle member 61 are reinforced by the stiffener 60c.
[0021]
In this embodiment, one first divided frame 10A.1And 8 second divided frames 10A2And one third divided frame 10AThreeAre connected in a vertical direction to construct seismic control vertical megaframes 50A and 50B shown in FIG.
The divided frame positioned at the lowermost part of the seismic reinforcement vertical megaframes 50A and 50B is referred to as the first divided frame 10A.1One second divided frame 10A at the upper end of the frame2The divided frame that is configured by connecting the lower ends of the frame and positioned in the middle part of the vertical vibration control megaframes 50A and 50B is one second divided frame 10A.2The other upper part of the second divided frame 10A2The divided frame that is constructed by connecting the lower ends of the two frames and is positioned at the uppermost part of the seismic reinforcement vertical megaframes 50A and 50B is provided as one third divided frame 10A.ThreeAnother second divided frame 10A at the lower end of the frame2It is also possible to connect the top ends of the two.
[0022]
  Each divided frame 10A1, 10A2, 10A3The figure9As shown in these pillars to be connected23A, 23B, 24A, 24BEnd webInA plurality of bolt holes are drilled and braces to be connected to them.36A, 36BEnd webInA splicing plate Sp as shown in FIG. 10 in which a plurality of bolt holes are drilled and bolt holes are drilled in portions corresponding to the respective bolt holes,Pillars and bracesThe splicing plate Sp,Pillars and bracesBolts are inserted into the bolt holes of the web, nuts are screwed into the threaded portions of the bolts, they are spliced together, and then the parts to be joined are joined together by butt welding.
[0023]
A method of forming the seismic reinforcement vertical megaframes 50A and 50B and a method of joining the seismic reinforcement vertical megaframe to the existing building 1 will be described.
First divided frame 10A1Are lifted with a crane and placed on the floor 4 on the second floor of the existing building 1 below the opening 4a from the opening 4a on the floor 4 on the roof floor of the existing building 1 through the temporary opening 4a on the floor 4 on each floor. .
As shown in FIGS. 12 to 14, an additional reinforcing beam 2F3 is provided on the lower side of the floor 4, and the first divided frame 10A is provided.1The additional reinforcement beam 2F3 corresponding to the bolt holes of the beams 21 of the rectangular frame 20 and the reinforcements 21A and 21B thereof, and the floor 4 on the upper side thereof are provided with bolt holes. Bolts B made of PC steel rods in the bolt holes of the flanges of the portions 21A and 21B, the reinforcing beam 2F3 and the bolt holes of the floor 4 respectively.1Through the bolt B1Apply tension to both ends of the bolt B1Nut N1Is screwed into the first divided frame 10A1Are fixed to the floor 4 and the extension reinforcing beam 2F3 provided integrally with the existing building.
The lowermost divided frame 10A1The lower flange 21a of the beam 21 of the rectangular frame 202Is fixed to the floor 4. For example, as shown in FIG.2A number of bolts B planted at intervals on the floor 42, The flange 21a2Each bolt B is passed through the bolt hole drilled in2Nut N2Screw in and fix.
[0024]
Second divided frame 10A1Is lifted by a crane and installed on the second floor of the existing building 1 from the opening 4a of the floor 4 of the existing building 1 through the opening 4a of the floor 4 of each floor.1The first divided frame 10A1The upper ends of the divided pillars 23A, 24A and the divided braces 36A, and the second divided frame 10A.2The lower ends of the upper divided pillars 23B and 24B and the lower ends of the upper divided braces 36B and 36B are joined together. Similarly, from the roof floor of the existing building 1 through the opening 4a of the floor 4 of each floor, the second divided frame 10A.2Divided frame 10A on the second to third floors of the existing building 12The upper divided frame 10A2Lower divided pillars 23A, 24A and lower divided braces 36A, and upper divided frame 10A2The upper divided pillars 23B, 24B and the lower ends of the upper divided braces 36B are joined to the attached plate.
In the same manner, further upward five second divided frames 10A2Will be located on the 9th floor. Next, the third divided frame 10AThreeIs lifted with a crane, and the third divided frame 10AThreeThe braces 37, 37, the connecting body 30, the upper divided braces 36B, 36B and the upper divided pillars 23B, 24B are inserted into the ninth floor from the opening 4a of the floor 4 on the roof floor, and the second divided frame 10A located at the top.2The upper ends of the lower divided pillars 23A, 24A and the lower divided brace 36A, and the divided frame 10AThreeThe upper divided pillars 23B and 24B and the lower ends of the upper divided braces 36B and 36B are joined together.
Each portion where the splicing plate is joined is joined integrally by butt welding sequentially after splicing the splicing plate.
[0025]
Split frame 10AThreeIs the uppermost divided frame 10A in a state where the hat beam 60 is not joined.2The lower divided pillars 23A and 24A are joined to the upper ends of the upper divided pillars 23B and 24B, and the uppermost divided frame 10A is joined.2A lower plate of upper divided braces 36B and 36B to which braces 37 and 37 are coupled via a connecting body 30 is spliced to the upper end of lower divided brace 36A, and then upper divided pillars 23B and 24B and braces 37, The upper end of 37 is the lower plate body 60a of the hat beam 60.2The upper end of the bundle member 41 joined to the lower surface of the steel plate by welding and connected to the lower portion of the out-of-plane buckling prevention body 40 is connected to the plate 60a.2The uppermost seismic reinforcement frame 10A may be configured to be fixed to the upper part.
In each of the seismic reinforcement frames 10A provided in the vertical direction of the seismic reinforcement vertical megaframes 50A and 50A, the upper beam of the rectangular frame 20 of the lower seismic reinforcement frame 10A is the upper seismic reinforcement frame. It becomes a lower beam of the rectangular frame 20 of 10A.
[0026]
Next, how to attach the rectangular frame 20 of each seismic reinforcement frame 10A to an existing building will be described.
The lower flange 21a of the beams 21 and 22 of the rectangular frame 20 of each seismic control frame 10A2, 22a2And the lower plate 60a of the hat beam 602Is fixed to the RC floor 4 of the existing building underneath, for example, as shown in FIG. 14, FIG. 15 and FIG.2, 22a2And plate 60a2Stud with a large diameter part at the tip on the lower surface (referred to as stud with head) Sd1Are installed by welding with a large number of intervals, and each stud Sd1Is located in the opening 4a of the floor 4 in which the rectangular frame 20 is inserted, and a plurality of reinforcing bars Rh which are fixed with an adhesive by inserting one end into a horizontal hole drilled in a concrete portion around the opening 4a.1Are arranged in a lattice pattern along the surface in the opening 4a of the floor, and then concrete is put into the opening 4a to fix each rectangular frame 20 to the floor 4 of the existing building 1.
[0027]
When fixing to the inner surface of the RC outer wall 5 of the existing building facing the webs 23b, 24b of the pillars 23, 24 of the rectangular frame 20 of each seismic reinforcement frame 10A, for example, as shown in FIG. A large number of studs Sd with heads on the surface of the web 23b, 24b on the outer wall 5 side.2Are installed by welding at intervals, protruded from the inner surface of the outer wall 5 facing each of the webs 23b, 24b, and the base end thereof is inserted into a hole drilled in the concrete portion of the wall 5 and bonded. Studs Sd with many heads on the outer wall 5ThreeA plurality of reinforcing bars Rv extending in the vertical direction of the outer wall 5 with a gap in the gap between the webs 23b, 24b and the wall 52And each rebar Rv2Hoop-shaped rebar Rh with a space in the vertical direction around the circumference2Then, concrete is post-placed in the gap, and the columns 23 and 24 of the rectangular frame 20 are fixed to the wall 5 of the existing building 1.
[0028]
The flanges 23a and 24a of the pillars 23 and 24 of the rectangular frame 20 of each seismic reinforcement frame 10A are solidified on the RC outer wall 5A of the existing building facing this, and the webs 23b and 24b of the pillars 23 and 24 of the rectangular frame 20 are solidified. Is fixed to the SRC column 2 of the existing building 1 facing this, for example, as shown in FIG. 17, a plurality of studs with heads on the outer wall 5A side of the flanges 23a, 24a. SdFourAre installed by welding at intervals, and a plurality of studs Sd with heads are formed on the surface of the web 23b, 24b on the pillar 2 side.FiveAre installed by welding at intervals, and protruded from the inner surface of the outer wall 5A facing the flanges 23a, 24a, and the base end thereof is inserted into a hole drilled in the concrete portion of the wall 5A and bonded. A number of studs with heads Sd fixed to the outer wall 5A6And the stud Sd is formed on the surface of the rectangular frame 20 of the column 2 on the columns 23 and 24 side.6Stud Sd with many heads in the same way as7Are planted at intervals. A plurality of reinforcing bars Rv extending in the vertical direction of the outer wall 5A in a gap between the flanges 23a, 24a and the inner surface of the wall 5A facing the flanges 23a, 24a.Three, Each rebar RvThreeHoop-shaped rebar Rh with a vertical spacing aroundThreeA plurality of reinforcing bars Rv extending in the vertical direction in parallel to the pillars 2 and the outer wall 5A in the gaps between the webs 23b, 24b and the pillars 2 of the existing building 1FourAre arranged at intervals, and each rebar RvFourHoop-shaped rebar Rh with a vertical spacing aroundFourThe two reinforcing bars Rv are spaced in the longitudinal direction of the webs 23b and 24b in a space surrounded by the webs 23b and 24b of the pillars 23 and 24 and the flanges 23a and 24a.FiveThe two rebars RvFiveReinforcing bar Rh bent in U shape on the outsideFive, Each rebar Rh bent into a U shapeFiveThe part from the free end of the hoop-shaped rebar RhFourReinforcing bars Rh crossed in a plan view and bent in a U shapeFiveAre disposed in the gap between the webs 23b and 24b of the columns 23 and 24 and the column 2 and between the flanges 23a and 24a and the outer wall 5A. Concrete is post-placed to fix the rectangular frame 20 to the pillars 23 and 24 to the wall 5A and the pillar 2 of the existing building.
It should be noted that the beams 21 and 22 of the rectangular frame 20 of the seismic retrofit frame 10A are fixed by concrete after-bonding to the RC floor 4 of the existing building and the RC 23 of the rectangular frame 20 and the RC structure of the existing building. The fixed work by post-casting concrete with the outer walls 5 and 5A and the SRC pillars 2 is sequentially performed from the lower side of each divided frame 10A.1, 10A2, 10AThreeThese are sequentially performed after the main joining by butt welding.
[0029]
When fixing the bundle material 61 of the H-shaped cross section of the hat beam 60 to the SRC column 2 of the existing building, for example, as shown in FIG. 19, the bundle material is placed on the floor 4 on the roof floor corresponding to the bundle material 61. An opening for inserting 61 is provided, and the bundle material 61 is inserted through the opening, and the lower end 61d of the bundle material 61 is fixed to the floor on the ninth floor as shown in FIG.
As shown in FIG. 19, a plurality of studs Sd with heads are formed on the portion of the web 61b of the bundle member 61 having an H-shaped cross section facing the pillar 2 and the RC outer wall 5.8Are installed by welding at intervals, protruding from the inner surface of the outer wall 5 facing each web 61b toward the web 61b side, and the base end is drilled in the concrete portion of the wall 5. A large number of studs Sd with heads on the outer wall 5 are inserted into the holes and fixed with an adhesive.ThreeA plurality of (for example, four) reinforcing bars Rv extending in the vertical direction of the outer wall 5 in the gap between the web 61b and the wall 56And each rebar Rv6Hoop-shaped rebar Rh with a vertical spacing around6Arrange many bars. Further, both ends of the bundle material 61 facing the web 61b of the bundle 61 are inserted into holes formed in the concrete portion of the pillar 2 and fixed with an adhesive, and a large number of the pillars 2 are attached. Reinforcing bar Rh bent in U-shape7Are arranged at intervals in the vertical direction of the pillar 2, and a plurality of U-shaped reinforcing bars Rh in the gap between the web 61 b and the pillar 2.7A plurality of (for example, six) reinforcing bars Rv parallel to the pillar 2 by being brought close to this inside7Arrange the bars. Further, the two reinforcing bars Rv are spaced in the longitudinal direction of the web 61b in a space surrounded by the web 61b of the bundle 61 and the pair of flanges 61a.8The two rebars Rv8Reinforcing bar Rh bent in U shape on the outside8Multiply these rebars Rh8, The part from the free end of the U-shaped rebar Rh7And in a plan view, the bars 2 and the bundle member 61 are arranged with an interval in the vertical direction. Then, concrete is post-placed in the gaps between the bundle member 61 and the outer wall 5 and between the bundle member 61 and the column 2 to fix the bundle member 61 to the column 2 and the outer wall 5 of the existing building.
[0030]
When the reinforcement frame is made into a gate shape with normal seismic reinforcement, the reinforcement strength of each floor of the seismic solid vertical frame is increased as in the prior art (1) seismic reinforcement structure, and the resulting seismic solid at both ends. In order to constrain excessive bending deformation of the vertical frame, it was necessary to provide a three-dimensional truss-type horizontal mega-couple having a thickness of about one floor height at the top of the existing building. However, as in the embodiment, the gate-type seismic reinforcement megaframe 100 in which the upper parts of the seismic reinforcement vertical megaframes 50A and 50B at both ends are connected by the hat beam 60 is constructed inside the outer wall of the existing building, When the seismic reinforcement is performed, the brace 37 made of extremely low yield point steel provided in the rectangular frame 20 of the seismic reinforcement frame 10A constituting each floor of the seismic reinforcement vertical megaframes 50A and 50B is plastically deformed (yield) at an early stage. Therefore, the reinforcement strength of each floor of the seismic vertical megaframe does not increase as in the case of the above-mentioned seismic reinforcement, and the bending deformation of the seismic reinforcement vertical megaframes at both ends caused by this is also the case of the above-mentioned seismic reinforcement. Therefore, the top restraint of the seismic reinforcement vertical megaframe should be covered by a hat beam 60 with a certain degree of rigidity (for example, a box beam with a height of about one half of the floor height). It can be.
In addition, the hat beam 60 is fixed to the pillar 2 and the outer wall 5 on the ninth floor of the existing building 1 between the seismic reinforcement reinforcing vertical megaframes 50 </ b> A and 50 </ b> B and the central portion of the hat beam 60. Then, since the hat beam 60 of the gate-type seismic control megaframe 100 is firmly integrated into the existing building 1, the top of the seismic reinforcement reinforced vertical megaframe can be reliably secured without using an excessively rigid hat beam 60. Can be restrained.
[0031]
  The structure of another seismic retrofit frame 10B, which is a constituent part of the vertical seismic control megaframe 100 of the portal seismic control megaframe 100,Using FIG. 21 and FIG.,explain.
  The rectangular frame 70 of the damping control frame 10B is made of steel H-shaped cross-section beams 71 and 72 constituting a pair of transverse members and steel H-shaped cross-section columns 73 and 74 constituting a pair of vertical members. And is manufactured by the same method as the manufacturing method of the rectangular frame 20 of the vibration-damping reinforcement frame 10A.
  The rectangular frame 20 has steel stiffeners 71c at the necessary portions of the beams 71 and 72 and the columns 73 and 74.1~ 71c472c1~ 72c573c174c1Etc. to be reinforced.
  In addition, as the beams 71 and 72 and the columns 73 and 74, for example, those made of a steel material having an H-shaped cross section having the same flange width and the same width are used.
[0032]
  The seismic retrofitting frame 10B is obtained by inverting a pair of braces 75, 75 in which a portion of a predetermined length at the center of the member is made of extremely low yield point steel and the other portion is made of normal steel in a rectangular frame 70. Arranged in a V shape, the lower part of each brace 75 is fixed to the lower corner part 70a of the opening, and the upper part of each brace 75 is fixed to the lateral member on the upper side of the opening substantially below the center.
  A pair of braces 75, 75 are shown in FIG.1As shown in FIG. 5, the upper part 75A, the intermediate part 75B, and the lower part 75C have the same structure.
  The upper portion 75A and the lower portion 75C are a tubular body 75A having a square cross section made of ordinary steel.1, 75C1A quadrilateral tubular body 75A1, 75C1A V-shaped tip portion 75A having both ends of one end thereof cut at a plane inclined with respect to the longitudinal direction and the tip at a right angle2, 75C2And a quadrangular tubular body 75A.1, 75C1The other end of the flange 75A3, 75C3Is provided.
[0033]
The intermediate portion 75B is a tubular body 75B having a quadrangular cross section made of extremely low yield point steel.1Made of steel, tube body 75B of ultra-low yield point steel1Flange 75B at both ends2, 75BThreeIs provided. Tube part 75B of intermediate part 75B1A stiffener 75D having an H-shaped cross section made of normal steel slightly longer than the intermediate portion 75B is inserted into the tube 75B of the intermediate portion 75B.1And the stiffener 75D are fastened to the brace 37 at least at one place by, for example, a bolt 75E penetrating the web of the H-shaped stiffener 75D.
Incidentally, a stiffener 75D and a tubular body 75A having an H-shaped cross section.1, 75B1, 75C1The size of the stiffener 75D is determined so that a small gap is formed between the two.
Each brace 75 has a flange 75A on the upper portion 75A.ThreeAnd flange 75B of intermediate part 75B2Are fixed with bolts and nuts, and flange 75B of intermediate portion 75BThreeAnd flange 75C of lower part 75CThreeAre fixed with bolts and nuts.
[0034]
A pair of braces 75 are arranged in an inverted V shape (C shape) in the rectangular frame 70, and a V-shaped tip portion 75C of the lower portion 75C of each brace 75 is provided.2Are welded to the lower corner portion 70a of the opening, and the V-shaped tip portion 75A of the upper portion 75A of each brace 75 is welded.2The flange 72a at the substantially center of the beam 72 above the opening2Welded to the lower surface of each brace and V-shaped tip 75A of each brace 752The inclined sides of the brace 75 are welded to each other, and the upper portion 75A of the brace 75 has a V-shaped tip 75A.2And flange 72a2In the vicinity of the welded portion, a V-shaped tip 75A2And V-shaped tip 75A2V-shaped tip portion 75C of the portion near the welded portion and the lower portion 75C of the brace 752And the portion near the welded portion between the beam 71 and the flanges of the columns 73 and 74 are rib Rb1~ RbFourReinforce with.
[0035]
When it is necessary to divide the seismic reinforcement frame 10B at a portion where it is easy to connect the seismic reinforcement frame 10B when the seismic reinforcement frame 10B is connected in the vertical direction to form the seismic vertical megaframes 50A and 50B, for example, Like that.
The pillars 73 and 74 are cut at 1/3 to 1/4 of the rectangular frame 70, and the flange 75C is cut.ThreeThe flange 75BThreeThe structure divided apart from the first divided frame 10B1And
Also, the seismic reinforcement frame 10B to the divided frame 10B1The split columns 73A and 74A corresponding to the vertical dimension of the divided lower portion of the columns 73 and 74 are welded to the upper side of both ends of the upper beam 72, and the brace 75 V-shaped tip 75C of lower part 75C2Is welded to the upper side of both ends of the upper beam 72 and the inner side of the lower part of the divided pillars 73A and 74A, the second divided frame 10B.2And
Furthermore, the second divided frame 10B2V-shaped tip portion 75A of the upper portion 75A connected to the upper ends of the remaining columns 73B and 74B and the intermediate portion 75B of the brace 75 except for the split columns 73A and 74A, the lower portion 75C of the brace 75 and the upper beam 72.2Is welded to the lower surface of the hat beam 60 to form the third divided frame 10B.ThreeAnd When divided in this way, one seismic reinforcement vertical megaframe 50A, 50B is converted into one first divided frame 10B.1And eight second divided frames 10B2And one third divided frame 10BThreeCan be constructed by connecting them in the vertical direction. This is only an example of how to divide the seismic reinforcing vertical megaframes 50A and 50B.
[0036]
  The structure of another seismic retrofitting frame 10C, which is a constituent part of the vertical seismic control megaframe 100Using FIG.,explain.
  The configuration of the rectangular frame 80 of the vibration control reinforcement frame 10C is the same as that of the rectangular frame 70 of the vibration control reinforcement frame 10B.
  In the rectangular frame 80, a pair of braces 85, 85 made of normal steel having an H-shaped cross section are arranged in an inverted V-shape (that is, a C-shape), and the lower portion of each brace 85 is formed as an opening. Adhering to the lower corner portion 80a, the lower flange 82a of the upper beam 82 is formed on the upper portion of each brace 85.2Are formed of normal steel disposed in the opening in parallel with each other and welded to the flat plate 86 to be connected to each other.
  The honeycomb damper 87 is manufactured by processing extremely low yield point steel into a honeycomb type panel. Lower flange 82a of upper beam 822And the flat plate 86, a honeycomb damper 87 is disposed, and the upper mounting plate 87a of the honeycomb damper 87 is connected to the lower flange 82a of the central portion of the upper beam 82.2And the lower mounting plate 87b is fixed to the upper side surface of the flat plate 86 to complete the vibration damping reinforcement frame 10C.
  The welded portion between the upper portion of the pair of braces 85, 85 and the flat plate 86, the lower portion of the brace 85 and the portion in the vicinity of the joint portion between the pillars 83, 84 and the beam 81 are provided in the rib Rb.1~ Rb4Reinforce with welding.
[0037]
For example, when it is necessary to divide the seismic reinforcement frame 10C at a portion where the seismic reinforcement frame 10C is easily connected, the seismic reinforcement frame 10C is formed by connecting the seismic reinforcement frame 10C in the vertical direction. Like that.
The pillars 83 and 84 and the braces 85 and 85 are cut at 1/3 to ¼ of the rectangular frame 80, and the lower one is the first divided frame 10C.1And
Also, the seismic reinforcement frame 10C to the divided frame 10C1The divided pillars 83A and 84A corresponding to the vertical dimension of the divided lower part of the pillars 83 and 84 are welded to the upper side of both ends of the upper beam 82, and the braces 85 and 85 are removed. The second divided frame 10C is manufactured by welding the divided braces 85A and 85A corresponding to the vertical dimension of the divided lower portion of the upper beam 82 to the corners 80a at both ends of the upper beam 82.2And Furthermore, divided frame 10C2The remaining pillars 83B and 84B excluding the pillars 83A and 84A, the braces 85A and 85A, and the beam 82, the upper part 85B of the brace 85, the flat plate 86, and the honeycomb damper 87 are the plate 61a below the hat beam 60.2What was manufactured by welding to the lower surface of the third divided frame 10CThreeAnd
When divided as described above, one seismic reinforcement vertical megaframe 50A, 50B is converted into one first divided frame 10C.1And 8 second divided frames 10C2And one third divided frame 10CThreeCan be constructed by connecting them in the vertical direction. This is only an example of how to divide the seismic reinforcing vertical megaframes 50A and 50B.
[0038]
【The invention's effect】
  The present invention includes the configurations described in the claims of the claims, thereby enabling the following (a) to (H)ofThere is an effect.
(A) To the existing building of the invention of claim 1ReinforcementAssembling method of the frame is pillar, beam, floor,OutsideReinforce existing multi-layered buildings with wallsNeighborhoodportionOf the side portion of the outer wall of the side portionReinforcementKiThe same number of floorsWith a rectangular frameTo the existing building, a reinforced vertical frame made by connecting the reinforcing frames in the vertical direction and connecting them together is fixed to the existing building.ReinforcementIn the frame assembly method,Of many floors to be reinforcedFrom the bottom floorThe floor inside the outer wall near the ends of the side part to be reinforced from the upper floor to the roof floor.Large enough to pass the reinforcing vertical frame through the partElongated in the side directionA temporary opening is provided, and a divided frame formed by dividing the reinforcing vertical frame into a plurality of parts is formed in advance, and the divided frame corresponding to the lowermost part of the reinforcing vertical frame is lifted to be reinforced through the temporary openings.NeighborhoodPart of the bottom floorExistingbuildingofPlace it on the bottom and put it in the buildingofThe lower part is fixed to the lower part, the upper part of the lower part of the divided part is lifted andofPlace on the lower divided frame through the temporary opening, join the divided frames,ofSplit frameIt consists of a plurality of divided frames joined in series in the vertical direction.Assemble the reinforcing vertical frameSince the temporary opening is filled with post-cast concrete and the reinforcing vertical frame and the existing building are coupled, the following effects (1) to (3) are obtained.
(1)Installation space required for reinforcement workThe, Around the bottom of the existing building, corresponding to the bottom of the reinforced vertical frame,That is, the periphery of the floor portion on the inner side of the outer wall close to both ends in the side direction of the lowermost floor of the side portion to be reinforced,And around the temporary opening provided in the portion corresponding to the installation portion of the reinforcing vertical frame on the floor of each floor above the lowest floor of a number of floors to be reinforced,That is, around the temporary opening provided on the floor on the inner side of the outer wall near the both ends in the side direction of each floor from the floor one floor above the lowest floor of the side to be reinforced to the rooftop floorCan be limited to a narrow range ofThe
(2)Reinforcement work for existing buildingsFor the original use of buildingsCan be installed while usingThe
(3)Divided frameTheHoistAt highLift it upAnd then suspend it through a temporary opening toIt can be installed at a predetermined position, and the workability of the reinforcement work is good.
[0039]
(B) To the existing building of the invention of claim 2ReinforcementAssembling method of the frame is pillar, beam, floor,OutsideReinforce existing multi-layered buildings with wallsNeighborhoodportionofInside the outer wallLocations near both ends of the sideIn addition,RespectivelyArranged parallel to the outer wallOf the side partThe number of floors to be reinforcedWith a rectangular frameConnect the reinforcing frames vertically and connect them together.RuFasten reinforced vertical frame to existing buildingThen, both ends of the hat beam arranged on the rooftop floor are joined to the upper ends of a pair of reinforcing vertical frames to form a portal reinforcing frame, and the portal reinforcing frame is connected to an existing building.In the assembly method of assembly,Of many floors to be reinforcedFrom the bottom floorClose to both ends of the side part to be reinforced from the upper floor to the rooftop floorOf the inner floor of the outer wallPartLarge enough to pass through the reinforced vertical frameElongated in the side directionA temporary frame is provided, a divided frame formed by dividing the reinforcing vertical frame into a plurality of parts is formed in advance, and the divided frame corresponding to the lowermost part of the reinforcing vertical frame is lifted toEachShould be reinforced through a temporary openingNeighborhoodPart of the bottom floorExistingbuildingofPlace it on the bottom and put it in the buildingofAdhering to the lower part, above that of the divided frame placed at the lowermost partShould be installed inLift the divided frameofThrough the temporary opening to the bottomArrangedPlace them on the split frame, join the split frames together,ofSplit frameIn the vertical directionAssemble and reinforce vertical frameThe temporary opening is filled with post-cast concrete, and the gate-type reinforcement frame consisting of a pair of reinforcing vertical frames and a hat beam is joined to the existing building.To the above (a)(1) to (3)In addition to being effective, the followingThe effects (4) and (5) are achieved.
(4) The top of the reinforcing vertical frame can be restrained by the hat beam of the portal reinforcing frame. Also,Should be reinforcedSideExternal wallNearbyEven if the site outside the existing building is narrow,Because the hat beam is placed on the floor of the rooftop of the existing building,The existing building can be reinforced with a portal reinforcement frame with good workability.
(5)A pair of reinforced vertical framesSide to be reinforcedInside the outer wall of the partLocations near both ends of the sideAssembled into theSimply connect the two ends of the hat beam on the rooftop floor of the existing building to the upper end of a pair of reinforcing vertical frames to form a gate-type reinforcing frame.Can be reinforcedTheAdverse effects on the use of existing buildings during reinforcement workAlsoIt can be minimized.
[0040]
(C) To the existing building of the invention of claim 3ReinforcementHow to assemble the frameIt has a rectangular frame that forms a reinforced vertical frame joined together in a vertical directionThe reinforcing frame can absorb the seismic force due to the deformation of the rectangular frame at the time of earthquake by arranging the damping member in the rectangular frame formed by connecting the vertical member made of steel and the horizontal member made of steel in a rectangular shape. So that the damping member is a rectangular frameInsideBecause it is a seismic retrofit frame installed inIn addition to the effects (1) to (3) or (1) to (5), the following effect (6) is achieved.
(6)The seismic control member provided in the rectangular frame is activated by the deformation of the rectangular frame of each seismic reinforcement frame of the reinforcing vertical frame at the time of earthquake, and the seismic force acting on the existing building can be absorbed and the seismic force acting on the existing building can be reduced. .
(D) Claim 4The method of assembling the reinforcing frame to the existing building of the inventionReinforce the lower part of the existing building corresponding to the lower part of the reinforcing vertical frame with an additional reinforcing part that is integrated with the existing building.Thus, in addition to the effects (1) to (3) or (1) to (5), the following effect (7) is obtained.
(7) Inside the existing buildingThe lower part of the existing building corresponding to the lower part of the reinforcing vertical frame is strengthened, and the lower part of the reinforcing vertical frame isBottom ofCan be firmly joined to each other using a reinforced vertical frameAn existing buildingReinforcement eliminates the risk of damage to other parts of the existing building during an earthquake.
[0041]
(HoClaim5To the existing building of the inventionReinforcementThe method of assembling the frame should reinforce the existing buildingNeighborhoodPartialShould be reinforcedThe same number of floorsWith a rectangular frameA divided frame formed by dividing a reinforcing vertical frame, which is formed by connecting the reinforcing frames in the vertical direction and integrally joining, is divided at a middle portion of the vertical members of the rectangular frame of the reinforcing frame, and At least one of the transverse members of the rectangular frame is providedIn addition to the effects (1) to (3) or (1) to (5), the following effect (8) is produced.
(8)The joint portion does not concentrate in the vicinity of the joint portion between the vertical member and the transverse member of the rectangular frame of the reinforcing frame,Lift the divided frame and perform through the temporary openingExisting buildingInsidePlacement is easy, and workability is also good.
[0042]
(FClaim6To the existing building of the inventionReinforcementThe method of assembling the frame should reinforce the existing buildingNeighborhoodThe same number of floorsConsists of a rectangular frameThe horizontal member above the rectangular frame of the reinforcing frame is the corresponding part of the hat beam, although it is located at the uppermost part of the divided frame formed by dividing the reinforcing frame integrally connected in the vertical direction. It is configuredFrom the above, in addition to the effects (1) to (5), the following effect (9) is achieved..
(9)The number of members is reduced, and the portal reinforcing frame can be constructed with good workability.
(G) The method of assembling the reinforcing frame to the existing building according to the invention of claim 7 is that the hat beam between a pair of reinforcing vertical frames of the gate-type reinforcing frame coupled to the existing building has a plurality of existing locations. Since it adheres to the building, in addition to the effects (1) to (5) and (9), the following effect (10) is achieved.
(10) Since the hat beam between a pair of reinforcing vertical frames is fixed to the existing building at a plurality of locations and connected to the existing building, the vertical reinforcing beam can be used without using an excessively rigid hat beam. The top of the frame can be securely restrained.
[0043]
(H) In the method for assembling the reinforcing frame to the existing building of the invention of claim 8, the reinforcing frame having a rectangular frame which is a constituent part of the reinforcing vertical frame is provided on the lower side of one horizontal member of the rectangular frame. It is manufactured so that the distance between the surface and the lower surface of the other transverse member coincides with the height of each floor to be reinforced in the existing building. Are assembled so that the horizontal members of the rectangular frame of each reinforcing frame are positioned on the floor or under the floor of the existing building, and concrete is put into the temporary opening to post-rectify the rectangular frame. Since the horizontal member is fixed to the floor of the existing building, the following effect (11) is obtained in addition to the effects (1) to (10)..
(11) By simply placing concrete in the temporary opening used for assembling the reinforcing vertical frame to the existing building, the horizontal members of the rectangular frame of each reinforcing frame of the reinforcing vertical frame can be applied to the floor of the existing building with good workability. It can be fixed.
[Brief description of the drawings]
FIG. 1 is a front view of a portion to be reinforced in an existing building according to an embodiment.
FIG. 2 is a plan view of the standard floor (2nd to 9th floors) of the existing building to be reinforced in the embodiment
FIG. 3 is a front view showing the basement, the first and second floors from the inside of the existing building to be reinforced in the embodiment, and an additional portion for reinforcement.
FIG. 4 is a front view of a seismic reinforcement frame that is a constituent part of the vertical seismic reinforcement megaframe of the embodiment.
FIG. 5 is a front view of the connection body of the seismic reinforcement frame shown in FIG.
6 is a side view of the connector shown in FIG.
7 is a cross-sectional view taken along line AA of the brace made of the ultra-low yield point steel shown in FIG.
FIG. 8 is a cross-sectional view of a reinforcing portion by a rib of a brace of an embodiment
FIG. 9 is a front view showing an example of a method of dividing a seismic control frame constituting the seismic control reinforcement vertical megaframe of the embodiment.
FIG. 10 is a front view showing the relationship between the seismic reinforcement vertical megaframe and the hat beam according to the embodiment.
FIG. 11 is a front view showing the relationship between the portal-type seismic reinforcement megaframe of the embodiment and the existing building.
12 is a front view of a cross-section taken along the line BB in FIG.
13 is a plan view of the seismic retrofit frame that forms the lower part of the seismic retrofit vertical megaframe of the embodiment taken along line CC in FIG. 14;
14 is a side view of the seismic retrofit frame that forms the lower part of the seismic retrofit vertical megaframe shown in FIG. 13 taken along the line DD in FIG. 13;
FIG. 15 is a longitudinal sectional view showing the relationship between the upper beam of the seismic reinforcement frame of the embodiment and the floor of an existing building, etc.
FIG. 16 is a cross-sectional view showing the relationship between the columns of the seismic reinforcement frame of the embodiment and the outer walls of the existing building, etc.
FIG. 17 is a longitudinal sectional view showing the relationship between the outer walls and columns of the existing building of the example and the columns of the seismic reinforcement frame.
FIG. 18 is a longitudinal sectional view showing the relationship between the connection between the upper end of the seismic reinforcement reinforcing vertical megaframe of the embodiment and the hat beam and the floor on the roof of the existing building.
FIG. 19 is a plan view of a cross section taken along the line EE in FIG. 10 of the attachment portion of the hat beam bundle material of the embodiment to the pillar and outer wall on the ninth floor of the existing building.
FIG. 20 is a longitudinal sectional view showing the configuration of the out-of-plane buckling prevention body of the seismic reinforcement frame according to the embodiment and the relationship with an existing building.
FIG. 21 is a front view of another seismic reinforcement frame according to the embodiment.
22 is a cross-sectional view of the brace shown in FIG. 22 taken along the line FF.
FIG. 23 is a front view of a vibration control frame using the honeycomb damper of the embodiment.
[Explanation of symbols]
1 Existing building
2 pillars
3 beams
4 floors
4a Temporary opening
5,5A outer wall
10A, 10B, 10C Seismic control frame
10A1-10AThree, 10B110B2, 10C110C2 Divided frame
20, 70, 80 rectangular frame
20c Center of the rectangular frame
21, 22, 71, 72 beams
23, 24, 73, 74 pillars
30 linked body
30c Center of connection (brace intersection)
31 Web
32a to 32e Flange
36, 37 braces
38 tubes
40 Anti-buckling body
41 Bundles
50A, 50B Seismic reinforcement vertical megaframe
60 Hat Beam
61 Bundles
75,85 braces
86 flat plate
87 Honeycomb damper
100 Gate-type seismic reinforcement megaframe
2F3 additional reinforcement beam
Wd window

Claims (8)

柱、梁、床、壁等を備えた多層の既存建物の補強すべき部分の外壁の内側の前記辺方向の両端に寄った個所に、前記辺部分の補強すべ階数と同数の矩形枠を備えた補強架構を縦方向に連ねて一体に結合してなる補強縦フレームを既存建物に固着して組み付ける既存建物への補強フレームの組付方法において、補強すべき多数の階の最下階より一つ上の階から屋上階に亘る前記補強すべき辺部分の両端に寄った外壁の内側の床の部分に補強縦フレームを通し得る大きさの前記辺方向に細長い仮設開口を設け、前記補強縦フレームを複数に分割してなる分割架構を予め形成しておき、補強縦フレームの最下部に対応する分割架構を吊り上げて前記の各仮設開口を通して前記補強すべき部分の最下階の既存建物下部上に配置し、それを前記建物下部に固着し、前記最下部の分割架構のその上に配置すべき分割架構を吊り上げて前記仮設開口を通して前記最下部の分割架構上に配置し、分割架構同士を接合し、同様のやり方にて複数分割架構を縦方向に連ねて接合して複数の分割架構からなる補強縦フレームを組み付け、前記仮設開口を後打ちコンクリートで埋め、補強縦フレームと既存建物とを結合させることを特徴とする既存建物への補強フレームの組付方法。Columns, beams, floors, the closer the points on the inside of the side opposite ends of the outer wall of an existing building reinforced side portion to be of a multilayer having an outer wall or the like,-out reinforcing all of said side portions rank as many rectangular in assembling process of the reinforcing frame to existing buildings assembled by fixing a reinforcing longitudinal frame consisting bonded integrally lined with reinforcing frames having a frame longitudinally existing buildings, a number of floors of the lowermost to be reinforced A temporary opening elongated in the direction of the side having a size that allows the reinforcing vertical frame to pass through a portion of the floor on the inner side of the outer wall close to both ends of the side portion to be reinforced from the floor one floor above the floor is provided, A divided frame formed by dividing the reinforcing vertical frame into a plurality of parts is formed in advance, the divided frame corresponding to the lowermost part of the reinforcing vertical frame is lifted, and the lowermost floor of the side portion to be reinforced is provided through the temporary openings. of was placed on the lower part of the existing building, before it Secured to the bottom of the building, wherein through said temporary opening lift divided Frames to be placed thereon at the bottom of the division Frames disposed at the bottom of the divided rack構上, joining a divided rack構同workers, like A plurality of divided frames are joined together in a vertical direction by a method, a reinforcing vertical frame composed of a plurality of divided frames is assembled , the temporary opening is filled with post-cast concrete, and the reinforcing vertical frame and the existing building are combined. A method for assembling a reinforcing frame to an existing building. 柱、梁、床、壁等を備えた多層の既存建物の補強すべき部分外壁の内側の前記辺方向の両端に寄った個所に、それぞれ前記外壁と平行に配される前記辺部分の補強すべき部分の階数と同数の矩形枠を備えた補強架構を縦方向に連ねて一体に結合してな補強縦フレームを既存建物に固着し、1対の補強縦フレームの上端に屋上階の床上に配したハットビームの両方の端部を結合して門型補強フレームとし、該門型補強フレームを既存建物へ組み付ける組付方法において、補強すべき多数の階の最下階より一つ上の階から屋上階に亘る前記補強すべき辺部分の両端に寄った外壁の内側の床の部分に補強縦フレームを通し得る大きさの前記辺方向に細長い仮設開口を設け、前記補強縦フレームを複数に分割してなる分割架構を予め形成しておき、補強縦フレームの最下部に対応する分割架構を吊り上げて前記の各仮設開口を通して前記補強すべき部分の最下階の既存建物下部上に配置し、それを前記建物下部に固着し、前記最下部に配置した分割架構のその上に設置すべき分割架構を吊り上げて前記仮設開口を通して前記最下部に配置した分割架構上に配置し、分割架構同士を接合し、同様のやり方にて複数分割架構を縦方向に連ねて接合して補強縦フレームを組み付け、前記仮設開口を後打ちコンクリートで埋め、対の補強縦フレームとハットビームからなる門型補強フレームと既存建物とを結合させることを特徴とする既存建物への補強フレームの組付方法。Columns, beams, floors, the closer the points on the inside of the side opposite ends of the outer wall of an existing building reinforced side portion to be of a multilayer having an outer wall or the like, the side portions, each disposed parallel to the outer wall binding to Na Ru reinforcing vertical frame reinforcing frames having a rank as many rectangular frame portion to be reinforced integrally lined in the longitudinal direction of the stick in existing buildings, the roof to the upper end of the reinforcement longitudinal frame pair to combine both ends of the hat beam arranged on the floor of floors and portal reinforcing frame, the assembling method of assembling a該門type reinforcing frame to existing buildings, one from the lowest floor of the number of floors to be reinforced A temporary opening elongated in the side direction is provided in a portion of the floor on the inner side of the outer wall that is closer to both ends of the side portion to be reinforced from the upper floor to the roof floor, and has a size that allows the reinforcing vertical frame to pass therethrough. A divided frame formed by dividing the frame into a plurality of parts is formed in advance. Can, by lifting the divided Frames that correspond to the bottom of the reinforcing vertical frame disposed on a lower portion of existing buildings bottom floor side portions to be the reinforcement through the temporary opening of the, fixing it to the lower part of the building The divided frame to be installed on the divided frame arranged at the lowermost part is lifted up and arranged on the divided frame arranged at the lowermost part through the temporary opening, and the divided frames are joined together. Installing set the reinforcement longitudinal frame and bonded been chosen plurality of divided frames longitudinally at, filled with post-deposited concrete the temporary opening, and existing portal reinforcing frame made of reinforced longitudinal frame and the hat beam pair building A method of assembling a reinforcing frame to an existing building, characterized in that 縦方向に連ねて一体に結合して補強縦フレームを構成する矩形粋を備えた補強架構が、鋼製の縦部材と鋼製の横部材とを矩形状に結合してなる矩形枠内に制震部材を配して、前記矩形枠の地震時の変形により地震力を吸収できるように前記制震部材を矩形枠に設けられている制震補強架構であることを特徴とする1又は2記載の既存建物への補強フレームの組付方法。 A reinforced frame with a rectangular frame that forms a reinforced vertical frame joined together in a vertical direction is confined within a rectangular frame formed by connecting a vertical steel member and a horizontal steel member into a rectangular shape. 1 or 2, wherein a seismic member is provided, and the seismic control member is a seismic reinforcing frame provided on the rectangular frame so that seismic force can be absorbed by deformation of the rectangular frame during an earthquake. Of reinforcing frame to existing building. 既存建物内の補強縦フレームの下部に対応する既存建物の下部を既存建物と一体に設けた増設補強部で補強することを特徴とする1又は2記載の既存建物への補強フレームの組付方法。 The method of assembling a reinforcing frame to an existing building according to 1 or 2, wherein the lower part of the existing building corresponding to the lower part of the reinforcing vertical frame in the existing building is reinforced by an additional reinforcing part provided integrally with the existing building . 既存建物の補強すべき部分の補強すべき階数と同数の矩形枠備えた補強架構を縦方向に連ねて一体に結合してなる補強縦フレームを複数に分割してなる分割架構が、その補強架構の矩形枠の縦部材の中間の部分で分割されていて、補強架構の矩形枠の横部材の少なくとも一つを備えていることを特徴とする請求項1又は2記載の既存建物への補強フレームの組付方法。Formed by dividing the reinforcing longitudinal frame consisting bonded integrally lined with reinforcing Frames with rank and rectangular frame of the same number to be reinforced side portions to be reinforced of existing buildings longitudinally plurality division Frames, but its reinforcement 3. The reinforcement to an existing building according to claim 1 or 2, wherein the reinforcement is divided at an intermediate portion of the vertical member of the rectangular frame of the frame, and has at least one horizontal member of the rectangular frame of the reinforcing frame. How to assemble the frame. 既存建物の補強すべき部分の補強すべき階数と同数の矩形枠を備えた補強架構を縦方向に連ねて一体に結合してなる補強縦フレームを複数に分割してなる分割架構の最上部に位置するものの補強架構の矩形枠の上側の横部材がハットビームの対応部分で構成されていることを特徴とする請求項2記載の既存建物への門型補強フレームの組付方法。Uppermost division Frames obtained by dividing the reinforcing longitudinal frame consisting bonded integrally lined with reinforcing Frames having a rank as many rectangular frame to be reinforced reinforcing side portions to be the existing building longitudinally into a plurality 3. The method for assembling a gate-type reinforcing frame to an existing building according to claim 2, wherein the lateral member on the upper side of the rectangular frame of the reinforcing frame, which is located in the upper part, is constituted by a corresponding portion of the hat beam. 既存建物に結合された門型補強フレームの1対の補強縦フレーム間のハットHat between a pair of reinforcing vertical frames of a gate-type reinforcing frame connected to an existing building ビームは、その複数の箇所を既存建物に固着することを特徴とする請求項2又は6記載の既存建物への補強フレームの組付方法。The method of assembling a reinforcing frame to an existing building according to claim 2 or 6, wherein the beam is fixed at a plurality of locations to the existing building. 補強縦フレームの構成部分となる矩形枠を備えた補強架構、その矩形枠の一方の横部材の下側の面と他方の横部材の下側の面との間の間隔が既存建物の補強すべき各階の階高寸法と一致するように製作され、前記横部材の下側又は上側には多数のシアコネクターが間隔をおいて接合されてあり、補強縦フレームをその各補強架構の矩形枠の横部材が既存建物の床上又は床下に位置するように組み付け、仮設開口内にコンクリートを後打ちして矩形枠の横部材を既存建物の床に固着することを特徴とする請求項1〜のいずれか一つの項記載の既存建物への補強フレームの組付方法。Reinforcing Frames with a rectangular frame as a constituent part of the reinforcement longitudinal frame reinforcement spacing existing buildings between the lower surface of the lower surface and the other lateral member of one of the lateral members of the rectangular frame It is manufactured so as to coincide with the floor height of each floor, and a number of shear connectors are joined to the lower or upper side of the transverse member at intervals, and the reinforcing vertical frame is a rectangular frame of each reinforcing frame. claim 1-7 lateral member of the assembly to be positioned on the floor or under the floor of an existing building, characterized by securing the transverse member of the rectangular frame and out the rear of the concrete floor of the existing building into temporary opening The method of assembling a reinforcing frame to an existing building as described in any one of the above.
JP26100598A 1998-08-31 1998-08-31 Assembly method of reinforcement frame to existing building Expired - Fee Related JP3896562B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26100598A JP3896562B2 (en) 1998-08-31 1998-08-31 Assembly method of reinforcement frame to existing building

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26100598A JP3896562B2 (en) 1998-08-31 1998-08-31 Assembly method of reinforcement frame to existing building

Publications (2)

Publication Number Publication Date
JP2000073583A JP2000073583A (en) 2000-03-07
JP3896562B2 true JP3896562B2 (en) 2007-03-22

Family

ID=17355741

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26100598A Expired - Fee Related JP3896562B2 (en) 1998-08-31 1998-08-31 Assembly method of reinforcement frame to existing building

Country Status (1)

Country Link
JP (1) JP3896562B2 (en)

Also Published As

Publication number Publication date
JP2000073583A (en) 2000-03-07

Similar Documents

Publication Publication Date Title
JP4823790B2 (en) Column unit and method of building building using column unit
JP2645365B2 (en) Beam-column joint
JP2009249851A (en) Seismic strengthening method for existing building
KR20180109766A (en) E-z connecting structure for beam and column wherein the end-moment and bending resistibility are reinforced
JP5124146B2 (en) Seismic control building
KR102217178B1 (en) Non-welding beam-to-column connection structure with reinforcing plate and through bolt
JP7228344B2 (en) Joint structure of reinforced concrete frame and brace and precast member
JP6763653B2 (en) Unit building
JP3906351B2 (en) Seismic reinforcement structure for existing buildings
JP3896562B2 (en) Assembly method of reinforcement frame to existing building
JP4198697B2 (en) Wooden building structure
JP2004346568A (en) Seismic-response controlled structure
JPH0441829A (en) Pillar/beam joint and its execution method
JP4733460B2 (en) Seismic reinforcement frame for existing buildings
JP3755119B2 (en) Seismic control frame
JP3766940B2 (en) Seismic reinforcement method for existing buildings
JP5096979B2 (en) Reinforcement structure of ramen structure
JP4379732B2 (en) Seismic reinforcement method for buildings
JP7155488B2 (en) Structural Seismic Reinforcement Structure
JP3842587B2 (en) Reinforcing method and reinforcing structure of reinforced concrete ramen structure
JP7371824B2 (en) Building load-bearing wall structure and building load-bearing wall construction method
JP3549488B2 (en) Brace for wooden framed houses
JP7361561B2 (en) Brace mounting structure, structure and brace mounting method
JP4733496B2 (en) Seismic retrofit structure
JP4449891B2 (en) Unit building

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060808

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061007

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20061205

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20061208

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110105

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120105

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130105

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140105

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees