JP4733496B2 - Seismic retrofit structure - Google Patents

Seismic retrofit structure Download PDF

Info

Publication number
JP4733496B2
JP4733496B2 JP2005306027A JP2005306027A JP4733496B2 JP 4733496 B2 JP4733496 B2 JP 4733496B2 JP 2005306027 A JP2005306027 A JP 2005306027A JP 2005306027 A JP2005306027 A JP 2005306027A JP 4733496 B2 JP4733496 B2 JP 4733496B2
Authority
JP
Japan
Prior art keywords
frame
building
existing
external reinforcing
constructed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005306027A
Other languages
Japanese (ja)
Other versions
JP2007113276A (en
Inventor
定幸 石▲崎▼
公男 宇田川
英樹 船原
和浩 金田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taisei Corp
Original Assignee
Taisei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taisei Corp filed Critical Taisei Corp
Priority to JP2005306027A priority Critical patent/JP4733496B2/en
Publication of JP2007113276A publication Critical patent/JP2007113276A/en
Application granted granted Critical
Publication of JP4733496B2 publication Critical patent/JP4733496B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、桁行方向に長い平面形状の建物を構成する既存架構と、該建物の外部に構築される外部補強架構が一体的に接合される耐震改修構造に関する。   The present invention relates to a seismic retrofit structure in which an existing frame constituting a flat-shaped building that is long in the direction of the beam and an external reinforcing frame constructed outside the building are integrally joined.

既存の建物の耐震改修方法としては、従来、(1)建物内に鉄骨ブレースや耐力壁などの耐震要素を付加する方法、(2)既存の耐力壁にコンクリートを増打ちして、壁厚を増す方法、(3)柱・梁の断面を増す方法、あるいはこれらを組み合わせる方法があった。柱・梁の断面を増す方法には、補強筋の追加を伴う方法、鋼板を巻く方法、強化繊維を巻き付ける方法などがある。   Conventional methods for retrofitting existing buildings include (1) adding seismic elements such as steel braces and load-bearing walls to the building, and (2) adding concrete to existing load-bearing walls to increase the wall thickness. There was a method of increasing, (3) a method of increasing the cross section of the pillar / beam, or a method of combining them. Methods for increasing the cross section of columns and beams include a method involving the addition of reinforcing bars, a method of winding a steel plate, and a method of winding reinforcing fibers.

これらの耐震改修方法は、(1)および(2)のように剛性と耐力をともに上げる耐力型と、(3)のように、柱や梁の変形性能を上げるじん性型とに大別される。ここで、前記(1)、(2)の方法では、補強箇所に過度の応力が集中して、その周辺の既存の柱・梁架構が応力集中に耐えられなくなることから、この周辺の架構に(3)の補強を施す必要が生じ、補強対象が拡張する結果になる。このため、建物の全階において、補強対象が広範囲に及び、建物の内部への影響が大きい。また、(1)の方法では、開口を塞ぐ形になるため、補強後に建物内での避難経路や避難距離の確保、および利用計画に制約がかかってしまう。   These seismic retrofitting methods are broadly divided into strength-types that increase both rigidity and strength as in (1) and (2), and toughness types that increase the deformation performance of columns and beams as in (3). The Here, in the above methods (1) and (2), excessive stress is concentrated on the reinforcing part, and the existing pillar / beam frame around the reinforcement cannot withstand the stress concentration. It becomes necessary to reinforce (3), resulting in expansion of the object to be reinforced. For this reason, on all floors of the building, the object to be reinforced covers a wide area, and the influence on the inside of the building is large. Further, in the method (1), since the opening is closed, the evacuation route and the evacuation distance in the building and the use plan are restricted after reinforcement.

そして、前記のいずれの方法も、主として建物内部で工事が行われるため、施工時に建物の使用を止めなければならず、建物の使用者に多大な影響を与えてしまう。   In any of the above methods, since the construction is mainly performed inside the building, the use of the building must be stopped at the time of construction, which greatly affects the user of the building.

そこで、前記の問題を解決すべく、既存の建物を使用状態においたままで、建物に補強を施す方法が提案されていた(例えば、特許文献1参照)。   Therefore, in order to solve the above-described problem, a method of reinforcing a building while keeping the existing building in use has been proposed (see, for example, Patent Document 1).

かかる補強方法は、平面上、既存の建物と干渉しない領域に、建物とは独立した平面架構、もしくは床が伴わない立体架構からなる耐震架構を構築し、この耐震架構を建物に連結するようにした方法である。この方法によれば、建物に対する補強工事を不要にするとともに、建物を使用状況においたまま、工事を行うことができる。
特許第3369387号公報
Such a reinforcement method is to construct a seismic frame consisting of a plane frame independent of the building or a three-dimensional frame without a floor in an area that does not interfere with the existing building on the plane, and connect this seismic frame to the building. It is the method. According to this method, the reinforcement work for the building is not required, and the work can be performed while the building is in use.
Japanese Patent No. 3369387

しかしながら、一般的に工場や倉庫などの、一層の階高が高いか、またはスパンが大きい大空間の建物では、梁間方向(スパン方向)の補強が大規模な工事になり易い。特に、桁行方向に長い平面形状を呈する建物では、梁間方向の補強は、妻面の補強だけでは不十分で、外部に面した構面の補強と合わせて、内部にも補強架構を構築するか、もしくは外部にさらなる補強架構を構築する必要がある。特に、限られた敷地内で建物の外側に十分なスペースがない場合は、建物内部で補強しなければならず、建物の使用に支障をきたすことになる。   However, in general, in a large space building with a higher floor height or a large span, such as a factory or a warehouse, reinforcement in the direction between beams (span direction) tends to be a large-scale construction. In particular, in buildings that have a long planar shape in the direction of the beam, it is not sufficient to reinforce the inter-beam direction, but it is not enough to reinforce the end face. Or, it is necessary to construct a further reinforcing frame outside. In particular, if there is not enough space outside the building within a limited site, it must be reinforced inside the building, which hinders the use of the building.

そこで、本発明は前記の問題を解決すべく案出されたものであって、一層の階高が高いかまたはスパンが大きい建物であっても、建物を使用状況においたまま、補強工事を行うことができる耐震改修構造を提供することを課題とする。   Therefore, the present invention has been devised to solve the above-mentioned problem, and even if the building has a higher floor height or a larger span, the reinforcement work is performed while the building remains in use. It is an object to provide a seismic retrofit structure that can be used.

請求項1に係る発明は、桁行方向に長い平面形状の複数棟の建物を構成する複数の既存架構と、前記建物の間に構築される外部補強架構が一体的に接合される耐震改修構造であって、隣り合う前記建物は、互いの桁行面が隙間を隔てて並列配置されており、前記外部補強架構は、前記建物の梁間方向の通り芯に沿った構面を備え、前記構面は、該構面と接合される前記既存架構の梁間方向の水平剛性よりも高い剛性を有することで、複数の前記既存架構の梁間方向が補強されてなることを特徴とする耐震改修構造である。 The invention according to claim 1 includes a plurality of existing Frames to configure multiple buildings building long planar shape to the Longitudinal direction, the external reinforcement Frames constructed between the building by retrofitting structures integrally bonded there, the building adjacent are Longitudinal face each other are arranged in parallel at spaced gaps, the outer reinforcing Frames includes a plane along the base line of the beam between the direction of the building, said plane Is a seismic retrofit structure characterized in that it has a rigidity higher than the horizontal rigidity in the beam-to-beam direction of the existing frame to be joined to the frame , thereby reinforcing the beam-to-beam direction of the plurality of existing frames .

前記構成によれば、高い剛性を有する外部補強架構が大半の地震時水平力を負担するため、既存架構の水平力負担を、外部補強架構との剛性比に応じて低減することができる。すなわち、従来の補強構造では、既存の建物の剛性や耐力の不足分を補う程度の補強架構を設けていたのに対して、請求項1に係る発明は、既存架構の梁間方向の剛性よりも高い剛性を有する外部補強架構に水平力を集中的に負担させることで、従来とは水平力負担の主従を逆にして、既存架構の水平力負担を大幅に低減したことを特徴とする。   According to the said structure, since the external reinforcement frame which has high rigidity bears most horizontal force at the time of an earthquake, the horizontal force burden of the existing frame can be reduced according to a rigidity ratio with an external reinforcement frame. That is, in the conventional reinforcing structure, a reinforcing frame is provided to compensate for the lack of rigidity and proof strength of the existing building, whereas the invention according to claim 1 is more than the rigidity of the existing frame in the beam direction. It is characterized in that the horizontal force load of the existing frame is greatly reduced by concentrating the horizontal force on the external reinforcing frame having high rigidity in a concentrated manner, thereby reversing the main force of the horizontal force load.

請求項2に係る発明は、前記外部補強架構が、複数の前記構面を桁行方向に連結して構成される立体架構であることを特徴とする請求項1に記載の耐震改修構造である。 The invention according to claim 2 is the seismic retrofit structure according to claim 1, wherein the external reinforcing frame is a three-dimensional frame configured by connecting a plurality of the structural surfaces in the direction of the beam .

前記構成によれば、外部補強架構の梁間方向の安定性を高めて、剛性を上げることができるとともに、外部補強架構が桁行方向の補強も兼ねることができる。 According to the above-described configuration, the stability of the external reinforcing frame in the beam-to-beam direction can be increased, the rigidity can be increased, and the external reinforcing frame can also serve as the reinforcement in the beam direction.

請求項3に係る発明は、前記外部補強架構は、少なくとも最下層が純ラーメン構造で構築されていることを特徴とする請求項1または請求項2に記載の耐震改修構造である。 The invention according to claim 3 is the seismic retrofit structure according to claim 1 or 2, wherein at least the lowest layer of the external reinforcing frame is constructed with a pure ramen structure .

前記構成によれば、車両の動線スペースに外部補強架構を構築しても、ブレースなどが車両の通行を妨げることはなく、外部補強架構の下部に、車両走行スペースを確保することができる。 According to the said structure, even if an external reinforcement frame is constructed | assembled in the traffic line space of a vehicle, a bracing etc. do not prevent the passage of a vehicle, and a vehicle running space can be ensured in the lower part of an external reinforcement frame.

なお、外部補強架構の剛性、耐力は、設計上想定する外力やIs値などに応じた耐震性能から定めればよく、終局的に降伏する架構を除外するものではない。   Note that the rigidity and proof strength of the external reinforcing frame may be determined from the seismic performance according to the external force or Is value assumed in the design, and does not exclude the frame that eventually yields.

また、2棟の建物の間に1つの外部補強架構を構築して一体化する場合も、同様に接合される個々の既存架構よりも水平剛性を高くするが、既存架構に対して外部補強架構の剛性をより高く設定すれば、その分、水平力の負担率が大きくなって、補強効果も高くなる。   Also, when one external reinforcement frame is constructed and integrated between two buildings, the horizontal rigidity is higher than that of each existing frame that is joined in the same way. If the rigidity is set higher, the load factor of the horizontal force is increased correspondingly, and the reinforcing effect is also increased.

本発明によれば、既存架構よりも水平剛性の高い外部補強架構を構築して全体を一体的に改修するので、補強架構を含めた建物全体に作用する地震時水平力を、外部補強架構が集中的に負担して地盤へ伝達することができる。したがって、限られた敷地内で構築された、一層の階高が高いかまたはスパンが大きい既存の建物であっても、建物を使用状況においたまま、補強工事を行うことができる。   According to the present invention, the external reinforcement frame having higher horizontal rigidity than the existing frame is constructed and the whole is renovated as a whole, so that the horizontal force during earthquake acting on the entire building including the reinforcement frame is applied to the external reinforcement frame. It can be intensively transmitted to the ground. Therefore, even if it is an existing building constructed in a limited site and having a higher floor height or a larger span, the reinforcement work can be performed while the building is kept in use.

本発明を実施するための最良の形態について、添付図面を参照しながら詳細に説明する。   The best mode for carrying out the present invention will be described in detail with reference to the accompanying drawings.

図1は本発明に係る耐震改修構造を実施するための最良の形態を示した基礎伏図、図2は外部補強架構と既存架構を示した梁伏図、図3は外部補強架構と既存架構を示した梁伏図、図4は外部補強架構を示した正面図、図5は耐震補強架構の柱、梁およびブレースの取り合いを示した平面図である。   FIG. 1 is a basic plan showing the best mode for carrying out the seismic retrofit structure according to the present invention, FIG. 2 is a beam plan showing an external reinforcing frame and an existing frame, and FIG. 3 is an external reinforcing frame and an existing frame. FIG. 4 is a front view showing the external reinforcement frame, and FIG. 5 is a plan view showing the connection between the columns, beams and braces of the earthquake-proof reinforcement frame.

本実施の形態では、二棟並列配置された工場棟(既存の建物)を耐震補強する場合を例に挙げて、耐震改修構造を説明する。   In the present embodiment, the seismic retrofit structure will be described by taking as an example the case of retrofitting a factory building (existing building) arranged in parallel with two buildings.

図3に示すように、既存の建物1は、桁行方向に長く梁間方向に短い長方形の平面形状を呈した工場あるいは倉庫棟であって、一般の建物よりも一層の階高が高く、スパンが大きい内部空間を有する建物である。そして、二棟の建物1,1が所定間隔を隔てて並列配置されている。建物1,1間には、トラックやフォークリフトなどの車両が通行する動線スペース2(図4参照)が形成されている。なお、本実施の形態では、図3中、左右方向(符号の向きを基準とする(以下同じ))を桁行方向とし、図3中、上下方向(符号の向きを基準とする(以下同じ))を梁間方向とする。なお、他の図にも桁行方向および梁間方向を明記しておく。建物1は、柱や梁などからなる既存架構1aを備えて構成されている。   As shown in FIG. 3, the existing building 1 is a factory or warehouse building that has a rectangular planar shape that is long in the direction of the beam and short in the direction of the beams, and has a higher floor height and span as compared with a general building. This building has a large interior space. Two buildings 1 and 1 are arranged in parallel at a predetermined interval. A flow space 2 (see FIG. 4) through which vehicles such as trucks and forklifts pass is formed between the buildings 1 and 1. In the present embodiment, the horizontal direction (referenced to the direction of the sign (hereinafter the same)) in FIG. 3 is taken as the column direction, and the vertical direction (referenced to the direction of the sign (hereinafter the same)) in FIG. ) Is the beam direction. In other figures, the column direction and the inter-beam direction are also specified. The building 1 includes an existing frame 1a made up of pillars and beams.

本発明に係る耐震改修構造3は、建物1の外部に構築される外部補強架構5が、既存架構1aに一体的に接合されて構成されている。外部補強架構5は、建物1の桁行面に構築されており、外部補強架構5の梁間方向の剛性は、既存架構1aの梁間方向の水平剛性よりも高くなるように構成されている。なお、外部補強架構の剛性は、設計上想定する外力やIs値などに応じた耐震性能から定めればよく、終局的に降伏する架構を除外するものではない。   The seismic retrofit structure 3 according to the present invention is configured by integrally joining an external reinforcing frame 5 constructed outside a building 1 to an existing frame 1a. The external reinforcing frame 5 is constructed on the crossing surface of the building 1, and the rigidity of the external reinforcing frame 5 in the beam direction is higher than the horizontal rigidity of the existing frame 1a in the beam direction. Note that the rigidity of the external reinforcing frame may be determined from the seismic performance according to the external force or Is value assumed in the design, and does not exclude the frame that yields eventually.

また、本実施の形態では、外部補強架構5は、建物1,1間に構築されている。このように、2棟の建物1,1の間に1つの外部補強架構5を構築して一体化する場合は、同様に接合される個々の既存架構1a,1aよりも水平剛性を高くする。外部補強架構5は、梁間方向に広がる複数の構面(平面架構)6を有している。外部補強架構5は、これら複数の構面6を桁行方向に連結して構成される立体架構である。構面6は、桁行方向に所定間隔を空けて配列されている。なお、本実施の形態では、外部補強架構5は立体架構となっているが、これに限られるものではなく、平面架構のみであってもよいのは勿論である。すなわち、前記構面6は、少なくとも一つ形成されていればよい。   In the present embodiment, the external reinforcing frame 5 is constructed between the buildings 1 and 1. Thus, when one external reinforcement frame 5 is constructed and integrated between the two buildings 1 and 1, the horizontal rigidity is made higher than the individual existing frames 1a and 1a to be joined in the same manner. The external reinforcing frame 5 has a plurality of structural surfaces (planar frames) 6 extending in the beam-to-beam direction. The external reinforcing frame 5 is a three-dimensional frame configured by connecting the plurality of structural surfaces 6 in the direction of the rows. The composition surface 6 is arranged at a predetermined interval in the column direction. In the present embodiment, the external reinforcing frame 5 is a three-dimensional frame. However, the present invention is not limited to this, and it is needless to say that only a plane frame may be used. That is, it is sufficient that at least one surface 6 is formed.

図4に示すように、構面6は、建物1の梁間方向に所定間隔を隔てて立設された柱7と、これら柱7間に掛け渡される梁8とが剛接合されたラーメン構造にて構成されている。構面6は、地盤面11と頂部の梁(以下「頂部梁」と称する)8aとの間に少なくとも一段の中間梁8bを備えている。本実施の形態では、中間梁8bは、地盤面11と頂部梁8aとの間に一段だけ形成されており、構面6の高さ方向の略中央部に設けられている。   As shown in FIG. 4, the construction surface 6 has a rigid frame structure in which a column 7 standing at a predetermined interval in a direction between beams of the building 1 and a beam 8 spanned between these columns 7 are rigidly joined. Configured. The construction surface 6 includes at least one intermediate beam 8b between the ground surface 11 and a top beam (hereinafter referred to as “top beam”) 8a. In the present embodiment, the intermediate beam 8b is formed in only one step between the ground surface 11 and the top beam 8a, and is provided at a substantially central portion of the construction surface 6 in the height direction.

少なくとも一番下の中間梁8bを含む下部の層(最下層)は、純ラーメン構造14で構築されている。本実施の形態では、中間梁8bは一段であるので、構面6の下側半分が純ラーメン構造14となっている。純ラーメン構造14は、中間梁8bとその下部に設けられた下部柱7bとを剛接合して形成されている。   The lower layer (the lowermost layer) including at least the lowermost intermediate beam 8 b is constructed of a pure ramen structure 14. In the present embodiment, since the intermediate beam 8b has one stage, the lower half of the construction surface 6 has a pure ramen structure 14. The pure ramen structure 14 is formed by rigidly joining the intermediate beam 8b and the lower column 7b provided therebelow.

一方、少なくとも一番上の中間梁8bよりも上部の層(最上層)は、ブレース付ラーメン構造15で構築されている。本実施の形態では、構面6の上側半分がブレース付ラーメン構造15となっている。ブレース付ラーメン構造15は、中間梁8bの上部に位置する上部柱7aと頂部梁8aとを剛接合して、これら上部柱7aと頂部梁8aとの間にブレース16を掛け渡すことで構成されている。ブレース16は、ブラケットを介してH形鋼などを上部柱7aや頂部梁8aに接続することで構成されている。本実施の形態では、ブレース16は、K型ブレースに座屈防止用ブレースを設けて構成されているが、これに限られるものではなく、X型のブレースや他の形状のものであってもよいのは勿論である。   On the other hand, at least the layer (uppermost layer) above the uppermost intermediate beam 8b is constructed of a brace-shaped ramen structure 15. In the present embodiment, the upper half of the composition surface 6 is the brace-containing ramen structure 15. The frame structure 15 with braces is configured by rigidly joining the upper column 7a and the top beam 8a located at the upper part of the intermediate beam 8b, and spanning the brace 16 between the upper column 7a and the top beam 8a. ing. The brace 16 is configured by connecting an H-shaped steel or the like to the upper column 7a or the top beam 8a via a bracket. In the present embodiment, the brace 16 is configured by providing a buckling prevention brace on a K-type brace, but is not limited thereto, and may be an X-type brace or other shapes. Of course it is good.

純ラーメン構造14部分の柱である下部柱7bは、柱せいがブレース付ラーメン構造15部分の柱である上部柱7aよりも外側(スパンの幅方向外側、すなわち梁間方向に隣り合う上部柱7aの外側)に延びて大きいものが用いられている。本実施の形態では、下部柱7bおよび上部柱7aは、ともに角形鋼管が用いられており、サイズの異なるものがそれぞれ採用されている。そして、下部柱7bは、上部柱7aよりも柱せいおよび幅(柱せいと直交する方向の長さ)がともに大きくなっている。下部柱7bは、上部柱7aよりも外側(梁間方向の外側)にそれぞれ張り出すように配置されており、互いに隣り合う下部柱7bの内側(梁間方向の中心側)面と、上部柱7aの内側面とは、面一になるように配置されている。   The lower column 7b, which is a column of the pure ramen structure 14 part, is outside of the upper column 7a, which is a column of the braced ramen structure 15 part. Larger ones are used that extend outward. In the present embodiment, the lower pillar 7b and the upper pillar 7a are both made of square steel pipes, and those having different sizes are employed. The lower pillar 7b has both a columnar width and a width (length in a direction orthogonal to the columnar) larger than those of the upper column 7a. The lower columns 7b are arranged so as to protrude outward (outside in the beam direction) from the upper columns 7a, respectively, and the inner surfaces (center side in the beam direction) of the adjacent lower columns 7b and the upper columns 7a The inner surface is arranged so as to be flush with the inner surface.

下部柱7bの内部には、コンクリート(図示せず)が充填されている。すなわち、下部柱7bは充填鋼管コンクリート構造で構成されており、小さな断面積で大きな耐力を得られるとともに、座屈しにくくなり、通常の鋼管構造と比較して大きな剛性を得ることができる。   The inside of the lower column 7b is filled with concrete (not shown). That is, the lower column 7b is composed of a filled steel pipe concrete structure, can obtain a large proof stress with a small cross-sectional area, is less likely to buckle, and can obtain a greater rigidity than a normal steel pipe structure.

下部柱7bは、地中の所定深さまで延出して形成されている。具体的には、下部柱7bは、その下端部が後記する地中梁17よりも下方に位置するように形成されている。隣り合う下部柱7bの柱脚18同士は、鉄骨鉄筋コンクリート製の地中梁17で連結されている。地中梁17は、隣り合う柱脚18間に、鉄骨梁19を掛け渡して、その周囲に鉄筋(図示せず)を配設し、コンクリート21を打設して形成されている。なお、地中梁17は、鉄骨鉄筋コンクリート製に限られるものではなく、必要な固定強度を発揮できれば、鉄筋コンクリート製や鉄骨製などの他の構成であってもよい。   The lower pillar 7b is formed to extend to a predetermined depth in the ground. Specifically, the lower column 7b is formed so that the lower end portion thereof is positioned below the underground beam 17 described later. The column bases 18 of the adjacent lower columns 7b are connected by an underground beam 17 made of steel reinforced concrete. The underground beam 17 is formed by spanning a steel beam 19 between adjacent column bases 18, arranging reinforcing bars (not shown) around it, and placing concrete 21. The underground beam 17 is not limited to steel reinforced concrete, and may be other configurations such as reinforced concrete and steel as long as necessary fixing strength can be exhibited.

柱脚18の下端部には、溶接などによって固定されたベースプレート22が設けられている。ベースプレート22の下部には基礎23が形成されており、柱脚18は、ベースプレート22を介して、アンカーボルト(図示せず)によって、基礎23に固定されている。   A base plate 22 fixed by welding or the like is provided at the lower end of the column base 18. A base 23 is formed at a lower portion of the base plate 22, and the column base 18 is fixed to the base 23 by an anchor bolt (not shown) through the base plate 22.

外部補強架構5の各基礎23には、梁間方向に間隔を空けて配置される複数(本実施の形態では2本)の杭24,24がそれぞれ設けられている。これらの杭24,24は、各柱7の下部に接合されて設けられている。かかる杭24,24は、梁間方向にかかる力に抵抗して、外部補強架構5の回転を防止するためのものであって、支持地盤まで設ける必要はない。杭24は、鋼管杭、コンクリート杭などの既製杭、あるいはコンクリート場所打ち杭などの種類は問わない。   Each foundation 23 of the external reinforcing frame 5 is provided with a plurality (two in this embodiment) of piles 24 and 24 arranged at intervals in the beam-to-beam direction. These piles 24 and 24 are joined and provided at the lower part of each column 7. The piles 24 and 24 are for resisting the force applied in the beam-to-beam direction and prevent the external reinforcing frame 5 from rotating, and need not be provided up to the support ground. The pile 24 may be of any kind, such as a steel pipe pile, a ready-made pile such as a concrete pile, or a concrete cast-in-place pile.

なお、本実施の形態では、地中梁17は、鉄骨鉄筋コンクリート構造により形成されているが、コンクリート21は、鉄骨梁19と柱脚18の下部とを一体的に被覆している。   In the present embodiment, the underground beam 17 is formed of a steel reinforced concrete structure, but the concrete 21 integrally covers the steel beam 19 and the lower part of the column base 18.

上部柱7aの上部には、既存架構1aに連結される連結梁25が設けられている。連結梁25は、少なくとも軒高レベルで既存架構1aと接合されるように設けられている。   A connection beam 25 connected to the existing frame 1a is provided on the upper part of the upper column 7a. The connecting beam 25 is provided to be joined to the existing frame 1a at least at the eave height level.

本実施の形態では、建物1が外部補強架構5の梁間方向の両側に配置されているので、連結梁25は、外部補強架構5の構面6の両側に延出して形成されている。連結梁25は、既存架構1a,1aの柱26の頂部(軒高レベル)にそれぞれ連結されている。外部補強架構5は、一方の建物1の軒高より低く形成されており、連結梁25は、既存架構1aと、外部補強架構5との間で傾斜して配設されている。前記のように、連結梁25によって、外部補強架構5と各既存架構1a,1aとが一体的に連結されて、耐震改修構造3が形成されている。なお、既存架構1aの高さや既存架構1aと外部補強架構5との配置関係によっては、必ずしも建物1の屋根勾配に沿わして連結梁25を配置しなくてもよく、水平であってもよい(図4中、右側の連結梁25参照)。本実施の形態では、連結梁25は、外部補強架構5の頂部のみに設けられているが、建物1の軒高がさらに高い場合には、軒高以外にも、例えば、軒高の半分の高さ位置に他の連結梁を設けるようにしてもよい。   In the present embodiment, since the building 1 is disposed on both sides of the external reinforcing frame 5 in the inter-beam direction, the connecting beams 25 are formed to extend on both sides of the structural surface 6 of the external reinforcing frame 5. The connecting beam 25 is connected to the top (eave height level) of the column 26 of the existing frame 1a, 1a. The external reinforcement frame 5 is formed lower than the eave height of one building 1, and the connecting beam 25 is disposed between the existing frame 1 a and the external reinforcement frame 5 in an inclined manner. As described above, the external reinforcing frame 5 and the existing frames 1a and 1a are integrally connected by the connecting beam 25 to form the earthquake-resistant repair structure 3. Depending on the height of the existing frame 1a and the arrangement relationship between the existing frame 1a and the external reinforcing frame 5, the connecting beam 25 may not necessarily be arranged along the roof gradient of the building 1 and may be horizontal. (See the connecting beam 25 on the right side in FIG. 4). In the present embodiment, the connecting beam 25 is provided only at the top of the external reinforcing frame 5, but when the eave height of the building 1 is higher, for example, in addition to the eave height, for example, half of the eave height You may make it provide another connection beam in a height position.

図2および図3に示すように、構面6は、既存架構1aの桁行方向に所定間隔をあけて複数配設されており、桁行方向に延びる中間梁27(図2参照)および頂部梁28(図3参照)を介して複数連接されている。桁行方向についても、梁間方向と同様に、下側半分が純ラーメン構造14にて構築され、上側半分がブレース付ラーメン構造15にて構築されている。下部柱7bおよび上部柱7aは、桁行方向に沿って多数配置されており、さらに、桁行方向に隣り合う下部柱7bおよび上部柱7a間の距離(構面6の配列ピッチ)は、下部柱7bおよび上部柱7aの梁間方向の配置ピッチよりも長い。   As shown in FIG. 2 and FIG. 3, a plurality of the construction surfaces 6 are arranged at predetermined intervals in the direction of the existing frame 1a, and an intermediate beam 27 (see FIG. 2) and a top beam 28 extending in the direction of the direction of the beam. (Refer to FIG. 3). As for the beam direction, as in the beam-to-beam direction, the lower half is constructed with a pure ramen structure 14 and the upper half is constructed with a brace ramen structure 15. A large number of the lower pillars 7b and the upper pillars 7a are arranged in the row direction, and the distance between the lower columns 7b and the upper pillars 7a adjacent to each other in the row direction (arrangement pitch of the composition 6) is lower. And it is longer than the arrangement pitch of the upper columns 7a in the inter-beam direction.

図5に示すように、下部柱7bと上部柱7aとは、梁間方向に見て同芯上に配置されている。すなわち、上部柱7aの両側(桁行方向の両側)面から、下部柱7bが同じ長さで張り出すように配置されている。なお、桁行方向に隣り合う下部柱7b間に、車両通行用の開口部がある場合などは、下部柱7bと上部柱7aの開口部側の面を面一にして、開口部側の下部柱7b間距離を多く確保するようにしてもよい。   As shown in FIG. 5, the lower column 7b and the upper column 7a are arranged concentrically as viewed in the beam-to-beam direction. That is, the lower column 7b is disposed so as to protrude from both sides (both sides in the column direction) of the upper column 7a with the same length. When there is an opening for passing a vehicle between the lower pillars 7b adjacent to each other in the row direction, the lower pillars on the opening side are made flush with the surfaces of the lower pillars 7b and the upper pillars 7a on the opening side. You may make it ensure much distance between 7b.

図3に示すように、梁間方向に延びる頂部梁8aおよび桁行方向に延びる頂部梁28には、これら頂部梁8a,28を互いに連結するブレース29が接続されている。ブレース29は、ブラケットを介して山形鋼などを頂部梁8a,28に連結することで構成されている。ブレース29は、X型ブレースを並べて形成されている。   As shown in FIG. 3, a brace 29 that connects the top beams 8a and 28 to each other is connected to the top beam 8a extending in the beam-to-beam direction and the top beam 28 extending in the row direction. The brace 29 is configured by connecting an angle steel or the like to the top beams 8a and 28 via a bracket. The brace 29 is formed by arranging X-type braces.

図1に示すように、桁行方向に所定ピッチで配設された構面6間にも、桁行方向に隣り合う下部柱7bの柱脚18間を連結する地中梁31が設けられている。詳細は図示しないが、この地中梁31も、柱脚18間に、鉄骨梁を掛け渡して、その周囲に鉄筋を配設し、コンクリートを打設して形成されている。地中梁31は、基礎23および他の地中梁17と一体的に形成されている。なお、地中梁31も、地中梁17と同様に、鉄骨鉄筋コンクリート製に限られるものではなく、必要な固定強度を発揮できれば、鉄筋コンクリート製や鉄骨製などの他の構成であってもよい。   As shown in FIG. 1, underground beams 31 that connect between the column bases 18 of the lower columns 7b adjacent in the column direction are also provided between the construction surfaces 6 arranged at a predetermined pitch in the column direction. Although not shown in detail, the underground beam 31 is also formed by spanning steel beams between the column bases 18, arranging reinforcing bars around the steel beam, and placing concrete. The underground beam 31 is formed integrally with the foundation 23 and the other underground beam 17. The underground beam 31 is not limited to the steel reinforced concrete like the underground beam 17, and may be other configurations such as a reinforced concrete and a steel frame as long as necessary fixing strength can be exhibited.

なお、図1中、36は、既存架構1aのフーチング基礎を示し、37は基礎梁を示す。図2および図3中、38は、既存架構1aの梁を示す。   In FIG. 1, 36 indicates a footing foundation of the existing frame 1a, and 37 indicates a foundation beam. 2 and 3, reference numeral 38 denotes a beam of the existing frame 1a.

ところで、図2および図3に示すように、建物1の、外部補強架構5が構築されていない他方の桁行面には、桁行方向に延びる平面架構33が構築されている。平面架構33は、かかる桁行面の柱34,34・・間にブレース35を設けることで構成されている。ブレース35は、K型ブレース、X型ブレースあるいはマンサード型ブレースなどの種々の形態の中から、開口部の位置や建物の仕様態様に応じて、適宜決定される。ブレース35は、まとめて工事を行うのではなく、建物の使用状況を考慮して、工程を部分ごとに分けて、順次行っていくようにする。このように、建物内で部分的に小さい工事を行うことで、建物の使用に与える影響をできる限り小さくでき、建物の仕様状態を止めることなく、平面架構33を構築することができる。   By the way, as shown in FIG.2 and FIG.3, the planar frame 33 extended in the column direction is constructed | assembled in the other row line of the building 1 in which the external reinforcement frame 5 is not constructed. The plane frame 33 is configured by providing braces 35 between the columns 34, 34,. The brace 35 is appropriately determined from various forms such as a K-type brace, an X-type brace, and a Mansard-type brace according to the position of the opening and the specification mode of the building. The brace 35 does not carry out the construction work collectively, but considers the use status of the building and divides the process into parts and sequentially performs the processes. Thus, by performing a small construction in the building, the influence on the use of the building can be made as small as possible, and the plane frame 33 can be constructed without stopping the specification state of the building.

なお、前記他方の桁行面の外部に、柱と梁からなる平面架構(図示せず)を設けて、既存架構1aの柱34に連結するようにしてもよい。かかる構成によれば、建物の使用に全く影響を与えず、平面架構を構築することができる。   In addition, a plane frame (not shown) made of columns and beams may be provided outside the other crossing surface and connected to the column 34 of the existing frame 1a. According to such a configuration, a plane frame can be constructed without affecting the use of the building at all.

ところで、本実施の形態では、二棟の建物1,1の間の桁行面に1(=2−1)棟の外部補強架構5を構築して、既存架構1a,1aと外部補強架構5とを一体的に接合するように構成されているが、建物1の棟数は、これに限られるものではなく、さらに多数であってもよい。図示はしないが、この場合、建物の棟数nに対して、外部補強架構の棟数は、(n−1)棟となり、これら(n−1)棟の外部補強架構は、n棟の建物間の(n−1)個のスペースにそれぞれ構築されることとなる。各外部補強架構は、その梁間方向の剛性が、両側に位置する既存架構の梁間方向の個々の剛性よりも大きくなるように構成される。このような構成によれば、複数並列された建物を効率的に補強することができる。   By the way, in this Embodiment, the external reinforcement frame 5 of 1 (= 2-1) building is constructed in the crossing plane between the two buildings 1 and 1, and the existing frames 1a and 1a and the external reinforcement frame 5 However, the number of buildings 1 is not limited to this, and may be larger. Although not shown, in this case, the number of external reinforcing frames is (n-1) with respect to the number n of buildings, and the external reinforcing frames of these (n-1) buildings are n buildings. It will be constructed in (n-1) spaces in between. Each external reinforcing frame is configured such that the rigidity in the direction between the beams is greater than the individual rigidity in the direction between the beams of the existing frame located on both sides. According to such a configuration, it is possible to efficiently reinforce a plurality of buildings arranged in parallel.

次に、前記構成の耐震改修構造3の構築方法を説明する。   Next, the construction method of the earthquake-proof repair structure 3 having the above-described configuration will be described.

まず、建物1,1間の床面あるいは地盤面を掘削して、杭24を構築した後、二列の平行な基礎23(図4参照)を形成する。このとき、基礎39が既存架構1aのフーチング基礎36と干渉する場合は、フーチング基礎36を切削する(本実施の形態では干渉しない)が、後の工程で基礎23と一体的に元の断面以上に復旧させるので、構造上問題はない。   First, after excavating the floor surface or ground surface between the buildings 1 and 1 to construct the pile 24, two rows of parallel foundations 23 (see FIG. 4) are formed. At this time, when the foundation 39 interferes with the footing foundation 36 of the existing frame 1a, the footing foundation 36 is cut (in this embodiment, it does not interfere). There is no structural problem.

その後、基礎23上に、下部柱7bを立設し、地中梁17,31の鉄骨梁19(図4参照)および中間梁8b,27(図2参照)を取り付ける。さらに、上部柱7a(図3参照)を立設し、頂部梁8a,28(図3参照)やブレース16(図4参照),29(図3参照)を取り付ける。そして、各部材の高さや傾斜を調整する建て入れ直しを行い各接合部のボルト本締めを行った後に、地中梁17,31のコンクリート21(図4参照)を打設する。このとき、コンクリート21は、基礎23(フーチング基礎36が切削されている場合はフーチング基礎も)と一体的に打設される。そして、建物1,1間にコンクリートスラブなどの床面(車両などの走行面)を形成しておく。   Thereafter, the lower column 7b is erected on the foundation 23, and the steel beams 19 (see FIG. 4) and the intermediate beams 8b and 27 (see FIG. 2) of the underground beams 17 and 31 are attached. Further, the upper column 7a (see FIG. 3) is erected, and the top beams 8a and 28 (see FIG. 3) and braces 16 (see FIG. 4) and 29 (see FIG. 3) are attached. And after rebuilding which adjusts the height and inclination of each member and performing the bolt final fastening of each joint part, concrete 21 (refer to Drawing 4) of underground beams 17 and 31 is laid. At this time, the concrete 21 is placed integrally with the foundation 23 (or the footing foundation when the footing foundation 36 is cut). A floor surface (traveling surface of a vehicle or the like) such as a concrete slab is formed between the buildings 1 and 1.

このようにして外部補強架構5が構築された後に、図4に示すように、連結梁25を外部補強架構5および既存架構1aに剛接合して、既存架構1aと外部補強架構5とを固定する。その後、連結梁25が貫通した建物1の外壁などを改修して、外部補強架構5の構築工事が完了する。   After the external reinforcing frame 5 is constructed in this manner, as shown in FIG. 4, the connecting beam 25 is rigidly joined to the external reinforcing frame 5 and the existing frame 1a, and the existing frame 1a and the external reinforcing frame 5 are fixed. To do. Thereafter, the outer wall of the building 1 through which the connecting beam 25 penetrates is repaired, and the construction work of the external reinforcing frame 5 is completed.

一方、図2および図3に示すように、外部補強架構5が設けられていない桁行面の柱34,34・・間にブレース35を順次設けることで平面架構33を構築する。ブレース35は、建物の使用状況を考慮して、工程を部分ごとに分けて、順次構築工事を行っていく。   On the other hand, as shown in FIG. 2 and FIG. 3, the plane frame 33 is constructed by sequentially providing braces 35 between the columns 34, 34,. The brace 35 divides the process into parts and sequentially performs construction work in consideration of the usage status of the building.

次に、前記構成の耐震改修構造3の作用を説明する。   Next, the operation of the earthquake-resistant repair structure 3 having the above-described configuration will be described.

前記構成の耐震改修構造3によれば、外部補強架構5を、既存架構1aの桁行面に構築し、その梁間方向の剛性を、既存架構1aの梁間方向の水平剛性よりも高くしたことによって、地震応答時の水平力負担の多くを外部補強架構5で負担させることができる。したがって、既存架構1aの水平力負担を、外部補強架構5との剛性比に応じて、半分程度またはそれ以下に低減することができ、力学上、合理的な補強を行うことができる。すなわち、前記耐震改修構造3によれば、既存架構1aの梁間方向の剛性よりも高い剛性を有する外部補強架構5に水平力を集中的に負担させることで、従来の補強構造とは水平力負担の主従を逆にして、既存架構1aの水平力負担を大幅に低減できる。このように、外部補強架構5で合理的に既存架構1aの補強が行えるので、限られた敷地内で構築された、一層の階高が高いかまたはスパンが大きい工場や倉庫などの建物1であっても、建物1を使用状況においたまま、補強工事を行うことができる。   According to the seismic retrofit structure 3 having the above-described structure, the external reinforcing frame 5 is constructed on the girder surface of the existing frame 1a, and the rigidity in the beam direction is higher than the horizontal rigidity in the beam direction of the existing frame 1a. Most of the horizontal force burden during the earthquake response can be borne by the external reinforcing frame 5. Therefore, the horizontal force load of the existing frame 1a can be reduced to about half or less according to the rigidity ratio with the external reinforcing frame 5, and rational reinforcement can be performed in terms of dynamics. That is, according to the seismic retrofit structure 3, a horizontal force is concentrated on the external reinforcing frame 5 having a rigidity higher than the rigidity in the inter-beam direction of the existing frame 1 a, so that a horizontal force load is different from that of the conventional reinforcing structure. The horizontal force burden of the existing frame 1a can be greatly reduced by reversing the master-slave. In this way, since the existing frame 1a can be reasonably reinforced with the external reinforcement frame 5, the building 1 such as a factory or warehouse with a higher floor height or a larger span built in a limited site. Even if there is, the reinforcement work can be performed while the building 1 is kept in use.

外部補強架構5は、既存架構1aの梁間方向に広がる複数の構面6を桁行方向に連結して構成される立体架構であるので、外部補強架構5の梁間方向の安定性を高めて、剛性を上げることができるとともに、外部補強架構5が桁行方向の補強も兼ねることができる。   Since the external reinforcing frame 5 is a three-dimensional frame constructed by connecting a plurality of structural surfaces 6 extending in the beam-to-beam direction of the existing frame 1a in the direction of the beam, the stability of the external reinforcing frame 5 in the beam-to-beam direction is improved and the rigidity is increased. In addition, the external reinforcing frame 5 can also serve as a reinforcement in the beam direction.

また、梁間方向に隣り合う柱脚18同士を地中梁17で連結したことによって、外部補強架構5がせん断型の補強架構になって、水平剛性を高め、耐震性能を上げることができる。   Further, by connecting the column bases 18 adjacent to each other in the beam-to-beam direction with the underground beam 17, the external reinforcing frame 5 becomes a shear-type reinforcing frame, and the horizontal rigidity can be increased and the earthquake resistance can be improved.

さらに、外部補強架構5の基礎23に、梁間方向に間隔を空けて配置される複数の杭24を設けたことによって、基礎23の回転に抵抗できて剛性が高まる。   Further, by providing the foundation 23 of the external reinforcement frame 5 with a plurality of piles 24 arranged at intervals in the beam-to-beam direction, the foundation 23 can resist the rotation and the rigidity is increased.

外部補強架構5が、少なくとも軒高レベルで既存架構1a,1aと接合され、かつ建物1,1の一方の桁行面に構築されたことによって、梁間方向の剛性が既存架構1a,1aよりも高い外部補強架構5を、少なくとも建物1,1の屋根面に近い軒高レベルの一箇所以上で接合して、既存架構1a,1aの梁の梁間方向剛性を有効に使うことができるので、既存架構1a,1aの柱に生じる曲げやせん断力を小さくできる。したがって、通常は既存架構1a,1aの桁行面の両側に構築していた外部補強架構5の一方を省略することも可能である。   Since the external reinforcing frame 5 is joined to the existing frames 1a and 1a at least at the eave height level and is constructed on one girder surface of the buildings 1 and 1, the rigidity in the inter-beam direction is higher than that of the existing frames 1a and 1a. Since the external reinforcement frame 5 can be joined at least at one or more eave height levels close to the roof surface of the buildings 1 and 1, the rigidity between the beams of the existing frames 1a and 1a can be effectively used. Bending and shearing forces generated in the columns 1a and 1a can be reduced. Therefore, it is possible to omit one of the external reinforcing frames 5 that is normally constructed on both sides of the beam faces of the existing frames 1a and 1a.

既存架構1aの一方の桁行面に立体架構を構築し、他方の桁行面に平面架構33を構築することで、外部補強架構5を小型化できるとともに、限られた敷地内で、必要な補強性能を備えた補強工事を行うことができる。平面架構33を柱34,34・・間にブレース35を順次設けることで構築するとともに、ブレース35の構築を、建物1の使用状況を考慮して、工程を部分ごとに分けて、建物1内で部分的に小さい工事を行うことで、建物1の使用に与える影響をできる限り小さくでき、建物1の仕様状態を止めることなく、平面架構33を構築することができる。   By constructing a three-dimensional frame on one girder surface of the existing frame 1a and constructing a plane frame 33 on the other girder surface, the external reinforcing frame 5 can be reduced in size, and the necessary reinforcement performance within a limited site Reinforcement work with can be performed. The plane frame 33 is constructed by sequentially providing braces 35 between the pillars 34, 34.., And the construction of the braces 35 is divided into processes in consideration of the usage status of the building 1, and the inside of the building 1 By performing a partially small construction, the influence on the use of the building 1 can be reduced as much as possible, and the flat frame 33 can be constructed without stopping the specification state of the building 1.

外部補強架構5が、多層単スパン構造であって、少なくとも一部の最下層が純ラーメン構造14で構築されているので、建物1,1の内外を走行する車両の動線スペース2に外部補強架構5を構築しても、ブレースなどが車両の通行を妨げることはなく、外部補強架構5の下部に、車両走行スペースを確保することができる。   Since the external reinforcement frame 5 has a multi-layer single span structure and at least a part of the lowermost layer is constructed with a pure ramen structure 14, external reinforcement is provided in the traffic flow space 2 of the vehicle traveling inside and outside the buildings 1 and 1. Even if the frame 5 is constructed, braces or the like do not hinder the passage of the vehicle, and a vehicle traveling space can be secured below the external reinforcing frame 5.

また、少なくとも一部の最上層がブレース付ラーメン構造15で構築されているので、屋根に近い位置で効率的に剛性を高めることができる。特に、本実施の形態では、既存架構1aとの連結梁25は、ブレース付ラーメン構造15の頂部に連結されており、既存架構1aからかかる力をブレース16などで受け止められる。一層の階高が高い建物1に対しても、屋根に近い上部の剛性を高めて耐震補強架構をせん断形にしているので効率的に補強できる。このように、外部補強架構5の小型化が達成できるので、狭いスペースでの外部補強架構5の構築が可能となる。   In addition, since at least a part of the uppermost layer is constructed of the brace ramen structure 15, the rigidity can be efficiently increased at a position close to the roof. In particular, in the present embodiment, the connecting beam 25 to the existing frame 1a is connected to the top of the braided ramen structure 15, and the force applied from the existing frame 1a can be received by the brace 16 or the like. Even for a building 1 with a higher floor height, the rigidity of the upper part near the roof is increased and the seismic reinforcement frame is made into a shearing shape, so that it can be reinforced efficiently. As described above, since the external reinforcing frame 5 can be reduced in size, the external reinforcing frame 5 can be constructed in a narrow space.

また、下部柱7bを、上部柱7aよりも外側に張り出すように配置したことによって、ブレース付ラーメン構造15のブレース16の延長線上に下部柱7bが位置することとなる。したがって、ブレース16の軸力を下部柱7bに流しやすくなり、外部補強架構5の剛性を効率的に高めることができる。   Moreover, the lower pillar 7b will be located on the extension line of the brace 16 of the ramen structure 15 with a brace by arrange | positioning the lower pillar 7b so that it may protrude outside the upper pillar 7a. Therefore, the axial force of the brace 16 can easily flow to the lower column 7b, and the rigidity of the external reinforcing frame 5 can be efficiently increased.

そして、純ラーメン構造14の下部柱7bには、コンクリートが充填されているので、より小さい断面で必要な剛性を得られるので、耐震改修構造3のさらなる小型化が達成される。また、座屈防止や耐火性能の向上といった作用も得られる。さらに、ブレース16から流れた軸力を効果的に支持できる。また、下部柱7bの断面を小さくできることより、車両などの動線スペース2をより広く確保できる。   Since the lower pillar 7b of the pure ramen structure 14 is filled with concrete, the required rigidity can be obtained with a smaller cross section, so that further downsizing of the seismic retrofit structure 3 is achieved. In addition, effects such as buckling prevention and improvement in fire resistance can be obtained. Further, the axial force flowing from the brace 16 can be effectively supported. Moreover, since the cross section of the lower pillar 7b can be made small, the flow line space 2 of a vehicle etc. can be ensured more widely.

前記構成の外部補強架構5によれば、下部柱7bを地中梁17,31で連結しているので、柱脚18の固定度が大幅に高まり、露出型の柱脚と比較して、剛性を高めることができる。   According to the external reinforcing frame 5 having the above-described configuration, since the lower column 7b is connected by the underground beams 17 and 31, the fixing degree of the column base 18 is greatly increased, and the rigidity is higher than that of the exposed type column base. Can be increased.

以上、本発明を実施するための形態について説明したが、本発明は前記実施の形態に限定されず、本発明の趣旨を逸脱しない範囲で適宜設計変更が可能である。例えば、本実施の形態では、中間梁8bは、頂部梁8aと地盤面11との間に一段設けられただけであるが、これに限られるものではない。補強すべき建物が高い場合には、さらに多段に中間梁を設けてもよい。一方、本実施の形態では、一段設けられた中間梁8bは、外部補強架構5の中間の高さに設けられているが、これに限られるものではなく、通行する車両の高さや構造計算に応じて適宜決定される。   As mentioned above, although the form for implementing this invention was demonstrated, this invention is not limited to the said embodiment, In the range which does not deviate from the meaning of this invention, a design change is possible suitably. For example, in the present embodiment, the intermediate beam 8b is merely provided in one stage between the top beam 8a and the ground surface 11, but the present invention is not limited to this. If the building to be reinforced is expensive, intermediate beams may be provided in multiple stages. On the other hand, in the present embodiment, the intermediate beam 8b provided in one stage is provided at an intermediate height of the external reinforcing frame 5, but the present invention is not limited to this. It is determined accordingly.

また、本実施の形態では、互いに平行配置された二棟の建物1,1間に外部補強架構5を構築した例を挙げて説明したが、既存架構1aおよび外部補強架構5の配置状態は、前記実施の形態のものに限られるものではない。たとえば、雁行状に配置された複数の建物間に外部補強架構を構築して、建物全体を一体的に連結するようにしてもよい。   In the present embodiment, an example in which the external reinforcement frame 5 is constructed between two buildings 1 and 1 arranged in parallel with each other has been described. However, the arrangement state of the existing frame 1a and the external reinforcement frame 5 is as follows. The present invention is not limited to the above embodiment. For example, an external reinforcing frame may be constructed between a plurality of buildings arranged in a labyrinth so that the entire building is integrally connected.

本発明に係る耐震改修構造を実施するための最良の形態を示した基礎伏図である。It is a foundation plan which showed the best form for implementing the earthquake-proof repair structure concerning this invention. 本発明に係る耐震改修構造を実施するための最良の形態を示した梁伏図である。It is a beam plan showing the best mode for carrying out the seismic retrofit structure according to the present invention. 本発明に係る耐震改修構造を実施するための最良の形態を示した梁伏図である。It is a beam plan showing the best mode for carrying out the seismic retrofit structure according to the present invention. 本発明に係る耐震改修構造を実施するための最良の形態を示した正面図である。It is the front view which showed the best form for implementing the earthquake-resistant repair structure which concerns on this invention. 外部補強架構の柱、梁およびブレースの取り合いを示した平面図である。It is the top view which showed the connection of the column, beam, and brace of an external reinforcement frame.

符号の説明Explanation of symbols

1 建物
1a 既存架構
3 補強構造
5 外部補強架構
6 構面
14 純ラーメン構造
17 地中梁
18 柱脚
23 基礎
24 杭
DESCRIPTION OF SYMBOLS 1 Building 1a Existing frame 3 Reinforcement structure 5 External reinforcement frame 6 Construction surface 14 Pure ramen structure 17 Underground beam 18 Column base 23 Foundation 24 Pile

Claims (3)

桁行方向に長い平面形状の複数棟の建物を構成する複数の既存架構と、前記建物の間に構築される外部補強架構が一体的に接合される耐震改修構造であって、
隣り合う前記建物は、互いの桁行面が隙間を隔てて並列配置されており、
前記外部補強架構は、前記建物の梁間方向の通り芯に沿った構面を備え、
前記構面は、該構面と接合される前記既存架構の梁間方向の水平剛性よりも高い剛性を有することで、
複数の前記既存架構の梁間方向が補強されてなる
ことを特徴とする耐震改修構造。
A seismic retrofit structure in which a plurality of existing frames constituting a plurality of flat-shaped buildings that are long in the beam direction and an external reinforcing frame constructed between the buildings are integrally joined,
The adjacent buildings are arranged side by side with a gap between each other.
The external reinforcing frame has a construction surface along the core in the direction between the beams of the building,
The structural surface has a rigidity higher than the horizontal rigidity in the inter-beam direction of the existing frame joined to the structural surface,
A seismic retrofit structure, wherein a plurality of the existing frames are reinforced in the inter-beam direction.
前記外部補強架構は、複数の前記構面を桁行方向に連結して構成される立体架構である
ことを特徴とする請求項1に記載の耐震改修構造。
The seismic retrofit structure according to claim 1, wherein the external reinforcing frame is a three-dimensional frame configured by connecting a plurality of the structural surfaces in the direction of the beam .
前記外部補強架構は、少なくとも最下層が純ラーメン構造で構築されている
ことを特徴とする請求項1または請求項2に記載の耐震改修構造。
The seismic retrofit structure according to claim 1 or 2, wherein at least a lowermost layer of the external reinforcing frame is constructed with a pure ramen structure.
JP2005306027A 2005-10-20 2005-10-20 Seismic retrofit structure Expired - Fee Related JP4733496B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005306027A JP4733496B2 (en) 2005-10-20 2005-10-20 Seismic retrofit structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005306027A JP4733496B2 (en) 2005-10-20 2005-10-20 Seismic retrofit structure

Publications (2)

Publication Number Publication Date
JP2007113276A JP2007113276A (en) 2007-05-10
JP4733496B2 true JP4733496B2 (en) 2011-07-27

Family

ID=38095723

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005306027A Expired - Fee Related JP4733496B2 (en) 2005-10-20 2005-10-20 Seismic retrofit structure

Country Status (1)

Country Link
JP (1) JP4733496B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013060763A (en) * 2011-09-14 2013-04-04 Takenaka Komuten Co Ltd Earthquake strengthening structure

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09203220A (en) * 1996-01-26 1997-08-05 Kajima Corp Earthquake-resistant reinforcing method for existing building
JPH09203217A (en) * 1996-01-30 1997-08-05 Takenaka Komuten Co Ltd Earthquake-resistant reinforcing method for existing building
JPH09235890A (en) * 1996-03-01 1997-09-09 Kajima Corp Vibration damping reinforcing structure for existing building
JPH09235885A (en) * 1996-03-04 1997-09-09 Shimizu Corp Earthquake resisting reinforced structure of existing building
JPH11336332A (en) * 1998-05-29 1999-12-07 Kajima Corp Reinforcing structure for existing structure and reinforcing construction

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09203220A (en) * 1996-01-26 1997-08-05 Kajima Corp Earthquake-resistant reinforcing method for existing building
JPH09203217A (en) * 1996-01-30 1997-08-05 Takenaka Komuten Co Ltd Earthquake-resistant reinforcing method for existing building
JPH09235890A (en) * 1996-03-01 1997-09-09 Kajima Corp Vibration damping reinforcing structure for existing building
JPH09235885A (en) * 1996-03-04 1997-09-09 Shimizu Corp Earthquake resisting reinforced structure of existing building
JPH11336332A (en) * 1998-05-29 1999-12-07 Kajima Corp Reinforcing structure for existing structure and reinforcing construction

Also Published As

Publication number Publication date
JP2007113276A (en) 2007-05-10

Similar Documents

Publication Publication Date Title
KR102079008B1 (en) E-z connecting structure for beam and column wherein the end-moment and bending resistibility are reinforced
JP4590373B2 (en) Structural wall
JP2006226054A (en) Aseismic reinforcing method for existing reinforced concrete building with rigid frame structure
JP3690437B2 (en) Seismic reinforcement structure for existing buildings
JP4873981B2 (en) Seismic reinforcement structure for existing buildings
JP2020037775A (en) Non-brace steel frame building construction method and column base unit
KR100588193B1 (en) Hybrid Structere System of Steel and Reinforced Concrete for Slim Floor System and Construction Method thereof
JP4733460B2 (en) Seismic reinforcement frame for existing buildings
JP4996370B2 (en) Frame assembly method and building frame
JP4733496B2 (en) Seismic retrofit structure
JP6690150B2 (en) Beam-column structure of plate-like apartment house
JP4772308B2 (en) How to build a unit building
JP5444695B2 (en) Temporary house for coke oven
JP5144182B2 (en) Seismic reinforcement structure and seismic reinforcement method for existing buildings
JP4621072B2 (en) Seismic structure
JP4354381B2 (en) Extension method
JP4757590B2 (en) Seismic reinforcement method for existing reinforced concrete structures
JP5096979B2 (en) Reinforcement structure of ramen structure
JP2006037530A (en) Building structure skeleton and building structure making use thereof
JP2002206209A (en) Bridge having upper-lower section integral structure and its execution method
JP2009013616A (en) Long span structure building
JP6877612B2 (en) Rebuilding building with existing underground outer wall
KR102452802B1 (en) A construction method to use the seismic resistant precast concrete members
JPH0673783A (en) Construction of steel framed reinforced concrete column and steel beam
JP7155488B2 (en) Structural Seismic Reinforcement Structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080508

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100304

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100309

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100426

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101019

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101210

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110419

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110422

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20170428

Year of fee payment: 6

R150 Certificate of patent or registration of utility model

Ref document number: 4733496

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees