JP6447777B2 - Column beam connection structure and steel reinforced concrete column - Google Patents

Column beam connection structure and steel reinforced concrete column Download PDF

Info

Publication number
JP6447777B2
JP6447777B2 JP2018509360A JP2018509360A JP6447777B2 JP 6447777 B2 JP6447777 B2 JP 6447777B2 JP 2018509360 A JP2018509360 A JP 2018509360A JP 2018509360 A JP2018509360 A JP 2018509360A JP 6447777 B2 JP6447777 B2 JP 6447777B2
Authority
JP
Japan
Prior art keywords
column
steel
connection structure
structure according
reinforced concrete
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2018509360A
Other languages
Japanese (ja)
Other versions
JPWO2017170732A1 (en
Inventor
聡 北岡
聡 北岡
半谷 公司
公司 半谷
悠介 鈴木
悠介 鈴木
政樹 有田
政樹 有田
慧 木村
慧 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel and Sumitomo Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumitomo Metal Corp filed Critical Nippon Steel and Sumitomo Metal Corp
Application granted granted Critical
Publication of JP6447777B2 publication Critical patent/JP6447777B2/en
Publication of JPWO2017170732A1 publication Critical patent/JPWO2017170732A1/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/18Structures comprising elongated load-supporting parts, e.g. columns, girders, skeletons
    • E04B1/30Structures comprising elongated load-supporting parts, e.g. columns, girders, skeletons the supporting parts being composed of two or more materials; Composite steel and concrete constructions
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/38Connections for building structures in general
    • E04B1/58Connections for building structures in general of bar-shaped building elements

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Joining Of Building Structures In Genera (AREA)

Description

本発明は、柱梁接合構造及び鉄骨鉄筋コンクリート柱に関する。
本願は、2016年3月31日に、日本に出願された特願2016−071540号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to a beam-column joint structure and a steel reinforced concrete column.
This application claims priority on March 31, 2016 based on Japanese Patent Application No. 2006-071540 for which it applied to Japan, and uses the content for it here.

従来、SRC造の柱に用いられるH形鋼からなる鉄骨柱と、鉄骨梁との接合構造として、地震荷重の負担を考慮した接合構造が提案されている。   2. Description of the Related Art Conventionally, as a joint structure between a steel column made of H-shaped steel used for an SRC column and a steel beam, a joint structure that takes into account the burden of seismic load has been proposed.

例えば特許文献1には、鉄骨造または鉄骨鉄筋コンクリート造の柱部材として、ウェブの板厚がフランジの板厚よりも大きいH形鋼を用いることにより、耐震構造の柱梁接合部に必要な水平スチフナおよびダブラープレートを不要にした柱梁接合部が開示されている。
ところが、特許文献1に開示された発明は、地震力に対して柱梁接合部を剛接合にするための技術であり、鉄骨造の梁の上下フランジの両方を鉄骨造の柱のフランジに溶接している。
For example, Patent Document 1 discloses that a horizontal stiffener necessary for a column-beam joint of an earthquake-resistant structure is used by using an H-shaped steel having a web plate thickness larger than that of a flange as a steel or steel reinforced concrete column member. In addition, a beam-column joint that does not require a doubler plate is disclosed.
However, the invention disclosed in Patent Document 1 is a technique for rigidly connecting a column beam joint to an earthquake force, and welds both the upper and lower flanges of a steel beam to the flange of a steel column. doing.

また、特許文献2には、鉄骨鉄筋コンクリート造柱と鉄骨梁との柱梁接合構造において、柱鉄骨の強軸方向の鉄骨梁をダイヤフラムを用いることなく剛接合できるように、柱鉄骨のウェブの板厚がフランジの板厚よりも厚肉に形成され、柱鉄骨の弱軸方向の鉄骨梁は、柱鉄骨にウェブのみが接合され、且つ鉄骨梁の柱のコンクリートへの埋め込み長さは、鉄骨梁を剛接合できる長さに設定された柱梁接合構造が開示されている。
ところが、特許文献2に開示された発明もまた、地震力に対して柱梁接合部を剛接合にするための技術であり、柱鉄骨の弱軸方向に鉄骨梁を剛接合する技術である。そして、柱鉄骨の弱軸方向は、SRC造の柱の断面形状を大きくすることで鉄骨梁の埋め込み長さを大きくしている。
Further, in Patent Document 2, in a column beam connection structure of a steel reinforced concrete column and a steel beam, a steel plate web plate is provided so that the steel beam in the strong axis direction of the column steel frame can be rigidly connected without using a diaphragm. The steel beam in the weak axis direction of the column steel is formed with a thickness greater than the plate thickness of the flange, and only the web is joined to the column steel, and the embedding length of the column of the steel beam in the concrete is steel beam A beam-to-column connection structure set to such a length that can be rigidly connected is disclosed.
However, the invention disclosed in Patent Document 2 is also a technique for rigidly connecting the column beam joint to the seismic force, and is a technique for rigidly joining the steel beam in the weak axis direction of the column steel frame. In the weak axis direction of the column steel frame, the embedding length of the steel beam is increased by increasing the cross-sectional shape of the SRC column.

また、特許文献3には、内部梁の梁端を外周柱における芯鉄骨に対して溶接して剛接合し、外周梁のウェブを芯鉄骨のウェブに対して構造的に直接接合することなく外周梁の端部を外周柱の被覆コンクリートに定着して剛接合し、せん断補強筋および幅止め筋を外周梁の上下近傍位置に密に集約配筋した外殻構造が開示されている。
ところが、特許文献3に開示された発明も、地震力に対して二方向の柱梁接合部を剛接合にするための技術であり、SRC造の柱を長方形にして外周梁の埋め込み長さを確保している。
In Patent Document 3, the beam end of the inner beam is welded and rigidly bonded to the core steel frame in the outer peripheral column, and the outer beam is not directly bonded to the core steel web in a structural manner. An outer shell structure is disclosed in which the ends of the beam are fixed and rigidly bonded to the covering concrete of the outer peripheral column, and the shear reinforcement bars and the width stop bars are densely arranged near the upper and lower positions of the outer peripheral beam.
However, the invention disclosed in Patent Document 3 is also a technique for rigidly connecting the column beam joint in two directions against the seismic force. Secured.

日本国特開2001−214514号公報Japanese Unexamined Patent Publication No. 2001-214514 日本国特開2007−100396号公報Japanese Unexamined Patent Publication No. 2007-1000039 日本国特開2013−245442号公報Japanese Unexamined Patent Publication No. 2013-245442

一方、近年、建築構造物においては、地震荷重は免震装置や耐震ブレース等、構造部材以外に設けた免震機構で負担されるようになっており、このような建築構造物では、構造部材で地震荷重を負担する必要がない。すなわち、免震機構を備えた建築構造物においては、構造部材は、鉛直方向の荷重のみを考慮すればよい。
ところが、前記特許文献1〜3に開示された発明はいずれも、地震荷重を想定した補強を要する接合構造であり、梁に作用する鉛直方向の荷重を支持することに特化した構造ではない。特に、柱と梁との接合部に溶接を施すことにより地震荷重を負担しようとする場合には、柱や梁に高強度の鋼材を用いると溶接作業が困難となるため高強度の鉄骨柱や鉄骨梁を用いることができなくなるという問題もあった。
On the other hand, in recent years, in building structures, seismic loads have been borne by seismic isolation mechanisms other than structural members, such as seismic isolation devices and seismic braces. It is not necessary to bear the earthquake load. That is, in a building structure provided with a seismic isolation mechanism, the structural member only needs to consider the load in the vertical direction.
However, all of the inventions disclosed in Patent Documents 1 to 3 are joint structures that require reinforcement assuming an earthquake load, and are not structures specialized to support a vertical load acting on a beam. In particular, when trying to bear the seismic load by welding the joint between the column and the beam, if high strength steel is used for the column or beam, the welding operation becomes difficult. There was also a problem that the steel beam could not be used.

本発明は、かかる課題を解決し、複雑な補強を必要とせずに、施工性と安全性とに優れ、鉛直荷重支持に特化した柱梁接合構造及び鉄骨鉄筋コンクリート柱を提供することを目的とする。   An object of the present invention is to solve such problems and to provide a beam-to-column connection structure and a steel-framed reinforced concrete column that are excellent in workability and safety without requiring complex reinforcement and specialized in supporting vertical loads. To do.

本発明の概要は下記の通りである。   The outline of the present invention is as follows.

(1)本発明の第一の態様は、周囲にコンクリートが打設される鉄骨柱と、前記鉄骨柱の側方に配置される鉄骨梁との柱梁接合構造であって、前記鉄骨柱の側部に設けられるとともに、前記鉄骨梁を水平方向に移動自在に支持する梁載置部材と;前記鉄骨梁の上面に配置され、前記コンクリートに係止する係止手段と;を備え、前記係止手段が、前記鉄骨梁の前記上面に立設されるスタッド、及び、前記鉄骨梁の前記上面に形成されるジベル貫通孔の一方又は両方である。
(2)上記(1)に記載の柱梁接合構造では、前記係止手段が前記スタッドであり、前記スタッドの上端側に、拡径頭部が形成されてもよい。
(3)上記(1)に記載の柱梁接合構造では、前記係止手段が前記ジベル貫通孔であり、前記ジベル貫通孔に挿通されるジベル鉄筋を更に備えてもよい。
(4)上記(3)に記載の柱梁接合構造では、前記ジベル鉄筋の材軸方向に垂直な断面の断面積S1と、前記ジベル貫通孔の貫通方向に垂直な断面の断面積S2との比率S1/S2が0.2以上0.6以下であってもよい。
(5)上記(1)〜(4)のいずれか一項に記載の柱梁接合構造では、前記鉄骨柱の降伏強さが400MPa以上であってもよい。
(6)上記(1)〜(5)のいずれか一項に記載の柱梁接合構造では、前記鉄骨柱がH形鋼であり、前記鉄骨梁の端面が前記H形鋼のウェブに対向して設けられてもよい。
(7)上記(1)〜(6)のいずれか一項に記載の柱梁接合構造では、前記梁載置部材が、前記鉄骨柱の前記側部に取り付けられる垂直面と、前記垂直部の上端から水平方向に延在する水平面と、を備えるアングルであってもよい。
(8)上記(1)〜(7)のいずれか一項に記載の柱梁接合構造では、前記鉄骨梁の端面が前記鉄骨柱の前記側部に固定されていなくてもよい。
(9)上記(1)〜(8)のいずれか一項に記載の柱梁接合構造では、前記鉄骨梁と前記鉄骨柱とが溶接により接合されていなくてもよい。
(10)本発明の第二の態様は、上記(1)〜(9)のいずれか一項に記載の柱梁接合構造と、前記柱梁接合構造の周囲に打設される鉄筋コンクリートと、を備える鉄骨鉄筋コンクリート柱である。
(1) A first aspect of the present invention is a column beam connection structure of a steel column in which concrete is placed around and a steel beam arranged on a side of the steel column, A beam mounting member provided on a side and for supporting the steel beam movably in a horizontal direction; and a locking means disposed on an upper surface of the steel beam and locked to the concrete. The stopping means is one or both of a stud erected on the upper surface of the steel beam and a dowel through hole formed on the upper surface of the steel beam.
(2) In the column beam connection structure according to (1) above, the locking means may be the stud, and an enlarged head may be formed on the upper end side of the stud.
(3) In the column beam connection structure according to (1), the locking unit may be the dowel through hole, and may further include a dowel reinforcing bar inserted through the dowel through hole.
(4) In the column beam connection structure described in (3) above, the cross-sectional area S1 of the cross section perpendicular to the material axis direction of the gibber reinforcing bar and the cross-sectional area S2 of the cross section perpendicular to the penetrating direction of the diver through-hole The ratio S1 / S2 may be 0.2 or more and 0.6 or less .
(5) In the column beam connection structure according to any one of (1) to (4) above, the yield strength of the steel column may be 400 MPa or more.
(6) In the column beam connection structure according to any one of (1) to (5), the steel column is an H-shaped steel, and an end surface of the steel beam is opposed to the H-shaped steel web. May be provided.
(7) In the column beam connection structure according to any one of (1) to (6) above, the beam mounting member includes a vertical surface attached to the side portion of the steel column, and the vertical portion. An angle including a horizontal plane extending in the horizontal direction from the upper end may be used.
(8) In the column-beam joint structure according to any one of (1) to (7), the end surface of the steel beam may not be fixed to the side portion of the steel column.
(9) In the column beam connection structure according to any one of (1) to (8), the steel beam and the steel column may not be bonded by welding.
(10) According to a second aspect of the present invention, there is provided the beam-column joint structure according to any one of (1) to (9) above, and reinforced concrete placed around the beam-beam joint structure. It is a steel reinforced concrete column provided.

本発明の上記態様によれば、鉄骨鉄筋コンクリート柱に用いられる鉄骨柱と鉄骨梁との柱梁接合構造において、鉄骨梁は梁載置部材に水平方向に移動自在に支持される。このため、鉄骨梁は鉄骨柱に直接的に溶接等で接合されないため、複雑な補強を行うことなく柱梁接合構造の構築を容易且つ迅速に行うことができる。
特に、鉄骨柱と鉄骨梁との溶接が省略されるため、溶接施工が困難な高強度の柱部材を用いることができる。従って、安全性の高い柱梁接合構造及び鉄骨鉄筋コンクリート柱を得ることができる。
更には、鉄骨梁の上面には、スタッドとジベル貫通孔の少なくとも一方が係止手段として設けられるため、コンクリートが打設されて硬化した後に、鉄骨梁が鉄骨梁の長さ方向に移動することが抑制される。従って、鉄骨梁が鉄骨鉄筋コンクリート柱から抜け落ちることを防止できるため、高い安全性を確保することができる。
従って、高い施工性と安全性とを兼ね揃えた柱梁接合構造及び鉄骨鉄筋コンクリート柱を提供することが可能である。
According to the above aspect of the present invention, in the column beam connection structure of the steel column and the steel beam used for the steel reinforced concrete column, the steel beam is supported by the beam placing member so as to be movable in the horizontal direction. For this reason, since the steel beam is not directly joined to the steel column by welding or the like, it is possible to easily and quickly construct the column beam connection structure without performing complicated reinforcement.
In particular, since the welding between the steel column and the steel beam is omitted, a high-strength column member that is difficult to weld can be used. Therefore, a highly safe column beam connection structure and a steel-framed reinforced concrete column can be obtained.
Furthermore, since at least one of the stud and the dowel through hole is provided as a locking means on the upper surface of the steel beam, the steel beam should move in the length direction of the steel beam after the concrete is cast and hardened. Is suppressed. Therefore, the steel beam can be prevented from falling off the steel reinforced concrete column, and thus high safety can be ensured.
Therefore, it is possible to provide a column beam joint structure and a steel-framed reinforced concrete column that have both high workability and safety.

本発明の第一実施形態に係る柱梁接合構造を備えた鉄骨鉄筋コンクリート柱の斜視図である。It is a perspective view of the steel frame reinforced concrete pillar provided with the beam-column joining structure concerning a first embodiment of the present invention. 同実施形態に係る柱梁接合構造を示し、(a)は平面図、(b)は(a)のA1−A1線から見た縦断面図、(c)は(a)のB1−B1線から見た縦断面図である。The column beam connection structure concerning the embodiment is shown, (a) is a top view, (b) is a longitudinal section seen from the A1-A1 line of (a), (c) is the B1-B1 line of (a). It is the longitudinal cross-sectional view seen from. 本発明の第二実施形態に係る柱梁接合構造を示し、(a)は平面図、(b)は(a)のA2−A2線から見た縦断面図、(c)は(a)のB2−B2線から見た縦断面図である。The column beam junction structure concerning a second embodiment of the present invention is shown, (a) is a top view, (b) is a longitudinal section seen from the A2-A2 line of (a), (c) is (a). It is the longitudinal cross-sectional view seen from the B2-B2 line. 本発明の第三実施形態に係る柱梁接合構造を示し、(a)は平面図、(b)は(a)のA3−A3線から見た縦断面図、(c)は(a)のB3−B3線から見た縦断面図である。The column beam junction structure concerning a third embodiment of the present invention is shown, (a) is a top view, (b) is a longitudinal section seen from the A3-A3 line of (a), (c) is (a). It is the longitudinal cross-sectional view seen from the B3-B3 line. 本発明の第四実施形態に係る柱梁接合構造を示し、(a)は平面図、(b)は(a)のA4−A4線から見た縦断面図、(c)は(a)のB4−B4線から見た縦断面図である。The column beam connection structure which concerns on 4th embodiment of this invention is shown, (a) is a top view, (b) is the longitudinal cross-sectional view seen from the A4-A4 line of (a), (c) is (a). It is the longitudinal cross-sectional view seen from the B4-B4 line.

本発明者らは、(a)地震荷重については鉄骨柱と鉄骨梁との接合箇所では負担させない構造とし、鉄骨柱と鉄骨梁とを溶接等により剛接合しないこと、及び、(b)鉄骨梁の上面にコンクリート打設後の鉄骨梁の長手方向のずれを防止するための係止手段を設けること、によって施工性と安全性とに優れた柱梁接合構造と鉄骨鉄筋コンクリート柱を提供できることを知見した。   The present inventors have (a) a structure in which the seismic load is not borne at the joint between the steel column and the steel beam, the steel column and the steel beam are not rigidly joined by welding or the like, and (b) the steel beam Knowledge that it is possible to provide a column-to-beam connection structure and a steel-framed reinforced concrete column with excellent workability and safety by providing locking means to prevent the longitudinal displacement of the steel beam after placing concrete on the upper surface of the steel did.

以下、上述の知見に基づきなされた本発明の第一実施形態〜第四実施形態に係る柱梁接合構造について、図面を参照して説明する。
なお、本明細書および図面において、実質的に同一の機能構成を有する要素においては、同一の符号を付することにより重複説明を省略する。
また、本明細書における用語を以下に説明する。
強軸方向Xとは、柱の材軸方向Zに垂直な断面において、断面二次モーメントが最大となる方向を意味する。柱がH形鋼である場合、H形鋼の材軸方向Zに垂直な断面におけるウェブの延在方向が強軸方向である。
弱軸方向Yとは、柱の材軸方向Zに垂直な断面において、断面二次モーメントが最小となる方向を意味する。柱がH形鋼である場合、H形鋼の材軸方向Zに垂直な断面におけるフランジの延在方向が弱軸方向である。
Hereinafter, column beam connection structures according to the first to fourth embodiments of the present invention made based on the above-described knowledge will be described with reference to the drawings.
In the present specification and drawings, elements having substantially the same functional configuration are denoted by the same reference numerals, and redundant description is omitted.
In addition, terms used in this specification will be described below.
The strong axis direction X means a direction in which the cross-section secondary moment is maximum in a cross section perpendicular to the material axis direction Z of the column. When the column is H-section steel, the extending direction of the web in the cross section perpendicular to the material axis direction Z of the H-section steel is the strong axis direction.
The weak axis direction Y means a direction in which the cross-section secondary moment is minimized in a cross section perpendicular to the material axis direction Z of the column. When the column is H-section steel, the extending direction of the flange in the cross section perpendicular to the material axis direction Z of the H-section steel is the weak axis direction.

(第一実施形態)
図1は、本発明の第一実施形態に係る柱梁接合構造1Aを含む鉄骨鉄筋コンクリート柱10(SRC構造)を示す。
図1に示すように、柱梁接合構造1Aは、鉛直方向Zに沿って立設される鉄骨柱2と、鉄骨柱2の側面に対して端面が対向するように配置される鉄骨梁3とを接合するための構造である。
(First embodiment)
FIG. 1 shows a steel reinforced concrete column 10 (SRC structure) including a beam-column joint structure 1A according to a first embodiment of the present invention.
As shown in FIG. 1, a beam-to-column connection structure 1A includes a steel column 2 that is erected along a vertical direction Z, and a steel beam 3 that is disposed so that the end surface faces the side surface of the steel column 2. It is the structure for joining.

鉄骨柱2は、ウェブ21と一対のフランジ22とを有するH形鋼から構成される。
鉄骨梁3は、ウェブ31と上下一対の上フランジ32a、下フランジ32bとを有するH形鋼から構成され、鉄骨柱2の弱軸方向Yに沿って延在するように配置される。すなわち、鉄骨柱2のウェブ21の側部に対して端面が対向するように、鉄骨梁3が配置されている。
柱と梁とを接合するための溶接を行う従来技術においては、溶接性を考慮し、高強度の鋼材を用いることに材料設計上の制限があった。しかし、本実施形態に係る柱梁接合構造1Aでは、柱と梁とを接合するための溶接が行われない。従って、例えば降伏強さが400MPa以上、好ましくは460MPa以上の高強度の鋼材を用いることができる。
The steel column 2 is made of an H-shaped steel having a web 21 and a pair of flanges 22.
The steel beam 3 is made of an H-shaped steel having a web 31 and a pair of upper and lower upper flanges 32a and 32b, and is disposed so as to extend along the weak axis direction Y of the steel column 2. That is, the steel beam 3 is arranged so that the end surface faces the side portion of the web 21 of the steel column 2.
In the prior art that performs welding for joining columns and beams, there is a limitation in material design in order to use high-strength steel materials in consideration of weldability. However, in the column-beam joining structure 1A according to the present embodiment, welding for joining the column and the beam is not performed. Therefore, for example, a high strength steel material having a yield strength of 400 MPa or more, preferably 460 MPa or more can be used.

鉄骨梁3のウェブ31には水平鉄筋挿通孔33が形成されている。鉄骨柱2の周囲には、鉄骨柱2の材軸方向と平行に垂直鉄筋5aが配設され、この垂直鉄筋5aに対し、水平鉄筋挿通孔33に挿通させた水平鉄筋5bが組まれる。そして、鉄骨柱2の周囲には、垂直鉄筋5aと水平鉄筋5bとを埋め込むように、図1の点線で示される領域にコンクリートCが打設される。このようにして、鉄骨柱2および柱梁接合構造1Aの周囲が鉄筋コンクリートで覆われることになり、鉄骨鉄筋コンクリート柱10が構築される。
図1に示すように、鉄骨鉄筋コンクリート柱10の設置位置に応じて、鉄骨柱2のフランジ22の側部に対しても、鉄骨梁3’が配置されてもよい。
A horizontal rebar insertion hole 33 is formed in the web 31 of the steel beam 3. Around the steel column 2, a vertical reinforcing bar 5 a is arranged in parallel with the material axis direction of the steel column 2, and a horizontal reinforcing bar 5 b inserted through the horizontal reinforcing bar insertion hole 33 is assembled to the vertical reinforcing bar 5 a. Then, concrete C is placed around the steel column 2 in a region indicated by a dotted line in FIG. 1 so as to embed the vertical reinforcing bar 5a and the horizontal reinforcing bar 5b. In this way, the periphery of the steel column 2 and the column beam joint structure 1A is covered with the reinforced concrete, and the steel reinforced concrete column 10 is constructed.
As shown in FIG. 1, the steel beam 3 ′ may be arranged on the side of the flange 22 of the steel column 2 according to the installation position of the steel reinforced concrete column 10.

なお、この実施形態における鉄骨鉄筋コンクリート柱10は、断面略正方形状の柱となっているが、断面略長方形状の柱であってもよい。   The steel reinforced concrete column 10 in this embodiment is a column having a substantially square cross section, but may be a column having a substantially rectangular cross section.

図2は、本実施形態に係る柱梁接合構造1Aを示し、(a)は平面図、(b)は(a)のA1−A1線から見た縦断面図、(c)は(a)のB1−B1線から見た縦断面図である。
図2の(b)、(c)に示すように、鉄骨柱2のウェブ21の両側部に、梁載置部材6が接合されている。
この梁載置部材6は、鉄骨柱2のウェブ21の側面に取り付けられる垂直面61と、垂直面61の上端から水平方向に延在する水平面62とを有するアングル(山形鋼)により構成される。
本実施形態に係る柱梁接合構造1Aでは、ウェブ21と、その両側面に設けられた梁載置部材6とを貫通する孔にボルト63aを挿通してナット63bに螺合することで、梁載置部材6が鉄骨柱2の側面に設けられている。
そして、このようにして設けられた梁載置部材6の水平面62の上面に、鉄骨梁3の下フランジ32bが水平方向に移動自在な態様で載置される。
ここで、水平方向に移動自在な態様とは、鉄骨梁3が、コンクリートCが硬化する前の状態において、鉄骨柱2又は梁載置部材6に溶接やボルトなどで固定されておらず、長手方向と短手方向に摺動可能とされている態様を意味する。
2A and 2B show a column beam connection structure 1A according to the present embodiment, in which FIG. 2A is a plan view, FIG. 2B is a longitudinal sectional view taken along line A1-A1 in FIG. It is the longitudinal cross-sectional view seen from line B1-B1.
As shown in FIGS. 2B and 2C, the beam placing members 6 are joined to both sides of the web 21 of the steel column 2.
The beam mounting member 6 is configured by an angle (an angle steel) having a vertical surface 61 attached to the side surface of the web 21 of the steel column 2 and a horizontal surface 62 extending in the horizontal direction from the upper end of the vertical surface 61. .
In the beam-to-column connection structure 1A according to the present embodiment, a bolt 63a is inserted into a hole penetrating the web 21 and the beam mounting member 6 provided on both side surfaces thereof and screwed into a nut 63b. A mounting member 6 is provided on the side surface of the steel column 2.
Then, the lower flange 32b of the steel beam 3 is placed on the upper surface of the horizontal surface 62 of the beam placing member 6 thus provided in a manner that is movable in the horizontal direction.
Here, the aspect that is movable in the horizontal direction means that the steel beam 3 is not fixed to the steel column 2 or the beam mounting member 6 by welding or bolts before the concrete C is hardened. It means an aspect that is slidable in the direction and the short direction.

梁載置部材6のサイズは、打設されるコンクリートCが硬化するまでの間、建設時荷重を支えることができるものであればよい。なお、鉄骨梁3に作用する建設時荷重は鉛直下向きの力であるため、基本的に鉄骨梁3は梁載置部材6の上に載置できればよい。しかしながら、鉄骨梁3の正確な位置決めのため、あるいは鉄骨梁3の自重等に起因して鉄骨梁3の下フランジ32b近傍に生じる、鉄骨梁3を鉄骨柱2のウェブ21に押し付ける方向の力(図2の(b)の矢印f1)を負担するため、鉄骨梁3と梁載置部材6の垂直面61とを支圧ボルト等で仮止め接合するようにしてもよい。例えば、水平方向に遊びのあるボルト穴に支圧ボルトを挿通し、トルクが入らない状態で支圧ボルトを固定することにより、鉄骨梁3を水平移動自在な状態を維持してもよい。   The beam mounting member 6 may be any size as long as it can support the load during construction until the concrete C to be placed is hardened. Since the construction load acting on the steel beam 3 is a vertically downward force, the steel beam 3 is basically required to be placed on the beam placing member 6. However, force (in the direction in which the steel beam 3 is pressed against the web 21 of the steel column 2) generated in the vicinity of the lower flange 32 b of the steel beam 3 for accurate positioning of the steel beam 3 or due to its own weight or the like ( In order to bear the arrow f1) in FIG. 2B, the steel beam 3 and the vertical surface 61 of the beam mounting member 6 may be temporarily fixed and joined with a supporting bolt or the like. For example, the steel beam 3 may be maintained in a state in which the steel beam 3 can be moved horizontally by inserting the support bolt into a bolt hole having play in the horizontal direction and fixing the support bolt without torque.

一方、鉄骨梁3の上フランジ32a近傍においては、鉄骨梁3に作用する曲げモーメントにより、鉄骨柱2のウェブ21から離れる方向の力(図2の(b)の矢印f2)が発生する。この力に起因するずれを防止するために、本実施形態に係る柱梁接合構造1Aでは、鉄骨梁3の上フランジ32aの上面に複数のスタッド41が設置される。
スタッド41は、コンクリートCが打設される位置に設置されるため、鉄骨鉄筋コンクリート柱10のコンクリートC内に埋め込まれることで生じるせん断補強効果により、鉄骨梁3の長さ方向の位置ずれを防ぐことができる。従って、鉄骨鉄筋コンクリート柱10の外形が小さくて鉄骨梁3の鉄骨鉄筋コンクリート柱10への埋め込み長さが短い場合であっても、鉄骨梁3の長さ方向のずれを防ぎ、鉄骨梁3が鉄骨鉄筋コンクリート柱10から抜け落ちることを防止することができる。
On the other hand, in the vicinity of the upper flange 32 a of the steel beam 3, a force in the direction away from the web 21 of the steel column 2 (arrow f <b> 2 in FIG. 2B) is generated by a bending moment acting on the steel beam 3. In order to prevent the displacement due to this force, in the column-beam joining structure 1A according to the present embodiment, a plurality of studs 41 are installed on the upper surface of the upper flange 32a of the steel beam 3.
Since the stud 41 is installed at a position where the concrete C is cast, the steel beam 3 is prevented from being displaced in the length direction by a shear reinforcement effect caused by being embedded in the concrete C of the steel reinforced concrete column 10. Can do. Therefore, even if the external shape of the steel reinforced concrete column 10 is small and the embedding length of the steel beam 3 in the steel reinforced concrete column 10 is short, the steel beam 3 is prevented from shifting in the length direction, and the steel beam 3 is steel reinforced concrete. It is possible to prevent the pillar 10 from falling off.

スタッド41は、図2の(b)、(c)に示されるように、胴体部41aと、その胴体部41aの上端側に形成されるとともに胴体部41aよりも拡径した拡径頭部41bとを有することが好ましい。このようなスタッドを用いる場合、鉛直方向への係止力も発生するため、上述の抜け落ち防止効果をより一層高めることができる。   As shown in FIGS. 2B and 2C, the stud 41 has a body portion 41a and an enlarged head portion 41b formed on the upper end side of the body portion 41a and having a diameter larger than that of the body portion 41a. It is preferable to have. When such a stud is used, a locking force in the vertical direction is also generated, so that the above-described drop-off prevention effect can be further enhanced.

スタッド41は、コンクリートCを打設する前に設置すればよく、スタッド溶接ガン等を用いることで容易且つ迅速に設置することができる。   The stud 41 may be installed before placing the concrete C, and can be easily and quickly installed by using a stud welding gun or the like.

本実施形態に係る柱梁接合構造1Aでは、従来技術のような、地震力に抵抗するための、鉄骨柱2のウェブ21と鉄骨梁3の長手方向の端面との間の溶接(剛接合)が行われない。したがって、耐震補強のための溶接を行う場合に比べて施工が容易となるため、短工期で柱梁接合構造1Aの構築を行うことができる。また、柱と梁との間の溶接を考慮しなくて良いため、高強度の鋼材、例えば降伏強さが400MPa以上、好ましくは460MPa以上の鋼材を用いることができる。従って、強度設計上で必要とされる鋼材の重量やサイズを低減することが可能となる。
更に、本実施形態に係る柱梁接合構造1Aでは、鉄骨梁3が水平方向に移動自在な態様で梁載置部材6の上面に載置されるため、鉄骨梁の位置合わせを容易に行うことが可能となり、施工性が向上する。
In the column beam connection structure 1A according to the present embodiment, the welding (rigid connection) between the web 21 of the steel column 2 and the end surface in the longitudinal direction of the steel beam 3 for resistance to seismic force as in the prior art. Is not done. Therefore, since the construction is easier than in the case of performing welding for seismic reinforcement, it is possible to construct the column beam connection structure 1A in a short construction period. Further, since it is not necessary to consider welding between the column and the beam, a high-strength steel material such as a steel material having a yield strength of 400 MPa or more, preferably 460 MPa or more can be used. Therefore, it is possible to reduce the weight and size of the steel material required for strength design.
Furthermore, in the column beam connection structure 1A according to the present embodiment, the steel beam 3 is placed on the upper surface of the beam placing member 6 in a manner that is movable in the horizontal direction, so that the steel beam can be easily aligned. This improves the workability.

また、本実施形態に係る柱梁接合構造1Aでは、建築物の床版を通じて、あるいは鉄骨梁3の自重によって鉄骨梁3に作用する鉛直荷重は、鉄骨鉄筋コンクリート柱10の中に埋め込まれた部分の鉄骨梁3の下フランジ32bの支圧力として、柱に打設されるコンクリートCに伝達される。
すなわち、鉄骨梁3が載置されている梁載置部材6は、コンクリートCが硬化するまでの建設時荷重を支えるものであればよい。
一方で、係止手段であるスタッド41が鉄骨梁3の長さ方向の位置ずれを防ぐため、鉄骨梁3が鉄骨鉄筋コンクリート柱10から抜け出すことが防止される。
この結果、従来のように複雑な補強を行うことなく、柱梁接合構造1Aの構築を容易且つ迅速に行うことができる。
鉄骨柱2と鉄骨梁3とは、地震荷重に耐えうる剛接合のような高い接合強度の溶接を行わないことから、降伏強さが400MPa以上、更には460MPa以上であるような高強度の極厚H形鋼など、溶接施工が困難なH形鋼等であっても容易に用いることができる。
なお、鉄骨梁3としては、鋼製の圧延H形鋼または溶接組立H形断面部材を用いることができる。
Further, in the column beam connection structure 1A according to the present embodiment, the vertical load acting on the steel beam 3 through the floor slab of the building or by the dead weight of the steel beam 3 is a portion embedded in the steel reinforced concrete column 10. It is transmitted to the concrete C placed on the column as a support pressure of the lower flange 32b of the steel beam 3.
That is, the beam placing member 6 on which the steel beam 3 is placed may be any member that supports a load during construction until the concrete C is hardened.
On the other hand, since the stud 41 as the locking means prevents the displacement of the steel beam 3 in the length direction, the steel beam 3 is prevented from coming out of the steel reinforced concrete column 10.
As a result, it is possible to easily and quickly construct the column beam connection structure 1A without performing complicated reinforcement as in the past.
Since the steel column 2 and the steel beam 3 are not welded with a high joint strength such as a rigid joint capable of withstanding an earthquake load, a high-strength pole having a yield strength of 400 MPa or more, more preferably 460 MPa or more. Even H-shaped steels that are difficult to weld, such as thick H-shaped steels, can be easily used.
As the steel beam 3, a steel rolled H-section steel or a welded assembly H-shaped cross-section member can be used.

尚、地震発生地域において免震機構を設ける場合、免震機構は柱梁接合構造1Aではなく建造物の構造部材以外に設けられ、柱梁接合構造1Aでは地震荷重の負担させない。   In addition, when providing a seismic isolation mechanism in an earthquake occurrence area, the seismic isolation mechanism is provided other than the structural member of the building, not the column beam connection structure 1A, and the column beam connection structure 1A does not bear the seismic load.

更に、本実施形態に係る柱梁接合構造1Aによれば、鉄骨梁を確実に鉄骨鉄筋コンクリート柱に接合することができるため、コンクリート床スラブと鉄骨鉄筋コンクリート柱は構造上分離していてもよい。すなわち、コンクリート床スラブの鉄筋を鉄骨鉄筋コンクリート柱に定着させる必要はなく、コンクリート床スラブと鉄骨鉄筋コンクリート柱はそれぞれのコンクリートを別々に打設することができ、施工が容易となる。   Furthermore, according to the beam-column joint structure 1A according to the present embodiment, the steel beam can be reliably joined to the steel-framed reinforced concrete column. Therefore, the concrete floor slab and the steel-framed reinforced concrete column may be structurally separated. That is, it is not necessary to fix the reinforcing bar of the concrete floor slab to the steel-framed reinforced concrete column, and the concrete floor slab and the steel-framed reinforced concrete column can be placed separately, and the construction becomes easy.

前記の特許文献1〜3で提案されてきた従来の柱梁接合構造は、地震荷重に対してSRC造を構成する鉄骨柱と鉄骨梁とを剛接合することを目的としている。これに対し、本実施形態に係る柱梁接合構造1Aでは、地震荷重を建造物の構造部材以外に設けた免震機構で負担することを前提とし、構造部材に作用する地震荷重が軽減される場合に適用される。そのため、本実施形態に係る柱梁接合構造1Aでは、従来のような地震荷重に抵抗するための特別な構造は設けず、鉄骨柱に取り付けられた梁載置部材の上に鉄骨梁が載置された状態で、その鉄骨梁におけるずれ止め手段を鉄骨鉄筋コンクリート柱のコンクリート内に埋設させた構成としている。これにより、鉄骨梁の自重による鉛直荷重や、建築物の床版から鉄骨梁に作用する鉛直荷重を支持させ、柱梁接合構造1Aの合理化を可能にし、構築を容易且つ迅速に行うことができる。   The conventional beam-column joint structure proposed in Patent Documents 1 to 3 is intended to rigidly join a steel column and a steel beam constituting an SRC structure against an earthquake load. On the other hand, in the beam-column joint structure 1A according to the present embodiment, the seismic load acting on the structural member is reduced on the premise that the seismic load is borne by the seismic isolation mechanism other than the structural member of the building. Applicable to the case. Therefore, in the column beam connection structure 1A according to the present embodiment, a special structure for resisting an earthquake load as in the conventional case is not provided, and the steel beam is placed on the beam placement member attached to the steel column. In this state, the displacement preventing means in the steel beam is embedded in the concrete of the steel-framed reinforced concrete column. As a result, the vertical load due to the weight of the steel beam and the vertical load acting on the steel beam from the floor slab of the building can be supported, the column beam joint structure 1A can be rationalized, and the construction can be performed easily and quickly. .

(第二実施形態)
図3は、本発明の第二実施形態に係る柱梁接合構造1Bを示す。
この実施形態に係る柱梁接合構造1Bは、スタッド41の替わりにジベル貫通孔42が係止手段として用いられている点で、上述の第一実施形態に係る柱梁接合構造1Aと異なる。
すなわち、本実施形態に係る柱梁接合構造1Bでは、図3の(a)、(b)、(c)に示されるように、鉄骨梁3の上フランジ32aの、鉄骨鉄筋コンクリート柱10のコンクリートCに埋め込まれる部分に、上フランジ32aを厚さ方向に貫通する複数のジベル貫通孔42が係止手段として形成されている。
(Second embodiment)
FIG. 3 shows a beam-column joint structure 1B according to the second embodiment of the present invention.
The column beam connection structure 1B according to this embodiment is different from the column beam connection structure 1A according to the first embodiment described above in that a dowel through hole 42 is used as a locking means instead of the stud 41.
That is, in the column beam joint structure 1B according to the present embodiment, as shown in FIGS. 3A, 3B and 3C, the concrete C of the steel reinforced concrete column 10 of the upper flange 32a of the steel beam 3 is provided. A plurality of dowel through-holes 42 penetrating the upper flange 32a in the thickness direction are formed as locking means in the portion embedded in.

本実施形態に係る柱梁接合構造1Bの場合、コンクリートCの打設時に、これらのジベル貫通孔42の周囲がコンクリートC内に埋め込まれ、且つ各ジベル貫通孔42内にコンクリートCが入り込む。これにより、ジベル効果(dowel effect)、すなわち、せん断抵抗を利用したずれ止め効果が発揮される。従って、第一実施形態に係る柱梁接合構造1Aと同様に、鉄骨梁3の長さ方向の位置ずれを防ぐことができる。   In the case of the column beam connection structure 1 </ b> B according to the present embodiment, when the concrete C is placed, the periphery of these dowel through holes 42 is embedded in the concrete C, and the concrete C enters the respective dowel through holes 42. As a result, a dowel effect, that is, a slip prevention effect using shear resistance is exhibited. Therefore, similarly to the column beam connection structure 1A according to the first embodiment, the displacement of the steel beam 3 in the length direction can be prevented.

(第三実施形態)
図4は、本発明の第三実施形態に係る柱梁接合構造1Cを示す。
この実施形態に係る柱梁接合構造1Cでは、第二実施形態に係る柱梁接合構造1Bと同様に設けられた複数のジベル貫通孔42にジベル鉄筋43が挿通され、そのジベル鉄筋43の上方側及び下方側を上フランジ32aの上面及び下面から突出させている。
(Third embodiment)
FIG. 4 shows a beam-column joint structure 1C according to the third embodiment of the present invention.
In the beam-column joint structure 1C according to this embodiment, the gibber rebar 43 is inserted into a plurality of dowel through holes 42 provided in the same manner as the beam-column joint structure 1B according to the second embodiment. And the lower side is made to protrude from the upper surface and lower surface of the upper flange 32a.

本実施形態に係る柱梁接合構造1Cの場合、ジベル鉄筋43が鉄骨鉄筋コンクリート柱10のコンクリートC内に埋め込まれることでせん断補強効果が生じるため、鉄骨梁3の長さ方向の位置ずれを防ぐことができる。更に、ジベル貫通孔42の内周面とジベル鉄筋43の外周面との間の空間、すなわちジベル貫通孔42とジベル鉄筋43との間のクリアランスにより生じる空間内にもコンクリートCの一部が入り込むことでジベル効果が発揮される。従って、せん断補強効果とジベル効果との複合効果により、鉄骨梁3の長さ方向のずれを強力に防ぎ、鉄骨梁3が鉄骨鉄筋コンクリート柱10から抜け落ちることを一層安定的に防止することができる。   In the case of the beam-column joint structure 1C according to the present embodiment, since the shear reinforcement effect is produced by embedding the gibber reinforcing bar 43 in the concrete C of the steel reinforced concrete column 10, the displacement of the steel beam 3 in the length direction is prevented. Can do. Further, a part of the concrete C also enters the space between the inner peripheral surface of the dowel through hole 42 and the outer peripheral surface of the dowel reinforcing bar 43, that is, the space generated by the clearance between the dowel through hole 42 and the dowel reinforcing bar 43. This gives the Giber effect. Therefore, the combined effect of the shear reinforcement effect and the Gybel effect can strongly prevent the steel beam 3 from shifting in the length direction, and can more stably prevent the steel beam 3 from falling out of the steel reinforced concrete column 10.

更に、ジベル貫通孔42に挿入されたジベル鉄筋43が、打設されたコンクリートCのせん断抵抗力を増大させることができるため、ジベル鉄筋43が挿入されない第二実施形態に係る柱梁接合構造1Bに比べてジベル貫通孔42の数を減らすことができる。
したがって、鉄骨鉄筋コンクリート柱10の外形が小さくて鉄骨梁3のコンクリートCへの埋め込み長さが小さい場合であっても、鉄骨梁3の長さ方向の位置ずれを防ぐことができ、鉄骨梁3が鉄骨鉄筋コンクリート柱10から抜け出すことが防止される。
Furthermore, since the gibber rebar 43 inserted in the through-hole 42 can increase the shear resistance of the placed concrete C, the column beam connection structure 1B according to the second embodiment in which the diver rebar 43 is not inserted. The number of the dowel through holes 42 can be reduced as compared with FIG.
Therefore, even when the outer shape of the steel reinforced concrete column 10 is small and the embedding length of the steel beam 3 in the concrete C is small, the displacement of the steel beam 3 in the length direction can be prevented, and the steel beam 3 It is prevented that the steel frame reinforced concrete pillar 10 comes out.

この複合効果をより好適に得るためには、前記ジベル鉄筋43の材軸方向に垂直な断面の断面積S1と、前記ジベル貫通孔42の貫通方向に垂直な断面の断面積S2との比率であるS1/S2の値は0.2以上0.6以下であることが好ましい。S1/S2の値が0.2以下ではジベル鉄筋が細すぎて曲げ挙動が卓越するため、補強効果が得られなくなる場合がある。また、S1/S2の値が0.6以上であるとコンクリートの充填性が悪くなり,施工不良でジベル孔内に空隙を生じる場合がある。
尚、S1/S2を小さくする場合、ジベル鉄筋43の抜け落ちを防止するために、その上端側を屈曲させたジベル鉄筋を用いたり、隣り合う孔に跨るように略U字型としたジベル鉄筋を用いてもよい。
In order to obtain this combined effect more suitably, the ratio of the cross-sectional area S1 of the cross section perpendicular to the material axis direction of the gibber reinforcing bar 43 to the cross-sectional area S2 of the cross section perpendicular to the penetrating direction of the diver through-hole 42 A value of S1 / S2 is preferably 0.2 or more and 0.6 or less. When the value of S1 / S2 is 0.2 or less, the reinforcing effect may not be obtained because the bevel rebar is too thin and the bending behavior is excellent. Moreover, when the value of S1 / S2 is 0.6 or more, the filling property of the concrete is deteriorated, and there is a case where a void is generated in the dowel hole due to poor construction.
When S1 / S2 is reduced, in order to prevent the gibber bar 43 from falling off, a gibber bar whose upper end is bent is used, or a substantially U-shaped gibber bar is used so as to straddle adjacent holes. It may be used.

(第四実施形態)
図5は、本発明の第四実施形態に係る柱梁接合構造1Dを示す。
第四実施形態に係る柱梁接合構造1Dは、鉄骨柱2の強軸方向Xに沿って鉄骨梁3が接合されている点で、鉄骨柱2の弱軸方向Yに沿って鉄骨梁3が接合されている第一実施形態に係る柱梁接合構造1Aと異なる。
(Fourth embodiment)
FIG. 5 shows a column beam joint structure 1D according to a fourth embodiment of the present invention.
The column beam connection structure 1D according to the fourth embodiment is such that the steel beam 3 is bonded along the weak axis direction Y of the steel column 2 in that the steel beam 3 is bonded along the strong axis direction X of the steel column 2. It is different from the beam-column joint structure 1A according to the first embodiment that is joined.

本実施形態に係る柱梁接合構造1Dでは、図5の(b)に示すように、梁載置部材6は、鉄骨柱2の両フランジ22、22の外方側のそれぞれの側部に対し、ボルト63aとナット63bにより固定されている。
図5に示す例では、係止手段として第一実施形態に係る柱梁接合構造1Aと同様にスタッド41を用いているが、第二実施形態や第三実施形態に係る柱梁接合構造1B、1Cと同様にジベル貫通孔42やジベル鉄筋43であってもよく、それらの組合せであってもよい。
In the beam-to-column connection structure 1D according to the present embodiment, as shown in FIG. 5B, the beam mounting member 6 is opposed to the outer sides of both flanges 22 and 22 of the steel column 2. These are fixed by bolts 63a and nuts 63b.
In the example shown in FIG. 5, the stud 41 is used as the locking means in the same manner as the column beam joint structure 1A according to the first embodiment, but the column beam joint structure 1B according to the second embodiment or the third embodiment, Like 1C, it may be a dowel through hole 42 or a dowel rebar 43, or a combination thereof.

ただし、本実施形態に係る柱梁接合構造1Dでは、鉄骨柱2の中心軸から離間したフランジ22の側部に鉄骨梁3の端面が対向するように配設される。従って、鉄骨柱2のウェブ21の側部に鉄骨梁3の端面が対向するように配設される第一実施形態〜第三実施形態に係る柱梁接合構造1A〜1Cに比べて、鉄骨梁3の鉄骨鉄筋コンクリート柱10への埋め込み長さは小さくなる傾向にある。
特に、第一実施形態〜第四実施形態に係る柱梁接合構造1A〜1Dのように、鉄骨鉄筋コンクリート柱10が断面略正方形である場合には、鉄骨鉄筋コンクリート柱が鉄骨梁の長さ方向に長い断面略矩形状の場合に比べて、鉄骨梁3の鉄骨鉄筋コンクリート柱10への埋め込み長さが小さくなりやすい。
しかしながら、係止手段として、前述したスタッド41、ジベル貫通孔42、ジベル鉄筋43などを用いることで、鉄骨梁3の長さ方向のずれ止めを十分に防ぐことができるため、鉄骨梁3の鉄骨鉄筋コンクリート柱10からの抜け落ちを防止することができる。
However, in the column beam joint structure 1D according to the present embodiment, the end surface of the steel beam 3 is disposed so as to face the side portion of the flange 22 spaced from the central axis of the steel column 2. Therefore, compared to the column beam joint structures 1A to 1C according to the first embodiment to the third embodiment in which the end surface of the steel beam 3 is disposed so as to face the side portion of the web 21 of the steel column 2, the steel beam is compared. 3 embedded in steel reinforced concrete columns 10 tends to be small.
In particular, when the steel reinforced concrete column 10 has a substantially square cross section as in the beam-column joint structures 1A to 1D according to the first embodiment to the fourth embodiment, the steel reinforced concrete column is long in the length direction of the steel beam. Compared with the case of a substantially rectangular cross section, the embedding length of the steel beam 3 in the steel reinforced concrete column 10 tends to be small.
However, since the stud 41, the dowel through-hole 42, the dowel rebar 43, etc. described above are used as the locking means, it is possible to sufficiently prevent the steel beam 3 from shifting in the length direction. The falling off from the reinforced concrete pillar 10 can be prevented.

以上、本発明の好適な実施形態について説明したが、本発明は上述の例に限定されない。当業者であれば、特許請求の範囲に記載された技術的思想の範疇内において、各種の変更例または修正例に想到しうることは明らかであり、それらについても当然に本発明の技術的範囲に属するものと了解される。   As mentioned above, although preferred embodiment of this invention was described, this invention is not limited to the above-mentioned example. It is obvious for those skilled in the art that various changes or modifications can be conceived within the scope of the technical idea described in the claims. It is understood that it belongs to.

例えば、上述の第一実施形態〜第四実施形態では、鉄骨柱としてH形鋼を使用しているが、H形鋼に替えて角形鋼やI形鋼を使用してもよい。
また、上述の第一実施形態〜第四実施形態では、鉄骨梁としてH形鋼を使用しているが、H形鋼に替えて角形鋼やI形鋼を使用してもよい。
また、上述の第二実施形態、第三実施形態では、ジベル貫通孔42の貫通方向に垂直な断面の形状が円形である場合を例示しているが、楕円形や多角形であってもよい。
また、上述の第一実施形態〜第四実施形態では、梁載置部材としてアングルを用いているが、鉄骨柱の側部に設置できて鉄骨梁を上面に載置できる部材であればよく、角形鋼を用いてもよい。
また、上述の第一実施形態〜第四実施形態では、鉄骨柱の側部と鉄骨梁の端部とが面接触(溶接やボルト締めなどによる接合はされていない)した状態で配置されているが、面接触しない程度に隙間が形成されていてもよい。
上述の第一実施形態〜第四実施形態を適宜組み合わせてもよく、例えば、スタッドとジベル貫通孔とを交互に配置させてもよい。
For example, in the above-described first to fourth embodiments, H-section steel is used as the steel column, but square steel or I-section steel may be used instead of H-section steel.
Moreover, in the above-mentioned 1st embodiment-4th embodiment, although H-section steel is used as a steel frame beam, it replaces with H-section steel and square steel and I-section steel may be used.
Moreover, although the above-mentioned 2nd embodiment and 3rd embodiment illustrated the case where the shape of the cross section perpendicular | vertical to the penetration direction of the dowel through-hole 42 is circular, an ellipse and a polygon may be sufficient. .
In addition, in the first to fourth embodiments described above, an angle is used as the beam placing member, but any member that can be placed on the side of the steel column and can place the steel beam on the upper surface may be used. Square steel may be used.
In the first to fourth embodiments described above, the side portions of the steel column and the end portions of the steel beam are arranged in surface contact (not joined by welding or bolting). However, the clearance gap may be formed to such an extent that it does not contact a surface.
The first embodiment to the fourth embodiment described above may be appropriately combined. For example, studs and dowel through holes may be alternately arranged.

本発明によれば、高い施工性と安全性とを兼ね揃えた柱梁接合構造及び鉄骨鉄筋コンクリート柱を提供することが可能となる。   ADVANTAGE OF THE INVENTION According to this invention, it becomes possible to provide the column beam junction structure and the steel frame reinforced concrete column which combined high workability and safety.

1A、1B、1C、1D 柱梁接合構造
10 鉄骨鉄筋コンクリート柱
2 鉄骨柱(H形鋼)
21 ウェブ
22 フランジ
3、3’ 鉄骨梁(H形鋼)
31 ウェブ
32a 上フランジ
32b 下フランジ
33 水平鉄筋挿通孔
41 スタッド41a 胴体部
41b 頭部
42 ジベル貫通孔
43 ジベル鉄筋
5a 垂直鉄筋
5b 水平鉄筋
6 梁載置部材(アングル)
61 垂直面
62 水平面
63a ボルト
63b ナット
C コンクリート
X 強軸方向
Y 弱軸方向
Z 鉛直方向
1A, 1B, 1C, 1D Beam-column joint structure 10 Steel-framed reinforced concrete column 2 Steel column (H-section steel)
21 Web 22 Flange 3, 3 'Steel beam (H-section steel)
31 Web 32a Upper flange 32b Lower flange 33 Horizontal rebar insertion hole 41 Stud 41a Body part 41b Head 42 Giber through-hole 43 Giber rebar 5a Vertical rebar 5b Horizontal rebar 6 Beam mounting member (angle)
61 Vertical surface 62 Horizontal surface 63a Bolt 63b Nut C Concrete X Strong axis direction Y Weak axis direction Z Vertical direction

Claims (10)

周囲にコンクリートが打設される鉄骨柱と、前記鉄骨柱の側方に配置される鉄骨梁との柱梁接合構造であって、
前記鉄骨柱の側部に設けられるとともに、前記鉄骨梁を水平方向に移動自在に支持する梁載置部材と;
前記鉄骨梁の上面に配置され、前記コンクリートに係止する係止手段と;
を備え、
前記係止手段が、前記鉄骨梁の前記上面に立設されるスタッド、及び、前記鉄骨梁の前記上面に形成されるジベル貫通孔の一方又は両方である
ことを特徴とする柱梁接合構造。
It is a column beam joint structure between a steel column in which concrete is placed and a steel beam arranged on the side of the steel column,
A beam mounting member provided on a side of the steel column and supporting the steel beam movably in a horizontal direction;
Locking means disposed on the upper surface of the steel beam and locked to the concrete;
With
The beam-column joining structure, wherein the locking means is one or both of a stud standing on the upper surface of the steel beam and a dowel through hole formed on the upper surface of the steel beam.
前記係止手段が前記スタッドであり、
前記スタッドの上端側に、拡径頭部が形成されている
ことを特徴とする、請求項1に記載の柱梁接合構造。
The locking means is the stud;
The column beam connection structure according to claim 1, wherein an enlarged diameter head is formed on an upper end side of the stud.
前記係止手段が前記ジベル貫通孔であり、
前記ジベル貫通孔に挿通されるジベル鉄筋を更に備える
ことを特徴とする、請求項1に記載の柱梁接合構造。
The locking means is the dowel through hole;
The beam-column joint structure according to claim 1, further comprising a gibber reinforcing bar inserted through the gibber through hole.
前記ジベル鉄筋の材軸方向に垂直な断面の断面積S1と、前記ジベル貫通孔の貫通方向に垂直な断面の断面積S2との比率S1/S2が0.2以上0.6以下である
ことを特徴とする請求項3に記載の柱梁接合構造。
The ratio S1 / S2 of the cross-sectional area S1 of the cross section perpendicular to the material axis direction of the gibber reinforcing bar to the cross-sectional area S2 of the cross section perpendicular to the penetrating direction of the diver through-hole is 0.2 or more and 0.6 or less. The column beam connection structure according to claim 3.
前記鉄骨柱の降伏強さが400MPa以上である
ことを特徴とする請求項1〜4のいずれか一項に記載の柱梁接合構造。
The column beam connection structure according to any one of claims 1 to 4, wherein a yield strength of the steel column is 400 MPa or more.
前記鉄骨柱がH形鋼であり、前記鉄骨梁の端面が前記H形鋼のウェブに対向して設けられる
ことを特徴とする請求項1〜5のいずれか一項に記載の柱梁接合構造。
The beam-to-column connection structure according to any one of claims 1 to 5, wherein the steel column is H-shaped steel, and an end surface of the steel beam is provided to face the H-shaped steel web. .
前記梁載置部材が、前記鉄骨柱の前記側部に取り付けられる垂直面と、前記垂直部の上端から水平方向に延在する水平面と、を備えるアングルである
ことを特徴とする請求項1〜6のいずれか一項に記載の柱梁接合構造。
The said beam mounting member is an angle provided with the vertical surface attached to the said side part of the above-mentioned steel pillar, and the horizontal surface extended in the horizontal direction from the upper end of the said vertical part, The above-mentioned. The beam-column joint structure according to any one of claims 6 to 6.
前記鉄骨梁の端面が前記鉄骨柱の前記側部に固定されていない
ことを特徴とする請求項1〜7のいずれか一項に記載の柱梁接合構造。
The column beam connection structure according to any one of claims 1 to 7, wherein an end surface of the steel beam is not fixed to the side portion of the steel column.
前記鉄骨梁と前記鉄骨柱とが溶接により接合されていない
ことを特徴とする、請求項1〜8のいずれか一項に記載の柱梁接合構造。
The beam-to-column connection structure according to any one of claims 1 to 8, wherein the steel beam and the steel column are not bonded by welding.
請求項1〜9のいずれか一項に記載の柱梁接合構造と、
前記柱梁接合構造の周囲に打設される鉄筋コンクリートと、
を備えることを特徴とする鉄骨鉄筋コンクリート柱。
The column beam connection structure according to any one of claims 1 to 9,
Reinforced concrete cast around the beam-column joint structure;
A steel-framed reinforced concrete column characterized by comprising:
JP2018509360A 2016-03-31 2017-03-29 Column beam connection structure and steel reinforced concrete column Expired - Fee Related JP6447777B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2016071540 2016-03-31
JP2016071540 2016-03-31
PCT/JP2017/012991 WO2017170732A1 (en) 2016-03-31 2017-03-29 Beam-to-column connection structure and steel reinforced concrete column

Publications (2)

Publication Number Publication Date
JP6447777B2 true JP6447777B2 (en) 2019-01-09
JPWO2017170732A1 JPWO2017170732A1 (en) 2019-01-10

Family

ID=59964653

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018509360A Expired - Fee Related JP6447777B2 (en) 2016-03-31 2017-03-29 Column beam connection structure and steel reinforced concrete column

Country Status (4)

Country Link
JP (1) JP6447777B2 (en)
SG (1) SG11201806986QA (en)
TW (1) TWI651453B (en)
WO (1) WO2017170732A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109790715A (en) * 2016-10-14 2019-05-21 安赛乐米塔尔公司 Steel enhances concrete column
CN113062448A (en) * 2021-03-31 2021-07-02 潮峰钢构集团有限公司 Frame beam steel bar connecting system of section steel column and concrete and pouring construction method
TWI769969B (en) * 2022-02-08 2022-07-01 財團法人國家實驗研究院 Joint structure of concrete encased steel composite beams

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10299170A (en) * 1997-04-21 1998-11-10 Taisei Corp Connecting structure for column and beam
JP5818363B2 (en) * 2012-06-05 2015-11-18 鹿島建設株式会社 Beam member holding member and beam member holding device at column / beam joint

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW517741U (en) * 2002-03-08 2003-01-11 Runhorn Pretech Eng Co Ltd Joint structure used in connecting reinforced concrete beam and column
TWI220017B (en) * 2003-11-07 2004-08-01 Neng-Yi Tu A steel connection member

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10299170A (en) * 1997-04-21 1998-11-10 Taisei Corp Connecting structure for column and beam
JP5818363B2 (en) * 2012-06-05 2015-11-18 鹿島建設株式会社 Beam member holding member and beam member holding device at column / beam joint

Also Published As

Publication number Publication date
JPWO2017170732A1 (en) 2019-01-10
TWI651453B (en) 2019-02-21
SG11201806986QA (en) 2018-09-27
TW201739994A (en) 2017-11-16
WO2017170732A1 (en) 2017-10-05

Similar Documents

Publication Publication Date Title
KR101767677B1 (en) Compisite column structure for steel and concrete
JP2006045776A (en) Construction method of shear wall
JP2007277952A (en) Earthquake-resistant connection structure and method of constructing the same
KR20110061841A (en) Joint structure for concrete filled tube column and h-shaped beam and construction method therefor
JP6447777B2 (en) Column beam connection structure and steel reinforced concrete column
JP2012007303A (en) Earthquake strengthening structure
JP2018009410A (en) Pillar beam joint structure
KR102217178B1 (en) Non-welding beam-to-column connection structure with reinforcing plate and through bolt
JP7228344B2 (en) Joint structure of reinforced concrete frame and brace and precast member
JP4819605B2 (en) Precast prestressed concrete beams using tendons with different strength at the end and center
JP6013028B2 (en) Outer shell structure
JP4696843B2 (en) Composite beam structure
JP2006188864A (en) Joint structure of column and beam
JP5429812B2 (en) Joining structure and method of shaft member and RC member
KR101299574B1 (en) Moment connection structure using panel zone of rectangular shape
KR101254983B1 (en) Joint structure of concrete filled tube and beam
JP2011111730A (en) Steel pipe concrete column
JP2016089549A (en) Structure and method for joining reinforced concrete beam and steel column or column comprising steel column
KR20180087701A (en) Concrete Filled steel Tube of Aseismic Reinforcement and Method of Aseismic Reinforcement for Existing Building Structure using the Same
JP3215633U (en) Brace mounting structure
JP7155488B2 (en) Structural Seismic Reinforcement Structure
JP7211915B2 (en) Seismic reinforcement structure
JP2005299138A (en) Reinforcing structure for rigid frame
JP6318374B1 (en) Reinforcement structure of reinforced concrete structure
JP6807157B2 (en) Joint member and joint structure

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180907

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180907

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20180907

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20181029

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181106

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181119

R151 Written notification of patent or utility model registration

Ref document number: 6447777

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees