JP2004300681A - Frame structure - Google Patents

Frame structure Download PDF

Info

Publication number
JP2004300681A
JP2004300681A JP2003092068A JP2003092068A JP2004300681A JP 2004300681 A JP2004300681 A JP 2004300681A JP 2003092068 A JP2003092068 A JP 2003092068A JP 2003092068 A JP2003092068 A JP 2003092068A JP 2004300681 A JP2004300681 A JP 2004300681A
Authority
JP
Japan
Prior art keywords
column
frame structure
lower chord
axial
shaft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003092068A
Other languages
Japanese (ja)
Other versions
JP4041004B2 (en
Inventor
Yasutsugu Kurokawa
泰嗣 黒川
Kazuo Kojima
一雄 児島
Tomohiko Hatada
朋彦 畑田
Hisashi Yasaki
尚志 家崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kajima Corp
Original Assignee
Kajima Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kajima Corp filed Critical Kajima Corp
Priority to JP2003092068A priority Critical patent/JP4041004B2/en
Publication of JP2004300681A publication Critical patent/JP2004300681A/en
Application granted granted Critical
Publication of JP4041004B2 publication Critical patent/JP4041004B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Buildings Adapted To Withstand Abnormal External Influences (AREA)
  • Rod-Shaped Construction Members (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a frame structure having a megastructure excellent in aseismatic prperty. <P>SOLUTION: In a frame structure 10 provided with a pair of columns 16, 16 and a truss frame structure 18 laterally surported between these columns, an axial yielding part 30 having a smaller sectional area than other parts of the lower chord member 22 between the column 16 and a strut member 26A nearest to the column is formed and it is constituted to bring an axial yielding state prior to the bending hinge of the column 16 when a specified earthquake force occurs. In this way, a form close to a beam yield prior shape can be taken and its collapse mechanism forms the whole collapse configuration and hence the aseismatic property can be improved. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、最下層部に大きな吹抜け空間を有する超高層ビル等の架構構造物に関する。
【0002】
【従来の技術】
超高層ビル等の架構構造物において、最下層部に大きな吹抜け空間を形成するための手法としては、図4に示すように、1対の柱1,1と、その柱1,1間に横架されたトラス架構2とから構成した、いわゆるメガストラクチャー3によるものが知られている(特許文献1参照)。
【0003】
従来のメガストラクチャー3では、想定する地震力を大きく設定し、柱1の柱頭部と柱脚部との両方に曲げヒンジ(曲げ降伏)が同時発生しないよう柱1の強度を高めている。
【0004】
【特許文献1】
特開平8−270081号公報
【0005】
【発明が解決しようとする課題】
しかしながら、超高層ビルにおけるメガストラクチャー3では、トラス架構2が柱1よりも強固であるため、想定以上の地震が起きた場合、図4において符号4,5で示すように、柱1の柱頭部と柱脚部の両方に曲げヒンジが発生する可能性が大きい。この場合、ビルの最下層部でしか塑性エネルギーを吸収することができないため、層崩壊に繋がる可能性がある。
【0006】
そこで、本発明の目的は、より耐震性に優れた、メガストラクチャーを有する架構構造物を提供することにある。
【0007】
【課題を解決するための手段】
上記目的を達成するために、本発明は、1対の柱と、これらの間に横架されたトラス架構(下弦材、上弦材、並びに、下弦材と上弦材との間に配設された複数の束材及び斜材からなる架構)とを備える架構構造物において、柱と、その柱に最も近い束材との間における下弦材の部分に、該下弦材の他の部分よりも断面積の小さな軸降伏部を形成し、この軸降伏部を、所定の地震力が発生した際に柱の曲げヒンジに先行して軸降伏を生じるよう構成したことを特徴としている。
【0008】
かかる構成はいわゆる梁降伏先行形に近い形態を採り、その崩壊メカニズムは全体崩壊形となって、耐震性が向上する。
【0009】
また、軸降伏部は、下弦材に所定の軸力(下弦材の長手方向に沿う応力)が発生した場合に軸降伏するが、座屈を生じさせない長さとされていることを特徴としている。これによりトラス架構自体の崩壊を防止することができる。
【0010】
更に、軸降伏部に摺動部材を摺動可能に取り付け、床スラブを、この摺動部材に固着して下弦材に対して可動とすることが有効である。これにより、床スラブからの力が下弦材に伝わらず、スラブ架構や柱に発生する応力を小さくすることができる。
【0011】
同様な観点から、床スラブと柱との間にクッション材を配置させることも好適である。
【0012】
【発明の実施の形態】
以下、図面を参照して本発明の好適な実施形態について詳細に説明する。
【0013】
図1の(a)及び(b)は本発明による架構構造物たる超高層ビルの構成及び崩壊メカニズムを示す概念図であり、図2は、図1の(a)のII部詳細図である。また、図3は図2のIII−III線に沿った断面図である。図1に示すように、本実施形態に係る超高層ビル10は、最下層部に大きな吹抜け空間12が形成されており、この部分がいわゆるメガストラクチャー14により構成されている。すなわち、超高層ビル10の少なくとも一壁面部分を、1対の柱16,16と、これらの柱16,16間に地上から所定高さ位置にて横架されたトラス架構18とにより構成し、柱16,16及びトラス架構18により囲まれた空間を吹抜け空間12としているのである。本実施形態においては、互いに対向する1対の壁面部分のそれぞれがメガストラクチャー14を有するものとする。また、メガストラクチャー14よりも上層階部20については、一般的なラーメン構造等で構築されている。
【0014】
メガストラクチャー14における柱16は、例えば鉄筋コンクリート造を主体としたものであり、図示しないが地盤中の基礎又は地下階構造体上に構築され、鉛直方向上方に延設されている。
【0015】
トラス架構18は、図2に明示するように、互いに所定の間隔を置いて平行に配置された下弦材22及び上弦材24と、下弦材22と上弦材24との間に配置された束材(垂直材)26及び斜材28とから構成されている。これらの下弦材22、上弦材24、束材26及び斜材28にはH形鋼が用いられることが好ましい。下弦材22及び上弦材24の各端部は、隣接する柱16に接合されている。各柱16と、当該柱16に最も近い束材26(図2においては添字Aを付したもの)との間に設置される斜材28については、その上端が柱16と上弦材24との間の角部に、下端が束材26と下弦材22との間の角部に接合されている。また、隣り合う束材26,26間には、1対の斜材28,28が逆V字形に配置されている。
【0016】
トラス架構18における下弦材22には、各柱16と当該柱16に最も近い束材26Aとの間に部分に、軸降伏部30が形成されている。この軸降伏部30は、地震の発生により想定した以上の軸力が下弦材22に発生した場合に、下弦材22の他の部分よりも先行して軸降伏を生じるよう構成されている。また、軸降伏部30に軸降伏を生じさせる前記軸力に相当する力が、柱16に対して下弦材22との接合部32に水平方向に作用した場合、柱16には曲げヒンジが生じないよう設定されている。
【0017】
軸降伏部30の寸法ないし形状は次のように定める。まず、想定する地震力により下弦材22に生じる軸力によって軸降伏が生じるよう、軸降伏部30の断面積を定める。なお、前記軸力の大きさは、その軸力と同等の力を柱16の、下弦材22との接合部32に水平方向に作用させても柱16に曲げヒンジを生じさせない値とする。軸降伏部30の断面積が決定されたならば、次いで、前記軸力が下弦材22に生じても軸降伏部30で座屈が生じない細長比を、先に定めた断面積に基づいて定める。そして、その細長比に対応する長さを軸降伏部30の長さL(図3参照)とするのである。勿論、下弦材22における軸降伏部30以外の部分は、前記軸力によっては軸降伏や座屈が生じることがないよう、軸降伏部30の断面積よりも大きな断面積とされる。
【0018】
更に、本実施形態では、トラス架構18の下弦材22に対して床スラブ34を設置するよう構成されている。この目的で、図3から理解される通り、互いに対向する1対のトラス架構(図3ではその一方のみ示す)18の下弦材22間には、床スラブ34を支持するための小梁36が複数本横架されている。軸降伏部30以外の部分においては、小梁36の端部は下弦材22に直接、溶接等により接合されている。一方、軸降伏部30においては、鋼管(摺動部材)38で軸降伏部30を囲み、その鋼管38に小梁36の端部が接合されている。鋼管38は、断面形状が矩形の角形鋼管であり、軸降伏部30に対して摺動可能に装着されている。床スラブ34は、このようにして設けられた小梁36上、及び下弦材22上に載置されるが、軸降伏部30における鋼管38に対してはスタッド(図示しない)等を用いて固着される。また、床スラブ34と柱16との間にはクッション材40、例えば厚さ30mm程度のスタイロフォーム等が介設されている。
【0019】
以上のような構成において、前記の想定以上の地震力が発生した場合、トラス架構18における下弦材22の軸降伏部30が他に先行して軸降伏を起こし、トラス架構18を支えている柱16には想定以上の曲げモーメントが生ぜず、柱16の柱頭部と柱脚部の同時曲げヒンジの発生が防止される。別言するならば、図1の(b)に示すように、柱16に曲げヒンジが発生するに先行して、下弦材22の軸降伏部30にて軸降伏が生じるという梁降伏先行形に近い形態を採るのである。また、曲げヒンジが柱に生じたとしても、その位置は、図1の(b)において符号42で示すように柱脚部となる。その結果、超高層ビル10の最下層部での部分崩壊は回避され、いわゆる全体崩壊形となる。全体崩壊形では、超高層ビル10の全層において塑性エネルギーの吸収が行われるため、部分崩壊のように局所的にしか塑性エネルギーを吸収し得ない場合に比して、耐震性が格段に向上されることになる。
【0020】
また、軸降伏部30の寸法形状が、軸降伏は生ずるが、座屈は生じないように設定されている。これにより、トラス架構18自体の崩壊も防止される。特に、本実施形態においては、軸降伏部30の周囲が角形鋼管38により囲まれているため、座屈の発生がより一層抑制されるという効果が得られる。
【0021】
更に、床スラブ34がトラス架構18の下弦材22に対して取り付けられるが、床スラブ34は、下弦材22には直接固着されず、摺動可能な角形鋼管38に固着されることから、床スラブ34を介して地震力が下弦材22に伝わる量は大幅に低減される。加えて、床スラブ34と柱16との間にクッション材40が配置されていることから、床スラブ34から柱16への力も低減されている。このように床スラブ34が柱16及びトラス架構18に対して浮動状態(フローティング状態)とされているため、柱16での曲げヒンジの発生が更に抑制されることとなる。
【0022】
なお、本発明は、トラス架構18における下弦材22の一部の剛性を積極的に低下させるものであるが、その部分が柱16と柱16に隣接する束材26Aとの間に限っているため、常時作用する鉛直力に対しては十分に支持することが可能となっている。これは、トラス架構18においては、当該部分の剛性を他の部分よりも低くしたとしても、鉛直力に対しては、下弦材22全体を同じ剛性としたものに比して、殆ど変わらないという本発明者の知見に基づくものである。
【0023】
以上、本発明の好適な実施形態について詳細に説明したが、本発明は上記実施形態に限定されないことはいうまでもない。
【0024】
例えば、上記実施形態では軸降伏部30を角形鋼管38により囲んでいるが、床スラブ34を浮動にするという観点からは、他の形態の摺動部材、例えば逆U字状の形鋼を摺動可能に軸降伏部30に取り付け、そこに床スラブ34を固着させてもよい。また、本発明は超高層ビル以外の他の架構構造物にも適用可能である。
【0025】
【発明の効果】
以上のように、本発明による構成を採ることで、メガストラクチャーを有する架構構造物の耐震性が向上される。特に、トラス架構の強度を高める必要がある超高層ビルにおいては、層崩壊を回避することのできる本発明の構成は極めて有効なものとなる。
【図面の簡単な説明】
【図1】(a)及び(b)は本発明による架構構造物である超高層ビルの構成及び崩壊メカニズムを概略的に示す説明図である。
【図2】図1のII部の詳細図である。
【図3】図2のIII―III線に沿っての断面図である。
【図4】従来の架構構造物の崩壊メカニズムを概略的に示す説明図である。
【符号の説明】
10…超高層ビル(架構構造物)、12…吹抜け空間、14…メガストラクチャー、16…柱、18…トラス架構、22…下弦材、24…上弦材、26…束材、28…斜材、30…軸降伏部、34…床スラブ、36…小梁、38…鋼管(摺動部材)、40…クッション材。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a frame structure such as a skyscraper having a large atrium in the lowermost part.
[0002]
[Prior art]
In a frame structure such as a skyscraper, as a method for forming a large atrium in the lowermost part, as shown in FIG. 4, a pair of columns 1, 1 and a horizontal space between the columns 1, 1 are used. There is known a so-called megastructure 3 composed of a truss frame 2 that is bridged (see Patent Document 1).
[0003]
In the conventional megastructure 3, the assumed seismic force is set to be large, and the strength of the column 1 is increased so that bending hinges (bending yield) are not simultaneously generated in both the column head and the column base of the column 1.
[0004]
[Patent Document 1]
JP-A-8-270081 [0005]
[Problems to be solved by the invention]
However, in the megastructure 3 of the skyscraper, since the truss frame 2 is stronger than the column 1, if an earthquake larger than expected occurs, as shown by reference numerals 4 and 5 in FIG. There is a high possibility that bending hinges will occur on both the base and the column base. In this case, plastic energy can be absorbed only in the lowest layer of the building, which may lead to story collapse.
[0006]
Therefore, an object of the present invention is to provide a frame structure having a megastructure with more excellent earthquake resistance.
[0007]
[Means for Solving the Problems]
In order to achieve the above object, the present invention provides a pair of pillars and a truss frame suspended between them (lower chord, upper chord, and between the lower chord and upper chord). A frame comprising a plurality of bundles and diagonal members), the lower chord between the column and the bundle closest to the column has a lower cross-sectional area than other portions of the lower chord. Is formed so that when a predetermined seismic force is generated, the shaft yielding occurs prior to the bending hinge of the column.
[0008]
Such a configuration takes a form close to a so-called beam yielding precedent type, and its collapse mechanism is a total collapse type, and the earthquake resistance is improved.
[0009]
Further, the shaft yielding portion is characterized in that it has a length which does not cause buckling, although it yields when a predetermined axial force (stress along the longitudinal direction of the lower chord material) is applied to the lower chord material. Thereby, collapse of the truss frame itself can be prevented.
[0010]
Further, it is effective that a sliding member is slidably attached to the shaft yielding portion, and the floor slab is fixed to the sliding member so as to be movable with respect to the lower chord material. Thereby, the force from the floor slab is not transmitted to the lower chord material, and the stress generated in the slab frame or column can be reduced.
[0011]
From a similar viewpoint, it is also preferable to arrange a cushion material between the floor slab and the pillar.
[0012]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the drawings.
[0013]
1 (a) and 1 (b) are conceptual diagrams showing the structure and collapse mechanism of a skyscraper as a frame structure according to the present invention, and FIG. 2 is a detailed view of a part II in FIG. 1 (a). . FIG. 3 is a sectional view taken along line III-III in FIG. As shown in FIG. 1, the skyscraper 10 according to the present embodiment has a large atrium space 12 formed in the lowermost portion, and this portion is constituted by a so-called megastructure 14. That is, at least one wall portion of the skyscraper 10 is composed of a pair of pillars 16, 16 and a truss frame 18 laid between the pillars 16, 16 at a predetermined height from the ground, The space surrounded by the columns 16, 16 and the truss frame 18 is defined as the atrium space 12. In the present embodiment, each of a pair of wall portions facing each other has the megastructure 14. In addition, the upper floor portion 20 above the megastructure 14 is constructed with a general ramen structure or the like.
[0014]
The pillars 16 in the megastructure 14 are mainly made of, for example, reinforced concrete, and are built on a foundation or an underground floor structure in the ground (not shown) and extend vertically upward.
[0015]
As shown in FIG. 2, the truss frame 18 includes a lower chord member 22 and an upper chord member 24 arranged in parallel at a predetermined distance from each other, and a bundle member disposed between the lower chord member 22 and the upper chord member 24. (Vertical member) 26 and diagonal member 28. H-shaped steel is preferably used for the lower chord member 22, the upper chord member 24, the bundle member 26 and the diagonal member 28. Each end of the lower chord material 22 and the upper chord material 24 is joined to the adjacent column 16. Regarding the diagonal member 28 installed between each column 16 and the bundle member 26 (subscript A in FIG. 2) closest to the column 16, the upper end of the diagonal member 28 is The lower end is joined to the corner between the bundle material 26 and the lower chord material 22 at the corner between them. A pair of diagonal members 28, 28 are arranged between the adjacent bundle members 26, 26 in an inverted V-shape.
[0016]
In the lower chord member 22 of the truss frame 18, an axial yielding portion 30 is formed in a portion between each column 16 and a bundle member 26A closest to the column 16. The shaft yielding portion 30 is configured so that, when an axial force higher than expected due to the occurrence of an earthquake occurs in the lower chord material 22, the axial yield occurs prior to other portions of the lower chord material 22. In addition, when a force corresponding to the axial force causing the axial yielding portion 30 to cause axial yielding acts on the joint portion 32 between the column 16 and the lower chord material 22 in the horizontal direction, a bending hinge is generated in the column 16. Not set.
[0017]
The size or shape of the shaft yielding portion 30 is determined as follows. First, the cross-sectional area of the shaft yielding portion 30 is determined so that axial yielding occurs due to the axial force generated in the lower chord material 22 by the assumed seismic force. The magnitude of the axial force is set to a value that does not cause a bending hinge on the column 16 even when a force equivalent to the axial force is applied horizontally to the joint 32 of the column 16 with the lower chord material 22. Once the cross-sectional area of the shaft yielding portion 30 is determined, the slenderness ratio at which the axial yielding portion 30 does not buckle even when the axial force is generated in the lower chord material 22 is determined based on the cross-sectional area determined in advance. Determine. Then, the length corresponding to the slenderness ratio is defined as the length L of the axial yielding portion 30 (see FIG. 3). Of course, portions other than the shaft yielding portion 30 in the lower chord material 22 have a larger sectional area than the shaft yielding portion 30 so that axial yielding and buckling do not occur due to the axial force.
[0018]
Further, in the present embodiment, the floor slab 34 is installed on the lower chord 22 of the truss frame 18. For this purpose, as can be seen from FIG. 3, between the lower chords 22 of a pair of truss frames 18 (only one of which is shown in FIG. 3) facing each other, small beams 36 for supporting the floor slab 34 are provided. A plurality of them are suspended. In portions other than the shaft yielding portion 30, the ends of the small beams 36 are directly joined to the lower chord material 22 by welding or the like. On the other hand, in the shaft yielding section 30, the steel pipe (sliding member) 38 surrounds the shaft yielding section 30, and the end of the beam 36 is joined to the steel pipe 38. The steel pipe 38 is a rectangular steel pipe having a rectangular cross section, and is slidably mounted on the shaft yielding portion 30. The floor slab 34 is placed on the small beam 36 and the lower chord 22 provided in this manner, and is fixed to the steel pipe 38 in the shaft yielding portion 30 using a stud (not shown) or the like. Is done. Further, a cushion material 40, for example, a styrofoam having a thickness of about 30 mm is interposed between the floor slab 34 and the pillar 16.
[0019]
In the above-described configuration, when an earthquake force larger than the above-mentioned assumption is generated, the axial yielding portion 30 of the lower chord material 22 in the truss frame 18 causes axial yielding before the other, and the column supporting the truss frame 18 The bending moment of the column 16 is not generated more than expected, and the simultaneous bending hinge of the column head and the column base of the column 16 is prevented. In other words, as shown in FIG. 1B, a beam yielding advance type in which axial yielding occurs at the axial yielding portion 30 of the lower chord material 22 prior to the occurrence of the bending hinge in the column 16. It takes a close form. Further, even if a bending hinge is formed on the column, the position of the bending hinge becomes a column base as shown by reference numeral 42 in FIG. As a result, a partial collapse at the lowermost portion of the skyscraper 10 is avoided, and a so-called total collapse type is obtained. In the total collapse type, plastic energy is absorbed in all layers of the skyscraper 10, so seismic resistance is significantly improved compared to the case where plastic energy can only be absorbed locally, such as partial collapse. Will be done.
[0020]
The dimension and shape of the shaft yielding portion 30 are set so that shaft yielding occurs but buckling does not occur. This also prevents the truss frame 18 itself from collapsing. In particular, in the present embodiment, since the periphery of the shaft yielding portion 30 is surrounded by the square steel pipe 38, the effect of further suppressing the occurrence of buckling can be obtained.
[0021]
Further, the floor slab 34 is attached to the lower chord member 22 of the truss frame 18, but the floor slab 34 is not directly fixed to the lower chord member 22, but is fixed to the slidable square steel pipe 38. The amount of seismic force transmitted to the lower chord material 22 via the slab 34 is greatly reduced. In addition, since the cushion material 40 is arranged between the floor slab 34 and the column 16, the force from the floor slab 34 to the column 16 is also reduced. Since the floor slab 34 is in a floating state (floating state) with respect to the column 16 and the truss frame 18, the occurrence of the bending hinge on the column 16 is further suppressed.
[0022]
In the present invention, the rigidity of a part of the lower chord member 22 in the truss frame 18 is actively reduced, but the part is limited between the column 16 and the bundle member 26A adjacent to the column 16. Therefore, it is possible to sufficiently support the vertical force that always acts. This means that in the truss frame 18, even if the rigidity of the portion is lower than that of the other portions, the vertical force hardly changes compared to the case where the entire lower chord member 22 has the same rigidity. This is based on the findings of the present inventors.
[0023]
As described above, the preferred embodiments of the present invention have been described in detail, but it goes without saying that the present invention is not limited to the above embodiments.
[0024]
For example, in the above embodiment, the shaft yielding portion 30 is surrounded by the square steel pipe 38. However, from the viewpoint of floating the floor slab 34, a sliding member of another form, for example, an inverted U-shaped shaped steel is slid. The floor slab 34 may be fixed to the shaft yielding portion 30 so as to be movable. The present invention is also applicable to other frame structures other than the skyscraper.
[0025]
【The invention's effect】
As described above, by adopting the configuration according to the present invention, the earthquake resistance of the frame structure having the megastructure is improved. In particular, in a skyscraper building in which it is necessary to increase the strength of the truss frame, the configuration of the present invention capable of avoiding story collapse is extremely effective.
[Brief description of the drawings]
1 (a) and 1 (b) are explanatory views schematically showing a structure and a collapse mechanism of a skyscraper which is a frame structure according to the present invention.
FIG. 2 is a detailed view of a portion II in FIG. 1;
FIG. 3 is a sectional view taken along line III-III in FIG. 2;
FIG. 4 is an explanatory view schematically showing a collapse mechanism of a conventional frame structure.
[Explanation of symbols]
10 ... skyscraper (frame structure), 12 ... atrium space, 14 ... megastructure, 16 ... pillar, 18 ... truss frame, 22 ... lower chord material, 24 ... upper chord material, 26 ... bundle material, 28 ... diagonal material, Reference numeral 30 denotes a shaft yielding part, 34 denotes a floor slab, 36 denotes a beam, 38 denotes a steel pipe (sliding member), and 40 denotes a cushion material.

Claims (4)

1対の柱と、
下弦材、上弦材、並びに、前記下弦材と前記上弦材との間に配設された複数の束材及び斜材を備え、前記1対の柱間に横架されたトラス架構と
を具備する架構構造物において、
前記柱と該柱に最も近い前記束材との間における前記下弦材の部分には、該下弦材の他の部分よりも断面積の小さな軸降伏部が形成されており、
前記軸降伏部が、所定の地震力が発生した際に前記柱の曲げヒンジに先行して軸降伏を生じるよう構成されていることを特徴とする架構構造物。
A pair of pillars,
A lower truss material, an upper chord material, and a truss frame that includes a plurality of bundles and diagonal members disposed between the lower chord material and the upper chord material, and is laterally suspended between the pair of pillars. In the frame structure,
A portion of the lower chord between the column and the bundle closest to the column is formed with an axial yielding portion having a smaller cross-sectional area than other portions of the lower chord,
The frame structure, wherein the shaft yielding portion is configured to generate an axial yielding prior to a bending hinge of the column when a predetermined seismic force is generated.
前記軸降伏部が、所定の軸力が前記下弦材に発生した場合に軸降伏するが、座屈を生じない長さとされていることを特徴とする請求項1に記載の架構構造物。2. The frame structure according to claim 1, wherein the shaft yielding portion has a length such that the shaft yields when a predetermined axial force is generated in the lower chord member, but does not cause buckling. 3. 前記軸降伏部に摺動可能に取り付けられた摺動部材と、
前記摺動部材に固着され前記下弦材に対して可動となっている床スラブと
を備える請求項1又は2に記載の架構構造物。
A sliding member slidably attached to the shaft yielding portion,
The frame structure according to claim 1, further comprising: a floor slab fixed to the sliding member and movable with respect to the lower chord member.
前記床スラブと前記柱との間に配置されたクッション材を備えることを特徴とする請求項3に記載の架構構造物。The frame structure according to claim 3, further comprising a cushion material disposed between the floor slab and the column.
JP2003092068A 2003-03-28 2003-03-28 Frame structure Expired - Fee Related JP4041004B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003092068A JP4041004B2 (en) 2003-03-28 2003-03-28 Frame structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003092068A JP4041004B2 (en) 2003-03-28 2003-03-28 Frame structure

Publications (2)

Publication Number Publication Date
JP2004300681A true JP2004300681A (en) 2004-10-28
JP4041004B2 JP4041004B2 (en) 2008-01-30

Family

ID=33405274

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003092068A Expired - Fee Related JP4041004B2 (en) 2003-03-28 2003-03-28 Frame structure

Country Status (1)

Country Link
JP (1) JP4041004B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006328760A (en) * 2005-05-25 2006-12-07 Sekisui Chem Co Ltd Building with piloti floor
JP2009114701A (en) * 2007-11-05 2009-05-28 Shimizu Corp Bending control type vibration control structure
CN105888131A (en) * 2016-04-22 2016-08-24 山东建筑大学 Flexural yielding type energy dissipation truss
JP2018071289A (en) * 2016-11-02 2018-05-10 株式会社竹中工務店 Renovation method
JP2018096163A (en) * 2016-12-16 2018-06-21 大成建設株式会社 Method of constructing building
JP2020118004A (en) * 2019-01-28 2020-08-06 三井住友建設株式会社 Truss beam
CN113431183A (en) * 2021-06-30 2021-09-24 机械工业第六设计研究院有限公司 Installation method of gallery truss with connected structure
JP7426253B2 (en) 2020-02-18 2024-02-01 三井住友建設株式会社 truss beam

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006328760A (en) * 2005-05-25 2006-12-07 Sekisui Chem Co Ltd Building with piloti floor
JP4667960B2 (en) * 2005-05-25 2011-04-13 積水化学工業株式会社 Building with a piloti floor
JP2009114701A (en) * 2007-11-05 2009-05-28 Shimizu Corp Bending control type vibration control structure
CN105888131A (en) * 2016-04-22 2016-08-24 山东建筑大学 Flexural yielding type energy dissipation truss
CN105888131B (en) * 2016-04-22 2018-09-04 山东建筑大学 A kind of bending yield type energy dissipating truss
JP2018071289A (en) * 2016-11-02 2018-05-10 株式会社竹中工務店 Renovation method
JP2018096163A (en) * 2016-12-16 2018-06-21 大成建設株式会社 Method of constructing building
JP7041463B2 (en) 2016-12-16 2022-03-24 大成建設株式会社 How to build a building
JP2020118004A (en) * 2019-01-28 2020-08-06 三井住友建設株式会社 Truss beam
JP7116400B2 (en) 2019-01-28 2022-08-10 三井住友建設株式会社 truss girder
JP7426253B2 (en) 2020-02-18 2024-02-01 三井住友建設株式会社 truss beam
CN113431183A (en) * 2021-06-30 2021-09-24 机械工业第六设计研究院有限公司 Installation method of gallery truss with connected structure

Also Published As

Publication number Publication date
JP4041004B2 (en) 2008-01-30

Similar Documents

Publication Publication Date Title
KR20170097731A (en) Reinforced load bearing structure
JP6543084B2 (en) Structure
JP4957295B2 (en) Seismic control pier structure
JP4041004B2 (en) Frame structure
JP6339923B2 (en) How to build a building frame
JP5491256B2 (en) Bending deformation control structure
KR101773509B1 (en) Long-span composite beam using square shape steel pipe for slim floor and the construction method therefor
JP4722560B2 (en) Building materials that effectively use the strength of reinforced steel
JP2006070679A (en) Continuous girder bridge in which triangle structures having damping/supporting devices at lower ends are connected by girder
JP2011149229A (en) Structure and seismic strengthening method
JP7316910B2 (en) building
JP2012117364A (en) Vibration control bridge pier structure
JP2007113329A (en) Method of extending building, and extension building
JPH07238593A (en) Building of tube structure
JP5069713B2 (en) Basic structure of buildings over railway tracks
JP7036368B2 (en) Beam material and support structure of beam material
JP7009731B2 (en) Floor structure
JP6261333B2 (en) Seismic reinforcement method
JP2003074019A (en) Pedestal structure, and aseismatic reinforcement structure
JP5583383B2 (en) Stepped beam frames and buildings
JP5330698B2 (en) BUILDING STRUCTURE AND BUILDING STRUCTURE DESIGN METHOD
JP2023083946A (en) Building structure with capital with multiple column
JP6006352B2 (en) Seismic control pier structure
JP5248784B2 (en) Column and beam joint structure
JP2005139613A (en) Continuous girder bridge supported by jacket pier

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20051128

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070709

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070814

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071012

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Effective date: 20071106

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071108

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101116

Year of fee payment: 3

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111116

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131116

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees