JP2011149229A - Structure and seismic strengthening method - Google Patents

Structure and seismic strengthening method Download PDF

Info

Publication number
JP2011149229A
JP2011149229A JP2010012433A JP2010012433A JP2011149229A JP 2011149229 A JP2011149229 A JP 2011149229A JP 2010012433 A JP2010012433 A JP 2010012433A JP 2010012433 A JP2010012433 A JP 2010012433A JP 2011149229 A JP2011149229 A JP 2011149229A
Authority
JP
Japan
Prior art keywords
reinforcing member
column
studs
inter
span
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2010012433A
Other languages
Japanese (ja)
Other versions
JP5663882B2 (en
Inventor
Yasuhiko Tsuji
靖彦 辻
Takashi Imai
孝 今井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Obayashi Corp
Original Assignee
Obayashi Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Obayashi Corp filed Critical Obayashi Corp
Priority to JP2010012433A priority Critical patent/JP5663882B2/en
Publication of JP2011149229A publication Critical patent/JP2011149229A/en
Application granted granted Critical
Publication of JP5663882B2 publication Critical patent/JP5663882B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Buildings Adapted To Withstand Abnormal External Influences (AREA)
  • Working Measures On Existing Buildindgs (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To further improve earthquake resistance of a beam-column frame without thickening a reinforcing member, such as a stud, nor increasing the number of reinforcing members. <P>SOLUTION: In the beam-column frame 10 where the studs 30 are installed between upper and lower beams continuously on a plurality of floors, a rigid-joint position of the upper stud 30, which is connected to the upper part of the beam 21 of at least one floor among the plurality of floors, to the beam 21 is separated in the lengthwise direction of the beam 21 from the rigid joint position of the lower stud 30, which is connected to the lower part of the beam 21, to the beam 21. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、間柱を有する構造体及び構造体の耐震補強方法に関する。   The present invention relates to a structure having a stud and a method for seismic reinforcement of the structure.

従来より、例えば、鉄筋コンクリート造の柱梁架構において、耐震性を向上する方法として、耐震壁を設けることが行われている。しかし、耐震壁により柱梁により囲まれる空間を閉鎖してしまうと、内部空間の利用が制限されてしまう。また、鉄骨造の柱梁架構において、同様の効果を得るためブレースを設けることが行われていが、ブレースの場合も柱梁により囲まれる空間を閉鎖してしまうので、内部空間の利用が制限されてしまう。   2. Description of the Related Art Conventionally, for example, in a reinforced concrete column beam structure, a seismic wall is provided as a method for improving seismic resistance. However, if the space surrounded by the column beam is closed by the earthquake-resistant wall, the use of the internal space is limited. In addition, braces are provided to obtain the same effect in steel-framed column beam frames, but in the case of braces as well, the space enclosed by the column beams is closed, limiting the use of the internal space. End up.

そこで、図10に示すように、柱梁架構110において上下方向に一列に並ぶように各階の上下の梁121の間に間柱130を介装することが行われている(例えば、特許文献1参照)。   Therefore, as shown in FIG. 10, inter-columns 130 are interposed between the upper and lower beams 121 of each floor so as to be arranged in a line in the vertical direction in the column beam frame 110 (see, for example, Patent Document 1). ).

特開2000―257300号公報JP 2000-257300 A

ここで、上記のように上下方向に一列に並ぶように各階の上下の梁の間に間柱を介装させる方法では、柱梁架構により高い耐震性を求める場合には、間柱を太くしたり、間柱の本数を増やしたりする必要があり、室内空間が削られるとともに内部空間の利用が制限される。   Here, in the method of interposing the studs between the upper and lower beams of each floor so as to line up in a row in the vertical direction as described above, when seeking high earthquake resistance by the column beam frame, It is necessary to increase the number of studs, which reduces the indoor space and restricts the use of the internal space.

本発明は、上記の問題に鑑みなされたものであり、その目的は、間柱などの補強部材を太くしたり、補強部材の本数を増やしたりすることなく、構造体の耐震性をより向上することである。   The present invention has been made in view of the above problems, and its purpose is to further improve the earthquake resistance of the structure without thickening reinforcing members such as studs or increasing the number of reinforcing members. It is.

本発明の構造体は、上下の梁間に補強部材が剛接合された構造体であって、少なくとも一の階層の梁の上方に剛接合された補強部材の当該梁への接合位置が、当該梁の下方に剛接合された補強部材の当該梁への接合位置に対して、前記梁の長さ方向に離間していることを特徴とする。
なお、上記の剛接合とは、ピン接合を除く接合方法であって、水平荷重及び曲げ荷重が伝達可能な接合方法をいう。また、補強部材の梁への接合位置とは、補強部材の梁への接合された部分の面をいい、梁の長さ方向に幅を持つものである。さらに、上下の補強部材の梁への接合位置は、当然、梁の高さ分だけ上下に離間することになるが、この接合位置が「梁の長さ方向に離間している」とは、上下方向の離間は考慮せず、梁の長さ方向における位置が同方向に離間していることを意味する。
The structure of the present invention is a structure in which a reinforcing member is rigidly joined between upper and lower beams, and the joining position of the reinforcing member rigidly joined above the beam of at least one layer is the beam. The reinforcing member rigidly bonded to the lower side of the beam is spaced apart in the length direction of the beam with respect to the bonding position to the beam.
In addition, said rigid joining is a joining method except pin joining, Comprising: The joining method which can transmit a horizontal load and a bending load is said. The joining position of the reinforcing member to the beam refers to the surface of the portion where the reinforcing member is joined to the beam, and has a width in the length direction of the beam. Furthermore, the joining position of the upper and lower reinforcing members to the beam is naturally separated vertically by the height of the beam, but this joining position is "separated in the length direction of the beam" It means that the position in the longitudinal direction of the beam is separated in the same direction without considering the vertical separation.

上記の構造体において、前記補強部材は間柱であってもよく、また、前記補強部材は上下に接続された梁により形成される面内において鉛直方向から傾斜するように設けられていてもよい。
また、前記少なくとも一の階層の梁の上方に接続された補強部材及び当該梁の下方に接続された補強部材の接合位置の距離が柱間スパンの0.5倍以下であってもよい。
In the above structure, the reinforcing member may be a stud, and the reinforcing member may be provided so as to be inclined from a vertical direction in a plane formed by beams connected vertically.
Further, the distance between the reinforcing member connected above the beam of the at least one layer and the reinforcing member connected below the beam may be 0.5 times or less of the span between columns.

また、本発明の耐震補強方法は、上下の梁間に補強部材を剛接合することにより構造体を耐震補強する方法であって、少なくとも一の階層の梁の上方に剛接合された補強部材の当該梁への接合位置を、当該梁の下方に剛接合された補強部材の当該梁への接合位置に対して、前記梁の長さ方向に離間させることを特徴とする。   Further, the seismic reinforcement method of the present invention is a method of seismically reinforcing a structure by rigidly joining a reinforcing member between upper and lower beams, the reinforcing member rigidly joined above the beam of at least one level. The joining position to the beam is separated from the joining position of the reinforcing member rigidly joined below the beam in the length direction of the beam.

本発明によれば、梁の上下の階層に設けられる補強部材を、それぞれ梁の長さ方向に離間した位置において、梁に剛接合することとしたため、梁の可撓長さが短くなる。これにより、梁の座屈荷重および曲げ剛性を向上することができるため、補強部材を太くしたり、補強部材本数を増やしたりすることなく、構造体の耐震性を向上することができる。   According to the present invention, since the reinforcing members provided in the upper and lower layers of the beam are rigidly joined to the beam at positions separated from each other in the length direction of the beam, the flexible length of the beam is shortened. Thereby, since the buckling load and bending rigidity of the beam can be improved, the earthquake resistance of the structure can be improved without increasing the thickness of the reinforcing members or increasing the number of reinforcing members.

本実施形態の柱梁架構を示し、(A)は平面図、(B)は(A)におけるI−I断面図である。The column beam structure of this embodiment is shown, (A) is a top view, (B) is II sectional drawing in (A). 上下方向に一列に並ぶように各階の上下の梁の間に間柱を介装させた柱梁架構を示す図である。It is a figure which shows the column beam frame which interposed the intercolumn between the upper and lower beams of each floor so that it might be located in a line in the up-down direction. (A)は各階層に二本ずつ間柱を介装させる場合の梁の上下に接続される間柱を梁の長さ方向に離間させた柱梁架構を示す図であり、(B)は各階層に二本ずつ間柱を介装させる場合の上下方向に一列に並ぶように間柱を設けた柱梁架構を示す図である。(A) is a figure which shows the column beam frame which spaced apart the studs connected to the upper and lower sides of the beam when two studs are interposed in each hierarchy in the length direction of the beam, (B) It is a figure which shows the column beam frame which provided the studs so that it might be arranged in a line in the up-down direction when inserting two studs on each. 間柱に代えて傾斜した補強部材を設けた柱梁架構を示す図である。It is a figure which shows the column beam frame which provided the reinforcing member which inclined instead of the stud. 一部の間柱を省略した柱梁架構を示す図である。It is a figure which shows the column beam frame which abbreviate | omitted one part of column. (A)は各層に間柱を柱間スパンの中央に上下方向に直線状に配置した二次元解析モデル(比較例1)を示し、(B)は奇数階の間柱と偶数階の間柱とを梁の長さ方向に異なる位置に設けた二次元解析モデル(実施例1)を示す図である。(A) shows a two-dimensional analysis model (Comparative Example 1) in which studs are arranged linearly in the vertical direction in the center of the span between the pillars in each layer, and (B) shows a beam between odd-numbered and even-numbered studs. It is a figure which shows the two-dimensional analysis model (Example 1) provided in the position which differs in the length direction. 比較例1の剛性に対する実施例1の剛性の比率を示し、(A)はグラフ、(B)は表である。The ratio of the rigidity of Example 1 to the rigidity of Comparative Example 1 is shown, (A) is a graph, and (B) is a table. (A)は各階層に間柱を二本ずつ上下方向に直線状に配置した二次元解析モデル(比較例2)を示し、(B)は間柱を傾斜させた場合の二次元解析モデル(実施例2)を示す図である。(A) shows a two-dimensional analysis model (Comparative Example 2) in which two studs are arranged linearly in the vertical direction in each layer, and (B) shows a two-dimensional analysis model when the studs are inclined (Example). It is a figure which shows 2). 比較例1に対する比較例2及び実施例2についての剛性を示す表である。10 is a table showing the rigidity of Comparative Example 2 and Example 2 with respect to Comparative Example 1. 従来技術である上下方向に一列に並ぶように各階の上下の梁の間に間柱を介装させた柱梁架構を示す図である。It is a figure which shows the column beam frame which interposed the stud between the upper and lower beams of each floor so that it may be located in a line in the up-down direction which is a prior art.

以下、本発明の構造体の一実施形態である柱梁架構を図面を参照しながら詳細に説明する。
図1は、本実施形態である柱梁架構10を示し、(A)は平面図、(B)は(A)におけるI−I断面図である。本実施形態では、(A)におけるI−I断面における面内水平方向の剛性を向上する場合について説明する。同図(B)に示すように、本実施形態の柱梁架構10において、各階層の上下の梁21の間には、それぞれ一本ずつ間柱30が設けられ、その上下が梁21に剛接されている。なお、柱梁架構10としては、鉄筋コンクリート造、鉄骨造、鉄骨鉄筋コンクリート造、木造のいずれであってもよい。
Hereinafter, a column beam frame which is an embodiment of the structure of the present invention will be described in detail with reference to the drawings.
1A and 1B show a column beam frame 10 according to the present embodiment, in which FIG. 1A is a plan view and FIG. In the present embodiment, a case where the in-plane horizontal rigidity in the II cross section in (A) is improved will be described. As shown in FIG. 4B, in the column beam frame 10 of the present embodiment, one column 30 is provided between the upper and lower beams 21 of each layer, and the upper and lower portions are rigidly connected to the beam 21. Has been. Note that the column beam frame 10 may be reinforced concrete, steel frame, steel reinforced concrete, or wooden.

これら間柱30は、柱20間のスパン長を3等分にした位置に、下階から上階に向かって図中左右交互に設けられている。これにより、各階層の梁21には、柱20間のスパン長を3等分にする2箇所に上方又は下方の階層の間柱30は、それぞれ接続されることとなる。これにより、梁21の可撓長さ(柱20の側面と間柱30の側面との距離、又は、間柱30の側面間の距離)が柱間スパンLの約3分の1の長さとなる。   These inter-columns 30 are alternately provided on the left and right sides in the figure from the lower floor to the upper floor at positions where the span length between the columns 20 is divided into three equal parts. As a result, the upper and lower struts 30 are respectively connected to the beams 21 of each stratum in two places where the span length between the pillars 20 is divided into three equal parts. Thereby, the flexible length of the beam 21 (the distance between the side surface of the column 20 and the side surface of the inter-column 30 or the distance between the side surfaces of the inter-column 30) is about one third of the inter-column span L.

これに対して、図2に示すように、従来技術の欄に記載した上下方向に一列に並ぶように各階の上下の梁121の間に間柱130を介装させる方法では、梁121を挟んで上下の間柱130は、梁121の同じ位置に接続されることとなる。このため、例えば、同図に示すように、柱120間スパンの中央に間柱130を配置したとすると、梁121の可撓長さは柱間スパンの2分の1となる。また、間柱130を中央からずらして設ける場合には、梁121の可撓長さは、長い方が柱間スパンの約2分の1以上となる。
このように、本実施形態によれば、可撓長さが従来よりも短くなる。
On the other hand, as shown in FIG. 2, in the method of interposing the pillars 130 between the upper and lower beams 121 on each floor so as to be aligned in the vertical direction described in the column of the prior art, the beams 121 are sandwiched. The upper and lower studs 130 are connected to the same position of the beam 121. For this reason, for example, as shown in the figure, if the inter-column 130 is disposed at the center of the span between the columns 120, the flexible length of the beam 121 is one half of the span between the columns. Further, when the inter-columns 130 are provided by being shifted from the center, the longer the flexible length of the beam 121 is about one half or more of the inter-column span.
Thus, according to the present embodiment, the flexible length is shorter than the conventional one.

地震力が作用すると、各梁21には軸方向に水平力が作用することとなる。これに対して、上記のように梁21の可撓長さが短くなることで、梁21の座屈荷重および曲げ剛性が向上される。このため、間柱30を太くしたり、間柱30の本数を増やしたりすることなく、図2に示すように、上下方向に一列に並ぶように各階の上下の梁121の間に間柱130を介装した場合(図2)に比べて柱梁架構10の耐震性が向上できる。   When the seismic force acts, a horizontal force acts on each beam 21 in the axial direction. On the other hand, the buckling load and bending rigidity of the beam 21 are improved by shortening the flexible length of the beam 21 as described above. Therefore, without increasing the thickness of the studs 30 or increasing the number of the studs 30, as shown in FIG. 2, the studs 130 are interposed between the upper and lower beams 121 of each floor so as to be aligned in a vertical direction. Compared with the case (FIG. 2), the earthquake resistance of the column beam frame 10 can be improved.

以上説明したように、本実施形態によれば、上下の階層の間柱30を梁21の長さ方向に離間した位置にそれぞれ剛接合することとしたため、梁21の可撓長さが短くなる。これにより、梁21の座屈荷重および曲げ剛性を向上することができるため、間柱30を太くしたり、間柱30の本数を増やしたりすることなく、柱梁架構10の耐震性を向上することができる。
また、間柱30を梁21の長さ方向に離間して設けているため、各層の間柱30のサイズに制約が無い。すなわち、間柱30の要求性能に応じて、間柱30のせい、幅、設けられるフランジ板の幅や厚さを適宜変更することができる。
As described above, according to the present embodiment, since the upper and lower interlayer columns 30 are rigidly joined to positions spaced apart in the length direction of the beam 21, the flexible length of the beam 21 is shortened. Thereby, since the buckling load and the bending rigidity of the beam 21 can be improved, the seismic resistance of the column beam frame 10 can be improved without increasing the thickness of the intermediate columns 30 or increasing the number of the intermediate columns 30. it can.
Further, since the studs 30 are provided apart in the length direction of the beam 21, there is no restriction on the size of the studs 30 in each layer. That is, according to the required performance of the stud 30, the width and thickness of the flange 30 can be appropriately changed because of the stud 30.

なお、本実施形態では、各階層に一本ずつ間柱30を介装させる場合について説明したが、各階層に二本ずつ間柱30を介装させる場合には、図3(A)に示すように、柱間スパンを五等分するような位置に間柱30を設ければよい。例えば、図3(B)に示すように、柱間スパンを三等分するような位置に上下方向に一列に並ぶように間柱30を設ける場合には、梁21の可撓長さが柱間スパンLの約1/3であるが、図3(A)に示す柱梁架構10によれば、梁21の可撓長さが柱間スパンLの約1/5と短くなるため、柱梁架構10の剛性を向上することができる。   In addition, in this embodiment, although the case where the one stud 30 was interposed in each hierarchy was demonstrated, as shown in FIG. 3 (A), when the two studs 30 are interposed in each hierarchy. The inter-column 30 may be provided at a position that divides the inter-column span into five equal parts. For example, as shown in FIG. 3B, when the inter-columns 30 are provided so as to be arranged in a line in the vertical direction at a position that divides the inter-column span into three equal parts, the flexible length of the beam 21 is Although it is about 1/3 of the span L, according to the column beam frame 10 shown in FIG. 3A, the flexible length of the beam 21 is shortened to about 1/5 of the span L between columns. The rigidity of the frame 10 can be improved.

また、図4に示すように、各層に間柱に代えて、柱梁架構10の面内において鉛直方向から傾斜するように補強部材40を配し、補強部材40を上下の梁21に剛接してもよい。かかる構成によれば、梁21の上下において補強部材40が接続される位置が離間することとなり、これにより、梁21の可撓長さが短くなり、梁21の座屈荷重および曲げ剛性が向上されるため、柱梁架構10の耐震性が向上できる。
また、本実施形態では、柱梁架構の一方向の剛性を向上する場合について説明したが、これに限らず、当然他の方向の剛性を向上する場合にも本発明を適用できる。
Further, as shown in FIG. 4, instead of the studs, the reinforcing members 40 are arranged so as to be inclined from the vertical direction in the plane of the column beam frame 10, and the reinforcing members 40 are rigidly connected to the upper and lower beams 21. Also good. According to such a configuration, the positions where the reinforcing members 40 are connected to the upper and lower sides of the beam 21 are separated from each other, whereby the flexible length of the beam 21 is shortened, and the buckling load and the bending rigidity of the beam 21 are improved. Therefore, the earthquake resistance of the column beam frame 10 can be improved.
Moreover, although this embodiment demonstrated the case where the rigidity of one direction of a column beam frame was improved, this invention is applicable not only to this but to improve the rigidity of another direction naturally.

また、本実施形態では、各階層に同本数の間柱30が設けられている場合について説明したが、これに限らず、図5に示すように、上階など十分な剛性を有する階層については間柱30を省略することも可能であり、下層については間柱30の本数を増やしてもよい。要するに、柱梁架構10において、連続した複数階層に間柱30が設けられており、これら複数階層のうち何れかの階層において、梁21の上下に接続された間柱30が梁21の長さ方向に離間していればよい。また、間柱30は必ずしも柱梁で囲まれる面内に設ける必要はなく、面外方向にずらして設けることとしてもよい。   Moreover, although this embodiment demonstrated the case where the same number of the studs 30 were provided in each hierarchy, it is not restricted to this, As shown in FIG. 5, about the hierarchy which has sufficient rigidity, such as an upper floor, it is a stud. 30 may be omitted, and the number of the studs 30 may be increased for the lower layer. In short, in the column beam frame 10, the studs 30 are provided in a plurality of continuous layers, and the pillars 30 connected to the top and bottom of the beam 21 are arranged in the length direction of the beam 21 in any one of the layers. What is necessary is just to be separated. Further, the inter-columns 30 are not necessarily provided in the plane surrounded by the column beams, and may be provided by being shifted in the out-of-plane direction.

また、本実施形態では、梁21の上下に接続される間柱30の剛接位置の距離を柱間スパンLの約1/3としたが、これに限らず、梁21への上下の間柱30の剛接合位置が梁の長さ方向に離間していればよい。
また、本実施形態では、間柱30を梁21に剛接合するものとしたが、これに限らず、水平荷重及び曲げ荷重を伝達可能とすることにより、梁の可撓長さを短くすることができればよく、ピン接合以外の方法で接合すればよい。すなわち、間柱30と梁21との固定度を下げることができる。さらに、間柱30の上端あるいは下端と梁21との間に、摩擦材等エネルギー吸収材を介在させておき、設定荷重までは固定とし、設定荷重を超える場合には摩擦材がすべりエネルギーを吸収するようにすることも可能である。なお、このようなエネルギー吸収材を、間柱30内の端部近傍に介在させてもよい。
In the present embodiment, the distance between the rigid contact positions of the inter-columns 30 connected to the upper and lower sides of the beam 21 is set to about 1/3 of the inter-column span L. However, the present invention is not limited to this. It suffices if the rigid joint positions are separated in the length direction of the beam.
In the present embodiment, the stud 30 is rigidly joined to the beam 21. However, the present invention is not limited to this, and by making it possible to transmit a horizontal load and a bending load, the flexible length of the beam can be shortened. What is necessary is just to join, and what is necessary is just to join by methods other than pin joining. In other words, the fixing degree between the studs 30 and the beams 21 can be lowered. Furthermore, an energy absorbing material such as a friction material is interposed between the upper end or the lower end of the inter-column 30 and the beam 21, and the set load is fixed. When the set load is exceeded, the friction material absorbs the slip energy. It is also possible to do so. In addition, you may interpose such an energy absorber in the edge part vicinity in the stud 30. FIG.

ここで、本願発明者らは、梁21の上下に剛接合される間柱30の剛接合位置を梁の長さ方向にずらすことで柱梁架構10の耐震性が向上されることを数値解析により確認したので、以下説明する。   Here, the inventors of the present application show by numerical analysis that the seismic resistance of the column beam frame 10 is improved by shifting the rigid joint position of the intermediate column 30 that is rigidly joined above and below the beam 21 in the length direction of the beam. Since it confirmed, it demonstrates below.

本実験では、図6(A)に示すような各層に間柱130を柱間スパンの中央に上下方向に直線状に配置した二次元解析モデル210(以下、比較例1という)と、同図(B)に示すような奇数階の間柱30と偶数階の間柱30とを梁21の長さ方向に異なる位置に設け、間柱間隔を複数通りに設定した二次元解析モデル220(以下、実施例1という)とについて、剛性を調べた。   In this experiment, as shown in FIG. 6A, a two-dimensional analysis model 210 (hereinafter referred to as Comparative Example 1) in which an inter-column 130 is linearly arranged in the vertical direction at the center of the inter-column span in each layer, and FIG. A two-dimensional analysis model 220 (hereinafter referred to as Example 1) in which odd-numbered-level studs 30 and even-numbered studs 30 shown in FIG. The stiffness was investigated.

なお、解析条件としては、各解析モデルとも以下のように設定した。
構造種別:鉄骨造(ラーメン構造)
高さ:16m
階高:4m
柱間スパン:14m
鋼材:490N級(基準強度325N/mm)、ヤング係数E=2.05×10N/mm
柱:□600×600×22、I=2.84×1010mm
梁:BH 600×300×12×22、I=1.27×1010mm
耐震間柱:BH 600×600×14×22、I=2.41×1010mm
支持条件:固定
解析方法としては、各層に水平荷重(P=500kN)を作用させ、その時の水平変位量から各層の水平剛性を算出した。
The analysis conditions were set as follows for each analysis model.
Structure type: Steel structure (ramen structure)
Height: 16m
Floor height: 4m
Span between pillars: 14m
Steel: 490 N class (standard strength 325 N / mm 2 ), Young's modulus E = 2.05 × 10 5 N / mm 2
Pillar: □ 600 × 600 × 22, I = 2.84 × 10 10 mm 4
Beam: BH 600 × 300 × 12 × 22, I = 1.27 × 10 10 mm 4
Seismic stud: BH 600 × 600 × 14 × 22, I = 2.41 × 10 10 mm 4
Supporting condition: fixed As an analysis method, a horizontal load (P = 500 kN) was applied to each layer, and the horizontal stiffness of each layer was calculated from the horizontal displacement at that time.

図7は、比較例1の剛性に対する実施例1の剛性の比率を示し、(A)はグラフ、(B)は表である。同図に示すように、実施例1の間柱間隔がスパンの0.5倍以下である場合には、比較例と比べて剛性が向上している。特に、実施例1の間柱間隔がスパンの0.2〜0.35倍程度で各階層の剛性が最も向上されていることがわかる。これに対して、実施例1の間柱間隔がスパンの0.5倍以上となると、比較例に比べて剛性が低下している。これは、実施例1の間柱間隔がスパンの0.5倍以上となると梁の可撓長さが比較例に比べて長くなるためである。   FIG. 7 shows the ratio of the stiffness of Example 1 to the stiffness of Comparative Example 1, (A) is a graph, and (B) is a table. As shown in the figure, when the interval between the studs of Example 1 is 0.5 times or less of the span, the rigidity is improved as compared with the comparative example. In particular, it can be seen that the rigidity of each layer is most improved when the inter-column spacing of Example 1 is about 0.2 to 0.35 times the span. On the other hand, when the inter-column spacing of Example 1 is 0.5 times or more of the span, the rigidity is lowered as compared with the comparative example. This is because the flexible length of the beam becomes longer than that of the comparative example when the inter-column spacing of Example 1 is 0.5 times or more of the span.

さらに、図8(A)に示すように、各階層に間柱130を二本ずつ上下方向に直線状に配置した二次元解析モデル230(以下、比較例2という)と、図8(B)に示すように、各階層に傾斜させた補強部材40を設けた場合の二次元解析モデル240(以下、実施例2という)とについて剛性を調べた。   Further, as shown in FIG. 8 (A), a two-dimensional analysis model 230 (hereinafter referred to as Comparative Example 2) in which two studs 130 are arranged in the vertical direction in each layer, as shown in FIG. 8 (B). As shown, the rigidity of the two-dimensional analysis model 240 (hereinafter referred to as Example 2) when the inclined reinforcing member 40 is provided in each layer was examined.

図9は、比較例1に対する比較例2及び実施例2についての剛性を示す表である。同図に示すように、比較例1と実施例2とは、各階層に補強部材(間柱)をそれぞれ1本ずつ設ける点で共通しているにも係わらず、実施例2の剛性は、比較例1に比べて非常に大きい。さらに、実施例2は、各階層に間柱をそれぞれ2本ずつ設けている比較例2と比べて、1F,2Fでは若干低いものの、3F、4Fでは比較例2と略同程度の剛性が得られることが確認された。   FIG. 9 is a table showing the rigidity of Comparative Example 2 and Example 2 with respect to Comparative Example 1. As shown in the figure, although the comparative example 1 and the example 2 are common in that one reinforcing member (spacer) is provided in each layer, the rigidity of the example 2 is compared. Very large compared to Example 1. Furthermore, in Example 2, compared with Comparative Example 2 in which two studs are provided in each layer, 1F and 2F are slightly lower, but 3F and 4F have substantially the same rigidity as Comparative Example 2. It was confirmed.

以上のように、本実施形態によれば、上下方向に一列に並ぶように間柱を設ける場合に比べて剛性を向上することができることが確認された。   As described above, according to the present embodiment, it was confirmed that the rigidity can be improved as compared with the case where the studs are provided so as to be aligned in a line in the vertical direction.

10 柱梁架構
20 柱
21 梁
30 間柱
40 補強部材
10 Column-beam frame 20 Column 21 Beam 30 Inter-column 40 Reinforcing member

Claims (5)

上下の梁間に補強部材が剛接合された構造体であって、
少なくとも一の階層の梁の上方に剛接合された補強部材の当該梁への接合位置が、当該梁の下方に剛接合された補強部材の当該梁への接合位置に対して、前記梁の長さ方向に離間していることを特徴とする構造体。
A structure in which a reinforcing member is rigidly joined between upper and lower beams,
The joining position of the reinforcing member rigidly joined above the beam of at least one level to the beam is longer than the joining position of the reinforcing member rigidly joined below the beam to the beam. A structure characterized by being spaced apart in the vertical direction.
請求項1記載の構造体であって、
前記補強部材は間柱であることを特徴とする構造体。
The structure according to claim 1,
The structure according to claim 1, wherein the reinforcing member is a spacer.
請求項1記載の構造体であって、
前記補強部材は上下に接続された梁により形成される面内において鉛直方向から傾斜するように設けられていることを特徴とする構造体。
The structure according to claim 1,
The reinforcing member is provided so as to be inclined from a vertical direction in a plane formed by beams connected vertically.
請求項1から3のうち何れか1項に記載の構造体であって、
前記少なくとも一の階層の梁の上方に接続された補強部材及び当該梁の下方に接続された補強部材の接合位置の距離が柱間スパンの0.5倍以下であることを特徴とする構造体。
The structure according to any one of claims 1 to 3,
The structural member characterized in that the distance between the reinforcing member connected above the beam of the at least one layer and the reinforcing member connected below the beam is 0.5 times or less the span between columns. .
上下の梁間に補強部材を剛接合することにより構造体を耐震補強する方法であって、
少なくとも一の階層の梁の上方に剛接合された補強部材の当該梁への接合位置を、当該梁の下方に剛接合された補強部材の当該梁への接合位置に対して、前記梁の長さ方向に離間させることを特徴とする構造体の耐震補強方法。
A method for seismically reinforcing a structure by rigidly joining a reinforcing member between upper and lower beams,
The joining position of the reinforcing member rigidly joined above the beam of at least one layer to the beam is set to the length of the beam with respect to the joining position of the reinforcing member rigidly joined below the beam to the beam. A method for seismic reinforcement of a structure characterized in that the structure is separated in the vertical direction.
JP2010012433A 2010-01-22 2010-01-22 Structure, seismic reinforcement method Active JP5663882B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010012433A JP5663882B2 (en) 2010-01-22 2010-01-22 Structure, seismic reinforcement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010012433A JP5663882B2 (en) 2010-01-22 2010-01-22 Structure, seismic reinforcement method

Publications (2)

Publication Number Publication Date
JP2011149229A true JP2011149229A (en) 2011-08-04
JP5663882B2 JP5663882B2 (en) 2015-02-04

Family

ID=44536444

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010012433A Active JP5663882B2 (en) 2010-01-22 2010-01-22 Structure, seismic reinforcement method

Country Status (1)

Country Link
JP (1) JP5663882B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013036282A (en) * 2011-08-10 2013-02-21 Taisei Corp Reinforcement structure of existing building
JP2016121464A (en) * 2014-12-24 2016-07-07 株式会社ノザワ Mounting structure of extrusion molding cement plate, and vertical mounting structure and horizontal mounting structure thereof
JP2019116830A (en) * 2019-03-25 2019-07-18 株式会社ノザワ Pinching member used for attaching structure of extrusion molding cement plate

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09228473A (en) * 1996-02-26 1997-09-02 Taisei Corp Mechanism for resisting horizontal force in structure
JPH1046664A (en) * 1996-08-02 1998-02-17 Nippon Steel Corp Beam penetrative steel frame system
JP3150509U (en) * 2009-03-02 2009-05-21 アグナス株式会社 Structure of multistory parking lot

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09228473A (en) * 1996-02-26 1997-09-02 Taisei Corp Mechanism for resisting horizontal force in structure
JPH1046664A (en) * 1996-08-02 1998-02-17 Nippon Steel Corp Beam penetrative steel frame system
JP3150509U (en) * 2009-03-02 2009-05-21 アグナス株式会社 Structure of multistory parking lot

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013036282A (en) * 2011-08-10 2013-02-21 Taisei Corp Reinforcement structure of existing building
JP2016121464A (en) * 2014-12-24 2016-07-07 株式会社ノザワ Mounting structure of extrusion molding cement plate, and vertical mounting structure and horizontal mounting structure thereof
JP2019116830A (en) * 2019-03-25 2019-07-18 株式会社ノザワ Pinching member used for attaching structure of extrusion molding cement plate

Also Published As

Publication number Publication date
JP5663882B2 (en) 2015-02-04

Similar Documents

Publication Publication Date Title
JP2007120032A (en) Building structural body
JP7367814B2 (en) wooden frame
JP5663882B2 (en) Structure, seismic reinforcement method
JP4563872B2 (en) Seismic wall
JP5693415B2 (en) Reinforcement structure for beam-column joints
KR102142304B1 (en) Connecting sturcture between column and wide beam and floor structure
JP5144182B2 (en) Seismic reinforcement structure and seismic reinforcement method for existing buildings
JP5940416B2 (en) building
JP7201149B2 (en) Horizontal member reinforcement structure
JP2004300681A (en) Frame structure
JP6979283B2 (en) Steel column beam frame of steel pipe column and H-shaped steel beam
JP6265422B2 (en) Reinforcement structure and building
JP4405336B2 (en) Damping block wall structure
JP6126941B2 (en) Structure
JP6749081B2 (en) Vibration control structure
JP6934290B2 (en) Truss frame
JP5369626B2 (en) Composite vibration control frame
JP5588212B2 (en) Unit building and unit building structure calculation method
JP5110895B2 (en) Structural member for building
JP2019031855A (en) Vibration control structure
JP5379414B2 (en) Building
JP2006083584A (en) Unit building and its construction method
JP2018119329A (en) Building base isolation structure
JP4950615B2 (en) Seismic wall structure
KR101264598B1 (en) Pillar structure with multi flange

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20121220

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20131114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131119

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140108

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140805

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140818

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141111

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141124

R150 Certificate of patent or registration of utility model

Ref document number: 5663882

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150