JP7234084B2 - Steel beam with floor slab and its reinforcement method - Google Patents

Steel beam with floor slab and its reinforcement method Download PDF

Info

Publication number
JP7234084B2
JP7234084B2 JP2019181184A JP2019181184A JP7234084B2 JP 7234084 B2 JP7234084 B2 JP 7234084B2 JP 2019181184 A JP2019181184 A JP 2019181184A JP 2019181184 A JP2019181184 A JP 2019181184A JP 7234084 B2 JP7234084 B2 JP 7234084B2
Authority
JP
Japan
Prior art keywords
steel beam
steel
floor slab
lateral buckling
length
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019181184A
Other languages
Japanese (ja)
Other versions
JP2021055464A (en
Inventor
敏弘 梅田
享平 安田
卓也 植木
隆行 難波
行夫 村上
大吾 石井
伸也 牛坂
寛之 久保山
克彦 今井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Shimizu Corp
Original Assignee
JFE Steel Corp
Shimizu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=75270175&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP7234084(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by JFE Steel Corp, Shimizu Corp filed Critical JFE Steel Corp
Priority to JP2019181184A priority Critical patent/JP7234084B2/en
Publication of JP2021055464A publication Critical patent/JP2021055464A/en
Application granted granted Critical
Publication of JP7234084B2 publication Critical patent/JP7234084B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、梁の上部にコンクリート床スラブが存在し、該コンクリート床スラブと梁が接合されている床スラブ付鉄骨梁およびその補強方法に関するものである。 TECHNICAL FIELD The present invention relates to a steel frame beam with a floor slab in which a concrete floor slab exists on top of the beam and the concrete floor slab and the beam are joined together, and a reinforcing method thereof.

鋼構造建物では地震時に横座屈と呼ばれる現象によって鉄骨梁が梁材軸直交方向に変形して、所定の耐力や変形能力を発揮しない恐れがあるため、通常、小梁又は孫梁を鉄骨梁間に配置して、鉄骨梁の材軸直交方向の移動を拘束することで横座屈を防止する。
その際、小梁又は孫梁に接合してあるアングル等の部材と鉄骨梁の下フランジとを接合することで、下フランジの構面外変形も拘束することが通例である。
In steel structures, a phenomenon known as lateral buckling during an earthquake can cause the steel beams to deform in the direction perpendicular to the beam axis, preventing the specified strength and deformation capacity from being exerted. It prevents lateral buckling by constraining the movement of the steel frame beam in the direction perpendicular to the material axis.
At that time, it is customary to restrain deformation of the lower flange out of the structure plane by joining a member such as an angle joined to the small beam or the sub-beam to the lower flange of the steel frame beam.

鉄骨梁が頭付きスタッドを介してコンクリート床スラブと接合されている従来の形態を図9、図10に示す。
従来の床スラブ付き鉄骨梁41は、両端部が柱3に剛接合されたH形断面の鉄骨梁5と、鉄骨梁5の上部に頭付きスタッド11を介して接合されたコンクリート床スラブ13とを有するものであって、鉄骨梁5の側面にはガセットプレート43が設けられ、小梁45が鉄骨梁5の上部においてガセットプレート43とボルト接合され、アングル47が小梁45の下部に設けたガセットプレート49と鉄骨梁5の側面のガセットプレート43の下部とに跨るように接合されている。これによって鉄骨梁5の横座屈による構面外変形が拘束される。また、コンクリート床スラブ13にはコンクリート23の内部に鉄筋25が設けられている。
鉄骨梁5のウェブ19は柱3に溶接接合されるか、柱3に溶接接合されたシヤプレート51と高力ボルト接合される。
9 and 10 show a conventional configuration in which a steel beam is joined to a concrete floor slab via headed studs.
Conventional steel beams 41 with floor slabs consist of a steel beam 5 with an H-shaped cross section rigidly joined to columns 3 at both ends, and a concrete floor slab 13 joined to the top of the steel beams 5 via headed studs 11. A gusset plate 43 is provided on the side surface of the steel beam 5, a small beam 45 is bolted to the gusset plate 43 at the top of the steel beam 5, and an angle 47 is provided at the bottom of the small beam 45 It is joined so as to straddle the gusset plate 49 and the lower part of the gusset plate 43 on the side surface of the steel beam 5 . This restrains deformation out of the structural plane due to lateral buckling of the steel beams 5 . Further, the concrete floor slab 13 is provided with reinforcing bars 25 inside the concrete 23 .
The web 19 of the steel beam 5 is either welded to the column 3 or high strength bolted to a shear plate 51 welded to the column 3 .

昨今、非特許文献1に示すように、鉄骨梁が頭付きスタッドを介してコンクリート床スラブと接合されている場合、上フランジの構面外変形が拘束され、横座屈防止用の小梁、孫梁、アングルを省略できるという考え方が広まっている。
このような考えの下、特許文献1では、鉄骨梁に接合されているコンクリート床スラブのねじれ剛性を鉄骨梁のねじれ剛性の10倍とすることで横座屈補剛材がなくても横座屈を防止できる設計法が提案されている。
また、特許文献2では、コンクリート床スラブと接合された鉄骨梁の設計法および床構造を提案しており、コンクリート床スラブと接合された鉄骨梁の弾性横座屈モーメントMeを用いて計算された横座屈細長比λbが0.5以下であれば、横座屈補剛部材がなくても十分な耐力が期待できることを示している。
Recently, as shown in Non-Patent Document 1, when steel beams are joined to concrete floor slabs via headed studs, the out-of-frame deformation of the upper flange is restrained, and small beams and grandsons are used to prevent lateral buckling. The idea that beams and angles can be omitted is spreading.
Based on this idea, in Patent Document 1, the torsional rigidity of the concrete floor slab that is joined to the steel beam is set to 10 times the torsional rigidity of the steel beam, so that lateral buckling can be achieved without a lateral buckling stiffener. Preventive design methods have been proposed.
In addition, Patent Document 2 proposes a design method and floor structure for a steel beam joined to a concrete floor slab. This indicates that if the lateral buckling slenderness ratio λb is 0.5 or less, sufficient yield strength can be expected without a lateral buckling stiffening member.

特許第5885911号公報Patent No. 5885911 特開2019-56220号公報Japanese Patent Application Laid-Open No. 2019-56220

日本建築学会「各種合成構造設計指針・同解説,2010」Architectural Institute of Japan, "Guidelines for Designing Composite Structures and Commentaries, 2010"

前述の通り、鉄骨梁5がコンクリート床スラブ13と頭付きスタッド11を介して接合されている場合、鉄骨梁5の上フランジ7の構面外変形が拘束されるため、横座屈防止用の小梁45、孫梁、アングル47を省略できる考え方が広まっている。
しかし、梁長さが長い場合は鉄骨梁5が頭付きスタッド11を介してコンクリート床スラブ13と接合されている場合でも、鉄骨梁5が横座屈によって十分な変形能力を発揮できない恐れがある。
As described above, when the steel beam 5 is joined to the concrete floor slab 13 via the headed stud 11, deformation of the upper flange 7 of the steel beam 5 outside the structural plane is constrained. The idea that the beam 45, the sub-beam, and the angle 47 can be omitted is spreading.
However, if the beam length is long, even if the steel beam 5 is joined to the concrete floor slab 13 via the headed stud 11, there is a possibility that the steel beam 5 will not exhibit sufficient deformability due to lateral buckling.

そのため、特許文献1、2に開示された設計法では、鉄骨梁が長すぎる場合などは適用範囲外となるよう横座屈細長比λbもしくは細長比λyの上限が規定されている。
すなわち、長尺の鉄骨梁では、特許文献2に記載の通り、梁長さが長いほど鉄骨梁の耐力が低くなり、コンクリート床スラブと接合されていても十分な耐力を発揮できず、それに伴い変形能力も不十分となる恐れがあるため、横座屈補剛部材の省略が難しい。
一方で、昨今の建築物では梁長さが20mを越えるような場合もあり、梁長さが長いものほど、従来の設計方法では必要とされる横座屈補剛部材数が多いため、横座屈補剛部材の省略によるメリットが大きいが、従来法では対応できないという課題がある。
Therefore, in the design methods disclosed in Patent Documents 1 and 2, the upper limit of the lateral buckling slenderness ratio λ b or the slenderness ratio λ y is defined so that the steel frame beam is too long and so on.
That is, in long steel beams, as described in Patent Document 2, the longer the beam length, the lower the bearing strength of the steel beam. It is difficult to omit the lateral buckling stiffening member because there is a risk that the deformability will be insufficient.
On the other hand, the length of beams in modern buildings sometimes exceeds 20m. Although there is a great merit in omitting the stiffening member, there is a problem that the conventional method cannot cope with this.

本発明は、かかる課題を解決するためになされたものであり、鉄骨梁が長い場合であっても、横座屈防止用の小梁、孫梁等を設けることなく、横座屈による鉄骨梁の上フランジの構面外変形を拘束して十分な変形能力を確保できる床スラブ付き鉄骨梁およびその設計方法を提供することを目的としている。 The present invention has been made to solve this problem. The object of the present invention is to provide a steel frame beam with a floor slab and a method of designing the steel beam with a floor slab that can secure sufficient deformation capacity by constraining the deformation of the flange outside the structural plane.

(1)本発明に係る床スラブ付き鉄骨梁は、両端部が柱に剛接合されると共に横座屈補剛部材が設けられていないH形断面の鉄骨梁と、該鉄骨梁の上フランジの全長に亘って設けられた頭付きスタッドを介して接合されたコンクリート床スラブとを有するものであって、
前記鉄骨梁は、梁長さと上下フランジの板厚中心間距離の比であるλwが15<λw≦30で、前記鉄骨梁の弱軸に関する細長比λyがA<λyであり、
前記頭付きスタッドの本数が、逆対称曲げモーメント分布時に完全合成梁として必要とされる本数の2倍以上とし、
前記鉄骨梁の上下フランジを繋ぐように接合された縦スチフナが、前記鉄骨梁の全長にわたって梁長さの0.2倍以下のピッチで、かつ前記柱に最も近い前記縦スチフナと前記柱との距離が梁長さの0.125倍以下となるように設けられていることを特徴とするものである。
ただし、Aは、鉄骨梁全長にわたって均等間隔で横補剛を設ける場合において、横座屈補剛が不要である鉄骨梁の弱軸に関する細長比の上限を定める係数である。例えば、鉄骨梁5に用いられる鋼材が400N級鋼の場合は170、490N級鋼の場合は130、520N級鋼の場合は120、550N級鋼の場合は110である。
(1) A steel beam with a floor slab according to the present invention includes a steel beam with an H-shaped cross section, both ends of which are rigidly connected to columns and no lateral buckling stiffening member is provided, and the entire length of the upper flange of the steel beam. a concrete floor slab joined via headed studs extending through
The steel beam has a ratio λ w between the beam length and the plate thickness center distance between the upper and lower flanges of 15 < λ w ≤ 30, and a slenderness ratio λ y about the weak axis of the steel beam is A < λ y ,
The number of headed studs is at least twice the number required for a complete composite beam with an antisymmetric bending moment distribution,
The vertical stiffeners joined so as to connect the upper and lower flanges of the steel beam have a pitch of 0.2 times or less of the beam length over the entire length of the steel beam, and the distance between the vertical stiffener closest to the column and the column is It is characterized in that it is provided so as to be 0.125 times or less of the beam length.
However, A is a coefficient that determines the upper limit of the slenderness ratio for the weak axis of a steel beam that does not require lateral buckling stiffening when lateral stiffening is provided at equal intervals over the entire length of the steel beam. For example, if the steel material used for the steel beam 5 is 400N class steel, it is 170; if it is 490N class steel, it is 130;

(2)また、上記(1)に記載のものにおいて、前記縦スチフナは、板厚が前記鉄骨梁のウェブ板厚の0.5倍以上であり、かつ用いられている鋼材の設計基準強度が前記鉄骨梁に用いられている鋼材の設計基準強度より低く設定され、
かつ、前記鉄骨梁は、全塑性モーメントMと下式によって与えられる弾性横座屈モーメントMの比の平方根√(M/M)で与えられる前記鉄骨梁の横座屈細長比λ=√(M/M)が、0.5<λb≦0.54を満足することを特徴とするものである。

Figure 0007234084000001
(2) In addition, in the above (1), the longitudinal stiffener has a plate thickness that is 0.5 times or more the web plate thickness of the steel frame beam, and the steel material used has a design standard strength of the steel frame It is set lower than the design standard strength of the steel material used for the beam,
In addition, the steel beam has a lateral buckling slenderness ratio λ b given by the square root √ (M p /M e ) of the ratio of the total plastic moment M p and the elastic lateral buckling moment M e given by the following equation: √(M p /M e ) satisfies 0.5<λ b ≦0.54.
Figure 0007234084000001

(3)本発明に係る床スラブ付き鉄骨梁の補強方法は、両端部が柱に剛接合されると共に横座屈補剛部材が設けられていないH形断面の鉄骨梁と、該鉄骨梁の上フランジの全長に亘って設けられた頭付きスタッドを介して接合されたコンクリート床スラブとを有する床スラブ付き鉄骨梁であって、
前記鉄骨梁は、梁長さと上下フランジの板厚中心間距離の比であるλwが15<λw≦30で、前記鉄骨梁の弱軸に関する細長比λyがA<λyであり、
前記頭付きスタッドの本数が、逆対称曲げモーメント分布時に完全合成梁として必要とされる本数の2倍以上である床スラブ付き鉄骨梁の補強方法であって、
前記鉄骨梁の上下フランジを繋ぐように縦スチフナを設け、かつ該縦スチフナを、前記鉄骨梁の全長にわたって梁長さの0.2倍以下のピッチで、かつ前記柱に最も近い前記縦スチフナと前記柱との距離が梁長さの0.125倍以下となるように設けることを特徴とするものである。
ただし、Aは鉄骨梁全長にわたって均等間隔で横補剛を設ける場合において、横座屈補剛が不要である鉄骨梁の弱軸に関する細長比の上限を定める係数である。例えば、鉄骨梁5に用いられる鋼材が400N級鋼の場合は170、490N級鋼の場合は130、520N級鋼の場合は120、550N級鋼の場合は110である。
(3) A method for reinforcing a steel beam with a floor slab according to the present invention includes a steel beam with an H-shaped cross section, both ends of which are rigidly joined to columns and no lateral buckling stiffening member is provided, and a steel beam on the steel beam. A steel beam with a floor slab having a concrete floor slab joined via headed studs provided along the entire length of the flange,
The steel beam has a ratio λ w between the beam length and the plate thickness center distance between the upper and lower flanges of 15 < λ w ≤ 30, and a slenderness ratio λ y about the weak axis of the steel beam is A < λ y ,
A reinforcement method for a steel beam with a floor slab, wherein the number of headed studs is at least twice the number required for a complete composite beam when the bending moment distribution is antisymmetric,
A vertical stiffener is provided so as to connect the upper and lower flanges of the steel beam, and the vertical stiffener is arranged over the entire length of the steel beam at a pitch of 0.2 times or less of the beam length and is closest to the column and the vertical stiffener and the column. It is characterized in that it is provided so that the distance between the
However, A is a coefficient that determines the upper limit of the slenderness ratio for the weak axis of a steel beam that does not require lateral buckling stiffening when lateral stiffening is provided at equal intervals over the entire length of the steel beam. For example, if the steel material used for the steel beam 5 is 400N class steel, it is 170; if it is 490N class steel, it is 130; if it is 520N class steel, it is 120;

本発明によれば、梁長さが長い鉄骨梁においても、頭付きスタッドを介してコンクリート床スラブと接合すると共に縦スチフナを設けることで、横座屈防止用の小梁、孫梁、アングルを省略しても、地震時に十分な変形能力を発揮することができる。 According to the present invention, even steel beams with a long beam length can be connected to concrete floor slabs via headed studs and provided with vertical stiffeners, thereby eliminating small girders, grand girders, and angles for preventing lateral buckling. However, it can exhibit sufficient deformation ability in the event of an earthquake.

本発明の実施の形態に係る床スラブ付き鉄骨梁の説明図である。1 is an explanatory diagram of a steel beam with a floor slab according to an embodiment of the present invention; FIG. 図1の矢視A-A断面図である。FIG. 2 is a cross-sectional view taken along line AA in FIG. 1; 実施例1における解析モデルの説明図である。FIG. 4 is an explanatory diagram of an analysis model in Example 1; 実施例1の解析結果を示すグラフである(その1)。4 is a graph showing the analysis results of Example 1 (No. 1); 実施例1の解析結果を示すグラフである(その2)。7 is a graph showing analysis results of Example 1 (No. 2); 実施例2における解析モデルの説明図である。FIG. 11 is an explanatory diagram of an analysis model in Example 2; 実施例2の解析結果を示すグラフである(その1)。10 is a graph showing analysis results of Example 2 (No. 1); 実施例2の解析結果を示すグラフである(その2)。7 is a graph showing the analysis results of Example 2 (No. 2); 従来の床スラブ付き鉄骨梁の説明図である。It is explanatory drawing of the conventional steel-frame beam with a floor slab. 図9の矢視B-B断面図である。FIG. 10 is a cross-sectional view taken along line BB in FIG. 9;

本実施の形態に係る床スラブ付き鉄骨梁を図1、図2に基づいて説明する。なお、図1、図2において、従来例を示した図9、図10と同一部分には同一の符号を付してある。
本実施の形態に係る床スラブ付き鉄骨梁1は、両端部が柱3に剛接合されると共に横座屈補剛部材が設けられていないH形断面の鉄骨梁5と、鉄骨梁5の上フランジ7の全長に亘って設けられた頭付きスタッド11を介して接合されたコンクリート床スラブ13とを有する床スラブ付き鉄骨梁1であって、鉄骨梁5の上フランジ7および下フランジ9を繋ぐように縦スチフナ15が設けられている。
以下、各構成を詳細に説明する。
A steel frame beam with a floor slab according to this embodiment will be described with reference to FIGS. 1 and 2. FIG. 1 and 2, the same parts as in FIGS. 9 and 10 showing the conventional example are denoted by the same reference numerals.
A steel beam 1 with a floor slab according to the present embodiment includes a steel beam 5 having an H-shaped cross section, both ends of which are rigidly joined to columns 3 and no lateral buckling stiffening member is provided, and an upper flange of the steel beam 5. A steel beam 1 with a floor slab having a concrete floor slab 13 joined via headed studs 11 provided over the entire length of the steel beam 1 to connect the upper flange 7 and the lower flange 9 of the steel beam 5 is provided with a longitudinal stiffener 15.
Each configuration will be described in detail below.

<柱>
柱3の種類は特に限定されないが、例えば溶接組立箱形断面柱、角形鋼管柱、H形断面柱、CFT柱、RC柱、SRC柱などが該当する。
柱3には、鉄骨梁5の上下フランジ7、9から伝達される力を柱3に伝達するためにダイアフラム17という鋼板が設けられる。ダイアフラム17には、柱3との接合形式によって、通しダイアフラム形式、内ダイアフラム形式、外ダイアフラム形式に分けられる。
<Pillar>
Although the type of the column 3 is not particularly limited, examples thereof include a welded assembled box-shaped cross-section column, a square steel pipe column, an H-shaped cross-section column, a CFT column, an RC column, an SRC column, and the like.
The column 3 is provided with a steel plate called a diaphragm 17 for transmitting the force transmitted from the upper and lower flanges 7 and 9 of the steel beam 5 to the column 3 . The diaphragm 17 is classified into a through-diaphragm type, an inner diaphragm type, and an outer diaphragm type depending on the joint type with the column 3 .

<鉄骨梁>
鉄骨梁5は、H形断面を有し、設計基準強度で235N/mm2以上、440N/mm2以下の鋼材で構成されている。設計基準強度440N/mm2越えの鋼材については、高強度ゆえに伸びが小さく、地震時の変形能力に乏しくなるため、梁には不適である。鉄骨梁のサイズとしてはJIS G3192記載の小断面のH形鋼や最大梁せい1000mmの外法一定H形鋼、さらには溶接組立H形断面部材で梁せい1000mmを越えるような大断面のものが該当する。この中でも梁せいが1000mmを越えるような大断面部材や、設計基準強度355N/mm2以上の高強度鋼によるH形断面部材では、下フランジの構面外変形を抑えるためのアングル47等の補剛部材が必要となることが多い。
本実施の形態の鉄骨梁5は、図9、図10に示した従来例のように、構面外変形を拘束することを目的とした小梁45やアングル47は設けられていない。
<Steel beam>
The steel beam 5 has an H-shaped cross section and is made of steel with a design standard strength of 235 N/mm 2 or more and 440 N/mm 2 or less. Steel materials with a design standard strength of over 440N/mm 2 are not suitable for beams because of their high strength and low elongation and poor ability to deform during an earthquake. The size of the steel frame beams is H-shaped steel with a small cross section specified in JIS G3192, H-shaped steel with a maximum beam height of 1000 mm, and welded H-shaped cross-section members with a beam height exceeding 1000 mm. Applicable. Among these, for large cross-section members with a beam depth exceeding 1000 mm and H-shaped cross-section members made of high-strength steel with a design standard strength of 355 N/mm 2 or more, angle 47 etc. A rigid member is often required.
Unlike the conventional examples shown in FIGS. 9 and 10, the steel beams 5 of this embodiment are not provided with the small beams 45 and angles 47 intended to restrain deformation outside the structural plane.

鉄骨梁5は、梁長さと上下フランジ7、9の板厚中心間距離の比であるλwが15<λw≦30で、鉄骨梁5の弱軸に関する細長比λyがA<λyである。
ただし、Aは、鉄骨梁5全長にわたって均等間隔で横補剛を設ける場合において、横座屈補剛が不要である鉄骨梁5の弱軸に関する細長比の上限を定める係数である。例えば、鉄骨梁5に用いられる鋼材が400N級鋼の場合は170、490N級鋼の場合は130、520N級鋼の場合は120、550N級鋼の場合は110である。
The steel beam 5 has a ratio λw between the beam length and the plate thickness center distance between the upper and lower flanges 7 and 9, which is 15< λw ≦30, and the slenderness ratio λy about the weak axis of the steel beam 5 is A< λy. is.
However, A is a coefficient that determines the upper limit of the slenderness ratio regarding the weak axis of the steel beam 5 that does not require lateral buckling stiffening when lateral stiffening is provided at equal intervals over the entire length of the steel beam 5 . For example, if the steel material used for the steel beam 5 is 400N class steel, it is 170; if it is 490N class steel, it is 130;

λw及びλyを上記のように規定した理由は以下の通りである。
横座屈補剛が不要な鉄骨梁5や、梁長さがあまり長くなく、コンクリート床スラブ13によって上フランジ7の構面外変形が拘束されれば小梁45やアングル47を省略しても十分な変形能力が発揮される床スラブ付き鉄骨梁1を、本発明の対象から外すためである。
The reasons for defining λ w and λ y as above are as follows.
If the steel beam 5 does not require lateral buckling stiffening, and if the beam length is not so long and the concrete floor slab 13 restrains the deformation of the upper flange 7 outside the structure surface, the small beam 45 and the angle 47 can be omitted. This is because the floor slab-equipped steel frame beam 1 exhibiting a high deformation ability is excluded from the scope of the present invention.

鉄骨梁5の両端部は柱3に剛接合されるが、この場合、鉄骨梁5の上下フランジ7、9は柱3もしくは柱3に設けられたダイアフラム17と溶接接合される。上下フランジ7、9がダイアフラム17と接合される場合、ダイアフラム17の形式によって、以下のような態様で接合される。 Both ends of the steel beam 5 are rigidly joined to the column 3. In this case, the upper and lower flanges 7 and 9 of the steel beam 5 are welded to the column 3 or the diaphragm 17 provided on the column 3. When the upper and lower flanges 7 and 9 are joined to the diaphragm 17, they are joined in the following manner depending on the type of the diaphragm 17. As shown in FIG.

内ダイアフラム形式では柱3の内部にダイアフラム17が設けられるため、鉄骨梁5の上下フランジ7、9は柱3に接合される。通しダイアフラム形式と外ダイアフラム形式では、鉄骨梁5の上下フランジ7、9はダイアフラム17に溶接接合される。
鉄骨梁5のウェブ19は柱3に溶接接合されたシヤプレート51と高力ボルト接合されるか、あるいは柱3に溶接接合される。
Since the diaphragm 17 is provided inside the column 3 in the inner diaphragm type, the upper and lower flanges 7 and 9 of the steel beam 5 are joined to the column 3 . In the through diaphragm type and the outer diaphragm type, the upper and lower flanges 7 and 9 of the steel beam 5 are welded to the diaphragm 17 .
The web 19 of the steel beam 5 is either high strength bolted with a shear plate 51 welded to the column 3 or welded to the column 3 .

鉄骨梁5の上フランジ7にはコンクリート打設用のデッキプレート21が溶接接合され、その上にコンクリート床スラブ13が設けられる。
デッキプレート21には捨て型枠用のフラットデッキ、コンクリートと一体となって挙動する波形の合成デッキ、鉄筋が溶接された鉄筋トラス付き捨て型枠デッキなどがある。
A deck plate 21 for placing concrete is welded to the upper flange 7 of the steel beam 5, and a concrete floor slab 13 is provided thereon.
The deck plate 21 includes a flat deck for surrender formwork, a corrugated composite deck that behaves integrally with concrete, and a surrender formwork deck with rebar trusses to which reinforcing bars are welded.

<コンクリート床スラブ>
コンクリート床スラブ13はコンクリート23の内部に鉄筋25が配設された鉄筋コンクリート構造である。コンクリート23には普通コンクリート、軽量コンクリートが用いられ、鉄筋25には異形鉄筋、丸鋼鉄筋、溶接金網が用いられる。また工場で製作したプレキャストコンクリート板を現場で兼用型枠として用いるハーフPCスラブや、中空部を含むボイドスラブも該当する。
<Concrete floor slab>
The concrete floor slab 13 has a reinforced concrete structure in which reinforcing bars 25 are arranged inside the concrete 23 . Ordinary concrete and lightweight concrete are used for the concrete 23, and deformed reinforcing bars, round steel reinforcing bars, and welded wire mesh are used for the reinforcing bars 25. Half PC slabs and void slabs that include hollow parts are also applicable, using precast concrete plates made at the factory as dual-purpose formwork on site.

<頭付きスタッド>
頭付きスタッド11は、鉄骨梁5の上フランジ7の全長に亘って溶接接合されており、その本数は、逆対称曲げモーメント分布時に完全合成梁として必要とされる本数の2倍以上の本数である。
頭付きスタッド11の本数をこのように設定することで、横座屈補剛部材がない場合でも鉄骨梁5の変形能力改善効果が期待できる。なお、この点は、後述の実施例2において実証している。
<Stud with head>
The headed studs 11 are welded over the entire length of the upper flange 7 of the steel beam 5, and the number of the studs 11 is at least twice the number required for a complete composite beam when the bending moment is antisymmetrically distributed. be.
By setting the number of the headed studs 11 in this manner, an effect of improving the deformability of the steel frame beam 5 can be expected even when there is no lateral buckling stiffening member. This point is demonstrated in Example 2 described later.

頭付きスタッド11は、十分な耐力が期待できる、軸部の直径が16mm以上で、高さが床スラブの厚さの0.5倍以上のものが望ましい。頭付きスタッド11の配置形状は1列配置、2列以上の複数列配置、千鳥配置などが挙げられる。 It is desirable that the headed stud 11 has a shaft diameter of 16 mm or more and a height of 0.5 times or more the thickness of the floor slab, from which sufficient strength can be expected. Arrangement shapes of the headed studs 11 include single row arrangement, two or more rows arrangement, staggered arrangement, and the like.

<縦スチフナ>
縦スチフナ15は、鉄骨梁5の上下フランジ7、9を繋ぐように鉄骨梁5に溶接接合されている。そして、縦スチフナ15は、鉄骨梁5の全長にわたって梁長さの0.2倍以下のピッチで、かつ柱3に最も近い縦スチフナ15と前記柱3との距離が梁長さの0.125倍以下となるように設けられている。
縦スチフナ15をこのように設けることで、横座屈補剛部材がない場合でも鉄骨梁5の変形能力改善効果が期待できる。なお、この点は、後述の実施例1において実証している。
<Vertical stiffener>
The vertical stiffener 15 is welded to the steel beam 5 so as to connect the upper and lower flanges 7 and 9 of the steel beam 5 . The vertical stiffeners 15 have a pitch of 0.2 times or less of the beam length over the entire length of the steel beam 5, and the distance between the vertical stiffener 15 closest to the column 3 and the column 3 is 0.125 times or less of the beam length. is provided as follows.
By providing the vertical stiffener 15 in this manner, an effect of improving the deformability of the steel frame beam 5 can be expected even when there is no lateral buckling stiffening member. This point is demonstrated in Example 1 described later.

縦スチフナ15の板厚は、鉄骨梁5のウェブ板厚の0.5倍以上にするのが望ましい。縦スチフナ15の板厚をこのようにすることで、鉄骨梁5の変形能力を確保することができる。
また、縦スチフナ15をコンクリート床スラブ13支持用の小梁と接合するためのガセットプレートと兼用することも可能である。コンクリート床スラブとの接合を考慮することで横座屈防止用の小梁、孫梁、アングルを省略できたとしても、床スラブのたわみの抑制のために、小梁が設けられる場合がある。このような小梁は、従来の横座屈防止用の小梁と異なり、大梁の下フランジの構面外変形を抑えるためのアングル等はなく、また鉛直荷重さえ支持できればよいので、断面が横座屈補剛用の小梁より小さかったり、接合部のボルト本数が少なくなったりすることがある。
The plate thickness of the longitudinal stiffener 15 is preferably 0.5 times or more the web plate thickness of the steel beam 5 . By setting the plate thickness of the vertical stiffener 15 in this manner, the deformability of the steel beam 5 can be ensured.
It is also possible to use the longitudinal stiffener 15 also as a gusset plate for joining small beams for supporting the concrete floor slab 13 . Even if joints with concrete floor slabs are taken into consideration, small beams, sub-beams, and angles for preventing lateral buckling can be omitted, but small beams are sometimes provided to suppress deflection of the floor slab. Unlike conventional small beams used to prevent lateral buckling, these small beams do not have angles or the like to suppress deformation of the lower flanges of the large beams outside the structural plane. It may be smaller than a small beam for stiffening, or the number of bolts at the joint may be reduced.

上記のように構成された本実施の形態の床スラブ付き鉄骨梁1であれば、鉄骨梁5は長い場合で、小梁45やアングル47等の横座屈補剛部材がない場合であっても、横座屈による鉄骨梁5の上フランジ7の構面外変形を拘束して十分な変形能力を確保できる。 With the steel frame beam 1 with the floor slab of this embodiment configured as described above, even if the steel frame beam 5 is long and there is no lateral buckling stiffening member such as the small beam 45 or the angle 47, , deformation of the upper flange 7 of the steel frame beam 5 due to lateral buckling is restrained to ensure sufficient deformation ability.

なお、特許文献2においては、鉄骨梁5が、全塑性モーメントMと下式によって与えられる弾性横座屈モーメントMの比の平方根√(M/M)で与えられる鉄骨梁5の横座屈細長比λ=√(M/M)が、λb≦0.5であれば、鉄骨梁5の耐力がMを十分上回ることが示されている。

Figure 0007234084000002
In addition, in Patent Document 2, the steel beam 5 is given by the square root √ (M p /M e ) of the ratio of the total plastic moment M p and the elastic lateral buckling moment M e given by the following equation. It is shown that if the slenderness ratio λ b =√(M p /M e ) satisfies λ b ≦0.5, the strength of the steel frame beam 5 sufficiently exceeds M p .
Figure 0007234084000002

すなわち、横座屈細長比λ≦0.5であれば、地震力に対して横座屈補剛材を取り付けずに鉄骨梁5の横座屈を防止することができることが示されている。換言すれば、横座屈細長比λ≦0.5を満たす鉄骨梁5であれば、本願発明で規定した頭付きスタッド11の本数や縦スチフナ15の配置の要件を満たす必要がなく、本願発明を適用する有利性がないと言える。
この意味から、本願発明の有利性が得られる鉄骨梁5としては、横座屈細長比λが0.5を超えるものである。
したがって、横座屈細長比λが、0.5<λb≦0.54の鉄骨梁5であれば、本発明を適用することで、本発明の効果が十二分に期待できる。
That is, if the lateral buckling slenderness ratio λ b ≦0.5, lateral buckling of the steel frame beam 5 can be prevented against the seismic force without attaching a lateral buckling stiffener. In other words, if the steel beam 5 satisfies the lateral buckling slenderness ratio λ b ≤ 0.5, it is not necessary to satisfy the requirements for the number of headed studs 11 and the arrangement of the longitudinal stiffeners 15 defined in the present invention, and the present invention can be applied. It can be said that there is no advantage in doing so.
From this point of view, the steel beams 5 to which the present invention is advantageous have a lateral buckling slenderness ratio λb exceeding 0.5.
Therefore, if the steel frame beam 5 has a lateral buckling slenderness ratio λ b of 0.5<λ b ≦0.54, the effects of the present invention can be fully expected by applying the present invention.

なお、横座屈細長比λを0.54以下にした理由は以下の通りである。横座屈細長比λが0.54以を超えるような鉄骨梁には、梁長さが実構造では用いられないほど長い梁や、梁長さが長く、かつ梁ウェブの板厚も薄い梁が該当する。前者は記載の通り実構造では用いられない梁であり、後者は局部座屈等の横座屈以外の問題が生じる可能性が高い。上記の理由から横座屈細長比λの上限を0.54とした。 The reason why the lateral buckling slenderness ratio λb is 0.54 or less is as follows. Steel beams with a lateral buckling slenderness ratio λb exceeding 0.54 or more include beams that are too long to be used in actual structures, or beams that are long and have thin beam webs. do. The former is a beam that is not used in the actual structure as described, and the latter is likely to cause problems other than lateral buckling such as local buckling. For the above reason, the upper limit of the lateral buckling slenderness ratio λb is set to 0.54.

本発明における縦スチフナ15の効果を確認するために図3に示す解析モデル27を用いてFEM解析を実施したので、以下説明する。
図3の解析モデル27は床スラブによる上フランジ7の構面外変形拘束効果を、上フランジ7の境界条件として考慮した簡易モデルである。
解析ケースは、以下に示す4ケースであり、いずれも両端が柱3と剛接合されていることを想定して材端の梁断面を剛面とした。
In order to confirm the effect of the longitudinal stiffener 15 in the present invention, FEM analysis was performed using the analytical model 27 shown in FIG. 3, which will be described below.
The analysis model 27 in FIG. 3 is a simplified model in which the effect of restraining the deformation of the upper flange 7 outside the structural plane by the floor slab is considered as a boundary condition of the upper flange 7 .
The analysis cases are the following four cases, and the cross section of the beam at the end of the material is assumed to be a rigid surface on the assumption that both ends are rigidly connected to the column 3 .

・ケース1:基本ケースとして、縦スチフナ15無しのもの
・ケース2:梁端から0.125L(L:鉄骨梁5の長さ)の位置にのみ縦スチフナ15を設けたもの
・ケース3:梁端から0.125Lの位置と、0.15Lのピッチで梁全長にわたって縦スチフナ15を設けたもの
・ケース4:梁端から0.1Lの位置と、0.2Lのピッチで梁全長にわたって縦スチフナ15を設けたもの
・Case 1: Basic case without vertical stiffener 15 ・Case 2: Vertical stiffener 15 provided only at a position 0.125L (L: length of steel frame beam 5) from beam end ・Case 3: Beam end A longitudinal stiffener 15 is installed at a position of 0.125L from the end of the beam and a pitch of 0.15L over the entire length of the beam.

梁の形状はいずれもH-350x125x6x12、λw=25.7、λy=310、λb=0.53で、材料特性は490N級鋼想定とした。縦スチフナ15は板厚6mmで、400N級鋼想定の材料特性とした。
梁、縦スチフナ15ともにシェル要素でモデル化した。解析では地震荷重時の逆対称曲げモーメント分布となるよう梁材端に曲げモーメントを与えた。
The shape of each beam is H-350x125x6x12, λ w =25.7, λ y =310, λ b =0.53, and the material properties are assumed to be 490N class steel. The vertical stiffener 15 has a plate thickness of 6 mm, and has material properties assuming 400N class steel.
Both the beam and the longitudinal stiffener 15 are modeled with shell elements. In the analysis, a bending moment was applied to the ends of the beams so as to obtain an anti-symmetrical bending moment distribution under seismic load.

解析結果を図4、図5に示す。図4は負曲げ側の梁の最大耐力(Mmax)を全塑性モーメント(Mp)で基準化したもの、図5は負曲げ側の梁の最大耐力時の塑性変形倍率(Rmax)を示す。
図4に示すように、ケース2~4は縦スチフナ15の効果によって縦スチフナ15を設けていないケース1より最大耐力が上昇している。
しかし、縦スチフナ15を端部にのみ配置したケース2の塑性変形倍率は、図5に示すように、ケース1と同程度であり、耐力は上昇したものの変形能力は向上していない。それに比べて、ケース3、4では耐力、変形能力ともにケース1よりも向上している。そして、梁端に最も近い縦スチフナ15の位置が、より梁端に近いケース4の方がケース3よりも耐力は大きくなった。
よって、梁全長にわたって縦スチフナ15で補強することで、床スラブ付き鉄骨梁1の耐力と変形能力を改善できることを確認した。
The analysis results are shown in FIGS. 4 and 5. FIG. Fig. 4 shows the maximum yield strength (M max ) of the beam on the negative bending side normalized by the total plastic moment (M p ), and Fig. 5 shows the plastic deformation ratio (R max ) at the maximum yield strength of the beam on the negative bending side. show.
As shown in FIG. 4, due to the effect of the vertical stiffener 15, the cases 2 to 4 have a higher maximum yield strength than the case 1 without the vertical stiffener 15. As shown in FIG.
However, as shown in FIG. 5, the plastic deformation ratio of case 2, in which the vertical stiffeners 15 are arranged only at the ends, is about the same as that of case 1, and although the proof stress is increased, the deformability is not improved. In contrast, in cases 3 and 4, both yield strength and deformability are improved over case 1. Further, in Case 4, where the position of the vertical stiffener 15 closest to the beam end is closer to the beam end, the yield strength is greater than in Case 3.
Therefore, it was confirmed that the strength and deformability of the steel frame beam 1 with the floor slab can be improved by reinforcing the entire length of the beam with the longitudinal stiffener 15 .

続いて本発明における頭付きスタッド11の本数の効果を確認するために、図6に示す解析モデル29を用いて合成率をパラメータとしたFEM解析を実施したので、以下説明する。
解析では柱3、ダイアフラム17、鉄骨梁5をシェルモデルで、コンクリート床スラブ13を梁要素で、頭付きスタッド11をバネ要素で詳細にモデル化した。
頭付きスタッド11接合部は、頭付きスタッド1本分の耐力と剛性を考慮したせん断バネ、回転バネでモデル化した。
Subsequently, in order to confirm the effect of the number of headed studs 11 in the present invention, FEM analysis was performed using the analysis model 29 shown in FIG.
In the analysis, the column 3, diaphragm 17, and steel beam 5 were modeled in detail using shell models, the concrete floor slab 13 using beam elements, and the headed stud 11 using spring elements.
The headed stud 11 joint is modeled with a shear spring and a rotary spring that take into account the strength and rigidity of one headed stud.

鉄骨梁5はH-1000x350x19x36、λw=21.6、λy=268、λb=0.53で、材料特性は550N級鋼想定(YS=385N/mm2)とした。縦スチフナ15は一般的に用いられる400N級鋼想定(YS=235N/mm2)とした。
解析ケースは3ケースで、合成率は1.0、2.5、4.7とした。図7、図8に解析結果を示す。図7は負曲げ側の梁の最大耐力(Mmax)を全塑性モーメント(Mp)で基準化したもの、図8は負曲げ側の梁の最大耐力時の塑性変形倍率(Rmax)を示す。
The steel beam 5 is H-1000x350x19x36, λ w =21.6, λ y =268, λ b =0.53, and the material properties are assumed to be 550N class steel (YS=385N/mm 2 ). The vertical stiffener 15 is assumed to be generally used 400N class steel (YS=235N/mm 2 ).
Three cases were analyzed, and the synthetic rates were set to 1.0, 2.5, and 4.7. 7 and 8 show the analysis results. Fig. 7 shows the maximum yield strength (M max ) of the beam on the negative bending side normalized by the total plastic moment (M p ), and Fig. 8 shows the plastic deformation ratio (R max ) at the maximum yield strength of the beam on the negative bending side. show.

合成率を上げることで耐力及び変形能力ともに上昇した。合成率2.5と4.7のケースの最大耐力の差よりも、合成率1.0と2.5のケースの最大耐力の差の方が大きく、合成率を大きくする効果は収束していく傾向がうかがえる。
本解析の結果、合成率2.0あれば十分な耐力、変形能力改善効果が得られると考えられる。この結果から、頭付きスタッド11の本数を、逆対称曲げモーメント分布時に完全合成梁として必要とされる本数の2倍以上にすることが有効であることが示された。
By increasing the synthesis rate, both yield strength and deformation ability increased. The difference in maximum yield strength between the cases of 1.0 and 2.5 ratios is larger than the difference between the cases of 2.5 and 4.7 ratios, suggesting that the effect of increasing the ratio tends to converge.
As a result of this analysis, it is considered that sufficient yield strength and deformability improvement effect can be obtained if the composition ratio is 2.0. From this result, it was shown that it is effective to make the number of headed studs 11 more than double the number required for a complete composite beam when the bending moment is antisymmetrically distributed.

1 床スラブ付き鉄骨梁
3 柱
5 鉄骨梁
7 上フランジ
9 下フランジ
11 頭付きスタッド
13 コンクリート床スラブ
15 縦スチフナ
17 ダイアフラム
19 ウェブ
21 デッキプレート
23 コンクリート
25 鉄筋
<従来例>
41 床スラブ付き鉄骨梁
43 ガセットプレート
45 小梁
47 アングル
49 ガセットプレート
51 シヤプレート
1 Steel Beam with Floor Slab 3 Column 5 Steel Beam 7 Upper Flange 9 Lower Flange 11 Headed Stud 13 Concrete Floor Slab 15 Vertical Stiffener 17 Diaphragm 19 Web 21 Deck Plate 23 Concrete 25 Rebar <Conventional Example>
41 Steel beam with floor slab 43 Gusset plate 45 Small beam 47 Angle 49 Gusset plate 51 Shear plate

Claims (3)

両端部が柱に剛接合されると共に横座屈補剛部材が設けられていないH形断面の鉄骨梁と、該鉄骨梁の上フランジの全長に亘って設けられた頭付きスタッドを介して接合されたコンクリート床スラブとを有する床スラブ付き鉄骨梁であって、
前記鉄骨梁は、梁長さと上下フランジの板厚中心間距離の比であるλwが15<λw≦30で、前記鉄骨梁の弱軸に関する細長比λyがA<λyであり、
前記頭付きスタッドの本数が、逆対称曲げモーメント分布時に完全合成梁として必要とされる本数の2倍以上とし、
前記鉄骨梁の上下フランジを繋ぐように接合された縦スチフナが、前記鉄骨梁の全長にわたって梁長さの0.2倍以下のピッチで、かつ前記柱に最も近い前記縦スチフナと前記柱との距離が梁長さの0.125倍以下となるように設けられていることを特徴とする床スラブ付き鉄骨梁。
ただし、Aは、鉄骨梁全長にわたって均等間隔で横補剛を設ける場合において、横座屈補剛が不要である鉄骨梁の弱軸に関する細長比の上限を定める係数である。
A steel beam with an H-shaped cross section, both ends of which are rigidly connected to columns and which is not provided with a lateral buckling stiffening member, is joined via a headed stud provided over the entire length of the upper flange of the steel beam. A steel beam with a floor slab having a concrete floor slab with
The steel beam has a ratio λ w between the beam length and the plate thickness center distance between the upper and lower flanges of 15 < λ w ≤ 30, and a slenderness ratio λ y about the weak axis of the steel beam is A < λ y ,
The number of headed studs is at least twice the number required for a complete composite beam with an antisymmetric bending moment distribution,
The vertical stiffeners joined so as to connect the upper and lower flanges of the steel beam have a pitch of 0.2 times or less of the beam length over the entire length of the steel beam, and the distance between the vertical stiffener closest to the column and the column is A steel beam with a floor slab, characterized in that it is provided so as to be 0.125 times or less of the beam length.
However, A is a coefficient that determines the upper limit of the slenderness ratio for the weak axis of a steel beam that does not require lateral buckling stiffening when lateral stiffening is provided at equal intervals over the entire length of the steel beam.
前記縦スチフナは、板厚が前記鉄骨梁のウェブ板厚の0.5倍以上であり、かつ用いられている鋼材の設計基準強度が前記鉄骨梁に用いられている鋼材の設計基準強度より低く設定され、
かつ、前記鉄骨梁は、全塑性モーメントMと下式によって与えられる弾性横座屈モーメントMの比の平方根√(M/M)で与えられる前記鉄骨梁の横座屈細長比λ=√(M/M)が、0.5<λb≦0.54を満足することを特徴とする請求項1記載の床スラブ付き鉄骨梁。
Figure 0007234084000003
The longitudinal stiffener has a thickness equal to or greater than 0.5 times the thickness of the web of the steel beam, and the standard design strength of the steel material used is set lower than the standard design strength of the steel material used in the steel beam. ,
In addition, the steel beam has a lateral buckling slenderness ratio λ b given by the square root √ (M p /M e ) of the ratio of the total plastic moment M p and the elastic lateral buckling moment M e given by the following equation: 2. The steel beam with floor slab according to claim 1, wherein √(M p /M e ) satisfies 0.5<λ b ≦0.54.
Figure 0007234084000003
両端部が柱に剛接合されると共に横座屈補剛部材が設けられていないH形断面の鉄骨梁と、該鉄骨梁の上フランジの全長に亘って設けられた頭付きスタッドを介して接合されたコンクリート床スラブとを有する床スラブ付き鉄骨梁であって、
前記鉄骨梁は、梁長さと上下フランジの板厚中心間距離の比であるλwが15<λw≦30で、前記鉄骨梁の弱軸に関する細長比λyがA<λyであり、
前記頭付きスタッドの本数が、逆対称曲げモーメント分布時に完全合成梁として必要とされる本数の2倍以上である床スラブ付き鉄骨梁の補強方法であって、
前記鉄骨梁の上下フランジを繋ぐように縦スチフナを設け、かつ該縦スチフナを、前記鉄骨梁の全長にわたって梁長さの0.2倍以下のピッチで、かつ前記柱に最も近い前記縦スチフナと前記柱との距離が梁長さの0.125倍以下となるように設けることを特徴とする床スラブ付き鉄骨梁の補強方法。
ただし、Aは鉄骨梁全長にわたって均等間隔で横補剛を設ける場合において、横座屈補剛が不要である鉄骨梁の弱軸に関する細長比の上限を定める係数である。
A steel beam with an H-shaped cross section, both ends of which are rigidly connected to columns and which is not provided with a lateral buckling stiffening member, is joined via a headed stud provided over the entire length of the upper flange of the steel beam. A steel beam with a floor slab having a concrete floor slab with
The steel beam has a ratio λ w between the beam length and the plate thickness center distance between the upper and lower flanges of 15 < λ w ≤ 30, and a slenderness ratio λ y about the weak axis of the steel beam is A < λ y ,
A reinforcing method for a steel frame beam with a floor slab, wherein the number of headed studs is at least twice the number required for a complete composite beam when the bending moment distribution is antisymmetric,
A vertical stiffener is provided so as to connect the upper and lower flanges of the steel beam, and the vertical stiffener is arranged over the entire length of the steel beam at a pitch of 0.2 times or less of the beam length and is closest to the column and the vertical stiffener and the column. A method of reinforcing a steel frame beam with a floor slab, characterized in that the distance between and is set to be 0.125 times or less of the beam length.
However, A is a coefficient that determines the upper limit of the slenderness ratio for the weak axis of a steel beam that does not require lateral buckling stiffening when providing lateral stiffening at equal intervals over the entire length of the steel beam.
JP2019181184A 2019-10-01 2019-10-01 Steel beam with floor slab and its reinforcement method Active JP7234084B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019181184A JP7234084B2 (en) 2019-10-01 2019-10-01 Steel beam with floor slab and its reinforcement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019181184A JP7234084B2 (en) 2019-10-01 2019-10-01 Steel beam with floor slab and its reinforcement method

Publications (2)

Publication Number Publication Date
JP2021055464A JP2021055464A (en) 2021-04-08
JP7234084B2 true JP7234084B2 (en) 2023-03-07

Family

ID=75270175

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019181184A Active JP7234084B2 (en) 2019-10-01 2019-10-01 Steel beam with floor slab and its reinforcement method

Country Status (1)

Country Link
JP (1) JP7234084B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115288345B (en) * 2022-08-05 2023-11-10 鞍钢房地产开发集团建筑设计院有限公司 Steel beam lateral support plate floor support plate inner connection

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5885911B2 (en) 2010-06-29 2016-03-16 株式会社竹中工務店 Design method of steel beam with reinforced concrete slab
JP2017166122A (en) 2016-03-14 2017-09-21 新日鐵住金株式会社 Steel beam and column-beam joint structure
JP2018135668A (en) 2017-02-21 2018-08-30 三井住友建設株式会社 Lateral reinforcement rigid structure of steel beam
JP2019056220A (en) 2017-09-20 2019-04-11 Jfeスチール株式会社 Steel beam design method used for floor structure, floor structure

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5885911B2 (en) 2010-06-29 2016-03-16 株式会社竹中工務店 Design method of steel beam with reinforced concrete slab
JP2017166122A (en) 2016-03-14 2017-09-21 新日鐵住金株式会社 Steel beam and column-beam joint structure
JP2018135668A (en) 2017-02-21 2018-08-30 三井住友建設株式会社 Lateral reinforcement rigid structure of steel beam
JP2019056220A (en) 2017-09-20 2019-04-11 Jfeスチール株式会社 Steel beam design method used for floor structure, floor structure

Also Published As

Publication number Publication date
JP2021055464A (en) 2021-04-08

Similar Documents

Publication Publication Date Title
JP6025884B2 (en) Steel / concrete composite
US10415230B1 (en) Strengthening system for beam-column connection in steel frame buildings to resist progressive collapse
JP7234084B2 (en) Steel beam with floor slab and its reinforcement method
JP4696843B2 (en) Composite beam structure
JP4805202B2 (en) Reinforcement structure of building structure with overhead traveling crane
JP6836835B2 (en) Column-beam joint structure
JP7116400B2 (en) truss girder
JP5158947B2 (en) Composite structural beam and building structure having composite structural beam
JP5437009B2 (en) Reinforcement structure of frame
JP5029271B2 (en) I-girder structure near the continuous I-girder bridge and its intermediate fulcrum
JP7314030B2 (en) Steel frame beam with floor slab having opening and its reinforcement method
US9487954B2 (en) Laced composite system
KR20220142848A (en) Self-supporting ring girder
JP7234083B2 (en) Steel beam with floor slab and its design method
JP5939707B2 (en) Reinforcement structure for beam-column joints
JP7067870B2 (en) Floor structure
JP7335143B2 (en) Steel beams with floor slabs with steps
JP6681709B2 (en) Stiffening structure of steel beams
KR20200137334A (en) Advanced Interlocking Girder adapt to Load Factor Resistance Design Method
WO1992009767A1 (en) Structural member provided with reinforcement against local buckling
JP7335540B1 (en) junction structure
JP7207055B2 (en) Rolled H-section steel and composite beams
JP7127244B2 (en) Seismic reinforcement structure
JP7426253B2 (en) truss beam
JP7207056B2 (en) Rolled H-section steel and composite beams

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220509

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230214

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230221

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230222

R150 Certificate of patent or registration of utility model

Ref document number: 7234084

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150