図および以下の説明は、単なる例示として、好適な実施形態に関する。以下の考察から、本明細書で開示されている構造体および方法の代替的実施形態が、実施形態の原理から逸脱することなく用いられ得る実行可能な代替例として容易に理解されることに留意されたい。
ここで、いくつかの実施形態を詳細に参照し、その例が、添付の図に図示されている。できる限り、類似または同様の参照数字が、図の中で使用され得、類似または同様の機能性を示すことが可能であることに留意されたい。図は、単なる例示の目的のために実施形態を示している。
1つの実装形態では、複数の可撓性の封じ込めチューブは、洪水の方向転換のための堤防のセクションを形成することが可能である。たとえば、19インチ(48.26cm)の直径を有する複数のビニールコーティングされたポリエステルチューブは、水で充填され、互いの上に積み重ねられ、一時的な方向転換堤防を生成することが可能である。堤防の複数のセクションは、共に当接され、堤防のより長いセクションを形成することが可能である。複数のチューブをピラミッドの方式で積み重ねることによって、および、迫り来る洪水からの水、または、ローカルの給水栓(もしくは、他の手段)からの水で、それぞれの可撓性の封じ込めチューブを充填することによって、これらの一時的なセクションが築かれ得る。封じ込めチューブは、ポリエステルの紐で縛ることによって共に固定され、また、スクリュタイプのアンカー(地面杭)などアンカーによって地面に締結され得る。追加的に、ベーパバリアまたはプラスチック膜は、堤防セクションに巻き付けることが可能であり、および/または、充填する前にそれらが設置されるときに、可撓性の封じ込めチューブを通して縫うように進められ、(たとえば、堤防セクションの中に、および、当接している堤防セクションの間に)浸出バリアを生成し、堤防セクションを強化することが可能である。さらに、地面シート重量および/または追加的な地面アンカーが、封じ込めエリアの中へ延在するベーパバリアの一部分を固定することが可能である。
例示的な流体封じ込めチューブおよび関連の構造体
図1は、例示的な実施形態による、方向転換堤防を固定するための土製アンカー(earthen anchor)を示す図である。示されているように、方向転換堤防100のセクションは、ピラミッド形状に積み重ねられた複数の可撓性の封じ込めチューブ10を含む。すなわち、ピラミッドタイプ形状に関して、ベース層は、複数のチューブを含み、チューブの数は、追加的な層が追加されるにしたがって減少している。示されているように、方向転換堤防100の図示されているセクションは、3-2-1ピラミッド構成になっており、3-2-1ピラミッド構成は、3つのチューブ10a、10b、10cのベース層(たとえば、第1の層)を有しており、それは、それぞれの後続層に関して1つずつ減少している(たとえば、第2の層の中のチューブ10d、10e、および、最上層の中のチューブ10f)。他の構成は、第1の層の中に追加的なまたはより少ないベースチューブを含むことが可能であり、また、2つ以上のチューブを含む最上層を有することが可能である。たとえば、4-3-2-1、5-4-3、5-3-2-1などのピラミッド構成が実現され得る。
1つの実施形態では、チューブ10は、可撓性の流体封じ込め構造体であり、それは、所望の構成で、たとえば、単独で、または、図1に図示されているようなピラミッド形状の堤防セクション100などで設置されている。チューブ10は、端部と端部を接続して設置され、チューブ本体部自身よりも長い方向転換堤防を構築することが可能である。いくつかの実施形態では、堤防セクション100は、封じ込めのための流体を保持するかまたは流体を方向転換させるかのいずれかのために、囲いまたは囲まれたエリア(たとえば、正方形、円形、矩形、または他の形状)を形成するように配置され得る。そのような場合に、チューブ端部の位置は、ずらして配置され得る。したがって、たとえば、追加的な方向転換堤防セクションが共に当接され、より長いバリアを生成するとき、または、1つの堤防セクションと別の堤防セクションとの間の角度を生成するときに、図1に図示されているチューブ10の端部は、同一平面上になくてもよく、ずらして配置され得る。
例示的な可撓性の封じ込めチューブ10は、充填されるとき、おおよそ100フィート(30.48m)の長さになっており、1フィート(30.48cm)から3フィート(91.44cm)を超える直径を有しており、750,000ガロン(2839m3)を超える体積を有することが可能である。したがって、チューブ重量は、寸法およびそれを充填するために利用される材料に基づいて、おおよそ3トンからはるかに大きな重量までの範囲にあることが可能である(たとえば、水対コンクリート、または、ガスを利用するときには著しく軽い)。充填する前に、チューブは、コンパクトな保管および輸送のためにその長さに沿って巻かれ得る。それらの可撓性の性質に起因して、それぞれの封じ込めチューブ10の長さは、空になっているときに、たとえば、正方形、「7」、円弧など、ほぼ任意の形状をとるように位置決めされ、構造体の周りにバリアを構築し、障害物を回避することが可能である。たとえば、木々、他の障害物、または、土地の境界線が考慮される必要があるエリアにおいて、チューブ10は、空になっているときに、木々または他の障害物の周りに容易に位置決めされ、次いで、充填され得る。
チューブ10自身は、現場で容易に入手可能であり得る、水またはガス(たとえば、空気)、コンクリート、または他の物質など、流体を貯蔵するように構成されている。バルブは、可撓性の封じ込めチューブの可撓性の本体部の中に配設され、連結部から充填装置へ流体を受け入れることが可能であり、充填装置は、1または複数のバルブを介したチューブの中への流体のフローを容易にする。バルブは、さらに、望ましくない流体の放出を防止するように構成され得る。したがって、障害物の周りに所望の構成で設置されると、1または複数のチューブが、バルブに連結されている流体充填装置を介して充填され得る。例示的な流体充填装置は、ポンプまたはホースまたはパイプを含むことが可能であり、それは、ポンプまたは重力によって、および、ガスの場合、加圧されたキャニスタまたは圧縮機によって、流体を供給され得る。実際には、たとえば、チューブ10a~cのベース層が設置されると、それらは、それぞれのチューブの中に配設されているバルブに連結されたホースおよびポンプなど、充填装置を介して充填され得、また、追加的なチューブ(たとえば、チューブ10d~f、または、当接するチューブ(図示せず))が設置され、その後に、所望の通りに充填装置を介して充填され、オンデマンドの流体封じ込めまたは方向転換を提供することが可能である。
チューブ10または複数のチューブ(たとえば、ピラミッド構成になっているもの)は、さまざまな方式で固定され得、そのいくつかは、方向転換堤防セクション100に関する例によって図示されている。1つの実施形態によれば、チューブ10は、チューブの可撓性の本体部に連結されている1または複数のストラップループ32を含むことが可能である。ストラップループ32は、所与の幅のストラップ13を収容するのに十分に大きい直径を有している。たとえば、所与のストラップループ32は、最大で2.5in(6.35cm)幅を有するストラップ13を収容するために2.75in(6.985cm)の直径を有することが可能であり、最大で3in(7.62cm)幅のストラップ13を収容するために3.25in(8.255cm)の直径を有することが可能であるなどとなっている。チューブ10の可撓性の本体部に連結されているストラップループ32は、対応するストラップ13の使用によって、それらの長さに沿ったチューブのシフトを防止することを支援し、さらに、堤防セクション100に関するそれらの所望の構成において、チューブの位置を維持することを支援している。2つのストラップループ32a、32bだけが図示され、すなわち、チューブ10aおよび10cのそれぞれに関してそれぞれ1つが図示されているが、チューブ10aおよび10cは、それらの可撓性の本体部の周りおよび下に所望の通りに位置決めされている追加的なストラップループ32を含むことが可能である。さらに、他のチューブは、可撓性の本体部に近接するストラップ13を収容するためのストラップループ(図示せず)を含むことが可能である。たとえば、チューブ10b、10d、10f、および10eのうちの1または複数は、それらの可撓性の本体部に連結されているストラップループを含むことが可能であり、ストラップ13がストラップループを通して挿入され、チューブの位置を維持することができるようになっている。より大きいピラミッドフォーメーションでは、たとえば、4-3-2-1では、内部チューブ10は、堤防セクションの外部の周りに巻き付けられた所与のストラップ13に近接しておらず、ストラップは、チューブ同士の間に織り交ぜられ得、および/または、追加のストラップが利用され得る。たとえば、第1のストラップは、4-3-2-1堤防セクションの外部の周りに巻き付けるために利用され得、第2のストラップは、3-2-1部分の周りに巻き付けるために利用され得、それは、4つのチューブベース層を構成するチューブに連結されているストラップループを通してさらに挿入され得る。
示されているように、ストラップ13は、チューブ10aおよび10cのストラップループ32a、32bをそれぞれ通され、また、堤防セクション100の周りを通され、堤防セクションのチューブ10を共に固定する。示されてはいないが、ストラップ13は、他のチューブの任意の追加的な数のストラップループ(同様に図示せず)を通され得る。上記に説明されているように、ストラップループ32およびストラップ13は、それらの長さに沿ってチューブのシフトを防止することを支援し、堤防セクション100に関するそれらの所望の構成でチューブを維持するが、それらは、地面101に対する堤防セクション100全体のシフトを防止しない。
ある実施形態では、地面101に固定されている土製アンカー3は、地面101に対する個々のチューブまたは堤防セクション100のシフトを防止することを支援する。示されているように、土製アンカー(たとえば、3aおよび3b)は、ベースレベルの縁部において、その長さに沿って、チューブ(たとえば、10aおよび10c)の本体部に隣接して設置され得る。例示的な土製アンカー3aは、地面固定メカニズムを含み、たとえば、杭5および杭打ち込み部分7などを含む。たとえば、打ち込み部分7は、土製アンカー3aの中の開口部であり、杭5を受け入れることが可能である。杭5および打ち込み部分7の構成は、打ち込み部分が、地面101の中へ打ち込まれる杭の先端部およびシャフトを受け入れることができるが、杭の他の端部を受け入れないようになっていることが可能である。このように、杭5が打ち込み部分7を通して地面101の中へ十分に打ち込まれると、アンカー3aが、杭5から除去されることができない。換言すれば、杭5が杭打ち込み部分7を通して地面101の中へ打ち込まれると、土製アンカー3aは、杭5が地面101から除去されるまで、地面101に固定されているままである。
杭5の実施形態は、地面101の組成に基づいて異なっていることが可能である。たとえば、コンクリート地表面のための杭5は、土、粘土、砂などのための杭とは異なっていることが可能である。さらに、杭5の異なる長さは、地面タイプに基づいて、地面101の中の特定の深さに到達するように選ばれ得る。たとえば、コンクリートのための杭5は、土のための杭よりも短い長さのものであることが可能であるが、しかし、それらは、除去に対して同様の抵抗を提供することが可能である。杭5は、らせん状のリッジを備えて構成され得、らせん状のリッジは、スクリュのものと同様に、地面101の中へ打ち込まれる先端部において始まり、反対側端部に向けてシャフトまで延在しており、一方向への杭の回転が杭の先端部を地面101の中へさらに打ち込み、また、反対側方向への杭の回転が、杭を地面から戻すようになっている。
土製アンカー3は、土製アンカーの中に配設されているストラップループ9を含むことが可能であり、チューブ10の周りのストラップ13は、ストラップループ9を通され、または、そうでなければ、(たとえば、ストラップの端部において)ストラップループ9に取り付けられ得る。ストラップループ9は、ストラップループ(たとえば、32a)と同様の直径を有するように構成され、ストラップ13を受け入れることが可能である。ストラップループ9を含むことは、隣接するチューブ10に対して土製アンカー3を固定し、また、アンカーに対してチューブを固定する。たとえば、示されているように、ストラップ13は、土製アンカー3aのストラップループ9を通され、チューブ10aの本体部に対して土製アンカー3aを固定する。いくつかの実施形態では、杭5だけが使用され得、その場合、杭5の上部端部は、ストラップ13を受け入れるためのストラップループを含む。杭5の上部端部における例示的なストラップループは、メタルアイ(metal eye)であり、または、ストラップ13自信を受け入れるのに十分な直径または開口部を有するフックであることが可能である。
1または複数の追加的な土製アンカー(図示せず)は、所望の通りに、チューブ10aの本体部の長さに沿って設置され得る。追加的に、示されているように、土製アンカー3a、3bは、堤防セクション100(または、他の実施形態では、個々のチューブ)のそれぞれの側に、その長さに沿って設置され得る。土製アンカー3bは、土製アンカー3aのものと同様の方式で構成され、チューブ10cおよび地面101に対してアンカー3bを固定し、地面に対する堤防セクション100のシフトを防止することが可能である。
堤防セクション100の長さ当たりのアンカー3の数は、堤防セクションの長さ、および、堤防セクションの高さにより決定されてもよい。堤防セクション100が高くなればなるほど、多くのアンカー3が使用され得る。その理由は、堤防セクションに対する封じ込められている流体の水平方向の力が、封じ込められている流体の深さとともに増加するからである。この水平方向の力は、静水圧力またはHkとして知られており、それは、封じ込められている流体の比重量(r)、および、封じ込められている流体の深さ(h)の2乗によって特徴付けられる。具体的には、Hk=(r/2)*h2であり、Hkの作用線は、堤防セクションのベースの上方にh/3にある。堤防セクション100は、適切な場所に残るように、静水圧力に抵抗しなければならない。図9を簡潔に参照すると、グラフは、封じ込められている流体のインチでの高さの増加に伴う静水圧力に起因する、堤防セクション100の10フィート(3.048m)当たりの力の指数関数的な増加を(1000lb(453.6kg)で)図示している。1つの実施形態では、それぞれが2~10トンの固定力を提供する杭を備える、おおよそ3つのアンカー3が、ピラミッド構成のチューブ10ごとに、堤防セクション100の100ft(30.48m)長さ当たりに利用されている(その理由は、チューブの数は、堤防セクションの高さに相関しており、したがって、封じ込められている流体の起こり得る高さに相関しているからである)。上記の固定スキームでは、堤防セクション100が単独で静水圧力に耐えなければならない力を増加させる波の作用など、追加的な水平方向の力に対して保護するように、安全率が組み込まれ得る。たとえば、堤防セクションごとに利用される複数の杭によって提供される固定力が静水圧力に厳密に合致されている場合には、本明細書で説明されている他の強化特徴(たとえば、封じ込めエリアの中へ延在するベーパバリアを含むこと)に伴って、チューブ自身の重量が、十分な安全率を提供することが可能である。
図2は、例示的な実施形態による、ベーパバリア15を固定するための土製アンカーを示す図である。図2に示されている土製アンカー3は、図1のものと同様の構成のものであってもよい。たとえば、土製アンカー3は、ストラップを用いてチューブ10aに対してアンカーを固定するためのストラップループ(図示せず)を含むことが可能であり、それは、堤防セクション200の周りに、または、堤防セクションの中のチューブ10を通して巻き付けられ得る。堤防セクション200のチューブ10自身は、図1のものと同様の構成で示されている。
図1の実施形態と比較して、図2に図示されている堤防セクション200は、ベーパバリア15を含み、堤防セクション200を通る流体の侵入に対して追加的な抵抗を提供する。1つの実施形態では、ベーパバリア15は、ポリビスクイーンなど防水材料であり、または、その表面を通る流体の侵入を防止する他の材料である。ある実施形態では、ポリビスクイーンは、厚さが5~15ミリメートルの間にある。いくつかの実施形態では、ポリビスクイーンは、たとえば、ナイロンストランド(たとえば、ストリング)など埋め込まれたウェビング(webbing)材料によって強化されている。
ベーパバリア15は、構成に応じて、堤防セクション200のチューブの上に巻き付け、堤防セクション200のチューブの下に巻き付け、および/または、堤防セクション200のチューブを通して巻き付けることが可能である。追加的に、ベーパバリア15は、堤防セクション200の一部分または全体の長さに沿って延在することが可能であり、また、堤防セクションの長さ全体または一部分にわたって延在するために、複数の重複セクションを含むことが可能である。1つの実施形態では、ベーパバリア15は、堤防セクション200の長さにわたって延在しており、チューブ端部は、(たとえば、2つの堤防セクション200の接合部において)互いに対して当接されており、チューブ10自身よりも長い堤防セクションを生成する。2つの堤防セクション200の接合部は、一列に、ある角度に、または、他の構成になっていてもよい。ピラミッド堤防セクション200の場合、1または複数のチューブは、ベンドを容易にするようにずらして配置され得る(たとえば、バリアの内部にあるチューブ10b、10c、10eは、直角のベンドのために、チューブ10a、10d、10fから後ろにずらして配置され得る)。同様に、追加的な堤防セクションの対応するチューブは、それらが堤防セクション200のチューブ10に当接し、直角にベンドする接合部を形成するように構成され得る(たとえば、ずらして配置されている)。
ベーパバリア15構成は、堤防セクション200のリア15bの下から延在する一部分と、封じ込めエリアの一部を形成する堤防セクションのフロントベースから堤防セクションのフロント15aを上向きに延在する一部分とを含むことが可能である。図示されている構成では、ベーパバリア15は、土製アンカー3の下に延在しており、土製アンカー3は、ベーパバリアを通した地面101の中への杭5の打ち込みを通して、ベーパバリア15を地面101に固定する。さらに、ベーパバリア15は、リア部分15bにおいて折り畳まれ得、堤防セクションのフロントベースからフロント部分15aが、堤防セクション200のフロント面を上向きに延在するようになっており、また、追加的な部分15cが、堤防セクションのフロントベースから地面101に沿って流体封じ込めエリアの中へ延在することが可能である。追加的な部分15cは、堤防セクション200のフロントベースから封じ込めエリアの中に1~3ヤード(0.9144~2.743m)以上の長さに延在し、封じ込められている流体による堤防セクション200の下の地面101の浸食を軽減し得る。追加的な部分15cは、延長された端部において、追加的な土製アンカー、および/または、ウェイト(図示せず)によって、地面101に固定されてもよい。
土製アンカー3は、傾斜した面8を備えて構成され得、それが封じ込めエリアを形成するフロントベースから堤防セクション200のフロント面を上向きに延在するときに、ベーパバリアの部分15aがその上に横たわるように、隣接するチューブ10aの本体部につながる緩やかな傾きを提供している。追加的に、土製アンカー3の打ち込み部分7は、杭5の打ち込み端部が土製アンカー3の傾斜した面8を越えて延在しないように構成され得る。このようにして、封じ込めエリアの中の堤防セクション200のフロント面につながるベーパバリアの部分15aの破れまたは穿刺が軽減され得る。
図3Aは、例示的な実施形態による、方向転換堤防を構築する際のベーパバリア15構成を示す図である。図3Aに示されている土製アンカー3a、3bは、図1のものと同様の構成のものであってもよい。たとえば、土製アンカー3a、3bは、ストラップを用いてチューブ10a、10cに対してアンカーをそれぞれ固定するためのストラップループ(図示せず)を含むことが可能であり、それは、堤防セクション300aの周りに、または、堤防セクションの中のチューブ10を通して巻き付けられ得る。堤防セクション300aのチューブ10自身は、図1のものと同様の構成で示されている。
図1の実施形態と比較して、図3Aに図示されている堤防セクション300aは、ベーパバリア15を含み、堤防セクション300aを通る流体の侵入に対して追加的な抵抗を提供する。1つの実施形態では、ベーパバリア15は、ポリビスクイーンなど防水材料であり、または、その表面を通る流体の侵入を防止する他の材料である。ある実施形態では、ポリビスクイーンは、厚さが5~15ミリメートルの間にある。いくつかの実施形態では、ポリビスクイーンは、たとえば、ナイロンストランド(たとえば、ストリング)など埋め込まれたウェビング材料によって強化されている。
ベーパバリア15は、構成に応じて、堤防セクション300aのチューブの上に巻き付け、堤防セクション300aのチューブの下に巻き付け、および/または、堤防セクション300aのチューブを通して巻き付けることが可能である。追加的に、ベーパバリア15は、堤防セクション300aの一部分または全体の長さに沿って延在することが可能であり、また、堤防セクションの長さ全体または一部分にわたって延在するために、複数の重複セクションを含むことが可能である。1つの実施形態では、ベーパバリア15は、堤防セクション300aの長さにわたって延在しており、チューブ端部は、(たとえば、2つの堤防セクション300aの接合部において)互いに対して当接されており、チューブ10自身よりも長い堤防セクションを生成する。2つの堤防セクション300aの接合部は、一列に、ある角度に、または、他の構成になっていてもよい。ピラミッド堤防セクション300aの場合、1または複数のチューブは、ベンドを容易にするようにずらして配置され得る(たとえば、バリアの内部にあるチューブ10b、10c、10eは、直角のベンドのために、チューブ10a、10d、10fから後ろにずらして配置され得る)。同様に、追加的な堤防セクションの対応するチューブは、それらが堤防セクション300aのチューブ10に当接し、直角にベンドする接合部を形成するように構成され得る(たとえば、ずらして配置されている)。
ベーパバリア15構成は、堤防セクション300aのリア15bの下から延在し、また、封じ込めエリアの一部を形成する堤防セクションのフロントベースから堤防セクションのフロント15aを上向きに延在する一部分を含むことが可能である。図示されている構成に示されているように、ベーパバリア15は、土製アンカー3aの下に延在しており、土製アンカー3aは、ベーパバリア15を通した地面101の中への杭5の打ち込みを通して、ベーパバリア15を地面101に固定する。さらに、ベーパバリア15は、リア部分15bにおいて折り畳まれ得、堤防セクションのフロントベースからフロント部分15aが、堤防セクション300aのフロント面を上向きに延在するようになっており、また、追加的な部分15cが、堤防セクションのフロントベースから地面101に沿って流体封じ込めエリアの中へ延在することが可能である。追加的な部分15cは、堤防セクション300aのフロントベースから封じ込めエリアの中に1~3ヤード(0.9144~2.743m)以上の長さに延在し、封じ込められている流体による堤防セクション300aの下の地面101の浸食を軽減することが可能である。追加的な部分15cは、延長された端部において、追加的な土製アンカー、および/または、ウェイト(図示せず)によって、地面101に固定されてもよい。
1つの実施形態では、土製アンカー3aは、傾斜した面を備えて構成されており、それが封じ込めエリアを形成するフロントベースから堤防セクション300aのフロント面を上向きに延在するときに、ベーパバリア15の部分15aがその上に横たわるように、隣接するチューブ10aの本体部につながる緩やかな傾きを提供している。さらに、いくつかの実施形態では、それを通して杭5が打ち込まれる土製アンカー3aの打ち込み部分(図示せず)は、杭5の打ち込み端部が土製アンカーの傾斜した面を越えて延在しないように構成され得る。このようにして、封じ込めエリアの中の堤防セクション300aのフロント面につながるベーパバリア部分15aの破れまたは穿刺が軽減され得る。
図3Aに図示されている実施形態では、杭17の打ち込みを介して地面101に固定されている第2の土製アンカー3bは、たとえば、土製アンカー15bの下のベーパバリア15bの部分15bのリア端部を堤防セクション300aのリアベースに位置決めすることによって、および、ベーパバリアの部分15bのリア端部を通して地面の中へ杭17を打ち込むことによって、ベーパバリア15の部分15bのリア端部を地面101にさらに固定している。追加的に、堤防セクションのフロントベースから堤防セクション300aのフロント面を上向きに延在するベーパバリア部分15aは、堤防セクション300aの上部を越えて土製アンカー3bに固定されており、たとえば、接続ストラップ19を介して、杭17に、または、土製アンカー3bのストラップループ(図示せず)に固定されている。いくつかの実施形態では、ベーパバリア15のフロント部分15aは、堤防セクション300aの上部を越えて堤防セクションのリアベースへ延在するのに十分な長さのものであることが可能であり、土製アンカー3bに固定され、または、接続ストラップ19の支援なしに土製アンカー3bを介して固定される。いずれの場合でも、ベーパバリア15は、土製アンカー、杭、および/または、ストラップを介して、地面101に固定されている。
1または複数のチューブ10の堤防セクション300aの両側でベーパバリア15を地面101に固定することは、いくつかの予期せぬ利益を提供する。また、チューブ10自身も、(たとえば、図1を参照して説明されているように)地面101に固定され得る。したがって、たとえば、ベーパバリア15が流体に対して不浸透性である場合には、たとえば、ポリビスクイーンから構築されたベーパバリアのケースなどでは、チューブ10は、堤防セクション300aに形状を提供することだけを必要とする。その理由は、封じ込めエリアの中のフロントベースから堤防セクションのフロント面を上向きに延在するベーパバリアの部分15aが、堤防セクションを通る流体移送を実質的に防止するからである。したがって、図3Aに図示されているものなど構成では、チューブ10は、封じ込められている流体とは実質的に異なる密度の物質で充填され得る。たとえば、水など流体の封じ込めを考えるときに、チューブ10は、空気または他のガスで充填され得る。封じ込められている流体が、ベーパバリアのフロント部分15aに対して上昇するときに、流体の圧力は、深さとともに増加し、封じ込められている流体の表面下のベーパバリアのフロント部分を、チューブ10aの本体部に対して、次いで、チューブ10dに対して、などと圧縮する。堤防セクション300aのピラミッド形状、および、封じ込めエリアの中の堤防セクションのフロント面に沿って、チューブに押し付けられている不浸透性ベーパバリアのフロント部分15aに起因して、封じ込められている流体の深さが増加するにつれて、封じ込められている流体の柱が、封じ込められている流体の表面下で、堤防セクションのフロント面のより低いレベルの上のチューブの部分の上に発達する。たとえば、封じ込められている流体の柱は、チューブ10a、次いで10bなどの一部分の上に発達する。その理由は、封じ込められている流体の深さが増加するときに、それらが、封じ込められている流体の表面下に入るからである。チューブの一部分の上にあり、封じ込められている流体の表面下にある、封じ込められている流体の柱の重量は、封じ込められている流体の深さとともに増加する(すなわち、その理由は、柱の高さは、封じ込められている流体の深さとともに増加するからである)。ベーパバリアのフロント部分15aは封じ込められている流体に対して不浸透性であるので、チューブ(たとえば、10a)の一部の上に発達している流体の柱の重量が、ベーパバリアを通してチューブを押し下げる。ベーパバリアのフロント15aを介して、下側レベルチューブ、たとえば、チューブ10aに作用する、封じ込められている流体の重量のこの下向きの力は、堤防セクション300aのシフトを防止することを支援する。たとえば、下向きの力は、堤防セクション300aを固定する1または複数のアンカー、杭、および/またはストラップと協調して働き、封じ込められている流体が堤防セクションを押しのけるのに十分な水平方向の力を発生することを防止する。さらに、堤防セクション300aをこのように構成することによって発生される下向きの力に起因して、いくつかの実施形態では、チューブ10は、封じ込められている流体よりも小さい密度を有する流体で充填され得る。具体的には、封じ込めエリアの中の堤防セクション300aのフロント面に沿ったチューブは、封じ込められている流体の表面が上昇するときに、封じ込められている流体自身によって、地面101に(および、下側レベルチューブに対して)下向きに押し付けられるので、封じ込められている流体が堤防セクションの下におよび/または堤防セクションを通して侵入することの軽減、ならびに、堤防強度が、非常に改善され、チューブを充填する流体の密度、および/または、アンカー強度が低減され得るようになっている。このようにして、チューブをガスで完全に充填することは、実際には実施されない可能性があるが、チューブ10を充填する際に利用される流体の量は、堤防セクション300aの有効性を低減することなく、たとえば、水で部分的に充填することを通して、および、たとえば、空気で部分的に充填することを通して、実質的に低減され得る。
図3B1および図3B2は、例示的な実施形態による、方向転換堤防を構築する際のベーパバリア15構成を示す図である。示されてはいないが、杭17aおよび17bは、土製アンカーを通して打ち込まれ、ベーパバリア15を地面101に固定することが可能である。いくつかの実施形態では、チューブ10の重量がベーパバリアを地面に保持するので、杭17aおよび/または杭17bは、ベーパバリア15を地面101に固定するために利用される。たとえば、フロント杭17aだけが、ベーパバリア15を地面101に固定するために実装され得る。堤防セクション300bのチューブ10自身は、図1のものと同様の構成で示されている。
図3B1に図示されている堤防セクション300bは、ベーパバリア15を含み、堤防セクション300bを通る流体の侵入に対して追加的な抵抗を提供し、また、堤防セクション300bの追加的な強化を提供する。1つの実施形態では、ベーパバリア15は、ポリビスクイーンなど防水材料であり、その表面を通る封じ込められている流体の侵入を防止する。
ベーパバリア15は、構成に応じて、堤防セクション300bのチューブの上に巻き付け、堤防セクション300bのチューブの下に巻き付け、および/または、堤防セクション300bのチューブを通して巻き付けることが可能である。追加的に、ベーパバリア15は、堤防セクション300bの一部分または全体の長さに沿って延在することが可能であり、また、堤防セクションの長さ全体または一部分にわたって延在するために、複数の重複セクションを含むことが可能である。1つの実施形態では、ベーパバリア15は、堤防セクション300bの長さにわたって延在しており、チューブ端部は、(たとえば、2つの堤防セクション300bの接合部において)互いに対して当接されており、チューブ10自身よりも長い堤防セクションを生成する。2つの堤防セクション300bの接合部は、一列になっており、ある角度になっており、または、他の構成になっていることが可能である。ピラミッド堤防セクション300bの場合、1または複数のチューブは、ベンドを容易にするようにずらして配置され得る(たとえば、バリアの内部にあるチューブ10b、10c、10eは、直角のベンドのために、チューブ10a、10d、10fから後ろにずらして配置され得る)。同様に、追加的な堤防セクションの対応するチューブは、それらが堤防セクション300bのチューブ10に当接し、直角にベンドする接合部を形成するように構成され得る(たとえば、ずらして配置されている)。
図3Aの実施形態と比較して、図3B1のベーパバリア15は、堤防セクション300bのフロントベースの下から堤防セクションのリアベースへ延在する一部分15bと、リアの周りおよび堤防セクションの上部を越えて巻き付ける一部分15dと、堤防セクションの上部から堤防セクション300bのフロント面を下向きに堤防セクションのフロントベースへ延在する一部分15aとを含み、一部分15cが、堤防セクションのフロントベースから流体封じ込めエリアの中へ地面101に沿って延在し続けている。示されているように、ベーパバリア15は、フロントにおいて、地面杭17aによって、および、随意的に、リアにおいて、追加的な杭17bによって、地面101に固定され得、それは、地面アンカー(図示せず)を通して打ち込まれ得る。堤防セクション300bの前から延在するベーパバリアの部分15cは、堤防セクションのフロントベースから封じ込めエリアの中へ1~3ヤード(0.9144~2.743m)以上の長さに延在し、堤防セクション300bの下の地面101の浸食を軽減することが可能である。封じ込めエリアの中へ延在するベーパバリアの部分15cは、堤防セクション300bのフロントベースに近接して、および、その端部において、地面101に固定され得る。たとえば、ベーパバリアの部分15cは、堤防セクション300bのフロントベースのフロント面に近接して、および、延長された端部において、追加的な土製アンカーおよび杭(図示せず)によって、および/または、示されているように、それぞれウェイト31aおよび31bによって、地面101に固定され得る。
図示されている実施形態では、堤防セクション300bのフロント面を下向きに延在するベーパバリアの部分15a、および、堤防セクションのフロントベースから封じ込めエリアの中へ延在し続けるベーパバリアの部分15cは、堤防セクション300bに対する封じ込められている流体の静水圧力に抵抗する際に、いくつかの予期せぬ利益を提供する。具体的には、ベーパバリアの部分15cを押し下げる封じ込められている流体の柱の重量によって、および、封じ込められている流体の表面下にある堤防セクション300bのフロント面を下向きに延在するベーパバリアの部分15aを押し下げる封じ込められている流体の柱の重量によって、ベーパバリアに対する流体の柱の下向きの力の結果として生じる効果は、ボード(たとえば、ベーパバリア15)の上に人が立っている(たとえば、流体の重量)のと同時に、ボードを持ち上げようとしている(たとえば、堤防セクション300bのフロント面に対する静水圧力に起因する横方向の力)のと同様である。図10を簡潔に見てみると、図は、堤防セクションのフィート長さ当たりのポンドで示されている封じ込められている流体の横方向の力と比較して、1V(垂直方向):1H(水平方向)の比率を有する堤防にかかる、例示的な封じ込められている流体(水)の下向きの力を、堤防セクションのフィート長さ当たりのポンドで図示するように示されている。1V:1Hの比率は、45度の傾斜を備えたフロント面を有する例示的な堤防セクションを表しており、たとえば、垂直方向の堤防高さの1フィート(30.48cm)ごとに、堤防のフロントベースが封じ込めエリアの中へ水平方向に1フィート(30.48cm)延在する、ピラミッド形状の堤防セクションの近似を表している。柱高さに起因して封じ込められている流体によって発生される下向きの力は、封じ込められている流体の高さが上昇するにつれて、静水圧力の水平方向の力とともに増加する。下向きの力は、封じ込められている流体の比重量(r)、封じ込められている流体の深さ(h)、および、堤防の水平方向に対する垂直方向の比率によって特徴付けられる。例示的な1V:1Hの比率に関して、深さ(h)を有する流体によって発生される下向きの力は、r/2*h2に等しい。したがって、静水圧力が、堤防セクション300bのフロント面に対して横方向に(たとえば、水平方向に)作用するとき、セクション15cおよびベーパバリアの傾斜したフロント面15aにかかる(したがって、チューブにかかる)水柱の下向きの力は、静水圧力の横方向の力に起因する堤防の移動に抵抗することを支援する。
図3B1を続けて見ると、示されているように、リアベースから堤防セクション300bの上部へリア面を上向きに延在するベーパバリアの部分15dは、堤防セクションの内部の中のチューブ10のうちの1または複数の間を通され、堤防セクションのフロント面を下向きに延在するベーパバリアの部分15aに対する、水柱の下向きの力の引っ張り作用に抵抗することを支援する。図3B2は、代替的な構成を図示しており、リア面を上向きに延在するベーパバリアの部分15dは、堤防セクション300bの内部の中のチューブ10のうちの1または複数の間の内部を通されていない。この例では、1または複数の杭および/または地面アンカー、ならびに、堤防セクション300bの下に延在するベーパバリアの部分15bの上のチューブ10の重量は、堤防セクションのフロント面を下向きに延在するベーパバリアの部分15aに対する下向きの力の引っ張り作用に抵抗する。チューブの重量および/または杭およびアンカーが引っ張り作用に抵抗するのに十分な強度を提供するときに、図3B2に図示されている構成は、実装するのにより簡単であり得る。
図3C1および図3C2は、例示的な実施形態による、方向転換堤防セクションを構築する際のベーパバリア15構成を示す図である。具体的には、図3C1および図3C2は、封じ込められている流体が、堤防セクションのフロント面におけるベーパバリアの部分15a、および/または、封じ込めエリアの中に延在するベーパバリアの部分15cの下に、および/または、それらを通って浸出するときの、図3B1および図3B2に図示されているものと同様の方向転換堤防構築の追加的な利益を図示している。
図3C1に示されているように、浸出ギャップ33が、堤防セクション300cのフロントベースからチューブ10cの下を通りリアベースに延在するベーパバリアの部分15bと、フロント面を下向きにフロントベースへおよび封じ込めエリアの中へ延在するベーパバリアの部分15a、15cとの間に存在することが可能である。封じ込められている流体32のレベル35aが封じ込めエリアの中で上昇するとき、封じ込められている流体は、封じ込めエリアの中へ延在するベーパバリアの部分15cを越えて地面101の中へ浸出することが可能である。そして、封じ込められている流体は、地面101からギャップ33を通して上向きに浸出し、また、チューブ10を包んでいるベーパバリアの内部34の中へ浸出することが可能である。追加的に、封じ込められている流体は、堤防セクション300cに沿ってベーパバリア15の重複セクションにおいて、または、穿刺を介して、内部34の中へ浸出することが可能であり、穿刺は、封じ込めエリアの中のベーパバリアの延長された部分15c、および/または、フロント面を下向きに延在するベーパバリアの部分15aの中に起こり得る。
堤防セクション300cの下に延在するベーパバリアの部分15bが固定されているままであり、かつ、ベーパバリアの部分15bおよび部分15dが、相対的に穿刺がない状態のままである限り(すなわち、穿刺は、堤防セクションの内部34の中への浸出の速度よりも速く流体が逃げることを可能にはしない)、浸出する流体は、ベーパバリア15によって堤防セクションの内部の中に実質的に封じ込められる。そして、堤防セクション300cの内部34の中に浸出する流体のレベル35bは、封じ込められている流体の表面レベル35aと実質的に同様のレベルに上昇することが可能である。
封じ込めエリアから堤防セクション300cの内部34の中への封じ込められている流体32の浸出は、最初に、堤防セクション300cの故障のように見える可能性があるが、しかし、内部34の中に浸出する流体をベーパバリア15が十分に保持するときは、これは、当てはまらない。実際に、いくつかの予期せぬ利益が、そのような場合に得られる。堤防セクション300cの内部34の中の流体のレベル35bが上昇するとき、それは、封じ込めエリアの中の封じ込められている流体のレベル35aに起因して、堤防セクションのフロント面の上の静水圧力に対抗する。具体的には、封じ込めエリアの中の封じ込められている流体32が堤防セクション300cのフロント面に作用する横方向の力(それは、堤防セクションの全体をシフトさせる可能性がある)を発生する一方、堤防セクションの内部34の中の流体も同様に発生するが、それは、反対側方向になっている。実際に、内部34の中の流体のレベル35bが封じ込めエリアの中に封じ込められている流体32のレベル35aに実質的に等しいとき、内部の中の流体のレベルに起因して、内部の中から、ベーパバリアの部分15aをフロント面から離れるように(たとえば、封じ込めエリアの中へ)押す横方向の力は、封じ込めエリアの中の流体のレベルに起因して、ベーパバリアの部分15aをフロント面の中へ押す横方向の力を実質的に相殺する。したがって、堤防セクション300cの中の流体レベル35bが上昇するとき、堤防セクションのフロント面に対する封じ込められている流体32の力が低減されるので、堤防セクションは、シフトしにくくなる。
堤防セクションの内部34の中の流体レベル35bが上昇するときに、封じ込められている流体32の静水圧力に起因する堤防セクション300cのフロント面に対する力が軽減され得るが、内部の中の流体は、堤防セクションの背面におけるベーパバリアの部分15dに対して、堤防セクションの内部から外向きに作用する横方向の力を発生する。この理由のために、ベーパバリア15の実施形態は、強化用のウェビングを含み、耐久性を増加させてもよい。堤防セクション300cの周りのベーパバリア15および固定ストラップ(図示せず)は、内部の中の流体のレベル35bに起因して、この静水力に抵抗する。重要なことには、流体レベル35bの静水圧力に起因して、堤防セクション300cの内部34の中からのベーパバリアの部分15bに対する力は、堤防セクションをシフトさせるように作用しない。内部34の中の1または複数のチューブ10の周りにベーパバリア15を縫うように進ませることは(たとえば、図3B1に示されているように)、内部34の流体レベル35bからの静水力に抵抗することを支援し、したがって、内部34の中の流体からの静水圧力に起因してベーパバリア15がシフトする可能性を低減することが可能である。たとえば、ベーパバリア15が堤防セクションの内部の中のチューブ10のうちの1または複数の間を通されている実施形態では(たとえば、図3B1に示されているように)、堤防セクションの内部34の中の流体のレベル35bを増加させることにより、水の柱が内部の中のベーパバリアの1または複数の部分の上部(たとえば、チューブ10fより下の部分)に形成され得、それは、流体の柱の重量に起因して下向きの圧力を提供する(たとえば、堤防セクションのフロント面にかかる下向きの力と同様)。内部の中を通されているベーパバリア15にかかるこの下向きに圧力は、より低いレベルのチューブに対してベーパバリアを押し付け、それは、浸出が起こるときに、ベーパバリア、チューブ10、および堤防セクション300c自身のシフトを軽減する。
内部34の中の流体レベル35bが上昇するとき、ベーパバリアの部分15dは、外向きに作用する静水力に起因して、外へ膨らむことが可能である。追加的に、内部34の中の流体の柱の重量は、膨らんだエリアおよびベーパバリアの部分15bに下向きに作用する力を働かせる。堤防セクション300cのリア面において、ベーパバリアの部分15d、15bを地面101に対してシールするために、下向きの力および膨らみ作用を組み合わせることは、有益なことには、流体が堤防セクションを破壊することを防止することを支援する。図3C2は、実際に、上記原理を図示している。
図3C2は、図3C1に関連して説明された原理にしたがって構築された2-1ピラミッドの堤防セクション300dを図示している。示されているように、堤防セクション300dは、封じ込めエリアの中に流体32を、および、堤防セクションの周りに巻き付けられているベーパバリア15を含む。ベーパバリア15は、部分15bを含み、部分15bは、堤防セクション300dのフロントから、チューブ10xの下に、次いで、チューブ10yの下に、堤防セクション300dのリアへ延在している。ベーパバリアの部分15bは、ベーパバリアの部分15dに続いており、ベーパバリアの部分15dは、堤防セクション300dのリアにおいて、チューブ10yの周りに巻き付きけ、さらに、堤防セクションの上部において、チューブ10zに巻き付き、ベーパバリアの部分15aに続いている。ベーパバリアの部分15aは、堤防セクション300dの上部からフロント面を下向きに延在しており、また、地面101に沿って封じ込めエリアの中へ延在する延長部分(図示せず)を含むことが可能である。
杭17aは、ストラップ13aによって、アンカー3aを地面101に固定しており、ストラップ13aは、アンカーに連結されており、またチューブの周りに巻き付き、リアにおいて堤防セクション300dを地面に固定している。堤防セクションを地面に追加的に固定するために、ストラップ13aを、堤防セクション300dのリアから、堤防セクションのフロントにおけるアンカーおよび/または杭(図示せず)へ、ベーパバリア15およびチューブ10の周りに巻き付けることが可能である。追加的なアンカー、杭、およびストラップが、堤防セクションのフロントにおける対応するアンカーおよび杭(図示せず)とともに、堤防セクション300dのリアの長さに沿って、所与の間隔で実装され得る。たとえば、アンカー3b、杭17b、およびストラップ13bは、アンカー3aから10フィート(3.048m)以上の間隔で堤防セクション300dを固定することが可能である。アンカー3c、杭17c、およびストラップ13cは、たとえば、10フィート(3.048m)など、同じ間隔で堤防セクション300dを固定することが可能である。したがって、本例では、30フィート以上(9.144m以上)の長さの堤防セクション300dを固定し、封じ込めエリアの中に流体32を封じ込める。アンカー、杭、およびストラップが位置決めされている間隔は、堤防セクション300dの高さ、地面の組成、および、封じ込められている流体が堤防セクションに作用する波を作り出すことができるかどうかに基づいて、変化することが可能である。
示されているように、封じ込めエリアからの流体32は、レベル35bまで、堤防セクション300dの内部34の中へ浸出され、レベル35bは、封じ込めエリアの中の流体のレベル35aと実質的に同様であることが可能である。したがって、堤防セクション300dのリアにおけるベーパバリアの部分15dは、堤防セクション300dの内部34の中から外向きに作用する、内部34の中の流体のレベル35bの静水圧力の力に起因して外へ膨らむ37。内部34の中の流体の柱に起因する下向きの力が、ベーパバリアの部分15dの中の膨らみ37の底部を地面101に対して押し付け、それは、堤防セクションの内部34および封じ込めエリアの両方から、堤防セクション300dのリアを通る、および、堤防セクション300dのリアの下の、流体の浸出を軽減することを支援する。
図4A、図4B、および図4Cは、例示的な実施形態による、可撓性の封じ込めチューブ10の一体式のベーパバリア400を示す図である。図4Aに示されているように、チューブ10は、その可撓性の本体部の端部41に近接して配設されている一体式のベーパバリア400を含む。以前に説明されているようなストラップ、アンカー、および/または追加的なベーパバリアは、一体式のベーパバリアとともに働き、当接しているチューブを共に保持し、任意の長さの当接されたチューブから堤防セクションを形成することが可能である。
一体式のベーパバリア400は、チューブ10の本体部に取り付けられ得る。たとえば、一体式のベーパバリア400の端部42は、熱成形または他の貼り付け手段を介して、チューブ10の本体部に取り付けられ得る。いくつかの実施形態では、一体式のベーパバリア400は、チューブ10の端部41の上に所定の距離にわたって延在するスリーブである。1つの実施形態では、一体式のベーパバリア400がチューブ10の端部41の上に延在する距離は、一体式のベーパバリアの端部42がチューブ10の本体部に係合するのに十分になっている。そして、チューブ10が充填されるとき、チューブの本体部は膨張し、また、膨張するチューブの本体部を端部42において圧縮することを介して、一体式のベーパバリア400の端部42に貼り付けられる。そのような場合、一体式のベーパバリア400の端部42は、圧縮を介して取り付けるために、充填されたチューブ10の本体部の直径よりも小さい直径になっていることが可能である。いずれの場合でも、一体式のベーパバリア400の一方の端部42がチューブ10に取り付けられている状態で、反対側端部43は、追加的なチューブを受け入れるために、開口部47を含み、チューブ10の端部41を越えて所定の距離にわたって延在している。
1つの実施形態では、反対側端部43がチューブ10の端部41を越えて延在する距離は、追加的なチューブの本体部に係合するのに十分になっており、追加的なチューブは、充填されるとき、圧縮を介して反対側端部43との取り付けを形成する。したがって、たとえば、ベーパバリア400の反対側端部43は、スリーブ構成の中の端部42と同様に構成され得る。例として、スリーブは、チューブ10の本体部の1~3フィート(30.48~91.44cm)に広がっており、また、開口部47の中に挿入される別のチューブの本体部に係合するために、開口部47から1~3フィート(30.48~91.44cm)の残りの長さを含むことが可能である。したがって、一体式のベーパバリア400は、おおよそ2~6フィート(60.96~182.9cm)の全長を有することが可能である。
1つの実施形態では、一体式のベーパバリア400は、その表面を通る流体の侵入を防止するために、ポリビスクイーン、ゴムなど防水材料から構築されており、または、チューブ10もしくはベーパバリア15を構築するために使用されているものと同様の他の材料から構築されている。したがって、たとえば、追加的なチューブが、図4Bに図示されているように開口部47の中へ挿入されるときに、当接しているチューブ端部41a、41bの間の流体侵入が軽減され得る。図1に示されているものなど、地面に対するチューブのシフトを防止するストラップ、ループ、および/またはアンカーを含むことは、一体式のベーパバリア400の中でのチューブの係合を維持することを支援し、シームレスな堤防が、複数の堤防セクションから任意の長さで構築され得るようになっている。追加的に、図2~図3を参照して説明されているものなどベーパバリアが、ピラミッド堤防セクション、および、特に、当接しているチューブが一体式のベーパバリア400を介して取り付けられている2つの堤防セクションの接合部に巻き付けられるために利用され、堤防を通る流体浸出をさらに軽減することが可能である。
図4Bに示されているように、チューブ10aは、その可撓性の本体部の端部41aに近接して配設されている一体式のベーパバリア400を含む。一体式のベーパバリア400は、熱成形または他の貼り付け手段を介して、一方の端部42において、チューブ10aの本体部に取り付けられ得る。いくつかの実施形態では、一体式のベーパバリア400は、スリーブであり、スリーブは、チューブ10aの端部41aの上に所定の距離にわたって延在しており、チューブ10aが充填されるとき、圧縮を介して、端部42において取り付けを形成する。
また、ベーパバリア400の反対側端部43の開口部47の中へ挿入されているチューブ10bの端部41bが、図4Bに示されている。1つの実施形態では、チューブ10bの端部41bは、チューブ10bの充填の前に、開口部47の中へ挿入される。そして、チューブ10bが充填されるときに、チューブ10bの本体部は膨張し、圧縮を介して、ベーパバリア400の端部43との取り付けを形成する。したがって、一体式のベーパバリア400が防水材料から構築されているとき、当接しているチューブ端部41a、41bの間の流体侵入が軽減され得る。
図4Cに示されているように、チューブ10aは、その可撓性の本体部の端部41aに近接して配設されている一体式のベーパバリア400を含む。一体式のベーパバリア400は、熱成形または他の貼り付け手段を介して、一方の端部42において、チューブ10aの本体部に取り付けられ得る。いくつかの実施形態では、一体式のベーパバリア400は、スリーブであり、スリーブは、チューブ10aの端部41aの上に所定の距離にわたって延在しており、チューブ10aが充填されているときに、圧縮を介して端部42における取り付けを形成する。
また、一体式のベーパバリア400の反対側端部43の開口部47の中へ挿入されているチューブ10bの端部41bが、図4Cに示されている。1つの実施形態では、チューブ10bの端部41bは、一体式のベーパバリア400の中のチューブ10aの端部41aとインターロック接続されている。たとえば、チューブ10の端部41は、共に巻かれ得、また、一体式のベーパバリア400は、インターロック接続されたチューブ10端部の上に延在され、チューブ10の充填の前に、チューブ10bを開口部47の中へ挿入することが可能である。
そして、チューブ10が充填されるとき、チューブ10の本体部は、一体式のベーパバリア400の中で膨張し、圧縮を介して、一体式のベーパバリアの端部43における(および、スリーブ構成の中の端部42における)取り付けを形成する。追加的に、インターロック接続されたチューブ端部41は、チューブ10が充填されるときに、ベーパバリア400の中で互いに対して膨張し、それは、2つのチューブを共にしっかりと接合する。その理由は、それらが一体式のベーパバリアの壁部の中で圧縮されるからである。したがって、ベーパバリア400が防水材料から構築されているとき、当接しているチューブ端部41a、41bの間の流体侵入は軽減され得、また、当接しているチューブ端部41a、41bのインターロック接続は、引き離されないようにチューブ10a、10bを固定する。
図5は、例示的な実施形態によるスリーブ端部500を示す図である。図5に示されているように、1つの実施形態によれば、チューブ10は、スリーブ端部500の中へ挿入されている。スリーブ端部500は、一方の端部53において開口部57を含み、チューブ10を受け入れ、また、他方の端部55において閉鎖されている。スリーブ端部500の開口部57は、チューブ10の端部41の上に所定の距離(たとえば、1~3フィート(30.48~91.44cm))にわたって延在し、チューブ10が充填されているときに、圧縮を介して、端部53において、チューブ10の本体部との取り付けを形成する。チューブ10の端部41は、スリーブ端部500の中への挿入の前に巻かれ、開口部57から延在する可撓性の本体部の長さを減少させ、したがって、所望の通りに、所与のチューブ10の長さをより短い長さに低減することが可能である。
巻かれたチューブ10の端部41は、チューブ10の充填の前に、スリーブ端部500の開口部57の中へ挿入される。そして、チューブ10が充填されているときに、チューブ10の本体部は、スリーブ端部500の中で膨張し、圧縮を介して、スリーブ端部500の端部53との取り付けを形成し、チューブがその全体長さまで膨張すること防止する。このようにして、より短い長さのチューブが、より長い長さのチューブから構成され得る。追加的に、チューブ10は、スリーブの端部55において、別のチューブに当接され得る。
1つの実施形態では、スリーブ端部500は、その表面を通る流体の侵入を防止するために、ポリビスクイーン、ゴムなど防水材料であり、または、ベーパバリア15のチューブ10を構築するために使用されているものと同様の他の材料である。
図6Aおよび図6Bは、例示的な実施形態による、可撓性の封じ込めチューブコネクタ63を示す図である。図6Aは、1つの実施形態による、線形のチューブコネクタ63aを図示している。1つの実施形態では、可撓性の封じ込めチューブは、その端部の1または複数においてシールされていない。そのような実施形態では、コネクタは、可撓性の封じ込めチューブの端部をシールし、随意的に、複数の可撓性の封じ込めチューブを連結することが可能である。図6Aに示されているように、チューブは、上側部60aおよび底側部60bを含み、それらは、チューブの端部においてシールされてはいない。その代わりに、コネクタ63aが、チューブの端部を固定し、その端部において、チューブの上側部60aと底側部60bとの間のシールを形成し、流体61が可撓性の本体部の中に封じ込められ得るようになっている。
1つの実施形態では、コネクタ63aは、第1のキャビティ64aを含み、チューブの端部の一部分を受け入れる。その部分は、チューブの端部を巻くことによって形成され得、チューブの上側部60aが、チューブの底側部60bとともに巻かれるようになっている。次いで、チューブの巻かれた端部が、第1のキャビティ64aの中へ挿入され得る。コネクタ63の長さ、および、したがって、第1のキャビティ64aの長さは、チューブの直径と同様の距離(たとえば、最大で、充填されていないときのチューブの上側部60aおよび底側部60bの幅)にわたって延在することが可能であり、チューブの巻かれた端部が、第1のキャビティ64aの中で完全にまたはほとんど閉鎖され得るようになっている。
第2のキャビティ64bは、説明を簡単にするために示されており、第1のキャビティ64aと同様の特徴を含む。また、第2のキャビティ64bは、上記に説明されているような第1のキャビティ64aのものと同様の方式で、チューブの巻かれた端部を受け入れることが可能である。キャビティ64a、64bは、コネクタ63の内側壁部65によって分離され得る。単一のキャビティ(たとえば、第1のキャビティ64a)だけが必要とされる実施形態では、コネクタ65の内側壁部65は、第1のキャビティ64aを維持するために残ることが可能である。示されているように、キャビティ64は、具体的には、参考として第2のキャビティ64bを参照すると、上側リテイニングリップ67aおよび下側リテイニングリップ67bを含む。他の実施形態は、キャビティ64当たりに単一のリテイニングリップ67だけを含むことが可能である。リテイニングリップ67は、チューブの巻かれた端部をキャビティ64の中に固定し、コネクタ63から離れる方向に引っ張られるときに、巻かれた端部の除去を防止する。さらに、チューブが充填されているときに、チューブの側部60が、リテイニングリップ67に対抗して膨張し、また、巻かれた部分が、キャビティ64の中で、リテイニングリップ67およびキャビティの中の壁部(たとえば、65)に対抗して膨張し、チューブの巻かれた端部が除去されることを防止し、したがって、また、キャビティ64の中でチューブの端部をシールし、チューブの中の流体61の放出を防止する。
図6Bは、1つの実施形態による、積み重ねられたチューブコネクタ63bを図示している。積み重ねられたチューブコネクタ63bを介して接続されているチューブ端部同士の間のスペースが低減されているという点において、積み重ねられたチューブコネクタ63bは、図6Aの線形のチューブコネクタ63aとは異なっている。したがって、たとえば、チューブコネクタ63bは、ベーパバリアの使用、および/または、接続されているチューブ端部同士の間に使用されるベーパバリア材料の量を軽減することが可能である。
図7Aから図7Eは、例示的な実施形態による、可撓性の封じ込めチューブ当接部を示す図である。1つの実施形態では、可撓性の封じ込めチューブ端部は、当接しているチューブ端部同士の間の流体の浸出を軽減するために、さまざまな形状で形成されている。当接部は、固体または可撓性であり、たとえば、PCV、成形プラスチック、金属など材料から構築され得る。
図7A1に示されているように、チューブ70aは、斜めになったチューブ端部71aを備えて構築されている。斜めになったチューブ端部71aは、実質的に45度の角度になっていることが可能であり、2つの斜めになったチューブ端部71aを共に当接させることによって、直角角部または真っ直ぐなセクションのいずれかが、チューブ70aの構成を有する2つのチューブの間に形成され得るようになっている。チューブは、所望の通りに、他の角度を備えて構成され得る。
図7B1に示されているように、チューブ70bは、平坦なチューブ端部73aを備えて構築されている。平坦なチューブ端部73aは、それらの面において当接され、2つのチューブから真っ直ぐなセクションを形成することが可能である。あるいは、平坦なチューブ端部73aは、直角を形成するように、別のチューブの本体部に当接され得、または、所定の角度で延在するように、図7A1に示されている45度の斜めの端部71aなど斜めになった面に対して当接され得る。
図7B2に示されているように、チューブ当接部72bは、丸い端部(または、他の形状の端部)を備えた可撓性の封じ込めチューブ10を挿入するためのキャビティを含む。このように、チューブ10自身は、特定の形状の端部を備えて構築される必要はない。充填されるときに、チューブ10は、チューブ当接部72bのキャビティの壁部に対抗して膨張することが可能である。1つの実施形態では、キャビティは、チューブ10の丸い端部に一致するように形状決め74されている。チューブ当接部72bの他の実施形態は、それぞれ図7A1および図7B1の71aおよび73bなど、他のチューブ端部タイプに一致するように形状決め74されたキャビティを含むことが可能である。
チューブ当接部72bの端部73bは、別のチューブまたはチューブ当接部に当接するように、さまざまな方式で構成され得る。たとえば、図7B2は、平坦な端部73bを備えたチューブ当接部72bを図示しており、平坦な端部73bは、平坦なチューブ端部73aを備えて構築された図7B1のチューブ70bのものと同様の構成で当接することを可能にする。
別の例として図7A2を参照すると、チューブ当接部72aは、斜めになった端部71bを含む。斜めになった端部71bは、斜めになったチューブ端部71aを備えて構築された図7A1のチューブ70aのものと同様の構成で当接することを可能にする。追加的に、チューブ当接部72aは、丸い端部(または、他の形状の端部)を備えた可撓性の封じ込めチューブ10を挿入するためのキャビティを含むことが可能である。したがって、充填されるときに、チューブ10は、チューブ当接部72aのキャビティの壁部に対抗して膨張することが可能である。1つの実施形態では、キャビティは、チューブ10の丸い端部に一致するように形状決め74されている。チューブ当接部72aの他の実施形態は、それぞれ図7A1および図7B1の71aおよび73bなど、他のチューブ端部タイプに一致するように形状決め74されたキャビティを含むことが可能である。
図7Cは、チューブ10aおよびチューブ10bを受け入れるための2つのチューブの当接部72cを図示している。したがって、2つのチューブの当接部72cは、それぞれのチューブ端部に一致するように形状決め74されたキャビティを含むことが可能である。いくつかの実施形態では、2つのチューブの当接部72cは、たとえば、2つの開口部の間に角度を有するなど、他の構成で構築されている。そして、対応する角度が、チューブが挿入されるときに、チューブ10aとチューブ10bとの間に形成される。このように、チューブ10は、2つのチューブの当接部72cによって当接され、方向転換堤防セクションを所望の形状に接合することが可能である。
図7Dは、第1のチューブ当接部72d1を図示しており、第1のチューブ当接部72d1は、第1のチューブ10aを受け入れるように構成されており、また、第2のチューブ当接部72d2を受け入れるように形状決めされた面を含む。同様に、第2のチューブ当接部72d2は、第2のチューブ10bを受け入れるように構成されており、また、第1のチューブ当接部72d1を受け入れるように形状決めされた面を含む。示されているように対合されたときに、チューブ当接部72d1および72d2の対応する面の構成は、1または複数の方向へのチューブ10に対抗する力が抵抗され、流体を封じ込めるかまたは方向転換させるときにチューブのシフトを防止するようになっていることが可能である。
図7Eは、1つの実施形態による、チューブ当接部72のキャビティ74を図示している。チューブ当接部72の端部77は、たとえば、図7A2の当接端部71bと同様に構成され、図7B2の当接端部73bと同様に構成され、または、別の構成で構成され得る。示されているように、チューブ端部が完全にキャビティの端部形状74の部分に挿入されるときに、チューブ端部の上に、および、チューブの可撓性の本体部の上に延在する、チューブ当接部72の部分は、その端部において、幅の狭くなったセクション75を含むことが可能である。幅の狭くなったセクション75は、チューブの本体部が、充填されるときに受け入れキャビティの中で膨張するときに、チューブの本体部を把持することを支援し、チューブ当接部72からのチューブの除去を防止する。
図8Aから図8Cは、例示的な実施形態による、可撓性の封じ込めチューブ10のバルブシステムを示す図である。1つの実施形態では、本明細書で説明されているチューブ10は、気密な逆止バルブ85を利用しており、逆止バルブ85は、チューブがその最大容量まで加圧および充填されることを可能にする。また、逆止バルブ85は、起伏のある地形を伴う状況において流体に坂を上らせるために、傾き面のベースからチューブを充填することを可能にする。
図8Aは、1つの実施形態による、バルブシステムを備えた可撓性の封じ込めチューブ10を充填するための例示的なチューブ構成を示す図である。示されているように、チューブ10は、単一のチューブ10の中に複数のチャンバ81を形成する内側膜80を含む。図8Aでは、下側チャンバ81aおよび上側チャンバ81bを形成する単一の内側膜80が示されている。内側膜80は、チューブ本体部10のものと同様の材料から形成され得、そうであるので、それぞれのチャンバ81の中の流体を分離するように防水になっていることが可能である。バルブ85は、膜80の中に配設されており、一方のチャンバから次のチャンバへの流体のフローを容易にすることが可能であるが、その逆は同様ではない。たとえば、バルブ85bは、下側チャンバ81aから上側チャンバ81bへの流体87cのフローを容易にすることが可能であるが、上側チャンバから下側チャンバへの流体87cのフローを容易にすることは可能でない。
下側チャンバ81aに対応するチューブ10の本体部の中に配設されているバルブ85aは、ホース83またはポンプとの接続部から流体87aを受け入れることが可能であり、そして、流体87aは、下側チャンバの中へ流れ込む。バルブ85aは、ホース83との接続が停止されたときに、下側チャンバ81aからの流体の放出を防止することが可能である。
バルブ85aを介して受け入れる流体87aは、下側チャンバ81aの中へ流れ込み、下側チャンバ81aを充填する87b。下側チャンバの流体充填87b容量に最終的に到達すると、バルブ85bは、下側チャンバから上側チャンバ81bの中への流体87cのフローを可能にする。したがって、下側チャンバ81aの中へ追加的な流体87aを受け入れることにより、上側チャンバ81bを流体で充填87dさせる。また、バルブ85aおよび85bは、同様の構築のものであり、チューブ10の構築に必要とされる構成要素の数を低減することが可能である。上側チャンバ81bに対応するチューブ10の本体部の中に配設されているバルブ85cは、上側チャンバ81からチューブ10の外側へのガス/流体の放出を可能にすることが可能である。いくつかの実施形態では、バルブ85cは、圧力放出部を含み、圧力放出部は、最大充填圧力条件が経験されたときに、上側チャンバ81bから流体を放出するように活性化する。また、バルブ85cは、チューブ10から流体を空にするために係合される放出メカニズムを含むことが可能である。
図8Bは、下側チャンバ81aに対応するチューブ10本体部の穿刺88または他の故障の場合の、図8Aのバルブおよびチューブ構成の例示的な利益を図示している。示されているように、充填されているチューブ10の下側チャンバ81aが穿刺され、流体89が、穿刺を介して下側チャンバ81aから逃げる。しかし、上側チャンバ81bの中の流体は、膜80を通しても、バルブ85bを通しても、下側チャンバ81aの中へ通過することができないので、それは、穿刺88を通して逃げない。また、バルブ85aおよび85cは、上側チャンバ81bから流体を放出しない。したがって、上側チャンバ81bの中の流体レベルは、チューブ10の完全な故障を防止するために維持される。
上側チャンバ81bが穿刺される場合のシナリオでは、チューブ10の例示的な構成において、両方のチャンバからの流体が逃げることが可能である。しかし、下側チャンバ81aが穿刺を経験する可能性が高いので、そのようなシナリオは起こりにくい。
図8Cは、図8Aのバルブ構成によって、チューブを空にする例を図示している。示されているように、ホースに取り付けられているコネクタ91は、バルブ85cの放出メカニズムに係合し(たとえば、圧力放出部を開け)、上側チャンバ81bから流体92aを放出する。流体が上側チャンバ81bから放出されるときに、バルブ85bは、流体92bが下側チャンバ81aから膜80を通過して上側チャンバへ通ることを可能にし、下側チャンバ81aの中の流体92cも空にされるようになっている。いくつかの実施形態では、バルブ85cは、バルブ85a、85bと同様の構成のものであり、製造コストを低減する。そのような場合、バルブ85cは、圧力放出部を含まない逆止バルブであることが可能であり、コネクタ91は、挿入されるときに、逆止バルブをこじ開ける。
本開示を読むと、当業者は、実施形態の開示されている原理を通して、さらに追加的な代替的な構造的で機能的な設計を理解するであろう。したがって、特定の実施形態および用途が図示および説明されてきたが、実施形態は、本明細書で開示されている正確な構築および構成要素に限定されないこと、ならびに、当業者に明らかになるさまざまな修正、変化、および変形が、添付の特許請求の範囲に定義されているような要旨および範囲から逸脱することなく、本明細書で開示されている方法および装置の配置、動作、および詳細の中で行われ得ることが理解されるべきである。