JP7100851B2 - 薄膜トランジスタおよびその製造方法、ならびに薄膜トランジスタ用ゲート絶縁膜形成溶液 - Google Patents
薄膜トランジスタおよびその製造方法、ならびに薄膜トランジスタ用ゲート絶縁膜形成溶液 Download PDFInfo
- Publication number
- JP7100851B2 JP7100851B2 JP2018545782A JP2018545782A JP7100851B2 JP 7100851 B2 JP7100851 B2 JP 7100851B2 JP 2018545782 A JP2018545782 A JP 2018545782A JP 2018545782 A JP2018545782 A JP 2018545782A JP 7100851 B2 JP7100851 B2 JP 7100851B2
- Authority
- JP
- Japan
- Prior art keywords
- gate insulating
- zirconium
- solution
- insulating film
- film forming
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/28—Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
- H01L21/283—Deposition of conductive or insulating materials for electrodes conducting electric current
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/60—Insulated-gate field-effect transistors [IGFET]
- H10D30/67—Thin-film transistors [TFT]
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Thin Film Transistor (AREA)
- Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)
- Formation Of Insulating Films (AREA)
Description
本開示の薄膜トランジスタは、ゲート電極、ゲート絶縁層、および酸化物半導体層をこの順で備える。ここで、ゲート絶縁層は、ランタン(La)と、ジルコニウム(Zr)とを含み、ランタン(La)と、ジルコニウム(Zr)との原子数比が、ランタン(La)の原子数を1としたときに、ジルコニウム(Zr)の原子数が0.8以上である、酸化物から形成されている。或いは、ゲート絶縁層は、セリウム(Ce)、プラセオジム(Pr)、ネオジム(Nd)、サマリウム(Sm)、ユウロピウム(Eu)、ガドリニウム(Gd)、テルビウム(Tb)、ジスプロシウム(Dy)、ホルミウム(Ho)、エルビウム(Er)、ツリウム(Tm)、イッテルビウム(Yb)、ルテチウム(Lu)、およびイットリウム(Y)からなる群から選択される金属元素と、ジルコニウム(Zr)とを含み、前記群から選択される金属元素と、ジルコニウム(Zr)との原子数比が、前記群から選択される金属元素の原子数を1としたときに、ジルコニウム(Zr)の原子数が1.5以上である、酸化物から形成されている。或いは、ゲート絶縁層は、ハフニウム(Hf)、ジルコニウム(Zr)、およびアルミニウム(Al)からなる群から選択される少なくとも1種類の金属元素を含む酸化物から形成されている。また、酸化物半導体層は、インジウム(In)を含む酸化物、インジウム(In)と錫(Sn)とを含む酸化物、インジウム(In)と亜鉛(Zn)とを含む酸化物、インジウム(In)とジルコニウム(Zr)と亜鉛(Zn)とを含む酸化物、インジウム(In)とガリウム(Ga)とを含む酸化物、およびインジウム(In)と亜鉛(Zn)とガリウム(Ga)とを含む酸化物の群から選択される酸化物から形成されている。
基板12としては、公知の薄膜トランジスタにおいて用いられている基板を適用できる。
ゲート電極14は、公知の薄膜トランジスタに用いられているゲート電極を採用することができる。ゲート電極14の材料としては、例えば、白金、金、銀、銅、チタン、アルミニウム、モリブデン、パラジウム、ルテニウム、イリジウム、タングステン、などの高融点金属、又はその合金等の金属材料、あるいは、インジウム錫酸化物(ITO)又は酸化ルテニウム(RuO2)を用いることができる。
ゲート絶縁層16は、特定の金属元素を含む酸化物から形成されている。
酸化物半導体層18は、インジウム(In)を含む酸化物、インジウム(In)と錫(Sn)とを含む酸化物、インジウム(In)と亜鉛(Zn)とを含む酸化物、インジウム(In)とジルコニウム(Zr)と亜鉛(Zn)とを含む酸化物、インジウム(In)とガリウム(Ga)とを含む酸化物、およびインジウム(In)と亜鉛(Zn)とガリウム(Ga)を含む酸化物の群から選択される酸化物から形成されている。
ソース電極32およびドレイン電極34は、公知の薄膜トランジスタに用いられているソース電極32およびドレイン電極34を採用することができる。ソース電極32およびドレイン電極34の材料としては、制限するわけではないが、例えば、インジウム錫酸化物(ITO)、酸化ルテニウム(RuO2)、モリブデン(Mo)、プラチナ(Pt)などを用いることができる。
本開示の薄膜トランジスタの製造方法は、ゲート電極の上にゲート絶縁膜形成溶液を塗布して、ゲート絶縁膜を形成する工程と、酸素を含む環境下、当該ゲート絶縁膜の表面に紫外線を照射しながら、180~200℃で当該ゲート絶縁膜を焼成して、ゲート絶縁層を形成する工程と、当該ゲート絶縁層の上に酸化物半導体膜形成溶液を塗布して、酸化物半導体膜を形成する工程と、当該酸化物半導体膜の表面に紫外線を照射しながら、180~200℃で当該酸化物半導体膜を焼成して、酸化物半導体層を形成する工程とを含む。
本工程は、基板12の上にゲート電極14を形成する工程である(図2(a))。
本工程は、ゲート電極14の上にゲート絶縁膜形成溶液を塗布して、ゲート絶縁膜16’を形成する工程である(図2(b))。
本工程は、工程(b)で形成した積層体20’のゲート絶縁膜16’の表面に、紫外線を照射しながら、ゲート絶縁膜16’を加熱して、ゲート絶縁層16を形成する工程である(図2(c))。
本工程は、ゲート絶縁層16の上に酸化物半導体膜形成溶液を塗布して、酸化物半導体膜18’を形成する工程である(図2(d))。
本工程は、工程(d)で形成した積層体30’の酸化物半導体膜18’の表面に、紫外線を照射しながら、酸化物半導体膜18’を加熱して、酸化物半導体層18を形成する工程である(図2(e))。
本工程は、酸化物半導体層18の上にソース電極32およびドレイン電極34を形成する工程である(図2(f))。
本工程は、酸化物半導体層18の一部、ソース電極32、およびドレイン電極34の上にレジスト膜36を形成する工程(図2(g))である。
本工程は、工程(g)で形成したレジスト膜36を備える積層体40をエッチングすることにより、レジスト膜36で覆われていない酸化物半導体層18を除去して、薄膜トランジスタ10を得る工程(図2(h))である。
[ゲート絶縁膜形成溶液の調製]
(実施例1)
2-メトキシエタノールに、ランタンアセチルアセトナートおよびジルコニウムブトキシドを、ランタンとジルコニウムとの原子数比が3:7となるように加え、110℃、30分加熱攪拌した。次いで、得られた溶液を耐圧容器に移し、160℃まで昇温し、1時間保持した後、常温に戻すことにより、0.1mol/kgのランタン/ジルコニウム混合溶液を調製した。その後0.2umのPTFEフィルターでろ過を行い、ゲート絶縁膜形成溶液(実施例1)を得た。
2-メトキシエタノールに、硝酸ランタンと硝酸ジルコニウムをランタンとジルコニウムとの原子数比が3:7となるように加え、110℃、30分加熱攪拌した。次いで、得られた溶液を耐圧容器に移し、120℃まで昇温し、1時間保持した後、常温に戻すことにより、0.1mol/kgのランタン/ジルコニウム混合溶液を調製した。その後0.2umのPTFEフィルターでろ過を行い、ゲート絶縁膜形成溶液(比較例1)を得た。
プロピオン酸に、ランタンアセテートを溶解し、これを、110℃、回転数1000rpmで30分間、撹拌して、0.2mol/kgのランタン溶液を調製した。次いで、プロピオン酸に、ジルコニウムブトキシドを溶解し、これを、110℃、回転数1000rpmで30分間、撹拌して、0.2mol/kgのジルコニウム溶液を調製した。調製したランタン溶液およびジルコニウム溶液の各溶液を、ランタンとジルコニウムとの原子数比が3:7となるように混合し、その後0.2umのPTFEフィルターでろ過を行い、ゲート絶縁膜形成溶液(比較例2)を得た。次いで、得られたゲート絶縁膜形成溶液を、オートクレーブに移し、内部温度が180℃になるまで加熱した。この状態で、5時間保持して、容器内を、常温に戻すことにより、オートクレーブ処理したゲート絶縁膜形成溶液(比較例2)を得た。
調製したゲート絶縁膜形成溶液の紫外線吸光度を、紫外可視分光光度計(JASCO International Co., Ltd.社製のV-630紫外可視分光光度計)を用いて測定した。その結果を、図3に示す。
(実施例2)
実施例1で調製したゲート絶縁膜形成溶液を用いて、薄膜トランジスタを以下のように製造した。
実施例1で調製したゲート絶縁膜形成溶液の代わりに、比較例1で調製したゲート絶縁膜形成溶液を用いた以外は、実施例2と同様にして、薄膜トランジスタを作製した。
実施例1で調製したゲート絶縁膜形成溶液の代わりに、比較例2で調製したゲート絶縁膜形成溶液を用いた以外は、実施例2と同様にして、薄膜トランジスタを作製した。
実施例2および比較例3および4で作製した薄膜トランジスタの特性を評価した。具体的には、Semiconductor Parameter Analyzer(Agilent社製4155C)を用いて、ゲート電圧VG(V)-ドレイン電流ID(A)特性およびゲート電圧VG(V)-ゲート電流IG(A)特性を測定した。その結果を、図4Aから図4Cに示す。図4Aは、実施例2の薄膜トランジスタの特性を示しており、図4Bは、比較例3の薄膜トランジスタの特性を示しており、図4Cは、比較例4の薄膜トランジスタの特性を示している。なお、図4Aから図4Cに示す電圧VD=5Vは、薄膜トランジスタのソース電極とドレイン電極間に印加された電圧が5Vであることを示している。
[薄膜トランジスタの製造]
(実施例3)
まず、洗浄したSiウェハ基板上に、スパッタリング法により、チタン/白金(Ti/Pt)層からなるゲート電極を形成した。次いで、チタン/白金(Ti/Pt)層が成膜された基板表面に、酸素プラズマによるアッシング処理(15Wで180秒間)を施した。
実施例3で製造した薄膜トランジスタに関し、on/off比、閾値電圧(Vth)、サブスレッショルド特性(SS)、電界効果移動度(μsat)、ヒステリシス(Hys)、およびゲートリーク電流(A)を測定して、そのトランジスタ特性を評価した。なお、これらのトランジスタ特性は、Semiconductor Parameter Analyzer(Agilent社製4155C)を用いて測定した。その測定結果を表1に示す。
(実施例4)
まず、洗浄したSiウェハ基板上に、スパッタリング法により、チタン/白金(Ti/Pt)層からなるゲート電極を形成した。次いで、チタン/白金(Ti/Pt)層が成膜された基板表面に、酸素プラズマによるアッシング処理(15Wで180秒間)を施した。
ゲート絶縁膜形成溶液の調製時に、サマリウムとジルコニウムとの原子数比が2:8となるようにサマリウムアセチルアセトナートとジルコニウムアセチルアセトナートとを加えた以外は、実施例4と同様にして、薄膜トランジスタを作製した。
ゲート絶縁膜形成溶液の調製時に、サマリウムとジルコニウムとの原子数比が3:7となるようにサマリウムアセチルアセトナートとジルコニウムアセチルアセトナートとを加えた以外は、実施例4と同様にして、薄膜トランジスタを作製した。
ゲート絶縁膜形成溶液の調製時に、サマリウムアセチルアセトナートの代わりに、ユウロピウムアセチルアセトナートを用い、酸化物半導体膜形成溶液の調製時に、硝酸亜鉛を用いず、また2-メトキシエタノールの代わりに水を用いた以外は、実施例4と同様にして、薄膜トランジスタを作製した。
ゲート絶縁膜形成溶液の調製時に、サマリウムアセチルアセトナートの代わりに、ユウロピウムアセチルアセトナートを用い、ユウロピウムとジルコニウムとの原子数比が2:8となるようにユウロピウムアセチルアセトナートとジルコニウムアセチルアセトナートとを加え、酸化物半導体膜形成溶液の調製時に硝酸亜鉛を用いず、2-メトキシエタノールの代わりに水を用いた以外は、実施例4と同様にして、薄膜トランジスタを作製した。
ゲート絶縁膜形成溶液の調製時に、サマリウムアセチルアセトナートの代わりに、ユウロピウムアセチルアセトナートを用い、ユウロピウムとジルコニウムとの原子数比が3:7となるようにユウロピウムアセチルアセトナートとジルコニウムアセチルアセトナートとを加え、酸化物半導体膜形成溶液の調製時に硝酸亜鉛を用いず、2-メトキシエタノールの代わりに水を用いた以外は、実施例4と同様にして、薄膜トランジスタを作製した。
ゲート絶縁膜形成溶液の調製時に、サマリウムアセチルアセトナートの代わりに、イットリウムアセテートを用い、イットリウムとジルコニウムとの原子数比が1:9となるようにイットリウムアセテートとジルコニウムアセチルアセトナートとを加え、酸化物半導体膜形成溶液の調製時に硝酸亜鉛を用いず、2-メトキシエタノールの代わりに水を用いた以外は、実施例4と同様にして、薄膜トランジスタを作製した。
ゲート絶縁膜形成溶液の調製時に、サマリウムアセチルアセトナートの代わりに、セリウムアセテートを用い、セリウムとジルコニウムとの原子数比が1:9となるようにセリウムアセテートとジルコニウムアセチルアセトナートとを加え、酸化物半導体膜形成溶液の調製時に硝酸亜鉛を用いず、2-メトキシエタノールの代わりに水を用いた以外は、実施例4と同様にして、薄膜トランジスタを作製した。
ゲート絶縁膜形成溶液の調製時に、サマリウムアセチルアセトナートの代わりに、プラセオジムアセテートを用い、プラセオジムとジルコニウムとの原子数比が1:9となるようにプラセオジムアセテートとジルコニウムアセチルアセトナートとを加え、酸化物半導体膜形成溶液の調製時に硝酸亜鉛を用いず、2-メトキシエタノールの代わりに水を用いた以外は、実施例4と同様にして、薄膜トランジスタを作製した。
ゲート絶縁膜形成溶液の調製時に、サマリウムアセチルアセトナートの代わりに、ネオジムアセテートを用い、ネオジムとジルコニウムとの原子数比が1:9となるようにネオジムアセテートとジルコニウムアセチルアセトナートとを加え、酸化物半導体膜形成溶液の調製時に硝酸亜鉛を用いず、2-メトキシエタノールの代わりに水を用いた以外は、実施例4と同様にして、薄膜トランジスタを作製した。
ゲート絶縁膜形成溶液の調製時に、サマリウムアセチルアセトナートの代わりに、サマリウムアセテートを用い、サマリウムとジルコニウムとの原子数比が1:9となるようにサマリウムアセテートとジルコニウムアセチルアセトナートとを加え、酸化物半導体膜形成溶液の調製時に硝酸亜鉛を用いず、2-メトキシエタノールの代わりに水を用いた以外は、実施例4と同様にして、薄膜トランジスタを作製した。
ゲート絶縁膜形成溶液の調製時に、サマリウムアセチルアセトナートの代わりに、ユウロピウムアセテートを用い、ユウロピウムとジルコニウムとの原子数比が1:9となるようにユウロピウムアセテートとジルコニウムアセチルアセトナートとを加え、酸化物半導体膜形成溶液の調製時に硝酸亜鉛を用いず、2-メトキシエタノールの代わりに水を用いた以外は、実施例4と同様にして、薄膜トランジスタを作製した。
ゲート絶縁膜形成溶液の調製時に、サマリウムアセチルアセトナートの代わりに、ガドリニウムアセテートを用い、ガドリニウムとジルコニウムとの原子数比が1:9となるようにガドリニウムアセテートとジルコニウムアセチルアセトナートとを加え、酸化物半導体膜形成溶液の調製時に硝酸亜鉛を用いず、2-メトキシエタノールの代わりに水を用いた以外は、実施例4と同様にして、薄膜トランジスタを作製した。
ゲート絶縁膜形成溶液の調製時に、サマリウムアセチルアセトナートの代わりに、テルビウムアセテートを用い、テルビウムとジルコニウムとの原子数比が1:9となるようにテルビウムアセテートとジルコニウムアセチルアセトナートとを加え、酸化物半導体膜形成溶液の調製時に硝酸亜鉛を用いず、2-メトキシエタノールの代わりに水を用いた以外は、実施例4と同様にして、薄膜トランジスタを作製した。
ゲート絶縁膜形成溶液の調製時に、サマリウムアセチルアセトナートの代わりに、ジスプロシウムアセテートを用い、ジスプロシウムとジルコニウムとの原子数比が1:9となるようにジスプロシウムアセテートとジルコニウムアセチルアセトナートとを加え、酸化物半導体膜形成溶液の調製時に硝酸亜鉛を用いず、2-メトキシエタノールの代わりに水を用いた以外は、実施例4と同様にして、薄膜トランジスタを作製した。
ゲート絶縁膜形成溶液の調製時に、サマリウムアセチルアセトナートの代わりに、ホルミウムアセテートを用い、ホルミウムとジルコニウムとの原子数比が1:9となるようにホルミウムアセテートとジルコニウムアセチルアセトナートとを加え、酸化物半導体膜形成溶液の調製時に硝酸亜鉛を用いず、2-メトキシエタノールの代わりに水を用いた以外は、実施例4と同様にして、薄膜トランジスタを作製した。
ゲート絶縁膜形成溶液の調製時に、サマリウムアセチルアセトナートの代わりに、エルビウムアセテートを用い、エルビウムとジルコニウムとの原子数比が1:9となるようにエルビウムアセテートとジルコニウムアセチルアセトナートとを加え、酸化物半導体膜形成溶液の調製時に硝酸亜鉛を用いず、2-メトキシエタノールの代わりに水を用いた以外は、実施例4と同様にして、薄膜トランジスタを作製した。
ゲート絶縁膜形成溶液の調製時に、サマリウムアセチルアセトナートの代わりに、ツリウムアセテートを用い、ツリウムとジルコニウムとの原子数比が1:9となるようにツリウムアセテートとジルコニウムアセチルアセトナートとを加え、酸化物半導体膜形成溶液の調製時に硝酸亜鉛を用いず、2-メトキシエタノールの代わりに水を用いた以外は、実施例4と同様にして、薄膜トランジスタを作製した。
ゲート絶縁膜形成溶液の調製時に、サマリウムアセチルアセトナートの代わりに、イッテルビウムアセテートを用い、イッテルビウムとジルコニウムとの原子数比が1:9となるようにイッテルビウムアセテートとジルコニウムアセチルアセトナートとを加え、酸化物半導体膜形成溶液の調製時に硝酸亜鉛を用いず、2-メトキシエタノールの代わりに水を用いた以外は、実施例4と同様にして、薄膜トランジスタを作製した。
ゲート絶縁膜形成溶液の調製時に、サマリウムアセチルアセトナートの代わりに、ルテチウムアセテートを用い、ルテチウムとジルコニウムとの原子数比が1:9となるようにルテチウムアセテートとジルコニウムアセチルアセトナートとを加え、酸化物半導体膜形成溶液の調製時に硝酸亜鉛を用いず、2-メトキシエタノールの代わりに水を用いた以外は、実施例4と同様にして、薄膜トランジスタを作製した。
ゲート絶縁膜形成溶液の調製時に、サマリウムアセチルアセトナートの代わりに、ユウロピウムアセチルアセトナートを用い、ユウロピウムとジルコニウムとの原子数比が4:6となるようにユウロピウムアセチルアセトナートとジルコニウムアセチルアセトナートとを加えた以外は、実施例4と同様にして、薄膜トランジスタを作製した。
酸化物半導体膜形成溶液の調製時に、硝酸亜鉛の代わりに、硝酸ガリウムを用い、インジウムとガリウムとの原子数比が8:1となるように硝酸インジウムと硝酸ガリウムとを加え、また2-メトキシエタノールの代わりに水を用いた以外は、実施例4と同様にして、薄膜トランジスタを作製した。
ゲート絶縁膜形成溶液の調製時に、サマリウムとジルコニウムとの原子数比が1:99となるようにサマリウムアセチルアセトナートとジルコニウムアセチルアセトナートとを加え、酸化物半導体膜形成溶液の調製時に、硝酸亜鉛を用いず、また2-メトキシエタノールの代わりに水を用いた以外は、実施例4と同様にして、薄膜トランジスタを作製した。
ゲート絶縁膜形成溶液の調製時に、サマリウムとジルコニウムとの原子数比が4:96となるようにサマリウムアセチルアセトナートとジルコニウムアセチルアセトナートとを加え、酸化物半導体膜形成溶液の調製時に、硝酸亜鉛を用いず、また2-メトキシエタノールの代わりに水を用いた以外は、実施例4と同様にして、薄膜トランジスタを作製した。
ゲート絶縁膜形成溶液の調製時に、サマリウムとジルコニウムとの原子数比が8:92となるようにサマリウムアセチルアセトナートとジルコニウムアセチルアセトナートとを加え、酸化物半導体膜形成溶液の調製時に、硝酸亜鉛を用いず、また2-メトキシエタノールの代わりに水を用いた以外は、実施例4と同様にして、薄膜トランジスタを作製した。
ゲート絶縁膜形成溶液の調製時に、サマリウムとジルコニウムとの原子数比が1:1となるようにサマリウムアセチルアセトナートとジルコニウムアセチルアセトナートとを加えた以外は、実施例4と同様にして、薄膜トランジスタを作製した。
上記実施例および比較例で製造した薄膜トランジスタに関し、on/off比、閾値電圧(Vth)、サブスレッショルド特性(SS)、電界効果移動度(μsat)、ヒステリシス(Hys)、およびゲートリーク電流(A)を測定して、そのトランジスタ特性を評価した。なお、これらのトランジスタ特性は、Semiconductor Parameter Analyzer(Agilent社製4155C)を用いて測定した。その測定結果を表2に示す。
(実施例29)
まず、洗浄したSiウェハ基板上に、スパッタリング法により、チタン/白金(Ti/Pt)層からなるゲート電極を形成した。次いで、チタン/白金(Ti/Pt)層が成膜された基板表面に、酸素プラズマによるアッシング処理(15Wで180秒間)を施した。
ゲート絶縁膜形成溶液の調製時に、ジルコニウムアセチルアセトナートの代わりにハフニウムアセチルアセトナートを用いた以外は、実施例29と同様にして、薄膜トランジスタを作製した。
ゲート絶縁膜形成溶液の調製時に、ジルコニウムアセチルアセトナートの代わりにアルミニウムアセチルアセトナートを用いた以外は、実施例29と同様にして、薄膜トランジスタを作製した。
酸化物半導体形成溶液の調製時に、硝酸インジウムと硝酸亜鉛を、インジウムと亜鉛との原子数比が8:2となるように混合した以外は、実施例29と同様にして、薄膜トランジスタを作製した。
酸化物半導体形成溶液の調製時に、硝酸インジウムと硝酸ガリウムを、インジウムとガリウムとの原子数比が8:2となるように混合した以外は、実施例29と同様にして、薄膜トランジスタを作製した。
ゲート絶縁膜形成溶液の調製時に、ジルコニウムアセチルアセトナートの代わりにハフニウムアセチルアセトナートを用い、酸化物半導体形成溶液の調製時に、硝酸インジウムと硝酸亜鉛を、インジウムと亜鉛との原子数比が8:2となるように混合した以外は、実施例29と同様にして、薄膜トランジスタを作製した。
ゲート絶縁膜形成溶液の調製時に、ジルコニウムアセチルアセトナートの代わりにハフニウムアセチルアセトナートを用い、酸化物半導体形成溶液の調製時に、硝酸インジウムと硝酸ガリウムを、インジウムとガリウムとの原子数比が8:2となるように混合した以外は、実施例29と同様にして、薄膜トランジスタを作製した。
ゲート絶縁膜形成溶液の調製時に、アルミニウムアセチルアセトナートとジルコニウムアセチルアセトナートを、アルミニウムとジルコニウムとの原子数比が9:1になるように混合した以外は、実施例29と同様にして、薄膜トランジスタを作製した。
ゲート絶縁膜形成溶液の調製時に、アルミニウムアセチルアセトナートとジルコニウムアセチルアセトナートを、アルミニウムとジルコニウムとの原子数比が7:3になるように混合した以外は、実施例29と同様にして、薄膜トランジスタを作製した。
ゲート絶縁膜形成溶液の調製時に、アルミニウムアセチルアセトナートとジルコニウムアセチルアセトナートを、アルミニウムとジルコニウムとの原子数比が1:1になるように混合した以外は、実施例29と同様にして、薄膜トランジスタを作製した。
ゲート絶縁膜形成溶液の調製時に、アルミニウムアセチルアセトナートとジルコニウムアセチルアセトナートを、アルミニウムとジルコニウムとの原子数比が3:7になるように混合した以外は、実施例29と同様にして、薄膜トランジスタを作製した。
ゲート絶縁膜形成溶液の調製時に、アルミニウムアセチルアセトナートとジルコニウムアセチルアセトナートを、アルミニウムとジルコニウムとの原子数比が1:9になるように混合した以外は、実施例29と同様にして、薄膜トランジスタを作製した。
ゲート絶縁膜形成溶液の調製時に、ハフニウムアセチルアセトナートとジルコニウムアセチルアセトナートを、ハフニウムとジルコニウムとの原子数比が1:1になるように混合した以外は、実施例29と同様にして、薄膜トランジスタを作製した。
ゲート絶縁膜形成溶液の調製時に、ハフニウムアセチルアセトナートとジルコニウムアセチルアセトナートを、ハフニウムとジルコニウムとの原子数比が9:1になるように混合した以外は、実施例29と同様にして、薄膜トランジスタを作製した。
ゲート絶縁膜形成溶液の調製時に、アルミニウムアセチルアセトナートとハフニウムアセチルアセトナートとジルコニウムアセチルアセトナートを、アルミニウムとハフニウムとジルコニウムとの原子数比が1:1:1になるように混合した以外は、実施例29と同様にして、薄膜トランジスタを作製した。
製造した薄膜トランジスタに関し、on/off比、閾値電圧(Vth)、サブスレッショルド特性(SS)、電界効果移動度(μsat)、ヒステリシス(Hys)、およびゲートリーク電流(A)を測定して、そのトランジスタ特性を評価した。なお、これらのトランジスタ特性は、Semiconductor Parameter Analyzer(Agilent社製4155C)を用いて測定した。その測定結果を表3に示す。
12 基板
14 ゲート電極
16 ゲート絶縁層
16’ ゲート絶縁膜
18 酸化物半導体層
18’ 酸化物半導体膜
32 ソース電極
34 ドレイン電極
Claims (12)
- ゲート電極、ゲート絶縁層、および酸化物半導体層をこの順で備える、薄膜トランジスタであって、
前記ゲート絶縁層は、
セリウム(Ce)、プラセオジム(Pr)、ネオジム(Nd)、サマリウム(Sm)、ユウロピウム(Eu)、ガドリニウム(Gd)、テルビウム(Tb)、ジスプロシウム(Dy)、ホルミウム(Ho)、エルビウム(Er)、ツリウム(Tm)、イッテルビウム(Yb)、ルテチウム(Lu)、およびイットリウム(Y)からなる群から選択される金属元素と、ジルコニウム(Zr)とを含み、前記群から選択される金属元素と、ジルコニウム(Zr)との原子数比が、前記群から選択される金属元素の原子数を1としたときに、ジルコニウム(Zr)の原子数が1.5以上である、酸化物から形成されており、
前記酸化物半導体層は、インジウム(In)を含む酸化物、インジウム(In)と錫(Sn)とを含む酸化物、インジウム(In)と亜鉛(Zn)とを含む酸化物、インジウム(In)とジルコニウム(Zr)と亜鉛(Zn)とを含む酸化物、インジウム(In)とガリウム(Ga)とを含む酸化物、およびインジウム(In)と亜鉛(Zn)とガリウム(Ga)とを含む酸化物の群から選択される酸化物から形成されていることを特徴とする、薄膜トランジスタ。 - ゲート電極、ゲート絶縁層、および酸化物半導体層をこの順で備える、薄膜トランジスタの製造方法であって、
ゲート電極の上にゲート絶縁膜形成溶液を塗布して、ゲート絶縁膜を形成する工程と、
酸素を含む環境下、前記ゲート絶縁膜の表面に紫外線を照射しながら、180~200℃で前記ゲート絶縁膜を焼成して、ゲート絶縁層を形成する工程と、
前記ゲート絶縁層の上に酸化物半導体膜形成溶液を塗布して、酸化物半導体膜を形成する工程と、
前記酸化物半導体膜の表面に紫外線を照射しながら、180~200℃で前記酸化物半導体膜を焼成して、酸化物半導体層を形成する工程と、
を含み、
前記ゲート絶縁膜形成溶液は、
ランタン(La)と、ジルコニウム(Zr)と、アセチルアセトナートとを含み、ランタン(La)と、ジルコニウム(Zr)との原子数比が、ランタン(La)の原子数を1としたときに、ジルコニウム(Zr)の原子数が0.8以上である溶液(i)であるか、
セリウム(Ce)、プラセオジム(Pr)、ネオジム(Nd)、サマリウム(Sm)、ユウロピウム(Eu)、ガドリニウム(Gd)、テルビウム(Tb)、ジスプロシウム(Dy)、ホルミウム(Ho)、エルビウム(Er)、ツリウム(Tm)、イッテルビウム(Yb)、ルテチウム(Lu)、およびイットリウム(Y)からなる群から選択される金属元素と、ジルコニウム(Zr)と、アセチルアセトナートとを含み、前記群から選択される金属元素と、ジルコニウム(Zr)との原子数比が、前記群から選択される金属元素の原子数を1としたときに、ジルコニウム(Zr)の原子数が1.5以上である溶液(ii)であるか、または、
ハフニウム(Hf)、ジルコニウム(Zr)、およびアルミニウム(Al)からなる群から選択される少なくとも1種類の金属元素と、アセチルアセトナートとを含む溶液(iii)であり、
前記酸化物半導体膜形成溶液は、インジウム(In)、インジウム(In)と錫(Sn)、インジウム(In)と亜鉛(Zn)、インジウム(In)とジルコニウム(Zr)と亜鉛(Zn)、インジウム(In)とガリウム(Ga)、およびインジウム(In)と亜鉛(Zn)とガリウム(Ga)からなる群から選択される金属元素と、酸化剤とを含むことを特徴とする、製造方法。 - 前記ゲート絶縁層を形成する工程において、前記ゲート絶縁膜形成溶液が前記溶液(i)である場合に、照射される紫外線の照度が7~12mW/cm2であることを特徴とする、請求項2に記載の製造方法。
- 前記ゲート絶縁層を形成する工程において、前記ゲート絶縁膜形成溶液が前記溶液(ii)または溶液(iii)である場合に、照射される紫外線の照度が5~15mW/cm2であることを特徴とする、請求項2に記載の製造方法。
- 前記酸化物半導体層を形成する工程において、前記ゲート絶縁膜形成溶液が前記溶液(i)である場合に、照射される紫外線の照度が7~12mW/cm2であることを特徴とする、請求項2に記載の製造方法。
- 前記酸化物半導体層を形成する工程において、前記ゲート絶縁膜形成溶液が前記溶液(ii)または溶液(iii)である場合に、照射される紫外線の照度が5~15mW/cm2であることを特徴とする、請求項2に記載の製造方法。
- 前記ゲート絶縁膜形成溶液は、前記ゲート電極の上に塗布する前に、密閉容器内で、150~200℃で加熱処理されていることを特徴とする、請求項2から6のいずれかに記載の製造方法。
- 前記ゲート絶縁膜形成溶液の溶媒が、アルコール溶媒であることを特徴とする、請求項2から7のいずれかに記載の製造方法。
- 前記酸化剤が、硝酸、硝酸塩、過酸化物、および過塩素酸塩からなる群から選択されることを特徴とする、請求項2から8のいずれかに記載の製造方法。
- 薄膜トランジスタ用ゲート絶縁膜形成溶液であって、
前記ゲート絶縁膜形成溶液は、
ランタン(La)と、ジルコニウム(Zr)と、アセチルアセトナートとを含み、ランタン(La)と、ジルコニウム(Zr)との原子数比が、ランタン(La)の原子数を1としたときに、ジルコニウム(Zr)の原子数が0.8以上である溶液(i)であるか、
セリウム(Ce)、プラセオジム(Pr)、ネオジム(Nd)、サマリウム(Sm)、ユウロピウム(Eu)、ガドリニウム(Gd)、テルビウム(Tb)、ジスプロシウム(Dy)、ホルミウム(Ho)、エルビウム(Er)、ツリウム(Tm)、イッテルビウム(Yb)、ルテチウム(Lu)、およびイットリウム(Y)からなる群から選択される金属元素と、ジルコニウム(Zr)と、アセチルアセトナートとを含み、前記群から選択される金属元素と、ジルコニウム(Zr)との原子数比が、前記群から選択される金属元素の原子数を1としたときに、ジルコニウム(Zr)の原子数が1.5以上である溶液(ii)であるか、または、
ハフニウム(Hf)、ジルコニウム(Zr)、およびアルミニウム(Al)からなる群から選択される少なくとも1種類の金属元素と、アセチルアセトナートとを含む溶液(iii)であることを特徴とする、薄膜トランジスタ用ゲート絶縁膜形成溶液。 - 密閉容器内で、150~200℃で加熱処理されていることを特徴とする、請求項10に記載の薄膜トランジスタ用ゲート絶縁膜形成溶液。
- 前記ゲート絶縁膜形成溶液の溶媒が、アルコール溶媒であることを特徴とする、請求項10または11に記載の薄膜トランジスタ用ゲート絶縁膜形成溶液。
Applications Claiming Priority (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016207111 | 2016-10-21 | ||
JP2016207111 | 2016-10-21 | ||
JP2016207115 | 2016-10-21 | ||
JP2016207115 | 2016-10-21 | ||
JP2017105733 | 2017-05-29 | ||
JP2017105733 | 2017-05-29 | ||
PCT/JP2017/038086 WO2018074607A1 (ja) | 2016-10-21 | 2017-10-20 | 薄膜トランジスタおよびその製造方法、ならびに薄膜トランジスタ用ゲート絶縁膜形成溶液 |
Publications (2)
Publication Number | Publication Date |
---|---|
JPWO2018074607A1 JPWO2018074607A1 (ja) | 2019-09-05 |
JP7100851B2 true JP7100851B2 (ja) | 2022-07-14 |
Family
ID=62019461
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2018545782A Active JP7100851B2 (ja) | 2016-10-21 | 2017-10-20 | 薄膜トランジスタおよびその製造方法、ならびに薄膜トランジスタ用ゲート絶縁膜形成溶液 |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP7100851B2 (ja) |
WO (1) | WO2018074607A1 (ja) |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008091904A (ja) | 2006-09-30 | 2008-04-17 | Samsung Electronics Co Ltd | 誘電薄膜組成物、これを用いた金属酸化物誘電薄膜およびその製造方法 |
JP2011216845A (ja) | 2010-03-18 | 2011-10-27 | Ricoh Co Ltd | 絶縁膜形成用インク、絶縁膜の製造方法及び半導体装置の製造方法 |
JP2013131685A (ja) | 2011-12-22 | 2013-07-04 | Japan Science & Technology Agency | 薄膜トランジスタ及び薄膜トランジスタの製造方法 |
JP2014199919A (ja) | 2013-03-12 | 2014-10-23 | Jsr株式会社 | ゲート絶縁膜、組成物、硬化膜、半導体素子、半導体素子の製造方法および表示装置 |
JP2015005672A (ja) | 2013-06-21 | 2015-01-08 | 出光興産株式会社 | 酸化物トランジスタ |
JP2015060962A (ja) | 2013-09-19 | 2015-03-30 | 国立大学法人北陸先端科学技術大学院大学 | 薄膜トランジスタ及び薄膜トランジスタの製造方法 |
WO2016167064A1 (ja) | 2015-04-16 | 2016-10-20 | 国立大学法人北陸先端科学技術大学院大学 | エッチングマスク、エッチングマスク前駆体及び酸化物層の製造方法並びに薄膜トランジスタの製造方法 |
-
2017
- 2017-10-20 WO PCT/JP2017/038086 patent/WO2018074607A1/ja active Application Filing
- 2017-10-20 JP JP2018545782A patent/JP7100851B2/ja active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008091904A (ja) | 2006-09-30 | 2008-04-17 | Samsung Electronics Co Ltd | 誘電薄膜組成物、これを用いた金属酸化物誘電薄膜およびその製造方法 |
JP2011216845A (ja) | 2010-03-18 | 2011-10-27 | Ricoh Co Ltd | 絶縁膜形成用インク、絶縁膜の製造方法及び半導体装置の製造方法 |
JP2013131685A (ja) | 2011-12-22 | 2013-07-04 | Japan Science & Technology Agency | 薄膜トランジスタ及び薄膜トランジスタの製造方法 |
JP2014199919A (ja) | 2013-03-12 | 2014-10-23 | Jsr株式会社 | ゲート絶縁膜、組成物、硬化膜、半導体素子、半導体素子の製造方法および表示装置 |
JP2015005672A (ja) | 2013-06-21 | 2015-01-08 | 出光興産株式会社 | 酸化物トランジスタ |
JP2015060962A (ja) | 2013-09-19 | 2015-03-30 | 国立大学法人北陸先端科学技術大学院大学 | 薄膜トランジスタ及び薄膜トランジスタの製造方法 |
WO2016167064A1 (ja) | 2015-04-16 | 2016-10-20 | 国立大学法人北陸先端科学技術大学院大学 | エッチングマスク、エッチングマスク前駆体及び酸化物層の製造方法並びに薄膜トランジスタの製造方法 |
Non-Patent Citations (1)
Title |
---|
LI, Jinwang et al.,"Hybrid Cluster Precursors of the LaZrO Insulator for Transistors: Properties of High-Temperature-P,Scientific Reports,vol. 6, no. 29682,2016年07月14日 |
Also Published As
Publication number | Publication date |
---|---|
JPWO2018074607A1 (ja) | 2019-09-05 |
WO2018074607A1 (ja) | 2018-04-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN105190854B (zh) | 用于形成金属氧化物膜的涂布液、金属氧化物膜、场效应晶体管和制造场效应晶体管的方法 | |
EP3550595B1 (en) | Coating liquid for forming oxide or oxynitride insulator film and a method for manufacturing using the coating liquid | |
EP2660870A1 (en) | Field-effect transistor and method for manufacturing same | |
KR102142038B1 (ko) | 전계 효과 트랜지스터, 그 제조 방법, 디스플레이 소자, 디스플레이 디바이스, 및 시스템 | |
KR20170068620A (ko) | 금속 산화물 박막 형성용 도포액, 금속 산화물 박막, 전계 효과형 트랜지스터 및 전계 효과형 트랜지스터의 제조 방법 | |
JP7149367B2 (ja) | 薄膜トランジスタおよびその製造方法 | |
CN112514078A (zh) | 用于形成金属氧化物膜的涂布液、氧化物绝缘体膜、场效应晶体管、显示元件、图像显示装置和系统 | |
KR102072042B1 (ko) | n형 산화물 반도체막 형성용 도포액, n형 산화물 반도체막의 제조 방법 및 전계 효과형 트랜지스터의 제조 방법 | |
JP6236778B2 (ja) | 金属酸化物膜形成用塗布液、金属酸化物膜、電界効果型トランジスタ、及び電界効果型トランジスタの製造方法 | |
KR102483109B1 (ko) | 금속 산화물, 전계 효과형 트랜지스터, 및 전계 효과형 트랜지스터의 제조 방법 | |
JP7100851B2 (ja) | 薄膜トランジスタおよびその製造方法、ならびに薄膜トランジスタ用ゲート絶縁膜形成溶液 | |
JP7476490B2 (ja) | 金属酸化物、電界効果型トランジスタ、及び電界効果型トランジスタの製造方法 | |
KR102292382B1 (ko) | 금속 산화물 막 형성용 도포액, 산화물 막, 전계 효과형 트랜지스터 및 그의 제조 방법 | |
JP7036387B2 (ja) | 薄膜トランジスタおよびその製造方法 | |
JP6741439B2 (ja) | 薄膜トランジスタの製造方法 | |
JP6918511B2 (ja) | 塗布型酸化物半導体、薄膜トランジスタ、表示装置および塗布型酸化物半導体の製造方法 | |
CN103946930A (zh) | 无定形导电性氧化物膜的形成方法 | |
JP7092977B2 (ja) | 酸化物絶縁膜形成用塗布液、酸化物絶縁膜の製造方法、及び電界効果型トランジスタの製造方法 | |
JP2019029528A (ja) | 薄膜トランジスタ | |
WO2018174218A1 (en) | Coating liquid for forming metal oxide film, oxide film, field-effect transistor, and method for producing the same | |
JP2019091740A (ja) | 塗布型金属酸化物膜の製造方法、それを用いて製造された塗布型金属酸化物膜および電子デバイス |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20200908 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20211109 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20220105 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20220607 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20220622 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7100851 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |