WO2016167064A1 - エッチングマスク、エッチングマスク前駆体及び酸化物層の製造方法並びに薄膜トランジスタの製造方法 - Google Patents

エッチングマスク、エッチングマスク前駆体及び酸化物層の製造方法並びに薄膜トランジスタの製造方法 Download PDF

Info

Publication number
WO2016167064A1
WO2016167064A1 PCT/JP2016/057986 JP2016057986W WO2016167064A1 WO 2016167064 A1 WO2016167064 A1 WO 2016167064A1 JP 2016057986 W JP2016057986 W JP 2016057986W WO 2016167064 A1 WO2016167064 A1 WO 2016167064A1
Authority
WO
WIPO (PCT)
Prior art keywords
etching mask
oxide
aliphatic polycarbonate
precursor
layer
Prior art date
Application number
PCT/JP2016/057986
Other languages
English (en)
French (fr)
Inventor
井上 聡
下田 達也
深田 和宏
聖司 西岡
信貴 藤本
鈴木 正博
Original Assignee
国立大学法人北陸先端科学技術大学院大学
住友精化株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人北陸先端科学技術大学院大学, 住友精化株式会社 filed Critical 国立大学法人北陸先端科学技術大学院大学
Priority to KR1020177029579A priority Critical patent/KR20170141668A/ko
Priority to JP2017512237A priority patent/JP6697447B2/ja
Priority to EP16779856.0A priority patent/EP3285283A4/en
Priority to US15/565,976 priority patent/US20180096853A1/en
Priority to CN201680022181.5A priority patent/CN107431013B/zh
Priority to TW105110240A priority patent/TWI692028B/zh
Publication of WO2016167064A1 publication Critical patent/WO2016167064A1/ja
Priority to US16/586,021 priority patent/US11133191B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/3065Plasma etching; Reactive-ion etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02205Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/308Chemical or electrical treatment, e.g. electrolytic etching using masks
    • H01L21/3083Chemical or electrical treatment, e.g. electrolytic etching using masks characterised by their size, orientation, disposition, behaviour, shape, in horizontal or vertical plane
    • H01L21/3086Chemical or electrical treatment, e.g. electrolytic etching using masks characterised by their size, orientation, disposition, behaviour, shape, in horizontal or vertical plane characterised by the process involved to create the mask, e.g. lift-off masks, sidewalls, or to modify the mask, e.g. pre-treatment, post-treatment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3105After-treatment
    • H01L21/311Etching the insulating layers by chemical or physical means
    • H01L21/31144Etching the insulating layers by chemical or physical means using masks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/324Thermal treatment for modifying the properties of semiconductor bodies, e.g. annealing, sintering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1259Multistep manufacturing methods
    • H01L27/1288Multistep manufacturing methods employing particular masking sequences or specially adapted masks, e.g. half-tone mask
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66969Multistep manufacturing processes of devices having semiconductor bodies not comprising group 14 or group 13/15 materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/7869Thin film transistors, i.e. transistors with a channel being at least partly a thin film having a semiconductor body comprising an oxide semiconductor material, e.g. zinc oxide, copper aluminium oxide, cadmium stannate

Definitions

  • the present invention relates to an etching mask, an etching mask precursor, a method for manufacturing an oxide layer, and a method for manufacturing a thin film transistor.
  • a polycrystalline silicon film or an amorphous silicon film has been mainly used as a channel layer of a thin film transistor which is an example of an electronic device.
  • the electron mobility is limited due to the scattering of electrons occurring at the interface of the polycrystalline particles, resulting in variations in transistor characteristics.
  • an amorphous silicon film there is a problem that the electron mobility is extremely low, the element is deteriorated with time, and the reliability of the element is extremely low.
  • oxide semiconductors having higher electron mobility than amorphous silicon films and less variation in transistor characteristics than polycrystalline silicon films.
  • oxide conductors or oxide insulators made of oxides are, for example, indispensable technical elements for realizing electronic devices using only oxides. The interest is very high.
  • Patent Document 4 attempts have been made to produce a coated flexible electronic device using a conductive polymer or an organic semiconductor.
  • the applicant of the present application discloses a technique for solving some of the above-mentioned problems (Patent Document 4).
  • the “layer” in the present application is a concept including not only a layer but also a film.
  • the “film” in the present application is a concept including not only a film but also a layer.
  • the thickness of a layer formed by a printing method (particularly, a screen printing method) and the thickness of a layer (for example, an etching mask) required in manufacturing the above-described various devices represented by semiconductor elements ( Typically, it is different from submicron).
  • a relatively thick layer is formed during patterning using a printing method, but the thickness required for an etching mask can vary greatly depending on the material of the film to be etched or its thickness. .
  • the viscosity is adjusted by a polymer compound.
  • the inventors of the present invention appropriately set the spinnability of the aliphatic polycarbonate when an etching mask used in manufacturing various devices is formed by using, for example, a screen printing method using a paste or solution containing the aliphatic polycarbonate. It was confirmed that there could be a situation where control was impossible. Therefore, there may arise a problem that a favorable etching mask pattern that can be used in the manufacturing process of the various devices or suitable for manufacturing the various devices cannot be formed.
  • etching mask precursor an etching mask precursor
  • a problem may occur that a desired pattern is destroyed by part of the precursor being threaded from the precursor layer to be an etching mask pattern.
  • etching mask precursor pattern is formed by, for example, a printing method
  • the present inventors have realized the formation of such metal oxide patterns with high accuracy, and the metal In order to realize an etching mask that can protect the oxide function without impairing it as much as possible, intensive investigation and analysis were repeated. More specifically, not only has a function as an etching mask capable of forming a pattern by a printing method (particularly a screen printing method), but also functions of various layers with high accuracy by using the etching mask. We have intensively studied and analyzed for the realization of elemental technologies that can hold or improve, or reduce the manufacturing process of the layer, and various devices using the elemental technologies.
  • the process of forming a pattern in the gel state layer (hereinafter, also referred to as “gel layer”) obtained from the above-described paste or solution was investigated.
  • the characteristics of the aliphatic polycarbonate itself or the paste or solution containing the aliphatic polycarbonate are obtained.
  • the gel layer pattern particularly in the screen printing method, it has been found that the height of the pattern, the transfer state of the pattern, or the spinnability is significantly affected.
  • the gel layer suitable for screen printing is targeted, the gel layer of the present application can be rephrased as a gel layer closer to a liquid state.
  • the inventors of the present invention can constitute an etching mask particularly suitable for a screen printing method by including an aliphatic polycarbonate having a specific range of molecular weight or specific spinnability. It was confirmed that it can contribute to the realization of a pattern having a desired thickness.
  • the inventors of the present application have found that the desired pattern of the gel layer capable of controlling the above-described thickness can be easily formed by a low energy manufacturing process represented by a screen printing method.
  • the object to be etched is an oxide semiconductor
  • a conventional resist mask is used as an etching mask for pattern formation
  • the rectification which is an electrical property peculiar to the semiconductor, is lost, or It became clear that it would be damaged.
  • the knowledge that the rectifying property of the oxide semiconductor protected by the etching mask can be confirmed with high accuracy can be obtained by utilizing the desired pattern of the gel layer that can control the thickness as an etching mask. It was.
  • the etching target of the present invention includes not only an oxide semiconductor but also an oxide conductor or an oxide insulator, or other semiconductor materials, conductor materials, and insulator materials.
  • the temperature at which the starting material, which is an oxide precursor that is difficult to form by screen printing exceeds the temperature at which the oxide is formed, that is, the temperature at which the element and oxygen dispersed in the solution containing the aliphatic polycarbonate are combined.
  • Adopting an oxide (for example, a metal oxide) formed by firing as described above together with the above-described etching mask is a more preferable aspect. This is because the temperature at which the oxide is formed is higher than the temperature at which the etching mask is decomposed, and the etching mask is already decomposed and removed with high accuracy when the oxide is formed. is there. As a result, at least the following effects (1) and (2) can be obtained.
  • the above-mentioned viewpoints and devices are various devices typified by semiconductor elements and electronic devices that are manufactured using a low-energy manufacturing process (particularly a screen printing method) and that are manufactured using an etching mask whose thickness can be controlled. It is possible to contribute to the further improvement of the performance of these, as well as their manufacturing technology.
  • the present invention was created based on the above viewpoints and numerous analyses.
  • the “process from the liquid to the gel state” is a representative example, and the solvent is removed to some extent by heat treatment (typically, 80% or more in the mass ratio to the entire solvent). This refers to the situation where the aliphatic polycarbonate is not substantially decomposed.
  • An etching mask for screen printing according to the present invention includes aliphatic polycarbonate.
  • one etching mask precursor for screen printing of the present invention contains an aliphatic polycarbonate.
  • the fact that a material called aliphatic polycarbonate can exert its function as an etching mask that can be formed by a screen printing method is extremely useful and particularly remarkable. It can be said. Furthermore, the etching mask can be easily removed by heating to a temperature higher than the decomposition temperature of the aliphatic polycarbonate. Therefore, it can greatly contribute to the reduction of the manufacturing process of various devices represented by semiconductor elements and electronic devices.
  • one of the suitable examples of the above-mentioned etching mask for screen printing is an aliphatic polycarbonate whose ratio of the aliphatic polycarbonate having a molecular weight of 6,000 to 400,000 is 80% by mass or more of the total aliphatic polycarbonate. Formed from an etching mask precursor.
  • Another preferred example of the above-described screen printing etching mask is an aliphatic polycarbonate having a zero shear viscosity ⁇ measured using a rheometer (AR-2000EX) manufactured by TA Instruments.
  • one suitable example of the above-described screen printing etching mask precursor is that the ratio of the aliphatic polycarbonate having a molecular weight of 6,000 to 400,000 is 80% by mass or more of the total aliphatic polycarbonate. Contains aliphatic polycarbonate.
  • another suitable example of the above-described etching mask precursor for screen printing is a fat having zero shear viscosity ⁇ measured using a rheometer (AR-2000EX) manufactured by TA Instruments.
  • the spinnability of the aliphatic polycarbonate can be appropriately controlled with higher accuracy. It becomes possible. As a result, a favorable pattern can be obtained for the precursor of the etching mask or the etching mask.
  • the aliphatic polycarbonate contained in the etching mask precursor and the etching mask satisfies the numerical range based on the above calculation formula, for example, a layer formed by a printing method. The knowledge that the spinnability of the aliphatic polycarbonate can be appropriately controlled was obtained. Therefore, if the above numerical range is satisfied, a good pattern can be obtained for the precursor of the etching mask or the etching mask.
  • the manufacturing method of one oxide layer of the present invention includes an etching mask forming step of forming an etching mask pattern including an aliphatic polycarbonate on the oxide layer by a screen printing method, and after the etching mask forming step.
  • an etching mask pattern containing an aliphatic polycarbonate is formed by a screen printing method on an oxide precursor layer that becomes an oxide layer when oxidized.
  • An etching mask forming step, a contact step after the etching mask forming step, contacting the solution of the oxide precursor layer not protected by the etching mask with a solution for dissolving, and after the contacting step, the oxide described above A heating step of heating the precursor layer and the etching mask described above to a temperature at which the oxide layer is formed or higher.
  • another oxide layer manufacturing method of the present invention includes an etching mask forming step of forming an etching mask pattern containing an aliphatic polycarbonate on the oxide layer by a screen printing method, and the etching mask forming step.
  • an etching mask pattern containing an aliphatic polycarbonate is formed by a screen printing method on an oxide precursor layer that becomes an oxide layer when oxidized.
  • etching an oxide layer in a region to be etched using an etching mask when etching an oxide layer in a region to be etched using an etching mask, a so-called contact process with a solution (typically a dipping process) is performed. Regardless of the plasma exposure step, removal of the etching mask after patterning of the oxide layer can be realized by a heating step which is a relatively easy process. Moreover, since the etching mask used in each manufacturing method described above contains aliphatic polycarbonate, the decomposition and removal of the etching mask can be realized with high accuracy.
  • a heating step of heating the oxide precursor layer to a temperature higher than the temperature at which the oxide layer is formed is performed.
  • the aforementioned etching mask is also decomposed and removed.
  • the oxide layer formed by the heating step of each of the above oxide layer manufacturing methods and protected by the above etching mask is formed using a gate insulator.
  • the rectification property of the oxide layer can be accurately maintained.
  • metal oxide in the present application is a concept including an oxide semiconductor, an oxide conductor, or an oxide insulator.
  • each of the oxide semiconductor, the oxide conductor, and the oxide insulator is a relative concept from the viewpoint of electrical conductivity, and thus is not required to be strictly distinguished. Even if it is the same kind of metal oxide, it may be recognized by those skilled in the art as an oxide semiconductor depending on the requirements of various devices, or may be recognized by those skilled in the art as an oxide conductor or oxide insulator.
  • the “substrate” in the present application is not limited to the foundation of the plate-like body, but includes other forms of foundations or base materials.
  • application refers to forming a layer on a substrate by a low energy manufacturing process, typically a printing method.
  • the “metal” in the present application includes not only a typical element metal but also a transition metal.
  • the etching mask for one screen printing of the present invention and the etching mask precursor for one screen printing of the present invention can sufficiently function as an etching mask.
  • the etching mask can be easily removed by heating to a temperature above the decomposition temperature of the aliphatic polycarbonate. Therefore, it can greatly contribute to the reduction of the manufacturing process of various devices represented by semiconductor elements and electronic devices.
  • the manufacturing method of one oxide layer of the present invention when an oxide layer in a region to be etched is etched using an etching mask, a so-called contact process with a solution (typically, immersion) Regardless of whether it is a process or an exposure process to plasma, the removal of the etching mask after patterning of the oxide layer can be realized by a heating process which is a relatively easy process.
  • a solution typically, immersion
  • the contact angle between the substrate and the solution with respect to the change in the concentration of 2-nitropropane, 30 seconds after the solution containing the aliphatic polycarbonate is disposed on the substrate It is a graph which shows the spreading rate of this solution on a base material.
  • the contact angle between the substrate and the solution with respect to the change in the concentration of 2-nitropropane 120 seconds after the solution containing the aliphatic polycarbonate is disposed on the substrate It is a graph which shows the spreading rate of this solution on a base material.
  • FIG. 6 is a graph showing TG-DTA characteristics of an indium-zinc-containing solution, which is an example of a constituent material of an oxide semiconductor precursor for forming a channel of a thin film transistor according to a second embodiment of the present invention.
  • the TG-DTA characteristic of the polypropylene carbonate solution which is an example of the solution (typical example of an etching mask precursor) which uses only aliphatic polycarbonate as a solute for forming the constituent elements of the thin film transistor of the second embodiment of the present invention is shown. It is a graph. It is a graph which shows the rectification
  • etching mask precursor a state in which the solvent is removed to such an extent that it can be used in the screen printing method by heating the etching mask precursor (typically, “gel state”). Represents.
  • the etching mask precursor or etching mask according to the present embodiment mainly includes an aliphatic polycarbonate, but may include a compound, composition, or material other than the aliphatic polycarbonate.
  • the lower limit of the content of the aliphatic polycarbonate in the etching mask precursor or the etching mask is not particularly limited, but typically, the mass ratio of the aliphatic polycarbonate to the total amount of solute is 80% or more.
  • the upper limit of the content of the aliphatic polycarbonate in the etching mask precursor or the etching mask is not particularly limited, but typically, the mass ratio of the aliphatic polycarbonate to the total amount of solute is 100% or less.
  • the aliphatic polycarbonate is an object to be decomposed and / or removed mainly by a heating process after the etching object is etched using a pattern formed by, for example, a screen printing method.
  • a material called aliphatic polycarbonate can exert its function as an etching mask that can be formed by a screen printing method. This is a remarkable effect. As described above, it is possible to remove the etching mask very easily by heating at a temperature equal to or higher than the decomposition temperature of the aliphatic polycarbonate.
  • the manufacturing process of various devices represented by semiconductor elements and electronic devices Can greatly contribute to the reduction of energy consumption.
  • the decomposition temperature of the aliphatic polycarbonate is higher.
  • no other compounds, compositions or materials having a high decomposition temperature are contained.
  • the ratio of the aliphatic polycarbonate having a molecular weight of 6,000 to 400,000 in the precursor of the etching mask or the etching mask is 80% by mass or more of the entire aliphatic polycarbonate.
  • an endothermic decomposition type aliphatic polycarbonate having a good thermal decomposition property is used.
  • DTA differential thermal measurement method
  • Such an aliphatic polycarbonate has a high oxygen content and can be decomposed into a low molecular weight compound at a relatively low temperature, thereby reducing the residual amount of impurities typified by carbon impurities in the metal oxide. Contribute positively.
  • the organic solvent that can be used for the “etching mask precursor” that is a solution containing an aliphatic polycarbonate is not particularly limited as long as the organic solvent can dissolve the aliphatic polycarbonate.
  • the organic solvent include diethylene glycol monoethyl ether acetate (Diethylene-Glycol-Monoethyl Ether Acetate (hereinafter also referred to as “DEGMEA”)), ⁇ -terpineol, ⁇ -terpineol, N-methyl-2-pyrrolidone, 2- Nitropropane, isopropyl alcohol, diethylene glycol monobutyl ether acetate, diethylene glycol monobutyl ether, toluene, cyclohexane, methyl ethyl ketone, dimethyl carbonate, diethyl carbonate, propylene carbonate, and the like.
  • DEGMEA diethylene glycol monoethyl ether acetate
  • ⁇ -terpineol ⁇ -ter
  • diethylene glycol monoethyl ether acetate, ⁇ -terpineol, N-methyl-2-pyrrolidone, 2-nitropropane and propylene carbonate are preferred from the viewpoint of a moderately high boiling point and low evaporation at room temperature.
  • a mixed solvent of DEGMEA and 2-nitropropane from the viewpoint that it is sufficient to maintain the pattern for a relatively short time from the formation of the pattern until it is decomposed or removed.
  • a dispersant, a plasticizer, and the like can be further added to the etching mask precursor, which is a solution containing an aliphatic polycarbonate, if desired.
  • dispersant examples include as follows: Polyhydric alcohol esters such as glycerin and sorbitan; Polyether polyols such as diethylene glycol, triethylene glycol, dipropylene glycol, tripropylene glycol, polyethylene glycol and polypropylene glycol; amines such as polyethyleneimine; (Meth) acrylic resins such as polyacrylic acid and polymethacrylic acid; Examples thereof include a copolymer of isobutylene or styrene and maleic anhydride, and an amine salt thereof.
  • Polyhydric alcohol esters such as glycerin and sorbitan
  • Polyether polyols such as diethylene glycol, triethylene glycol, dipropylene glycol, tripropylene glycol, polyethylene glycol and polypropylene glycol
  • amines such as polyethyleneimine
  • (Meth) acrylic resins such as polyacrylic acid and polymethacrylic acid
  • examples thereof include a copolymer of isobutylene or
  • plasticizer examples include polyether polyol, phthalate ester and the like.
  • the method for forming the etching mask precursor layer of the present embodiment is not particularly limited. Formation of the layer by a low energy manufacturing process is a preferred embodiment. More specifically, it is preferable to form the etching mask precursor layer by applying it to the substrate by screen printing, which is a particularly simple method.
  • aliphatic polycarbonate is at least one selected from the group consisting of polyethylene carbonate and polypropylene carbonate from the viewpoint of high oxygen content and decomposition into a low molecular weight compound at a relatively low temperature. It is preferable. Any of the above-described aliphatic polycarbonates can achieve the same effects as those of the present embodiment as long as the molecular weight is within the above-described numerical range.
  • the above epoxide is not particularly limited as long as it is an epoxide that undergoes a polymerization reaction with carbon dioxide to become an aliphatic polycarbonate having a structure containing an aliphatic in the main chain.
  • ethylene oxide and propylene oxide are preferably used from the viewpoint of high polymerization reactivity with carbon dioxide.
  • each above-mentioned epoxide may be used individually, respectively, and can also be used in combination of 2 or more type.
  • the mass average molecular weight of the above-mentioned aliphatic polycarbonate is preferably 5,000 to 1,000,000, more preferably 10,000 to 500,000.
  • weight average molecular weight of the aliphatic polycarbonate is less than 5,000, for example, there is a possibility that it may not be suitable as a material used in the screen printing method due to the influence of a decrease in viscosity.
  • mass average molecular weight of the aliphatic polycarbonate exceeds 1,000,000, the solubility of the aliphatic polycarbonate in an organic solvent is lowered, so that there is a possibility that the aliphatic polycarbonate is not suitable as a material used in the screen printing method.
  • the numerical value of the above-mentioned mass average molecular weight can be calculated by the following method.
  • a chloroform solution having the above-mentioned aliphatic polycarbonate concentration of 0.5% by mass is prepared and measured using high performance liquid chromatography. After the measurement, the molecular weight is calculated by comparing with polystyrene having a known mass average molecular weight measured under the same conditions.
  • the measurement conditions are as follows. Model: HLC-8020 (manufactured by Tosoh Corporation) Column: GPC column (trade name of Tosoh Corporation: TSK GEL Multipore HXL-M) Column temperature: 40 ° C Eluent: Chloroform Flow rate: 1 mL / min
  • a method for producing the above-mentioned aliphatic polycarbonate a method in which the above-described epoxide and carbon dioxide are subjected to a polymerization reaction in the presence of a metal catalyst can be employed.
  • the example of manufacture of an aliphatic polycarbonate is as follows.
  • the inside of a 1 L autoclave system equipped with a stirrer, a gas introduction tube, and a thermometer was previously substituted with a nitrogen atmosphere, and then a reaction solution containing an organozinc catalyst, hexane, and propylene oxide were charged.
  • carbon dioxide was added while stirring to replace the inside of the reaction system with a carbon dioxide atmosphere, and carbon dioxide was charged until the inside of the reaction system became about 1.5 MPa.
  • the autoclave was heated to 60 ° C., and a polymerization reaction was carried out for several hours while supplying carbon dioxide consumed by the reaction.
  • the autoclave was cooled, depressurized and filtered. Then, polypropylene carbonate was obtained by drying under reduced pressure.
  • metal catalyst examples include an aluminum catalyst or a zinc catalyst.
  • a zinc catalyst is preferably used because it has high polymerization activity in the polymerization reaction of epoxide and carbon dioxide.
  • an organic zinc catalyst is particularly preferably used.
  • organozinc catalysts such as zinc acetate, diethyl zinc, dibutyl zinc; or With organic zinc catalysts obtained by reacting compounds such as primary amines, divalent phenols, divalent aromatic carboxylic acids, aromatic hydroxy acids, aliphatic dicarboxylic acids, and aliphatic monocarboxylic acids with zinc compounds is there.
  • organic zinc catalysts since it has higher polymerization activity, it is preferable to employ an organic zinc catalyst obtained by reacting a zinc compound, an aliphatic dicarboxylic acid, and an aliphatic monocarboxylic acid. It is an aspect.
  • the production example of the organozinc catalyst is as follows. First, zinc oxide, glutaric acid, acetic acid, and toluene were charged into a four-necked flask equipped with a stirrer, a nitrogen gas inlet tube, a thermometer, and a reflux condenser. Next, after replacing the inside of the reaction system with a nitrogen atmosphere, the temperature of the flask was raised to 55 ° C., and the mixture was stirred at the same temperature for 4 hours to carry out the reaction treatment of each of the aforementioned materials. Thereafter, the temperature was raised to 110 ° C., and the mixture was further stirred for 4 hours at the same temperature for azeotropic dehydration to remove only moisture.
  • reaction liquid containing an organozinc catalyst was obtained by cooling the flask to room temperature.
  • IR was measured about the organozinc catalyst obtained by fractionating and filtering this reaction liquid (The product name: AVATAR360 by the Thermo Nicolet Japan Co., Ltd.). As a result, no peak based on the carboxylic acid group was observed.
  • the amount of the metal catalyst used for the polymerization reaction is preferably 0.001 to 20 parts by mass, more preferably 0.01 to 10 parts by mass with respect to 100 parts by mass of the epoxide. .
  • the usage-amount of a metal catalyst is less than 0.001 mass part, there exists a possibility that a polymerization reaction may become difficult to advance.
  • the usage-amount of a metal catalyst exceeds 20 mass parts, there exists a possibility that there may be no effect corresponding to a usage-amount and it may become economical.
  • the reaction solvent used as needed in the above polymerization reaction is not particularly limited.
  • Various organic solvents can be applied as the reaction solvent.
  • this organic solvent are: Aliphatic hydrocarbon solvents such as pentane, hexane, octane, decane and cyclohexane; Aromatic hydrocarbon solvents such as benzene, toluene, xylene; Chloromethane, methylene dichloride, chloroform, carbon tetrachloride, 1,1-dichloroethane, 1,2-dichloroethane, ethyl chloride, trichloroethane, 1-chloropropane, 2-chloropropane, 1-chlorobutane, 2-chlorobutane, 1-chloro-2 -Halogenated hydrocarbon solvents such as methylpropane, chlorobenzene, bromobenzene; And carbonate solvents such as dimethyl carbonate, diethyl carbonate,
  • the amount of the reaction solvent used is preferably 500 parts by mass or more and 10000 parts by mass or less with respect to 100 parts by mass of the epoxide from the viewpoint of smoothing the reaction.
  • the method of reacting epoxide and carbon dioxide in the presence of a metal catalyst is not particularly limited.
  • a method may be employed in which the above epoxide, metal catalyst, and reaction solvent as required are charged into an autoclave and mixed, and then carbon dioxide is injected to react.
  • the operating pressure of carbon dioxide used in the above polymerization reaction is not particularly limited.
  • the pressure is preferably 0.1 MPa to 20 MPa, more preferably 0.1 MPa to 10 MPa, and further preferably 0.1 MPa to 5 MPa.
  • the use pressure of carbon dioxide exceeds 20 MPa, there is a possibility that the effect corresponding to the use pressure may not be obtained and it may not be economical.
  • the polymerization reaction temperature in the above polymerization reaction is not particularly limited. Typically, the temperature is preferably 30 to 100 ° C, more preferably 40 to 80 ° C. When the polymerization reaction temperature is less than 30 ° C., the polymerization reaction may take a long time. On the other hand, when the polymerization reaction temperature exceeds 100 ° C., side reactions occur and the yield may decrease. Although the polymerization reaction time varies depending on the polymerization reaction temperature, it cannot be generally stated, but it is typically preferably 2 to 40 hours.
  • an aliphatic polycarbonate can be obtained by filtering off by filtration or the like, washing with a solvent if necessary, and drying.
  • the inventors of the present application have conducted careful analysis and examination on the correlation between the molecular weight of the aliphatic polycarbonate, the spinnability and the pattern shape, typically by performing the following experiments.
  • the molecular weight of the aliphatic polycarbonate if the ratio of the aliphatic polycarbonate having a molecular weight of 6,000 to 400,000 is 80% by mass or more of the entire aliphatic polycarbonate, the etching is in a “gel state”.
  • the inventors of the present application have confirmed that a good pattern can be formed by controlling the spinnability of the mask.
  • the aliphatic polycarbonate employed in each of the following experimental examples is polypropylene carbonate (hereinafter also referred to as “PPC”).
  • sample A Only PPC with mass average molecular weight of 30,000 (hereinafter also referred to as “sample A”) (2) Only PPC with mass average molecular weight of 90,000 (hereinafter also referred to as “sample B”) (3) Sample A mixture of A and Sample B at a ratio of 1: 1 (hereinafter also referred to as “Sample AB”) (4) Only PPC having a mass average molecular weight of 230,000 (hereinafter also referred to as “sample C”) (5) Only PPC having a mass average molecular weight of 590,000 (hereinafter also referred to as “sample D”) (6) Sample D mixed with 1: 1 ratio (hereinafter also referred to as “sample CD”) (7) Sample A and sample C mixed at a ratio of 1: 1 (hereinafter also referred to as “sample AC”) (8) Sample B and sample C mixed at a ratio of 1: 1 (hereinafter also referred to as “sample BC”) (9) Sample A and sample D mixed
  • the ratio of the aliphatic polycarbonate whose molecular weight is 6,000 or more and 400,000 or less was calculated
  • the etching mask precursor is heated and stirred in an air atmosphere at about 50 ° C. for about 72 hours, and then defoamed for about 30 minutes to obtain a viscosity suitable for the screen printing method.
  • An etching mask precursor having a “gel state” (or a gel state closer to a liquid state) was formed.
  • the rectangular pattern which consists of the above-mentioned etching mask was formed on the glass substrate "Eagle XG" (200x150x0.7tmm ⁇ 3 >) using the screen printing method.
  • Pattern shape in Table 2 indicates the fidelity of a pattern formed using the printing method. Therefore, the description of “defect” in “pattern shape” means a state in which the pattern of the etching mask is not formed to such an extent that it cannot be used for device manufacture. On the other hand, the description “good” in “pattern shape” means that the pattern of the etching mask is reproduced to the extent that it can be used for manufacturing the device. In addition, “bad” in “threadability” in Table 2 means that a part of the etching mask layer on which the pattern is formed by using a printing method is twisted into a thread shape, thereby destroying the desired pattern. Means the state.
  • “good” in “threadability” means a state in which little or no stringiness is observed.
  • the “pattern height” in Table 2 is a measurement value of the highest pattern point by an atomic force microscope (AFM). Note that the description of “impossible to measure” in “pattern height” of the sample (6) means that the pattern itself was not substantially formed.
  • results of the above (1), (7), and (8) are shown in FIG. 1 as an example of a typical optical micrograph that can realize a good pattern.
  • results of the above (5), (9), and (10) are shown in FIG. 2A. Shown in
  • Example A As shown in Table 2, FIG. 1 and FIG. 2A, (1) “Sample A”, (2) “Sample B”, and (3) “Sample AB”, which are aliphatic polycarbonates having a relatively low molecular weight, As for (7) “Sample AC” of the aliphatic polycarbonate having a medium molecular weight, good results were obtained for “pattern shape” and “threadability”. In particular, Sample C ((4) in the table) has a spinnability of “bad” in Table 2, but only a part of the patterns showed a spinnability. I will add.
  • the result that it is thought that the factor which deteriorates "patterning shape” or “threading property” exists in the increase in molecular weight was obtained.
  • the formed pattern has a certain “height” or more. Therefore, in order to obtain a “pattern height” above a certain level while maintaining a good “pattern shape” and “spinnability”, it is not preferable to employ an aliphatic polycarbonate having a very low molecular weight. Has also been obtained.
  • sample AD “Sample AD” and (10) “Sample BD” have the following causes of “bad” in “patterning shape” and “threadability” as follows.
  • each pattern height (5.3 ⁇ m) of (9) “Sample AD” and (10) “Sample BD” is equal to the pattern height of “Sample A” (1 4 ⁇ m) and the pattern height of “Sample D” (4 ⁇ m), or the sum of the pattern height of “Sample A” (1.5 ⁇ m) and the pattern height of “Sample D” (4 ⁇ m) It is almost the same.
  • sample AC or (8) “Sample BC”, which has a relatively small difference in molecular weight, is suitable for high-molecular-weight aliphatic polycarbonate and low-molecular-weight aliphatic polycarbonate without phase separation. Therefore, it is considered that good “patterning shape” and “threadability” can be obtained.
  • the ratio of the aliphatic polycarbonate having a molecular weight of 6,000 to 400,000 is 80% by mass or more of the total aliphatic polycarbonate.
  • the results shown in the above (1) to (10) show that a sample of a precursor of an oxide semiconductor in which four types of PPCs having different mass average molecular weights are dissolved as a binder, or of those PPCs. Even when a sample of the oxide semiconductor precursor in which a combination of two types is dissolved as a binder is prepared, it has been confirmed that the trend of data is applicable. Note that the oxide semiconductor precursor sample contains 5% by mass of a 0.2 mol / kg indium-containing solution. In addition, the same number is used for each sample number in Table 3 in order to make the correspondence with (1) to (10) in Table 1 easy to understand.
  • the manufacture example of the precursor of an oxide is as follows. In each of the following experimental examples, a precursor that becomes an oxide semiconductor when oxidized, that is, a precursor of an oxide semiconductor is typically employed.
  • indium acetylacetonate and propionic acid were gradually mixed with stirring in a 50 mL flask to obtain an indium-containing solution that finally became indium oxide.
  • polypropylene carbonate was dissolved in a mixed solvent of DEGMEA and 2-nitropropane in a 50 mL eggplant type flask to obtain a 25 wt% polypropylene carbonate solution.
  • the above-mentioned oxide semiconductor precursor was obtained by gradually adding the above-mentioned indium-containing solution into the polypropylene carbonate solution.
  • Example A The experimental results shown in Table 3 will be described. (7) of (1) “Sample A”, (2) “Sample B”, and (3) “Sample AB”, which are relatively low molecular weight aliphatic polycarbonates, and (7) For “Sample AC”, good results were obtained for “pattern shape” and “threadability”. In addition, interestingly, it was confirmed that the pattern shape and spinnability of each of the samples (9) and (10) having a relatively large molecular weight were also good.
  • FIG. 2B is an optical micrograph showing the results of (9) and (10) in which a good pattern was formed as a result of controlling the spinnability. The pattern shape and spinnability of each sample of (9) and (10) were good, probably because an indium-containing solution was added to the sample adopted in Table 2 so that the overall PPC concentration was A slight decline may be mentioned as one of the causes, but it is not considered dominant.
  • the average thread length (mm) is made of polytetrafluoroethylene and has a diameter D in a reservoir of aliphatic polycarbonate formed in each container.
  • a 2.9 mm cylindrical rod was submerged.
  • the thread length L (mm) from the outermost surface of the aliphatic polycarbonate pool when the cylindrical rod was pulled up at a speed v of 5 mm / second was measured.
  • the zero shear viscosity ⁇ of each sample was measured using a rheometer (AR-2000EX) manufactured by TA Instruments. Then, the above-described values were calculated as evaluation parameters by substituting them into the following equations.
  • ⁇ Calculation formula> “Evaluation parameter” (mm ⁇ 1 ⁇ Pa ⁇ 1 ) L / (D ⁇ v ⁇ ⁇ )
  • Table 4 shows the relationship between each sample in this experimental example, the average thread length (mm), and the zero shear viscosity (Pa ⁇ s). Moreover, FIG. 3A is a graph which shows the relationship between each sample in this experiment example, and the evaluation parameter which shows a spinnability.
  • the results of using the above-mentioned oxide semiconductor precursor sample are more than the results of using the sample in which a single PPC is dissolved as a binder.
  • the value of the “evaluation parameter” is large overall.
  • the inventors of the present application consider that the influence of indium acetylacetonate, which is a solute with a very low content, is very small. That is, the present inventors consider that the results shown in Table 4 and FIG. 3A are appropriate and more general experimental results.
  • the “evaluation parameter” (mm ⁇ 1 ⁇ If the value of Pa ⁇ 1 ) is 0.25 mm ⁇ 1 Pa ⁇ 1 or more (more narrowly 0.29 mm ⁇ 1 Pa ⁇ 1 or more), good “patterning shape” and “threadability” are obtained. The knowledge that it was possible was obtained.
  • the upper limit of the “evaluation parameter” for obtaining good “patterning shape” and “threadability” is not particularly limited, but from the viewpoint of obtaining the pattern height with higher accuracy, the “evaluation parameter”
  • the value of “parameter” is preferably 1.2 or less (more narrowly 0.9 or less).
  • the range of the molecular weight of the aliphatic polycarbonate of the present embodiment is not limited to the numerical range disclosed in each experimental example described above. According to the analysis by the inventors of the present application, for example, the ratio of the aliphatic polycarbonate having a molecular weight of 6,000 to 300,000 is 75% by mass or more of the entire aliphatic polycarbonate. From the viewpoint of controlling and forming a good pattern, this is a more preferable embodiment.
  • the inventors of the present invention used a polypropylene carbonate solution obtained by dissolving polypropylene carbonate (25 wt%) in a mixed solvent of DEGMEA and 2-nitropropane as a base material (in this experimental example, a glass substrate). ) After 30 seconds and 120 seconds from the placement, the contact angle between the substrate and the solution and how the spreading rate of the solution on the substrate changes were investigated. In order to make it easier to examine the change in the contact angle, each of the above evaluations was performed after changing the concentration (wt%) of 2-nitropropane, which is a suitable solvent for the aliphatic polycarbonate. In addition, the above-mentioned “spreading ratio” was calculated based on the actual pattern dimension with respect to the design value.
  • FIG. 4A shows the contact angle between the substrate and the solution versus the change in 2-nitropropane concentration 30 seconds after placing the solution containing the aliphatic polycarbonate on the substrate and the solution on the substrate. It is a graph which shows the spreading rate of a solution.
  • 4B shows the contact angle between the substrate and the solution with respect to the change in the concentration of 2-nitropropane after 120 seconds from the placement of the solution containing the aliphatic polycarbonate on the substrate, It is a graph which shows the spreading rate of this solution.
  • the correlation between the contact angle between the base material and the solution and the spreading ratio of the solution on the base material are opposite to each other. That is, as the concentration of 2-nitropropane increased, the contact angle increased, while the spreading rate decreased. However, as shown in FIG. 4B, it was found that even when the concentration of 2-nitropropane was high (for example, 75%), the contact angle did not increase. In addition, in particular, the contact angle tends to increase rapidly when the concentration of 2-nitropropane reaches a certain value (typically 55% or more and 60% or less) in both FIG. 4A and FIG. 4B. It became clear that
  • the solution containing the aliphatic polycarbonate is preferably prepared so as to have an angle equal to or smaller than the above-described contact angles.
  • the solution containing the aliphatic polycarbonate is prepared so as to have an angle equal to or larger than the above-described contact angles. Therefore, based on the above, 30 seconds after the etching mask precursor is placed on the substrate, the contact angle of the etching mask precursor to the substrate is 30 ° or more and 36 ° or less, or etching is performed. 120 seconds after the mask precursor is placed on the substrate, the contact angle of the etching mask precursor to the substrate is preferably 26 ° or more and 32 ° or less.
  • results shown in FIG. 4A and FIG. 4B described above are the oxide semiconductor precursor samples described in “Preparation Steps for Each Experiment” in which four types of PPCs having different mass average molecular weights are dissolved as binders. It has also been confirmed that this also applies when a sample of the oxide semiconductor precursor in which a combination of two of them is dissolved as a binder is prepared.
  • an aliphatic polycarbonate is a compound in which a metal compound that becomes a metal oxide when oxidized is dispersed in a solution containing an aliphatic polycarbonate.
  • the metal oxide includes an oxide semiconductor, an oxide conductor, or an oxide insulator as described above.
  • an aliphatic polycarbonate is an impurity as seen from the metal oxide finally obtained after a pattern is once formed by, for example, a printing method, it is an object to be decomposed and / or removed mainly by a heating process. Become.
  • examples of the metal oxide of the present embodiment are an oxide semiconductor, an oxide conductor, or an oxide insulator.
  • the ratio of the aliphatic polycarbonate having a molecular weight of 6,000 or more and 400,000 or less is 80% by mass or more of the entire aliphatic polycarbonate, like the above-described etching mask precursor or etching mask.
  • a material or a manufacturing method used for the above-described etching mask precursor or the etching mask can be applied except that the above-described metal compound is mixed.
  • a precursor of an oxide semiconductor and a method for manufacturing an oxide semiconductor layer are described in detail in Patent Document 4 (International Publication No. WO2015-019771) disclosed by the present applicant. Therefore, the description which overlaps with the description of the above-mentioned etching mask precursor or etching mask is omitted.
  • FIG. 15 is a schematic cross-sectional view showing one process and the entire configuration of the method of manufacturing the thin film transistor 100 according to this embodiment.
  • the gate electrode 24, the gate insulator 34, the channel 44, the source electrode 58 and the drain electrode 56 are stacked in this order from the lower layer on the substrate 10. .
  • an electronic device for example, a portable terminal, an information home appliance, or other known electrical appliances
  • provision or realization of an electronic device for example, a portable terminal, an information home appliance, or other known electrical appliances
  • this semiconductor element requires special explanation for those skilled in the art who understand the semiconductor element of this embodiment. Can be fully understood without.
  • a process for forming various oxide precursor layers which will be described later, is included in the “formation process of oxide precursor layer” in the present application.
  • the thin film transistor 100 employs a so-called bottom gate structure, but this embodiment is not limited to this structure. Therefore, a person skilled in the art can form a top gate structure by changing the order of the steps by referring to the description of the present embodiment with ordinary technical common sense. Moreover, the display of the temperature in this application represents the surface temperature of the heating surface of the heater which contacts a board
  • the substrate 10 of the present embodiment is not particularly limited, and a substrate generally used for a semiconductor element is used.
  • a substrate generally used for a semiconductor element is used.
  • high heat-resistant glass SiO 2 / Si substrate (that is, a substrate in which a silicon oxide film is formed on a silicon substrate), alumina (Al 2 O 3 ) substrate, STO (SrTiO) substrate, SiO 2 layer on the surface of Si substrate
  • various base materials including a semiconductor substrate for example, a Si substrate, a SiC substrate, a Ge substrate, etc.
  • an insulating substrate in which an STO (SrTiO) layer is formed with a Ti layer interposed therebetween can be applied.
  • the insulating substrate is made of materials such as polyesters such as polyethylene terephthalate and polyethylene naphthalate, polyolefins, cellulose triacetate, polycarbonate, polyamide, polyimide, polyamideimide, polysulfone, aramid, and aromatic polyamide. , Film or sheet. Further, the thickness of the substrate is not particularly limited, but is, for example, 3 ⁇ m or more and 300 ⁇ m or less. Further, the substrate may be hard or flexible.
  • the gate electrode 24 of the present embodiment is made of an oxide conductor (however, an unavoidable impurity may be included.
  • an oxide conductor is an aliphatic material. It is formed by firing a precursor layer of an oxide conductor dispersed in a solution containing polycarbonate (hereinafter also referred to as “precursor layer of oxide conductor”). In the present embodiment, as shown in FIG.
  • a low energy manufacturing process for example, a printing method or a spin coating method
  • a SiO 2 / Si substrate hereinafter also simply referred to as “substrate”
  • the gate electrode precursor layer 22 can be formed by applying a gate electrode precursor solution as a starting material.
  • a firing step is performed in which the gate electrode precursor layer 22 is heated at 450 ° C. to 550 ° C. for a predetermined time (for example, 10 minutes to 1 hour) in the air, for example.
  • a gate electrode 24 is formed on the substrate 10 as shown in FIG.
  • the thickness of the layer of the gate electrode 24 of this embodiment is about 100 nm, for example.
  • an example of the above-described oxide conductor is a material having a structure (typically a complex structure) in which a ligand is coordinated to a metal that becomes an oxide conductor when oxidized.
  • a metal organic acid salt, a metal inorganic acid salt, a metal halide, or various metal alkoxides can be included in the oxide conductor of this embodiment.
  • An example of a metal that becomes an oxide conductor when oxidized is ruthenium (Ru).
  • a precursor solution for a gate electrode starting from a solution obtained by dissolving ruthenium (III) nitrosylacetate in a mixed solvent of propionic acid containing aliphatic polycarbonate and 2-aminoethanol is used, for example, in the atmosphere.
  • ruthenium oxide which is an oxide conductor is formed by performing a baking step of heating at about 450 ° C. to about 550 ° C. for a predetermined time (for example, 10 minutes to 1 hour). Can be formed.
  • the pattern of the gate electrode precursor layer 22 is formed using a printing method.
  • a good pattern can be formed.
  • the spinnability of the aliphatic polycarbonate in the gate electrode precursor solution can be appropriately controlled, a favorable pattern of the gate electrode precursor layer 22 can be formed.
  • a refractory metal such as platinum, gold, silver, copper, aluminum, molybdenum, palladium, ruthenium, iridium, tungsten, or an alloy thereof is used.
  • a metal material, or a p + -silicon layer or an n + -silicon layer can be applied.
  • the gate electrode 24 can be formed on the substrate 10 by a known sputtering method or CVD method.
  • the material of the gate insulator 34 is a metal compound that becomes an oxide insulator when oxidized (hereinafter also simply referred to as “oxide insulator”). ) Is dispersed by baking a precursor layer of an oxide insulator dispersed in a solution containing an aliphatic polycarbonate (hereinafter also referred to as “precursor layer of oxide insulator”).
  • a gate of the above-described oxide insulator is applied to the gate electrode 24 by using a low energy manufacturing process (for example, a printing method or a spin coating method).
  • An insulator precursor layer 32 is formed.
  • the gate insulator precursor layer 32 in a gel state is heated at about 450 ° C. to about 550 ° C. for a predetermined time (for example, 10 minutes to 1 hour), for example, in the atmosphere (main baking).
  • a predetermined time for example, 10 minutes to 1 hour
  • an oxide made of lanthanum (La) and zirconium (Zr) which are oxide insulators is formed.
  • the gate insulator 34 can be formed as shown in FIG. Note that the thickness of the layer of the gate insulator 34 of the present embodiment is, for example, about 100 nm to about 250 nm.
  • an example of the above oxide insulator is a material having a structure (typically a complex structure) in which a ligand is coordinated to a metal that becomes an oxide insulator when oxidized.
  • a structure typically a complex structure
  • metal organic acid salts, metal inorganic acid salts, metal halides, or various metal alkoxides, or other organic acid salts, inorganic acid salts, halides, or various alkoxides are also used in the oxide insulation of the present embodiment. Can be included in the body.
  • a typical oxide insulator is an oxide composed of lanthanum (La) and zirconium (Zr). This oxide can be employed as the gate insulator 34.
  • the first solution in which lanthanum acetate (III) is dissolved in propionic acid (solvent) containing an aliphatic polycarbonate and the second solution in which zirconium butoxide is dissolved in propionic acid (solvent) containing an aliphatic polycarbonate are used.
  • a precursor solution for a gate insulator as a starting material mixed with the first solution and the second solution for example, in the atmosphere, for a predetermined time (for example, 10 minutes to 1 hour), about 450 ° C. to about 550 ° C.
  • An oxide insulator can be formed by performing the baking process which heats by.
  • the pattern of the gate insulator precursor layer 32 is formed using a printing method, particularly when the oxide insulator precursor employing the aliphatic polycarbonate described in the first embodiment is used. In this case, a good pattern can be formed. More specifically, since the spinnability of the aliphatic polycarbonate in the precursor of the oxide insulator can be appropriately controlled, a favorable pattern of the precursor layer 32 for the gate insulator can be formed. it can.
  • silicon oxide or silicon oxynitride can be applied instead of the gate insulator 34 described above.
  • the gate insulator 34 can be formed on the gate electrode 24 by a known CVD method or the like.
  • a metal compound that becomes an oxide semiconductor when oxidized (hereinafter also simply referred to as an “oxide semiconductor”) is an aliphatic polycarbonate.
  • An oxide semiconductor precursor layer (hereinafter also referred to as an “oxide semiconductor precursor layer”) dispersed in a solution containing sinter is formed.
  • a channel precursor solution as a starting material on the gate insulator 34 using a low energy manufacturing process (for example, a printing method or a spin coating method)
  • a channel precursor layer 42 can be formed.
  • the channel precursor layer 42 is subjected to a baking process described later, whereby a channel 44 is formed as shown in FIG. 10A.
  • an example of the above-described oxide semiconductor is a material having a structure in which a ligand is coordinated to a metal that becomes an oxide semiconductor when oxidized (typically a complex structure).
  • a metal organic acid salt, a metal inorganic acid salt, a metal halide, or various metal alkoxides can be included in the material constituting the oxide semiconductor of this embodiment.
  • an example of a typical oxide semiconductor is indium-zinc oxide.
  • a solution obtained by dissolving indium acetylacetonate and zinc chloride in propionic acid containing an aliphatic polycarbonate also referred to as “InZn solution”
  • An indium-zinc oxide (hereinafter also referred to as “InZnO”) that is an oxide semiconductor can be formed by performing a baking step of heating at a temperature of from about 550 ° C. to 550 ° C.
  • the channel 44 can be formed.
  • metals that become oxide semiconductors when oxidized are indium, tin, zinc, cadmium, titanium, silver, copper, tungsten, nickel, indium-zinc, indium-tin, indium-gallium-zinc, antimony -One or more selected from the group consisting of tin and gallium-zinc.
  • indium-zinc is preferably employed as a metal that becomes an oxide semiconductor when oxidized.
  • the pattern of the channel precursor layer 42 is formed using a printing method.
  • Various patterns can be formed. More specifically, since the spinnability of the aliphatic polycarbonate in the channel precursor solution can be appropriately controlled, a good pattern of the channel precursor layer 42 can be formed.
  • the channel 44 that is an oxide semiconductor layer is formed, for example, the manufacture of the metal oxide disclosed in Patent Document 4 that has been created so far by the present inventors.
  • the invention according to the method can be adopted as a preferred example.
  • a typical method for forming the channel 44 is to form a precursor of an oxide semiconductor in which a metal compound that becomes an oxide semiconductor when oxidized in a solution containing an aliphatic polycarbonate is dispersed on or above the substrate.
  • a firing step in which the precursor layer is fired at a temperature equal to or higher than a second temperature which is an exothermic peak value in the differential thermal analysis (DTA) of the precursor or the metal compound described above. including.
  • DTA differential thermal analysis
  • FIG. 11 shows an oxide semiconductor precursor for forming a channel of a thin film transistor.
  • the oxide precursor of the first embodiment is an example of a constituent material containing indium-zinc. It is a graph which shows the TG-DTA characteristic of a solution.
  • FIG. 12 shows TG-DTA characteristics of a polypropylene carbonate solution which is an example of a solution (a representative example of an etching mask precursor) containing only aliphatic polycarbonate as a solute for forming a constituent element (for example, channel) of a thin film transistor. It is a graph which shows an example.
  • the continuous line in each figure is a thermogravimetric (TG) measurement result
  • the dotted line in a figure is a differential heat (DTA) measurement result.
  • TG thermogravimetric
  • DTA differential heat
  • thermogravimetry in FIG. 11 a remarkable decrease in weight, which is considered to be evaporation of the solvent, was observed near 120 ° C. Further, as shown in (X) of FIG. 11, an exothermic peak in the differential thermal measurement graph of the InZn solution was confirmed at around 330 ° C. Therefore, it is confirmed that indium and zinc are bonded to oxygen at around 330 ° C. Therefore, this 330 ° C. corresponds to the second temperature described above.
  • thermogravimetry in FIG. 12 from about 140 ° C. to about 190 ° C., a significant decrease in weight due to partial decomposition or disappearance of the polypropylene carbonate itself was observed with the disappearance of the solvent of the polypropylene carbonate solution. . In addition, it is thought that polypropylene carbonate has changed into carbon dioxide and water by this decomposition. From the results shown in FIG. 12, it was confirmed that the aliphatic polycarbonate was decomposed and removed by 90 wt% or more at around 190 ° C. Accordingly, this 190 ° C. corresponds to the first temperature described above.
  • the aliphatic polycarbonate is decomposed by 95 wt% or more near 250 ° C., and almost all (99 wt% or more) the aliphatic polycarbonate is decomposed near 260 ° C. Therefore, by adopting an etching mask precursor containing an aliphatic polycarbonate that substantially or substantially disappears or is removed by performing a heat treatment at 250 ° C. or higher (more preferably 260 ° C. or higher), the accuracy is high.
  • the influence on the layer to be typically, the adverse effect on the electrical characteristics
  • the first temperature is, for example, a wavelength of 185 nm and 254 nm using an ultraviolet ray (for example, a known low-pressure mercury lamp (SAMCO, model: UV-300H-E)).
  • an ultraviolet ray for example, a known low-pressure mercury lamp (SAMCO, model: UV-300H-E)
  • SAMCO known low-pressure mercury lamp
  • an organic substance such as the above organic solvent or the above complex is irradiated while irradiating the precursor of each oxide layer and / or the etching mask with ultraviolet rays. It is preferable to heat to above the temperature at which the organic part of the structure or the aliphatic polycarbonate is decomposed. This is because the finally formed oxide layer preferably contains as little as possible the organic part, solvent or aliphatic polycarbonate in the solute. In the above heating step, it is not always necessary to irradiate the ultraviolet rays even after the organic matter is decomposed, but the precursors and / or etching masks of the respective oxide layers are irradiated with ultraviolet rays.
  • heating at a temperature higher than the temperature at which the oxide layer is formed is a more preferable embodiment.
  • the wavelength of the aforementioned ultraviolet light is not particularly limited. Similar effects can be achieved even with ultraviolet rays other than 185 nm or 254 nm.
  • the temperature at which the above-described metal constituting the oxide semiconductor is combined with oxygen and is a temperature at which the exothermic peak value in the differential calorimetry (DTA) (second temperature) is the temperature at which the aliphatic polycarbonate is decomposed. It is preferable that the temperature of the aliphatic polycarbonate is sufficiently high, or the temperature at which the aliphatic polycarbonate is decomposed is sufficiently lower than the temperature that is the exothermic peak value (second temperature). In such a case, the aliphatic polycarbonate can be decomposed with higher accuracy by 90 wt% or more (more preferably 95 wt% or more, further preferably 99 wt% or more, most preferably 99.9 wt% or more).
  • the heat treatment is performed at a temperature at which the aliphatic polycarbonate is decomposed (typically, the first temperature or higher, preferably 180 ° C. or higher, more preferably 250 ° C. or higher, more preferably 260 ° C. or higher),
  • the etching mask is lost or removed with high accuracy.
  • oxides not limited to semiconductors, including conductors or insulators
  • the difference between the first temperature and the second temperature is 10 ° C. or higher, more preferably 50 ° C. or higher, and further preferably 100 ° C. or higher. Residue of impurities typified by carbon impurities therein is suppressed.
  • phase state of the oxide semiconductor is not particularly limited.
  • it may be crystalline, polycrystalline, or amorphous.
  • a dendritic or scaly crystal is also one phase state that can be employed in the present embodiment.
  • shape for example, spherical shape, elliptical shape, rectangular shape
  • a channel precursor solution is applied onto the gate insulator 34 by using a low energy manufacturing process (for example, spin coating method).
  • a precursor layer 42 is formed.
  • the thickness (wet) of the channel precursor layer 42 which is an oxide semiconductor precursor layer is not particularly limited.
  • the channel precursor layer 42 having a thickness of about 600 nm is formed by heating at a predetermined time (for example, 3 minutes), for example, 150 ° C.
  • This first pre-baking step is mainly intended to promote gelation of the channel precursor layer 42 on the gate insulator 34 and to fix it.
  • the pattern of the etching mask 80 formed from the etching mask precursor of the first embodiment is converted into a channel precursor using a screen printing method. It forms on the layer 42 (etching mask formation process).
  • FIG. 9C and FIGS. 9E and 10B described later are examples (planar photographs) obtained by extracting only the “channel precursor layer pattern formation and firing step” and forming images for easier understanding.
  • a pattern of the channel precursor layer 42 is formed using the etching mask 80.
  • the etching mask 80 and the channel precursor layer 42 are contacted with a commercially available etching solution (model “ITO-02” manufactured by Kanto Chemical Co., Ltd.), which is a solution capable of dissolving the oxide precursor layer ( Typically, it is immersed in the etching solution) (contact process).
  • a commercially available etching solution model “ITO-02” manufactured by Kanto Chemical Co., Ltd.
  • the channel precursor layer 42 that is not protected by the pattern of the etching mask 80 is etched and removed.
  • the channel precursor layer 42 protected by the pattern of the etching mask 80 remains on the gate insulator 34 without being etched.
  • a second pre-baking step (first temperature) is performed at a predetermined temperature (first temperature). Drying step) is performed.
  • the aliphatic polycarbonate is heated at a first temperature that decomposes 90 wt% or more.
  • This second pre-baking step and the main baking (baking step) described later combine with the etching mask 80 itself and finally the carbon impurity in the channel precursor layer 42 due to the aliphatic polycarbonate in particular.
  • the impurities represented by can be almost eliminated.
  • the first temperature is a temperature at which 95 wt% or more of the aliphatic polycarbonate is decomposed. It is preferable that the temperature is such that the aliphatic polycarbonate is decomposed by 99 wt% or more.
  • the second pre-baking step is not limited to room temperature and normal pressure drying.
  • a treatment such as heating or decompression may be performed as long as it does not adversely affect the substrate, the gate insulator, etc., such as heat drying, vacuum drying, and vacuum heating drying.
  • the second pre-baking step is a step that can affect the increase or decrease in the surface roughness of the oxide semiconductor layer, but the behavior during drying differs depending on the solvent. Therefore, the second pre-baking step is appropriately performed depending on the type of the solvent. Conditions such as process temperature (first temperature) are selected.
  • the channel precursor layer 42 is heated for a predetermined time (for example, 30 minutes), for example, in the range of 180 ° C. or higher and 300 ° C. or lower.
  • a predetermined time for example, 30 minutes
  • oxygen-containing atmosphere oxygen-containing atmosphere
  • the etching mask 80 and the channel precursor layer 42 are, for example, in an oxygen-containing atmosphere for a predetermined time at 180 ° C. or higher, more preferably 250 ° C. or higher, more preferably. In addition to heating at 300 ° C. or higher, in terms of electrical properties, heating is preferably performed in a range of 500 ° C. or higher. As a result, a channel 44 that is an oxide semiconductor layer is formed on the gate insulator 34 as shown in FIGS. 10A and 10B.
  • the etching mask 80 is also decomposed and / or removed by the main baking process (heating process of the present embodiment), in this embodiment, the etching mask is removed together with the formation of the oxide layer. (Oxide layer forming step). Therefore, by using the etching mask 80, it is possible to realize a significant reduction in the manufacturing process.
  • the final thickness of the oxide semiconductor layer after the main baking is typically 0.01 ⁇ m or more and 10 ⁇ m or less. In particular, even when a very thin layer of about 0.01 ⁇ m (that is, about 10 nm) is formed, it is worthy of special mention that cracks are hardly generated.
  • the set temperature in the firing step is a temperature at which the metal and oxygen are bonded after the ligand of the oxide semiconductor is decomposed in the formation process of the oxide semiconductor, and the differential thermal measurement method described above ( A temperature (second temperature) equal to or higher than the temperature of the exothermic peak value in DTA) is selected.
  • a temperature (second temperature) equal to or higher than the temperature of the exothermic peak value in DTA
  • the second temperature is higher by 10 ° C. or more than the first temperature is more accurate, and is a preferable embodiment from the viewpoint of suppressing the remaining impurities typified by carbon impurities in the oxide semiconductor layer after the main baking. It is.
  • the second temperature is higher than the first temperature by 50 ° C. or more, it is possible to suppress the remaining of such impurities with higher accuracy.
  • the second temperature is higher than the first temperature by 100 ° C. or more. Is the most preferred example.
  • the maximum difference between the second temperature and the first temperature is not particularly limited.
  • the aliphatic polycarbonate is substantially decomposed by heating at the first temperature described above, and in the subsequent baking step (main baking) at the second temperature, It is considered that almost no decomposition process occurs, and a reaction that is almost specific to the bond between metal and oxygen occurs. That is, ideally, different roles of the first temperature and the second temperature are considered to make it difficult to generate cracks even in a very thin layer as described above.
  • FIG. 13 is a graph showing the rectification characteristics of the channel 44 constituting a part of the thin film transistor 100 in the present embodiment.
  • rectification as a semiconductor can be obtained. This is because, in the pattern formation of the oxide layer, it is possible to achieve highly accurate removal of the etching mask 80 by the heating process, in other words, highly accurate removal of impurity residues that affect the electrical characteristics of the semiconductor. It is believed that there is.
  • the etching mask 80 of the present embodiment has no influence on the so-called back channel region that may occur when the resist is peeled off when the etching mask 80 of the present embodiment is used. This is an advantage.
  • the mixing ratio (mass ratio) of indium and zinc adopted in this graph is 1: 1 by adjusting the molar ratio of indium acetylacetonate and zinc chloride per kg.
  • the mixing ratio of indium and zinc is not limited to this ratio.
  • the inventors of the present application have confirmed the rectification property as the channel 44 even when the ratio of indium is 2 when zinc is 1. Therefore, the oxide layer (channel 44) formed by the heating step of the oxide layer manufacturing method of the present embodiment and protected by the etching mask 80 is in contact with the gate electrode 24 with the gate insulator 34 interposed therebetween. Including the oxide layer forming step formed in this manner is a preferred embodiment as a method for manufacturing a thin film transistor.
  • the heating method is not particularly limited in any of the first pre-baking step, the second pre-baking step, and the main baking (baking step).
  • a conventional heating method using a thermostat or an electric furnace may be used, but in particular, when the substrate is vulnerable to heat, the oxide semiconductor layer is heated by ultraviolet heating, electromagnetic wave heating, or lamp heating so that the heat is not transmitted to the substrate. It is preferable to use a method of heating only.
  • the aliphatic polycarbonate can not only reduce or eliminate the decomposition products remaining in the oxide semiconductor layer after the calcination decomposition, but also a dense oxide. This can contribute to the formation of the semiconductor layer. Therefore, employing an aliphatic polycarbonate is a preferred aspect of this embodiment.
  • the thickness of the layer used for the channel is 0.01 ⁇ m (that is, 10 nm) or more and 1 ⁇ m or less, so that the final thickness of the channel 44 can be controlled. It can be said that the semiconductor precursor and the oxide semiconductor layer are suitable as materials for forming the thin film transistor.
  • the oxide semiconductor precursor of the present embodiment is employed, even if an oxide semiconductor precursor layer having a considerably thick film (for example, 10 ⁇ m or more) is initially formed, an aliphatic layer is formed by a subsequent baking step. Since polycarbonate or the like is decomposed with high accuracy, the thickness of the layer after firing can be extremely thin (for example, 10 nm to 100 nm). Furthermore, it is worthy of special mention that even such a thin layer will not cause cracks or be suppressed with high accuracy. Therefore, the oxide semiconductor precursor and the oxide semiconductor layer of the present embodiment, which can sufficiently secure the initial thickness and can finally form an extremely thin layer, can be obtained by a low energy manufacturing process or a known method. It was found that it is very suitable for the process by stamping. In addition, the use of an oxide semiconductor layer in which even such an extremely thin layer does not generate cracks or is suppressed with high accuracy greatly enhances the stability of the thin film transistor 100 of this embodiment.
  • the electrical characteristics of the oxide semiconductor layer that forms the channel are appropriately adjusted by appropriately adjusting the type and combination of the above-described oxide semiconductors and the mixing ratio of the oxide semiconductor and the aliphatic polycarbonate. Stability can be improved.
  • a layer of the etching mask 80 of this embodiment patterned on the channel 44 was formed.
  • an ITO layer 50 is formed on the channel 44 and the etching mask 80 by a known sputtering method.
  • the target material of the present embodiment is, for example, ITO containing 5 wt% tin oxide (SnO 2 ), and is formed under conditions of room temperature to 100 ° C.
  • the etching mask 80 is removed by heating to about 250 ° C.
  • the drain electrode 56 and the source electrode 58 of the ITO layer 50 are formed on the channel 44.
  • the thin film transistor 100 is manufactured.
  • utilizing a known resist layer pattern using a conventional photolithography method is another aspect that can be employed.
  • the drain electrode and the paste electrode are used by using paste silver (Ag) or paste ITO (indium tin oxide), for example, by a printing method.
  • the method of forming the pattern of the source electrode is one aspect that can be adopted.
  • a pattern of a drain electrode and a source electrode of gold (Au) or aluminum (Al) formed by a known vapor deposition method may be employed.
  • ⁇ Modification (2) of the second embodiment> The thin film transistor of this embodiment is the same as that of the thin film transistor 100 of the second embodiment except that the etching process using the etching mask 80 is performed after the channel baking process (main baking) in the second embodiment.
  • the process and configuration are the same. Therefore, the description which overlaps with 1st or 2nd embodiment is abbreviate
  • This embodiment employs a step of forming a pattern of the channel 44 after the channel 44 that is an oxide semiconductor layer is formed. Therefore, in this modification (1), the oxide precursor layer that becomes an oxide layer when oxidized is not etched as in the second embodiment.
  • FIG. 16A and FIG. 16B are schematic cross-sectional views showing one process of a method of manufacturing a thin film transistor that is an example of a semiconductor element.
  • the structure shown by FIG. 9A of 2nd Embodiment is formed.
  • the structure shown in FIG. 10A of the second embodiment is formed.
  • this modified example (1) it is an embodiment that can adopt the channel 44 after the main baking before performing the etching process.
  • the pattern of the etching mask 80 described in the second embodiment is formed on the channel 44.
  • the etching mask 80 and the channel 44 are brought into contact (typically immersed in the etching solution) with a solution that dissolves the oxide layer, which is the channel 44, and then heated to a temperature at which the etching mask 80 is decomposed. Is done.
  • FIG. 16B a channel 44 in which a pattern is formed is obtained.
  • the oxide layer (channel 44) protected by the etching mask 80 (more specifically, the pattern of the etching mask 80) is rectified as a semiconductor. Can have sex.
  • the contact step of contacting with a predetermined etching solution which is a solution for dissolving the oxide precursor layer or a solution for dissolving the oxide layer.
  • a predetermined etching solution which is a solution for dissolving the oxide precursor layer or a solution for dissolving the oxide layer.
  • the second embodiment is not limited to the processing using the etching solution.
  • it is not protected by the etching mask 80 using an exposure step of exposing to a known gas plasma for etching the channel precursor layer 42 which is the oxide semiconductor precursor layer of the second embodiment.
  • Etching the channel precursor layer 42 in the region is also an embodiment that can be employed. As a result, the channel precursor layer 42 in the region not exposed to the plasma becomes the channel 44 by performing a heating process thereafter.
  • the etching mask 80 can be decomposed and / or removed by the heating process. As a result, it is possible to realize the decomposition and / or removal of the etching mask 80 together with the formation of the channel 44 by one treatment (heating step).
  • the modification (2) can also be applied to the example described in the modification (1) of the second embodiment. Specifically, after the channel 44 that is an oxide semiconductor layer is formed, a step of forming a pattern of the channel 44 by an exposure step of exposing to plasma is another embodiment that can be adopted. In any case described above, the channel 44 in which the pattern is formed can have a rectifying property as a semiconductor.
  • the etching mask 80 formed by the screen printing method is used to form the pattern of the channel 44, but other layers (for example, a layer of an oxide conductor or a layer) Utilizing an etching mask 80 formed by a screen printing method to form a pattern of the oxide insulator layer) is another aspect that can be employed. Even when the etching mask 80 is employed for the other layers described above, the oxide conductor layer on which the pattern is formed can have conductivity, and the oxide insulator layer on which the pattern is formed Insulation can be provided.
  • each above-mentioned embodiment is not limited to those examples.
  • the etching masks of the above-described embodiments can be used.
  • FIG. 17A is a plane photograph showing the result of etching the chromium (Cr) layer using the etching mask of the first embodiment.
  • FIG. 17B is a plan photograph showing a result of etching the chromium (Cr) layer using an etching mask (known resist mask) as a comparative example of FIG. 17A.
  • FIG. 18 is a plan photograph showing a result of etching the silicon dioxide layer (SiO 2 ) using the etching mask of the first embodiment.
  • the residue of the etching mask was not visually recognized. Note that substantial changes of the silicon dioxide according to the etching process the electrical properties of the (SiO 2) layer (insulating) was not confirmed. In addition, the same effect as described above is confirmed even when other insulators are etched. Therefore, even if the object of the etching process is an insulator, the etching mask after the etching process can be removed with high accuracy by employing the etching mask of the first embodiment.
  • each above-mentioned embodiment is not limited to the structure.
  • a thin film transistor having a staggered structure but also a thin film transistor having a so-called planar structure in which a source electrode, a drain electrode, and a channel are arranged on the same plane can achieve the effects of the above-described embodiments. The same effect can be achieved.
  • the channel (that is, the oxide semiconductor layer) of each of the above-described embodiments may be formed on a base material or a substrate.
  • the present invention relates to a field of electronic devices including portable terminals including various semiconductor elements, information appliances, sensors, other known electrical appliances, MEMS (Micro Electro Mechanical Systems) or NEMS (Nano Electro Mechanical Systems), medical equipment, and the like. Can be widely applied to etc.
  • portable terminals including various semiconductor elements, information appliances, sensors, other known electrical appliances, MEMS (Micro Electro Mechanical Systems) or NEMS (Nano Electro Mechanical Systems), medical equipment, and the like. Can be widely applied to etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Plasma & Fusion (AREA)
  • Thin Film Transistor (AREA)
  • Polyesters Or Polycarbonates (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

本発明の1つのスクリーン印刷用のエッチングマスク80は、脂肪族ポリカーボネートを含む。また、本発明の1つの酸化物層(チャネル44)の製造方法は、脂肪族ポリカーボネートを含むエッチングマスク80のパターンを形成するエッチングマスク形成工程と、そのエッチングマスク形成工程の後、エッチングマスク80によって保護されていない酸化物層(チャネル44)を溶解する溶液に接触させる接触工程と、その接触工程の後、酸化物層(チャネル44)及びエッチングマスク80をエッチングマスク80が分解する温度以上に加熱する加熱工程とを含む。

Description

エッチングマスク、エッチングマスク前駆体及び酸化物層の製造方法並びに薄膜トランジスタの製造方法
 本発明は、エッチングマスク、エッチングマスク前駆体及び酸化物層の製造方法並びに薄膜トランジスタの製造方法に関する。
 従来、電子デバイスの一例である、薄膜トランジスタのチャネル層として、主に、多結晶シリコン膜、又は非晶質シリコン膜が用いられてきた。しかしながら、多結晶シリコン膜の場合、多結晶粒子界面で起こる電子の散乱により、電子移動度が制限され、結果としてトランジスタ特性にばらつきが生じていた。また、非晶質シリコン膜の場合、電子移動度が極めて低く、時間による素子の劣化が発生し、素子の信頼性が極めて低くなるという問題がある。そこで、電子移動度が非晶質シリコン膜より高く、且つ多結晶シリコン膜よりトランジスタ特性のばらつきが少ない、酸化物半導体に関心が集まっている。また、酸化物半導体のみならず、酸化物からなる酸化物導電体又は酸化物絶縁体は、例えば、酸化物のみによる電子デバイスの実現のためには不可欠な技術要素であるため、それらに対する産業界の関心も非常に高い。
 最近では、フレキシブルな樹脂基板上に電子デバイスを、印刷法等の低エネルギー製造プロセスで作製しようという試みが盛んになされている。印刷法等を用いることにより、直接、基板上に半導体層をパターニングできる結果、パターニングのためのエッチング処理工程を省くことができるという利点がある。
 例えば、特許文献1~3にあるように、導電性高分子や有機半導体を用いて塗布フレキシブル電子デバイスを作製する試みが行われている。また、本願出願人は、前述の問題点の一部を解決する技術を開示している(特許文献4)。
特開2007-134547号公報 特開2007-165900号公報 特開2007-201056号公報 国際公開第WO2015/019771号パンフレット
 様々な形態の情報端末や情報家電が産業界及び消費者に求められる中、半導体は、より高速に動作し、長期間安定であり、且つ低環境負荷であることが必要となる。しかしながら、従来技術では、例えば、真空プロセスやフォトリソグラフィー法を用いたプロセスといった比較的長時間、及び/又は高価な設備を要するプロセスを採用するのが一般的であるため、原材料や製造エネルギーの使用効率が非常に悪くなる。これは、工業性ないし量産性の観点から好ましくない。一方、現状では、これまで主流として用いられているシリコン半導体又はその他の半導体に対して、グラビア印刷、スクリーン印刷、オフセット印刷、インクジェット印刷などの印刷法による層を形成することは極めて困難である。また、特許文献1~3に記載された導電性高分子や有機半導体を採用した場合であっても、その電気物性や安定性は未だ不十分である。なお、本願における「層」は、層のみならず膜をも含む概念である。逆に、本願における「膜」は、膜のみならず層をも含む概念である。
 ところで、上述の各種の印刷法、特に半導体素子及び電子デバイスに代表される各種デバイスへの適用可能性が高いスクリーン印刷法による層の形成は、そのような層を備える該デバイスのフレキシブル化、並びに上述の工業性ないし量産性の観点から、現在、産業界において非常に注目を集めている。
 しかしながら、例えば、印刷法(特に、スクリーン印刷法)によって形成される層の厚さと半導体素子に代表される上述の各種デバイスの製造の際に要求される層(例えば、エッチングマスク)の厚さ(代表的には、サブミクロン)とは違いがある。具体的には、印刷法を用いたパターニングの際には比較的厚い層が形成されるが、エッチングマスクに要求される厚みは、エッチングの対象とする膜の材質又はその厚みによって大きく変動し得る。
 ところで、印刷法に用いられるペースト又は溶液には、パターニングを行うための好適な粘度が存在することから、高分子化合物によってその粘度が調整されている。本願発明者らは、各種デバイスの製造の際に用いられるエッチングマスクについて、脂肪族ポリカーボネートを含むペースト又は溶液を用いて例えばスクリーン印刷法によって形成するときに、その脂肪族ポリカーボネートの曳糸性を適切に制御できないという状況が生じ得ることを確認した。従って、当該各種デバイスの製造工程に利用可能な、又は当該各種デバイスの製造に適した良好なエッチングマスクのパターンを形成することができないという問題が生じ得る。より具体的な例を挙げると、印刷法によってエッチングマスクの前駆体(以下、「エッチングマスク前駆体」ともいう)の層を形成する過程において、エッチング対象となる層上に形成される将来的にエッチングマスクのパターンとなる該前駆体の層から、一部の該前駆体が糸状に曳かれることにより、所望のパターンを崩してしまうという問題が生じ得る。
 また、例えば印刷法によって、上述のエッチングマスク前駆体のパターンを形成する際には、一旦形成されたパターンの形状が、少なくともエッチング対象材料又は領域が除去されるまでは維持される必要がある。従って、経時変化が生じにくいパターンの形成も、特に印刷法においては求められる課題の1つといえる。
 一方、上述のような、半導体素子に代表される各種デバイスを構成する薄い層を、その機能を損なわずにパターンを形成するためのエッチングマスクを実現することも、その薄い層を実現させるための要素技術の一つといえる。
 本願発明者らは、これまでに進めてきた、液体材料から形成される種々の金属酸化物の研究開発に加えて、そのような金属酸化物のパターンの形成を確度高く実現するとともに、その金属酸化物の機能を可能な限り損なわずに保護し得るエッチングマスクの実現に向けて、鋭意検討と分析を重ねた。より具体的には、印刷法(特に、スクリーン印刷法)によってパターンを形成することが可能なエッチングマスクとしての機能を備えるだけでなく、そのエッチングマスクを用いることによって、確度高い各種の層の機能保持又は向上、あるいはその層の製造工程の削減を実現し得る要素技術及びその要素技術を用いた各種デバイスの実現に向けて、鋭意検討と分析を重ねた。
 本願発明者らによるこれまでの検討及び分析において、上述のペースト又は溶液から得られるゲル状態の層(以下、「ゲル層」ともいう)がパターンを形成する過程について調査された。その結果、ゲル層を構成する脂肪族ポリカーボネートの分解に至る前、すなわち脂肪族ポリカーボネートが分解する温度によって加熱される前の段階においては、脂肪族ポリカーボネート自身又は脂肪族ポリカーボネートを含むペースト又は溶液の特性が、特にスクリーン印刷法においてゲル層のパターンを形成する際に、パターンの高さ、パターンの転写状態、又は曳糸性に少なからず影響しているという知見が得られた。但し、本願においてはスクリーン印刷に適したゲル層を対象とするため、本願のゲル層は、より液状に近いゲル層とも言い換えられる。
 多くの試行錯誤と分析の結果、本願発明者らは、特定の範囲の分子量、又は特定の曳糸性を有する脂肪族ポリカーボネートを含むことが、特にスクリーン印刷法に適したエッチングマスクを構成し得る所望の厚みを有するパターンの実現に寄与し得ることを確認した。加えて、本願発明者らは、上述の厚みを制御し得るゲル層の所望のパターンが、スクリーン印刷法に代表される低エネルギー製造プロセスによって容易に形成することができるという知見を得た。
 さらに興味深いことに、エッチング対象が酸化物半導体であった場合には、従来のレジストマスクをパターン形成のためのエッチングマスクとして活用したときには、半導体に特有の電気的性質である整流性が無くなる、又は損なわれてしまうことが明らかとなった。しかしながら、上述の厚みを制御し得るゲル層の所望のパターンをエッチングマスクとして活用すると、そのエッチングマスクによって保護されていた酸化物半導体の整流性を確度高く確認することができるとの知見が得られた。なお、本発明のエッチング対象は、酸化物半導体のみならず、酸化物導電体又は酸化物絶縁体、あるいはその他の半導体材料、導電体材料、及び絶縁体材料が含まれる。
 従って、例えばスクリーン印刷法によっては形成し難い酸化物前駆体である出発材を、酸化物が形成される温度以上、すなわち脂肪族ポリカーボネートを含む溶液中に分散させた元素と酸素とが結合する温度以上に焼成することによって形成される酸化物(例えば、金属酸化物)を、上述のエッチングマスクの採用とともに採用することは、より好適な一態様となる。なぜならば、その酸化物が形成される温度が前述のエッチングマスクが分解する温度よりも高いために、その酸化物が形成されるときには、既に該エッチングマスクが確度高く分解して除去されるためである。その結果、少なくとも以下の(1)及び(2)の効果を奏し得る。
 (1)該エッチングマスクを除去する工程を別途行う必要がなくなるという、工程削減の効果
 (2)例えば酸素プラズマへの曝露又はレジストマスク除去用の薬液への接触(代表的には、浸漬)によるその酸化物の物性への影響を抑制又は排除し得るという、該酸化物の特に電気的特性の保持又は向上の効果。
 すなわち、上述の各視点及び工夫は、低エネルギー製造プロセス(特にスクリーン印刷法)を用いて形成した、厚みを制御し得るエッチングマスクを用いて製造される半導体素子及び電子デバイスに代表される各種デバイスの性能、並びにそれらの製造技術のより一層の向上に貢献し得る。
 本発明は、上述の各視点と数多くの分析に基づいて創出された。
 なお、本願においては、「液体からゲル状態に至る過程」は、代表的な例で言えば、熱処理によって溶媒をある程度(代表的には、溶媒全体に対する質量比において80%以上)除去するが、脂肪族ポリカーボネートが実質的に分解されていない状況をいう。
 本発明の1つのスクリーン印刷用のエッチングマスクは、脂肪族ポリカーボネートを含む。
 また、本発明の1つのスクリーン印刷用のエッチングマスク前駆体は、脂肪族ポリカーボネートを含む。
 上述のエッチングマスク前駆体及びエッチングマスクについては、脂肪族ポリカーボネートという材料が、スクリーン印刷法によって形成することができるエッチングマスクとして、その機能を発揮し得ること自身が、極めて有用、かつ特筆すべき効果といえる。さらに、脂肪族ポリカーボネートの分解温度以上に加熱することにより、容易にエッチングマスクを除去することが可能となる。従って、半導体素子及び電子デバイスに代表される各種デバイスの製造工程の削減に大きく貢献し得る。
 なお、上述のスクリーン印刷用エッチングマスクの好適な例の一つは、分子量が6千以上40万以下の脂肪族ポリカーボネートの比率が該脂肪族ポリカーボネート全体の80質量%以上である、その脂肪族ポリカーボネートを含むエッチングマスク前駆体から形成される。また、上述のスクリーン印刷用のエッチングマスクの好適な例の他の一つは、ティー・エイ・インスツルメント社製レオメーター(AR-2000EX)を用いて測定したゼロせん断粘度ηの脂肪族ポリカーボネートの溜まり中に、ポリテトラフルオロエチレン(polytetrafluoroethylene)製の直径がDである円柱棒を沈めた後に、その円柱棒を速度vで引き上げたときの、前述の脂肪族ポリカーボネートの溜まりの最表面からの曳糸長Lが測定された場合に、L/(D×v×η)の値が0.25mm-1Pa-1以上であるその脂肪族ポリカーボネートを含むエッチングマスク前駆体から形成される。
 また、上述のスクリーン印刷用エッチングマスク前駆体の好適な例の一つは、分子量が6千以上40万以下の前記脂肪族ポリカーボネートの比率が該脂肪族ポリカーボネート全体の80質量%以上である、該脂肪族ポリカーボネートを含む。また、上述のスクリーン印刷用のエッチングマスク前駆体の好適な例の他の一つは、ティー・エイ・インスツルメント社製レオメーター(AR-2000EX)を用いて測定したゼロせん断粘度ηの脂肪族ポリカーボネートの溜まり中に、ポリテトラフルオロエチレン(polytetrafluoroethylene)製の直径がDである円柱棒を沈めた後に、その円柱棒を速度vで引き上げたときの、前述の脂肪族ポリカーボネートの溜まりの最表面からの曳糸長Lが測定された場合に、L/(D×v×η)の値が0.25mm-1Pa-1以上である該脂肪族ポリカーボネートを含む。
 上述のスクリーン印刷用エッチングマスクの好適な例、あるいは、上述のスクリーン印刷用エッチングマスク前駆体の好適な例を採用すれば、より確度高く、脂肪族ポリカーボネートの曳糸性を適切に制御することが可能となる。その結果、エッチングマスクの前駆体又はエッチングマスクについて良好なパターンを得ることができる。なお、本願発明者らの研究と分析によれば、エッチングマスク前駆体及びエッチングマスクが含有する脂肪族ポリカーボネートが上述の計算式に基づく数値範囲を満足することにより、例えば印刷法によって形成される層について、その脂肪族ポリカーボネートの曳糸性を適切に制御し得るという知見が得られた。従って、上述の数値範囲を満たせば、エッチングマスクの前駆体又はエッチングマスクについて良好なパターンを得ることができる。
 また、本発明の1つの酸化物層の製造方法は、酸化物層上に、スクリーン印刷法によって脂肪族ポリカーボネートを含むエッチングマスクのパターンを形成するエッチングマスク形成工程と、そのエッチングマスク形成工程の後、そのエッチングマスクによって保護されていない前述の酸化物層を溶解する溶液に接触させる接触工程と、その接触工程の後、前述の酸化物層及び前述のエッチングマスクをそのエッチングマスクが分解する温度以上に加熱する加熱工程とを含む。
 また、本発明のもう1つの酸化物層の製造方法は、酸化されたときに酸化物層となる酸化物前駆体層上に、スクリーン印刷法によって脂肪族ポリカーボネートを含むエッチングマスクのパターンを形成するエッチングマスク形成工程と、そのエッチングマスク形成工程の後、そのエッチングマスクによって保護されていない前述の酸化物前駆体層を溶解する溶液に接触させる接触工程と、その接触工程の後、前述の酸化物前駆体層及び前述のエッチングマスクを、前述の酸化物層が形成される温度以上に加熱する加熱工程とを含む。
 また、本発明のもう1つの酸化物層の製造方法は、酸化物層上に、スクリーン印刷法によって脂肪族ポリカーボネートを含むエッチングマスクのパターンを形成するエッチングマスク形成工程と、そのエッチングマスク形成工程の後、そのエッチングマスクによって保護されていない前述の酸化物層をエッチングするプラズマに曝露する曝露工程と、その曝露工程の後、前述の酸化物層及び前述のエッチングマスクをそのエッチングマスクが分解する温度以上に加熱する加熱工程とを含む。
 また、本発明のもう1つの酸化物層の製造方法は、酸化されたときに酸化物層となる酸化物前駆体層上に、スクリーン印刷法によって脂肪族ポリカーボネートを含むエッチングマスクのパターンを形成するエッチングマスク形成工程と、そのエッチングマスク形成工程の後、そのエッチングマスクによって保護されていない前述の酸化物前駆体層をエッチングするプラズマに曝露する曝露工程と、その曝露工程の後、前述の酸化物前駆体層及び前述のエッチングマスクを、前述の酸化物層が形成される温度以上に加熱する加熱工程とを含む。
 上述のそれぞれの酸化物層の製造方法によれば、エッチングマスクを用いてエッチング対象となる領域の酸化物層をエッチングするときに、いわゆる溶液への接触工程(代表的には、浸漬工程)か、プラズマへの曝露工程かにかかわらず、酸化物層のパターン形成後のエッチングマスクの除去を比較的容易な処理である加熱工程によって実現することができる。また、上述の各製造方法において用いられるエッチングマスクが脂肪族ポリカーボネートを含むものであるため、エッチングマスクの分解と除去が確度高く実現され得る。特に、エッチング対象が酸化されたときに酸化物層となる酸化物前駆体層である場合は、該酸化物前駆体層を、該酸化物層が形成される温度以上に加熱する加熱工程を行う過程において、前述のエッチングマスクも分解及び除去されることになる。その結果、該エッチングマスクを除去する工程を別途行う必要がなくなるという、工程削減の特有の効果を奏し得る。
 また、本発明のもう1つの薄膜トランジスタの製造方法は、上述のそれぞれの酸化物層の製造方法の加熱工程によって形成された、上述のエッチングマスクによって保護された該酸化物層を、ゲート絶縁体を介在させてゲート電極に接するように形成する酸化物層形成工程を含む。
 この薄膜トランジスタの製造方法によれば、上述の酸化物層の整流性が確度高く、保持され得る。
 ところで、本出願における「金属酸化物」は、酸化物半導体、酸化物導電体、又は酸化物絶縁体を含む概念である。なお、酸化物半導体、酸化物導電体、及び酸化物絶縁体のそれぞれは、電気伝導性の観点から言えば相対的な概念であるため、厳格な区別を要求されない。仮に同種の金属酸化物であっても、各種デバイスの要求によって、場合によっては酸化物半導体として当業者に認識されることもあれば、酸化物導電体又は酸化物絶縁体として当業者に認識される場合も有り得る。また、本願における「基板」とは、板状体の基礎に限らず、その他の形態の基礎ないし母材を含む。加えて、本願の後述する各実施形態においては、「塗布」とは、低エネルギー製造プロセス、代表的には印刷法によってある基板上に層を形成することをいう。また、本出願における「金属」は、典型元素の金属のみならず遷移金属も含む。
 本発明の1つのスクリーン印刷用のエッチングマスク、及び本発明の1つのスクリーン印刷用のエッチングマスク前駆体は、エッチングマスクとしての機能を十分に発揮し得る。加えて、脂肪族ポリカーボネートの分解温度以上に加熱することにより、容易にエッチングマスクを除去することが可能となる。従って、半導体素子及び電子デバイスに代表される各種デバイスの製造工程の削減に大きく貢献し得る。
 また、本発明の1つの酸化物層の製造方法によれば、エッチングマスクを用いてエッチング対象となる領域の酸化物層をエッチングするときに、いわゆる溶液への接触工程(代表的には、浸漬工程)か、プラズマへの曝露工程かにかかわらず、酸化物層のパターン形成後のエッチングマスクの除去を比較的容易な処理である加熱工程によって実現することができる。
本発明の第1の実施形態における良好なパターンを実現し得た代表的な光学顕微鏡写真の例である。 本発明の第1の実施形態における好ましくないパターンが形成された代表的な光学顕微鏡写真の例である。 本発明の第1の実施形態における良好なパターンが形成された代表的な光学顕微鏡写真の例である。 本発明の第1の実施形態における各試料と曳糸性を示す評価パラメータとの関係を示すグラフである。 本発明の第1の実施形態における各試料と曳糸性を示す評価パラメータとの関係を示すグラフである。 本発明の第1の実施形態における、基材上に脂肪族ポリカーボネートを含む溶液を配置してから30秒後の、2-ニトロプロパンの濃度の変化に対する、基材と該溶液との接触角、及び基材上の該溶液の広がり率を示すグラフである。 本発明の第1の実施形態における、基材上に脂肪族ポリカーボネートを含む溶液を配置してから120秒後の、2-ニトロプロパンの濃度の変化に対する、基材と該溶液との接触角、及び基材上の該溶液の広がり率を示すグラフである。 本発明の第2の実施形態における薄膜トランジスタの製造方法の一過程を示す断面模式図である。 本発明の第2の実施形態における薄膜トランジスタの製造方法の一過程を示す断面模式図である。 本発明の第2の実施形態における薄膜トランジスタの製造方法の一過程を示す断面模式図である。 本発明の第2の実施形態における薄膜トランジスタの製造方法の一過程を示す断面模式図である。 本発明の第2の実施形態における薄膜トランジスタの製造方法の一過程を示す断面模式図である。 本発明の第2の実施形態における薄膜トランジスタの製造方法の一過程を示す断面模式図である。 本発明の図9Bに示す過程を抜粋して画像化した例(平面写真)である。 本発明の第2の実施形態における薄膜トランジスタの製造方法の一過程を示す断面模式図である。 本発明の図9Dに示す過程を抜粋して画像化した例(平面写真)である。 本発明の第2の実施形態における薄膜トランジスタの製造方法の一過程を示す断面模式図である。 本発明の図10Aに示す過程を抜粋して画像化した例(平面写真)である。 本発明の第2の実施形態の薄膜トランジスタのチャネルを形成するための酸化物半導体の前駆体の構成材の一例である、インジウム-亜鉛含有溶液のTG-DTA特性を示すグラフである。 本発明の第2の実施形態の薄膜トランジスタの構成要素を形成するための脂肪族ポリカーボネートのみを溶質とする溶液(エッチングマスク前駆体の代表例)の一例であるポリプロピレンカーボネート溶液のTG-DTA特性を示すグラフである。 本発明の第2の実施形態における薄膜トランジスタの一部を構成するチャネルの整流性を示すグラフである。 本発明の第2の実施形態における薄膜トランジスタの製造方法の一過程を示す断面模式図である。 本発明の第2の実施形態における薄膜トランジスタの製造方法の一過程を示す断面模式図である。 本発明の第2の実施形態の変形例(1)における薄膜トランジスタの製造方法の一過程を示す断面模式図である。 本発明の第2の実施形態の変形例(1)における薄膜トランジスタの製造方法の一過程を示す断面模式図である。 本発明のその他の実施形態(1)における第1の実施形態のエッチングマスクを用いたクロム(Cr)層のエッチング処理結果を示す平面写真である。 図17Aの比較例としてのエッチングマスク(公知のレジストマスク)を用いたクロム(Cr)層のエッチング処理結果を示す平面写真である。 本発明のその他の実施形態(2)における第1の実施形態のエッチングマスクを用いた二酸化シリコン層(SiO)のエッチング処理結果を示す平面写真である。
 10    基板
 24    ゲート電極
 32    ゲート絶縁体用前駆体層
 34    ゲート絶縁体
 42    チャネル用前駆体層
 44    チャネル
 50    ITO層
 56    ドレイン電極
 58    ソース電極
 80    エッチングマスク
 100   薄膜トランジスタ
 本発明の実施形態であるエッチングマスク前駆体、エッチングマスク、酸化物前駆体、酸化物層、半導体素子、及び電子デバイス並びにそれらの製造方法を、添付する図面に基づいて詳細に述べる。なお、この説明に際し、全図にわたり、特に言及がない限り、共通する部分には共通する参照符号が付されている。また、図中、本実施形態の要素は必ずしも互いの縮尺を保って記載されるものではない。さらに、各図面を見やすくするために、一部の符号が省略され得る。
<第1の実施形態>
1.エッチングマスクの前駆体、エッチングマスクの構成、並びにそれらの製造方法
 本実施形態においては、脂肪族ポリカーボネート(不可避不純物を含み得る。以下、同じ)をある溶媒(代表的には、有機溶媒)中に溶解させた状態が、「エッチングマスク前駆体」を構成する。また、本実施形態の「エッチングマスク」は、そのエッチングマスク前駆体を加熱することによって、スクリーン印刷法に用いることができる程度に溶媒が除去された状態(代表的には、「ゲル状態」)を表す。
 本実施形態のエッチングマスク前駆体又はエッチングマスクは、主として脂肪族ポリカーボネートを含むが、脂肪族ポリカーボネート以外の化合物、組成物、又は材料を含み得る。なお、該エッチングマスク前駆体又は該エッチングマスク中の脂肪族ポリカーボネート含有量の下限値は特に限定されないが、代表的には、該脂肪族ポリカーボネートの、溶質の総量に対する質量比が80%以上である。また、該エッチングマスク前駆体又は該エッチングマスク中の脂肪族ポリカーボネート含有量の上限値は特に限定されないが、代表的には、該脂肪族ポリカーボネートの、溶質の総量に対する質量比が100%以下である。加えて、脂肪族ポリカーボネートは、例えばスクリーン印刷法によって形成されたパターンを用いてエッチング対象をエッチング処理した後は、主として加熱工程によって分解及び/又は除去される対象となる。
 また、本実施形態のエッチングマスク前駆体及びエッチングマスクについては、脂肪族ポリカーボネートという材料が、スクリーン印刷法によって形成することができるエッチングマスクとして、その機能を発揮し得ること自身が、極めて有用、かつ特筆すべき効果といえる。上述のとおり、脂肪族ポリカーボネートの分解温度以上に加熱することにより、非常に容易に該エッチングマスクの除去を行うことが可能となることは、半導体素子及び電子デバイスに代表される各種デバイスの製造工程の削減に大きく貢献し得る。また、脂肪族ポリカーボネートの分解温度以上に加熱することにより、確度高く該エッチングマスクの除去を行うためには、エッチングマスク前駆体溶液中、又はエッチングマスク内に、該脂肪族ポリカーボネートの分解温度よりも高い分解温度を有する他の化合物、組成物、又は材料が含有されていないことが好ましい。
 また、本実施形態においては、エッチングマスクの前駆体又はエッチングマスク中の、分子量が6千以上40万以下の脂肪族ポリカーボネートの比率が、該脂肪族ポリカーボネート全体の80質量%以上である。
(脂肪族ポリカーボネート及び該脂肪族ポリカーボネートを含む溶液について)
 次に、本実施形態における脂肪族ポリカーボネートに着目し、該脂肪族ポリカーボネート及び該脂肪族ポリカーボネートを含む溶液(すなわち、「エッチングマスク前駆体」)について詳述する。
 本実施形態においては、熱分解性の良い吸熱分解型の脂肪族ポリカーボネートが用いられる。なお、脂肪族ポリカーボネートの熱分解反応が吸熱反応であることは、示差熱測定法(DTA)によって確認することができる。このような脂肪族ポリカーボネートは、酸素含有量が高く、比較的低温で低分子化合物に分解することが可能であるため、金属酸化物中の炭素不純物に代表される不純物の残存量を低減させることに積極的に寄与する。
 また、本実施形態において、脂肪族ポリカーボネートを含む溶液である「エッチングマスク前駆体」に採用され得る有機溶媒は、脂肪族ポリカーボネートを溶解可能な有機溶媒であれば特に限定されない。有機溶媒の具体例は、ジエチレングリコールモノエチルエーテルアセテート(Diethylene-Glycol-Monoethyl Ether Acetate(以下、「DEGMEA」ともいう。))、α-ターピネオール、β-ターピネオール、N-メチル-2-ピロリドン、2-ニトロプロパン、イソプロピルアルコール、ジエチレングリコールモノブチルエーテルアセテート、ジエチレングリコールモノブチルエーテル、トルエン、シクロヘキサン、メチルエチルケトン、ジメチルカーボネート、ジエチルカーボネート、プロピレンカーボネートなどである。これらの有機溶媒の中でも、沸点が適度に高く、室温での蒸発が少ない観点から、ジエチレングリコールモノエチルエーテルアセテート、α-ターピネオール、N-メチル-2-ピロリドン、2-ニトロプロパン及びプロピレンカーボネートが好適に用いられる。なお、本実施形態においては、脂肪族ポリカーボネートを含有するエッチングマスクを用いてエッチング対象をエッチング処理した後は、最終的には不要物として分解又は除去される対象となる。従って、パターンが形成されてから分解又は除去されるまでの比較的短い時間だけ、そのパターンを維持すれば足りるという観点から、DEGMEAと2-ニトロプロパンとの混合溶媒を採用することが好ましい。
 また、脂肪族ポリカーボネートを含む溶液であるエッチングマスク前駆体には、所望により分散剤、可塑剤等をさらに添加することができる。
 上述の分散剤の具体例は、
 グリセリン、ソルビタン等の多価アルコールエステル;
 ジエチレングリコール、トリエチレングリコール、ジプロピレングリコール、トリプロピレングリコール、ポリエチレングリコール、ポリプロピレングリコール等のポリエーテルポリオール;ポリエチレンイミン等のアミン;
 ポリアクリル酸、ポリメタクリル酸等の(メタ)アクリル樹脂;
 イソブチレンまたはスチレンと無水マレイン酸との共重合体、及びそのアミン塩など
である。
 上述の可塑剤の具体例は、ポリエーテルポリオール、フタル酸エステルなどである。
 また、本実施形態のエッチングマスク前駆体の層を形成する方法は、特に限定されない。低エネルギー製造プロセスによる層の形成は、好適な一態様である。より具体的には、特に簡便な方法であるスクリーン印刷により基材に塗布することにより、エッチングマスク前駆体の層を形成することが好ましい。
(脂肪族ポリカーボネートについて)
 なお、後述する各実験例においては、脂肪族ポリカーボネートの例として、ポリプロピレンカーボネートが採用されているが、本実施形態で用いられる脂肪族ポリカーボネートの種類は特に限定されない。例えば、エポキシドと二酸化炭素とを重合反応させた脂肪族ポリカーボネートも、本実施形態において採用し得る好適な一態様である。このようなエポキシドと二酸化炭素とを重合反応させた脂肪族ポリカーボネートを用いることにより、脂肪族ポリカーボネートの構造を制御することで吸熱分解性を向上させられる、所望の分子量を有する脂肪族ポリカーボネートが得られるという効果が奏される。とりわけ、脂肪族ポリカーボネートの中でも酸素含有量が高く、比較的低温で低分子化合物に分解する観点から言えば、脂肪族ポリカーボネートは、ポリエチレンカーボネート、及びポリプロピレンカーボネートからなる群より選ばれる少なくとも1種であることが好ましい。上述のいずれの脂肪族ポリカーボネートにおいても、その分子量が上述の数値範囲内であれば、本実施形態の効果と同様の効果が奏され得る。
 また、上述のエポキシドは、二酸化炭素と重合反応して主鎖に脂肪族を含む構造を有する脂肪族ポリカーボネートとなるエポキシドであれば特に限定されない。例えば、エチレンオキシド、プロピレンオキシド、1-ブテンオキシド、2-ブテンオキシド、イソブチレンオキシド、1-ペンテンオキシド、2-ペンテンオキシド、1-ヘキセンオキシド、1-オクテンオキシド、1-デセンオキシド、シクロペンテンオキシド、シクロヘキセンオキシド、スチレンオキシド、ビニルシクロヘキセンオキシド、3-フェニルプロピレンオキシド、3,3,3-トリフルオロプロピレンオキシド、3-ナフチルプロピレンオキシド、3-フェノキシプロピレンオキシド、3-ナフトキシプロピレンオキシド、ブタジエンモノオキシド、3-ビニルオキシプロピレンオキシド、及び3-トリメチルシリルオキシプロピレンオキシド等のエポキシドは、本実施形態において採用し得る一例である。これらのエポキシドの中でも、二酸化炭素との高い重合反応性を有する観点から、エチレンオキシド、及びプロピレンオキシドが好適に用いられる。なお、上述の各エポキシドは、それぞれ単独で使用されてもよいし、2種以上を組み合わせて用いられることもできる。
 上述の脂肪族ポリカーボネートの質量平均分子量は、好ましくは5000~1000000であり、より好ましくは10000~500000である。脂肪族ポリカーボネートの質量平均分子量が5000未満の場合、例えば、粘度の低下による影響等により、例えば、スクリーン印刷法に用いる材料として適さなくなるおそれがある。また、脂肪族ポリカーボネートの質量平均分子量が1000000を超える場合、脂肪族ポリカーボネートの有機溶媒への溶解性が低下するために、この場合もスクリーン印刷法に用いる材料として適さなくなるおそれがある。なお、前述の質量平均分子量の数値は、次の方法によって算出することができる。
 具体的には、上述の脂肪族ポリカーボネート濃度が0.5質量%のクロロホルム溶液を調製し、高速液体クロマトグラフィーを用いて測定する。測定後、同一条件で測定した質量平均分子量が既知のポリスチレンと比較することにより、分子量を算出する。また、測定条件は、以下の通りである。
  機種:HLC-8020(東ソー株式会社製)
  カラム:GPCカラム(東ソー株式会社の商品名:TSK GEL Multipore HXL-M)
  カラム温度:40℃
  溶出液:クロロホルム
  流速:1mL/分
 また、上述の脂肪族ポリカーボネートの製造方法の一例として、上述のエポキシドと二酸化炭素とを金属触媒の存在下で重合反応させる方法等が採用され得る。
 ここで、脂肪族ポリカーボネートの製造例は、次のとおりである。
 攪拌機、ガス導入管、温度計を備えた1L容のオートクレーブの系内をあらかじめ窒素雰囲気に置換した後、有機亜鉛触媒を含む反応液、ヘキサン、及びプロピレンオキシドを仕込んだ。次に、攪拌しながら二酸化炭素を加えることによって反応系内を二酸化炭素雰囲気に置換し、反応系内が約1.5MPaとなるまで二酸化炭素を充填した。その後、そのオートクレーブを60℃に昇温し、反応により消費される二酸化炭素を補給しながら数時間重合反応を行った。反応終了後、オートクレーブを冷却して脱圧し、ろ過した。その後、減圧乾燥することによりポリプロピレンカーボネートを得た。
 また、上述の金属触媒の具体例は、アルミニウム触媒、又は亜鉛触媒である。これらの中でも、エポキシドと二酸化炭素との重合反応において高い重合活性を有することから、亜鉛触媒が好ましく用いられる。また、亜鉛触媒の中でも有機亜鉛触媒が特に好ましく用いられる。
 また、上述の有機亜鉛触媒の具体例は、
 酢酸亜鉛、ジエチル亜鉛、ジブチル亜鉛等の有機亜鉛触媒;あるいは、
 一級アミン、2価のフェノール、2価の芳香族カルボン酸、芳香族ヒドロキシ酸、脂肪族ジカルボン酸、脂肪族モノカルボン酸等の化合物と亜鉛化合物とを反応させることにより得られる有機亜鉛触媒など
である。
 これらの有機亜鉛触媒の中でも、より高い重合活性を有することから、亜鉛化合物と、脂肪族ジカルボン酸と、脂肪族モノカルボン酸とを反応させて得られる有機亜鉛触媒を採用することは好適な一態様である。
 ここで、有機亜鉛触媒の製造例は、次のとおりである。
 まず、攪拌機、窒素ガス導入管、温度計、還流冷却管を備えた四つ口フラスコに、酸化亜鉛、グルタル酸、酢酸、及びトルエンを仕込んだ。次に、反応系内を窒素雰囲気に置換した後、そのフラスコを55℃まで昇温し、同温度で4時間攪拌することにより、前述の各材料の反応処理を行った。その後、110℃まで昇温し、さらに同温度で4時間攪拌して共沸脱水させ、水分のみを除去した。その後、そのフラスコを室温まで冷却することにより、有機亜鉛触媒を含む反応液を得た。なお、この反応液の一部を分取し、ろ過して得た有機亜鉛触媒について、IRを測定(サーモニコレージャパン株式会社製、商品名:AVATAR360)した。その結果、カルボン酸基に基づくピークは認められなかった。
 また、重合反応に用いられる上述の金属触媒の使用量は、エポキシド100質量部に対して、0.001~20質量部であることが好ましく、0.01~10質量部であることがより好ましい。金属触媒の使用量が0.001質量部未満の場合、重合反応が進行しにくくなるおそれがある。また、金属触媒の使用量が20質量部を超える場合、使用量に見合う効果がなく経済的でなくなるおそれがある。
 上述の重合反応において必要に応じて用いられる反応溶媒は、特に限定されるものではない。この反応溶媒は、種々の有機溶媒が適用し得る。この有機溶媒の具体例は、
 ペンタン、ヘキサン、オクタン、デカン、シクロヘキサン等の脂肪族炭化水素系溶媒;
 ベンゼン、トルエン、キシレン等の芳香族炭化水素系溶媒;
 クロロメタン、メチレンジクロリド、クロロホルム、四塩化炭素、1,1-ジクロロエタン、1,2-ジクロロエタン、エチルクロリド、トリクロロエタン、1-クロロプロパン、2-クロロプロパン、1-クロロブタン、2-クロロブタン、1-クロロ-2-メチルプロパン、クロルベンゼン、ブロモベンゼン等のハロゲン化炭化水素系溶媒;
 ジメチルカーボネート、ジエチルカーボネート、プロピレンカーボネート等のカーボネート系溶媒など
である。
 また、上述の反応溶媒の使用量は、反応を円滑にさせる観点から、エポキシド100質量部に対して、500質量部以上10000質量部以下であることが好ましい。
 また、上述の重合反応において、エポキシドと二酸化炭素とを金属触媒の存在下で反応させる方法としては、特に限定されるものではない。例えば、オートクレーブに、上述のエポキシド、金属触媒、及び必要により反応溶媒を仕込み、混合した後、二酸化炭素を圧入して、反応させる方法が採用され得る。
 加えて、上述の重合反応において用いられる二酸化炭素の使用圧力は、特に限定されない。代表的には、0.1MPa~20MPaであることが好ましく、0.1MPa~10MPaであることがより好ましく、0.1MPa~5MPaであることがさらに好ましい。二酸化炭素の使用圧力が20MPaを超える場合、使用圧力に見合う効果がなく経済的でなくなるおそれがある。
 さらに、上述の重合反応における重合反応温度は、特に限定されない。代表的には、30~100℃であることが好ましく、40~80℃であることがより好ましい。重合反応温度が30℃未満の場合、重合反応に長時間を要するおそれがある。また、重合反応温度が100℃を超える場合、副反応が起こり、収率が低下するおそれがある。重合反応時間は、重合反応温度により異なるために一概には言えないが、代表的には、2時間~40時間であることが好ましい。
 重合反応終了後は、ろ過等によりろ別し、必要により溶媒等で洗浄後、乾燥させることにより、脂肪族ポリカーボネートを得ることができる。
[脂肪族ポリカーボネートの分子量と、曳糸性及びパターン形状との相関性]
 本願発明者らは、代表的には以下の実験を行うことにより、脂肪族ポリカーボネートの分子量と、曳糸性及びパターン形状との相関性に関する分析及び検討を入念に行った。その結果、脂肪族ポリカーボネートの分子量の代表的な例として、6千以上40万以下の脂肪族ポリカーボネートの比率が、該脂肪族ポリカーボネート全体の80質量%以上であれば、「ゲル状態」であるエッチングマスクの曳糸性を制御し、良好なパターンを形成することができることを本願発明者らは確認した。なお、以下の各実験例において採用される脂肪族ポリカーボネートは、ポリプロピレンカーボネート(以下、「PPC」ともいう。)である。
[実験例1]
 脂肪族ポリカーボネートの一例として、以下の(1)~(10)に示す、質量平均分子量が異なる4種類のPPCの単体を溶解させた上述のエッチングマスク前駆体の試料を調製した。なお、以下の各質量平均分子量は、脂肪族ポリカーボネートのみの数値である。
 (1)質量平均分子量が3万のPPC(以下、「試料A」ともいう。)のみ
 (2)質量平均分子量が9万のPPC(以下、「試料B」ともいう。)のみ
 (3)試料Aと試料Bとを1:1の比率で混合したもの(以下、「試料AB」ともいう。)
 (4)質量平均分子量が23万のPPC(以下、「試料C」ともいう)のみ
 (5)質量平均分子量が59万のPPC(以下、「試料D」ともいう)のみ
 (6)試料Cと試料Dとを1:1の比率で混合したもの(以下、「試料CD」ともいう。)
 (7)試料Aと試料Cとを1:1の比率で混合したもの(以下、「試料AC」ともいう。)
 (8)試料Bと試料Cとを1:1の比率で混合したもの(以下、「試料BC」ともいう。)
 (9)試料Aと試料Dとを1:1の比率で混合したもの(以下、「試料AD」ともいう。)
 (10)試料Bと試料Dとを1:1の比率で混合したもの(以下、「試料BD」ともいう。)
 上述の試料について、分子量が6千以上40万以下の脂肪族ポリカーボネートの比率を以下のようにして求めた。すなわち、脂肪族ポリカーボネート濃度が0.5質量%のクロロホルム溶液を調製し、高速液体クロマトグラフィーを用いて以下の測定条件で、分子量が既知のポリスチレンと比較することにより、分子量分布を測定する。
  機種:HLC-8020(東ソー株式会社製)
  カラム:GPCカラム(東ソー株式会社の商品名:TSK GEL Multipore HXL-M)
  カラム温度:40℃
  溶出液:クロロホルム
  流速:1mL/分
 上記の方法で得られる、横軸を分子量(Log分子量)、縦軸を溶出割合(dwt/d(log分子量))とするクロマトグラムから、クロマトグラム全領域の面積と分子量が6千以上40万以下の分子量範囲の面積との比率を算出した。得られた結果を表1に示した。
Figure JPOXMLDOC01-appb-T000001
 次に、エッチングマスク前駆体を、大気雰囲気中にて約50℃で約72時間の加熱及び撹拌工程を行った後、脱泡処理を約30分行うことにより、スクリーン印刷法に適した粘性を有する「ゲル状態」(又はより液状に近いゲル状態)のエッチングマスク前駆体を形成した。その後、ガラス基板「イーグルXG」(200×150×0.7tmm)上に、スクリーン印刷法を用いて、上述のエッチングマスクからなる矩形のパターンを形成した。
 さらにその後、大気雰囲気中にて150℃で30分間の該パターンに対する予備的な焼成をした後、該パターンに対する曳糸性の評価を光学顕微鏡、及び原子間力顕微鏡(AFM)を用いて行った。
 上述の実験結果をまとめた表を、表2に示す。
Figure JPOXMLDOC01-appb-T000002
 表2における「パターン形状」は、印刷法を用いて形成されたパターンの忠実性を示している。従って、「パターン形状」における「不良」という記載は、デバイスの製造に利用できない程度にエッチングマスクのパターンが形成されていない状況を意味する。逆に、「パターン形状」における「良好」という記載は、デバイスの製造に利用可能な程度にエッチングマスクのパターンが再現されていることを意味している。また、表2における「曳糸性」における「不良」とは、印刷法を用いてパターンが形成されたエッチングマスクの層から、その一部が糸状に曳かれることにより、所望のパターンが崩されている状態を意味する。また、「曳糸性」における「良好」とは、曳糸性がほとんど又は全く見られない状態を意味する。加えて、表2における「パターン高さ」は、原子間力顕微鏡(AFM)によるパターン最高点の測定値である。なお、試料(6)の「パターン高さ」における「測定不能」との記載は、パターン自身が実質的に形成されていない状況であったことを意味している。
 上述の表2に加えて、良好なパターンを実現し得た代表的な光学顕微鏡写真の例として、上記の(1)、(7)、及び(8)の結果を図1に示す。また、曳糸性を制御することができずに、好ましくないパターンが形成された代表的な光学顕微鏡写真の例として、上記の(5)、(9)、及び(10)の結果を図2Aに示す。
 表2、図1、及び図2Aに示すように、比較的低分子量の脂肪族ポリカーボネートである、(1)「試料A」、(2)「試料B」、及び(3)「試料AB」、並びに中程度の分子量である脂肪族ポリカーボネートの(7)「試料AC」については、「パターン形状」及び「曳糸性」について良好な結果が得られた。なお、特に、試料C(表中の(4))は、表2において曳糸性が「不良」と記載されているが、一部のパターンのみに曳糸性が見られたに過ぎない点を付言する。
 また、「パターニング形状」又は「曳糸性」が悪化する要因は、分子量の増加にあると考えられる結果が得られた。一方、例えば、スクリーン印刷法においては、形成されたパターンが一定以上の「高さ」を有することが好ましい。従って、良好な「パターン形状」及び「曳糸性」を維持しつつ、一定以上の「パターン高さ」を得るためには、著しく低分子量の脂肪族ポリカーボネートを採用することは好ましくないとの知見も得られている。
 なお、本願発明者らは、(9)「試料AD」及び(10)「試料BD」について、それぞれの「パターニング形状」及び「曳糸性」が「不良」となった原因を次のように考察する。
 表2の「パターン高さ」が示すように、(9)「試料AD」及び(10)「試料BD」の各パターン高さ(5.3μm)は、「試料A」のパターン高さ(1.4μm)と「試料D」のパターン高さ(4μm)との和、あるいは、「試料A」のパターン高さ(1.5μm)と「試料D」のパターン高さ(4μm)との和とほぼ同じである。従って、PPCの単体をバインダーとして溶解させた試料を用いた場合は、一定程度の分子量差を越えると、高分子量の脂肪族ポリカーボネートと低分子量の脂肪族ポリカーボネートとが、いわば相分離することによって混ざらない状況が形成されると考えられる。敢えて積極的に言及すれば、低分子量の脂肪族ポリカーボネート上に高分子量の脂肪族ポリカーボネートが乗っている状況か、あるいはその逆の状態が形成されている可能性がある。一方、分子量の差が比較的小さい、(7)「試料AC」又は(8)「試料BC」は、高分子量の脂肪族ポリカーボネートと低分子量の脂肪族ポリカーボネートとが、いわば相分離せずに適度に混ざっている状態であると考えられるため、良好な「パターニング形状」及び「曳糸性」が得られると考えられる。
 従って、たとえ同じ種類の材料であっても、それぞれ異なった質量平均分子量を有する脂肪族ポリカーボネートを複数用いた場合、単純に、各脂肪族ポリカーボネートの質量平均分子量を平均させることによって、良好な「パターニング形状」及び「曳糸性」を得るための適切な分子量を導出できる訳ではないことを、上述の実験結果は示しているといえる。
 上述の各結果と、本願発明者らがその他の分子量について調査、分析した結果とを合わせると、分子量が6千以上40万以下の脂肪族ポリカーボネートの比率が該脂肪族ポリカーボネート全体の80質量%以上である脂肪族ポリカーボネートを採用することにより、良好な「パターン形状」及び「曳糸性」を実現し得る。
 また、上述の(1)~(10)に示す結果が、質量平均分子量が異なる4種類のPPCの単体をバインダーとして溶解させた、酸化物半導体の前駆体の試料、又はそれらのPPCのうちの2種類を組み合わせたものをバインダーとして溶解させた該酸化物半導体の前駆体の試料を調製した場合にも、データの傾向として当て嵌まることが確認されている。なお、該酸化物半導体の前駆体の試料は、0.2mol/kgのインジウム含有溶液を、5質量%含む。また、表3の各試料番号は、表1の(1)~(10)との対応関係を分かりやすくするために、同じ番号を使用している。
 なお、酸化物の前駆体の製造例は、次のとおりである。なお、下記の各実験例においては、代表的に、酸化されたときに酸化物半導体となる前駆体、すなわち、酸化物半導体の前駆体を採用する。
 まず、50mL容のフラスコに、インジウムアセチルアセトナート及びプロピオン酸を撹拌しながら徐々に混合することにより、最終的にインジウム酸化物となる、インジウム含有溶液を得た。
 次に、50mL容のナス型フラスコに、ポリプロピレンカーボネートを、DEGMEAと2-ニトロプロパンの混合溶媒中に溶解し、25wt%のポリプロピレンカーボネート溶液を得た。
 その後、そのポリプロピレンカーボネートの溶液中に、上述のインジウム含有溶液を徐々に加えることにより、上述の酸化物半導体の前駆体を得た。
 表3に示す実験結果について説明する。比較的低分子量の脂肪族ポリカーボネートである、(1)「試料A」、(2)「試料B」、及び(3)「試料AB」、並びに中程度の分子量である脂肪族ポリカーボネートの(7)「試料AC」については、「パターン形状」及び「曳糸性」について良好な結果が得られた。加えて、興味深いことに、分子量が比較的大きい(9)及び(10)の各試料のパターン形状及び曳糸性も、良好であることが確認された。図2Bは、曳糸性を制御することができた結果、良好なパターンが形成された、(9)及び(10)の結果を示す光学顕微鏡写真である。(9)及び(10)の各試料のパターン形状及び曳糸性が良好であったのは、おそらく、表2において採用した試料にインジウム含有溶液が追加されたために、全体としてのPPCの濃度が若干低下したことも原因の一つとして挙げられ得るが、それが支配的ではないと考えられる。
Figure JPOXMLDOC01-appb-T000003
 [実験例2]
 次に、本願発明者らは、実験例1において採用した(1)~(10)に示す試料について、以下の実験により、平均曳糸長(mm)及びゼロせん断粘度(Pa・s)を測定した。
 本実験では、まず、平均曳糸長(mm)については、各試料を用いて形成した、収容器内の脂肪族ポリカーボネートの溜まり中に、ポリテトラフルオロエチレン(polytetrafluoroethylene)製であって直径Dが2.9mmの円柱棒を沈めた。その後、その円柱棒を速度vが5mm/秒で引き上げたときの、脂肪族ポリカーボネートの溜まりの最表面からの曳糸長L(mm)を測定した。また、各試料のゼロせん断粘度ηは、ティー・エイ・インスツルメント社製レオメーター(AR-2000EX)を用いて測定した。そして、評価パラメータとして、上述の各値を次の式に代入して算出した。
<計算式>
「評価パラメータ」(mm-1・Pa-1)=L/(D×v×η)
 表4は、本実験例における各試料と、平均曳糸長(mm)及びゼロせん断粘度(Pa・s)との関係を示している。また、図3Aは、本実験例における各試料と、曳糸性を示す評価パラメータとの関係を示すグラフである。
Figure JPOXMLDOC01-appb-T000004
 表4及び図3Aに示すように、PPCの単体をバインダーとして溶解させた試料を用いた場合は、上述の計算式によって算出される「評価パラメータ」(mm-1・Pa-1)の値が、0.4mm-1Pa-1以上であれば、良好な「パターニング形状」及び「曳糸性」を得ることができるとの知見が得られた。
 ところで、以下の表5に示すように、上述の(1)~(10)に示す結果が、質量平均分子量が異なる4種類のPPCの単体をバインダーとして溶解させた、上述の酸化物半導体の前駆体の試料、又はそれらのうちの2種類を組み合わせたものをバインダーとして溶解させた該酸化物半導体の前駆体の試料、を調製した場合も、データの傾向として当て嵌まることが確認されている。なお、以下の表5の各試料番号は、表1の(1)~(10)との対応関係を分かりやすくするために、同じ番号を使用している。
 表4、表5、図3A、及び図3Bに示すように、PPCの単体をバインダーとして溶解させた試料を用いた結果よりも、上述の酸化物半導体の前駆体の試料を用いた結果の方が、該「評価パラメータ」の値が全体的に大きくなっている。しかしながら、本願発明者らは、その含有量が非常に少ない溶質であるインジウムアセチルアセトナートによる影響は非常に小さいものと考えている。つまり、表4及び図3Aにおいて示した結果は、適切な、より一般的な実験結果が得られていると、本願発明者らは考える。
 従って、表5における(9)及び(10)の結果も踏まえた上で、表3乃至5、及び図3B、並びに図2Bの結果を合わせて検討すると、該「評価パラメータ」(mm-1・Pa-1)の値が、0.25mm-1Pa-1以上(より狭義には0.29mm-1Pa-1以上)であれば、良好な「パターニング形状」及び「曳糸性」を得ることができるとの知見が得られた。なお、良好な「パターニング形状」及び「曳糸性」を得るための、該「評価パラメータ」の上限値は特に限定されないが、より確度高くパターンの高さを得る観点から言えば、該「評価パラメータ」の値が1.2以下(より狭義には、0.9以下)であることは好適である。
Figure JPOXMLDOC01-appb-T000005
(他の好適な脂肪族ポリカーボネートの分子量の範囲)
 なお、本実施形態の脂肪族ポリカーボネートの分子量の範囲は、上述の各実験例において開示された数値範囲に限定されない。本願発明者らの分析によれば、例えば、分子量が6千以上30万以下の脂肪族ポリカーボネートの比率が、該脂肪族ポリカーボネート全体の75質量%以上であることは、より確度高く曳糸性を制御し、良好なパターンを形成する観点から言えば、さらに好ましい一態様である。
[実験例3]
(接触角及び広がり率の評価)
 既に述べたとおり、エッチングマスクとしての機能を発揮し得る脂肪族ポリカーボネートは、例えばスクリーン印刷法によって形成されたパターンを用いてエッチング対象をエッチング処理した後は、主として加熱工程によって分解及び/又は除去される対象となる。従って、該エッチングマスクを必要とする時間は、いわば一時的に過ぎない。しかしながら、その一時的な時間を維持するためのパターンの形成作用(換言すれば、バランスの取れた粘度又は塗れ性)を、脂肪族ポリカーボネートを含む溶液(すなわち、「エッチングマスク前駆体)」が有するか否かは、基材上に該溶液を配置したときの、エッチングマスク前駆体とその基材との接触角を評価することが好適な指標になると本願発明者らは考えた。
 そこで、本願発明者らは、ポリプロピレンカーボネート(25wt%)を、DEGMEAと2-ニトロプロパンの混合溶媒中に溶解することによって得られたポリプロピレンカーボネート溶液を、基材(この実験例においては、ガラス基板)上に配置してから30秒後、及び120秒後に、基材と該溶液との接触角、及び基材上の該溶液の広がり率がどのように変化するかを調査した。なお、接触角の変化を調べやすいように、脂肪族ポリカーボネートの好適な溶媒である2-ニトロプロパンの濃度(wt%)を変化させた上で、上述の各評価が行われた。また、上述の「広がり率」は、設計値に対する実際のパターン寸法に基づいて算出された。
 図4Aは、基材上に脂肪族ポリカーボネートを含む溶液を配置してから30秒後における、2-ニトロプロパンの濃度の変化に対する、基材と該溶液との接触角、及び基材上の該溶液の広がり率を示すグラフである。また、図4Bは、基材上に脂肪族ポリカーボネートを含む溶液を配置してから120秒後における、2-ニトロプロパンの濃度の変化に対する、基材と該溶液との接触角、及び基材上の該溶液の広がり率を示すグラフである。
 図4A及び図4Bに示すように、基材と該溶液との接触角と、基材上の該溶液の広がり率とは互いに逆の相関性が認められる。すなわち、2-ニトロプロパンの濃度が上昇するに従って、接触角は増加する一方、広がり率は減少することが明らかとなった。但し、図4Bに示すように、2-ニトロプロパンの濃度が高い場合(例えば、75%)であっても、接触角が増加しない場合も存在していることが分かった。加えて、特に接触角については、図4A及び図4Bのいずれにおいても、2-ニトロプロパンの濃度がある値(代表的には、55%以上60%以下)になると急激に上昇する傾向が見られることも明らかとなった。
 本願発明者らのさらなる研究と分析によれば、30秒後の段階において接触角が36°を超える場合、又は、120秒後の段階において接触角が32°を超える場合は、脂肪族ポリカーボネートを含む溶液が基材に対して弾かれる状況となるため、一時的な時間を維持するために十分なパターンが形成され難いという知見が得られている。従って、脂肪族ポリカーボネートを含む溶液は、前述の各接触角以下の角度となるように調製されることが好ましい。
 他方、30秒後の段階において接触角が30°未満となる場合、又は、120秒後の段階において接触角が26°未満となる場合は、パターンの再現性が悪くなるため、この場合も、一時的な時間を維持するために十分なパターンが形成され難いという知見が得られている。従って、脂肪族ポリカーボネートを含む溶液は、前述の各接触角以上の角度となるように調製されることが好ましい。従って、上述を踏まえると、エッチングマスク前駆体が基材上に配置されてから30秒後に、そのエッチングマスク前駆体の基材に対する接触角が、30°以上36°以下であるか、あるいは、エッチングマスク前駆体が基材上に配置されてから120秒後に、そのエッチングマスク前駆体の基材に対する接触角が、26°以上32°以下であることが好ましい。
 また、上述の図4A及び図4Bに示す結果が、質量平均分子量が異なる4種類のPPCの単体をバインダーとして溶解させた、「各実験の準備工程」において説明した酸化物半導体の前駆体の試料、又はそれらのうちの2種類を組み合わせたものをバインダーとして溶解させた該酸化物半導体の前駆体の試料、を調製した場合にも当て嵌まることが確認されている。
 上述のとおり、脂肪族ポリカーボネートを含む溶液中に酸化物の前駆体が含有されていない実験例の結果と脂肪族ポリカーボネートを含む溶液中に酸化物の前駆体が含有されている実施例の結果とが略同等であることを確認することができる。
2.酸化物前駆体、及び酸化物層の構成、並びにそれらの製造方法
 本実施形態においては、脂肪族ポリカーボネートと、酸化されたときに金属酸化物となる金属の化合物とを混在させる代表的な態様が、「酸化物前駆体」である。従って、この酸化物前駆体の代表的な例は、酸化されたときに金属酸化物となる金属の化合物を、脂肪族ポリカーボネートを含む溶液中に分散させたものである。また、その金属酸化物には、既に述べたとおり、酸化物半導体、酸化物導電体、又は酸化物絶縁体が含まれる。なお、脂肪族ポリカーボネートは、例えば印刷法によって一旦パターンが形成された後においては、最終的に得られる金属酸化物から見れば不純物であるため、主として加熱工程によって分解及び/又は除去される対象となる。
 なお、本実施形態の金属酸化物の例は、酸化物半導体、酸化物導電体、又は酸化物絶縁体である。また、本実施形態においては、上述のエッチングマスク前駆体又はエッチングマスクと同様に、分子量が6千以上40万以下の脂肪族ポリカーボネートの比率が、該脂肪族ポリカーボネート全体の80質量%以上である。加えて、前述の金属の化合物が混在されている点を除き、上述のエッチングマスク前駆体又はエッチングマスクに用いられる材料又は製造方法を適用することができる。また、代表的な一例として、酸化物半導体の前駆体及び酸化物半導体層の製造方法が、本願出願人が開示する特許文献4(国際公開第WO2015-019771号)において詳述されている。従って、上述のエッチングマスク前駆体又はエッチングマスクの説明と重複する説明は省略する。
<第2の実施形態>
1.本実施形態の薄膜トランジスタの全体構成
 図5乃至9B、9D、図10A、図14、及び図15は、それぞれ、半導体素子の一例である薄膜トランジスタ100の製造方法の一過程を示す断面模式図である。なお、図15は、本実施形態における薄膜トランジスタ100の製造方法の一過程及び全体構成を示す断面模式図である。図15に示すように、本実施形態における薄膜トランジスタ100においては、基板10上に、下層から、ゲート電極24、ゲート絶縁体34、チャネル44、ソース電極58及びドレイン電極56の順序で積層されている。また、この半導体素子を備える電子デバイス(例えば、携帯端末や情報家電、あるいはその他の公知の電化製品)の提供ないし実現は、本実施形態の半導体素子を理解する当業者であれば特に説明を要せず十分に理解され得る。また、後述する、各種の酸化物前駆体の層を形成するための工程は、本願における「酸化物前駆体層の形成工程」に含まれる。
 薄膜トランジスタ100は、いわゆるボトムゲート構造を採用しているが、本実施形態はこの構造に限定されない。従って、当業者であれば、通常の技術常識を以って本実施形態の説明を参照することにより、工程の順序を変更することにより、トップゲート構造を形成することができる。また、本出願における温度の表示は、基板と接触するヒーターの加熱面の表面温度を表している。また、図面を簡略化するため、各電極からの引き出し電極のパターニングについての記載は省略する。
 本実施形態の基板10は、特に限定されず、一般的に半導体素子に用いられる基板が用いられる。例えば、高耐熱ガラス、SiO/Si基板(すなわち、シリコン基板上に酸化シリコン膜を形成した基板)、アルミナ(Al)基板、STO(SrTiO)基板、Si基板の表面にSiO層及びTi層を介在させてSTO(SrTiO)層を形成した絶縁性基板等、半導体基板(例えば、Si基板、SiC基板、Ge基板等)を含む、種々の基材が適用できる。なお、絶縁性基材には、例えば、ポリエチレンテレフタレート、ポリエチレンナフタレートなどのポリエステル類、ポリオレフィン類、セルローストリアセテート、ポリカーボネート、ポリアミド、ポリイミド、ポリアミドイミド、ポリスルフォン、アラミド、芳香族ポリアミドなどの材料からなる、フィルム又はシートが含まれる。また、基板の厚さは特に限定されないが、例えば3μm以上300μm以下である。また、基板は、硬質であってもよく、フレキシブルであってもよい。
2.本実施形態の薄膜トランジスタの製造方法
(1)ゲート電極の形成
 本実施形態においては、ゲート電極24の材料として、酸化されたときに酸化物導電体となる金属の化合物(以下、単に「酸化物導電体」ともいう)を採用することができる。この場合、本実施形態のゲート電極24は、酸化物導電体(但し、不可避不純物を含み得る。以下、この材料の酸化物に限らず他の材料の酸化物についても同じ。)を、脂肪族ポリカーボネートを含む溶液中に分散させた酸化物導電体の前駆体の層(以下、「酸化物導電体の前駆体層」ともいう)を焼成することによって形成される。本実施形態では、図5に示すように、基材であるSiO/Si基板(以下、単に「基板」ともいう)10上に低エネルギー製造プロセス(例えば、印刷法又はスピンコート法)を用いて出発材であるゲート電極用前駆体溶液を塗布することにより、ゲート電極用前駆体層22を形成することができる。
 その後、ゲート電極用前駆体層22を、例えば、大気中において、所定時間(例えば、10分間~1時間)、450℃~550℃で加熱する焼成工程が行われる。その結果、図6に示すように、基板10上に、ゲート電極24が形成される。なお、本実施形態のゲート電極24の層の厚みは、例えば、約100nmである。
 ここで、上述の酸化物導電体の一例は、酸化されたときに酸化物導電体となる金属に、配位子が配位した構造(代表的には錯体構造)を有する材料である。例えば、金属有機酸塩、金属無機酸塩、金属ハロゲン化物、又は各種の金属アルコキシドも本実施形態の酸化物導電体に含まれ得る。なお、酸化されたときに酸化物導電体となる金属の例は、ルテニウム(Ru)である。本実施形態においては、ニトロシル酢酸ルテニウム(III)を、脂肪族ポリカーボネートを含むプロピオン酸と2-アミノエタノールとの混合溶媒に溶解した溶液を出発材とするゲート電極用前駆体溶液を、例えば、大気中において、所定時間(例えば、10分間~1時間)、約450℃~約550℃で加熱する焼成工程を行うことにより、酸化物導電体であるルテニウム酸化物が形成されるため、ゲート電極24を形成することができる。
 本実施形態においては、特に、第1の実施形態において説明した脂肪族ポリカーボネートを採用したゲート電極用前駆体溶液を用いれば、印刷法を用いてゲート電極用前駆体層22のパターンを形成した場合に良好なパターンを形成することができる。より具体的には、ゲート電極用前駆体溶液における脂肪族ポリカーボネートの曳糸性を適切に制御することが可能となるため、良好なゲート電極用前駆体層22のパターンを形成することができる。
 なお、本実施形態においては、上述のゲート電極24の代わりに、例えば、白金、金、銀、銅、アルミ、モリブデン、パラジウム、ルテニウム、イリジウム、タングステン、などの高融点金属、又はその合金等の金属材料、あるいはp-シリコン層やn-シリコン層を適用することができる。その場合、ゲート電極24を、公知のスパッタリング法やCVD法により基板10上に形成することができる。
(2)ゲート絶縁体の形成
 また、本実施形態においては、ゲート絶縁体34の材料として、酸化されたときに酸化物絶縁体となる金属の化合物(以下、単に「酸化物絶縁体」ともいう)を、脂肪族ポリカーボネートを含む溶液中に分散させた酸化物絶縁体の前駆体の層(以下、「酸化物絶縁体の前駆体層」ともいう)を焼成することによって形成される。
 具体的には、図7に示すように、ゲート電極24上に低エネルギー製造プロセス(例えば、印刷法又はスピンコート法)を用いて上述の酸化物絶縁体の前駆体を塗布することにより、ゲート絶縁体用前駆体層32が形成される。
 その後、ゲル状態となったゲート絶縁体用前駆体層32を、例えば、大気中において、所定時間(例えば、10分間~1時間)、約450℃~約550℃で加熱する焼成(本焼成)工程が行われることにより、例えば、酸化物絶縁体であるランタン(La)とジルコニウム(Zr)とからなる酸化物が形成される。その結果、図8に示すように、ゲート絶縁体34を形成することができる。なお、本実施形態のゲート絶縁体34の層の厚みは、例えば、約100nm~約250nmである。
 ここで、上述の酸化物絶縁体の一例は、酸化されたときに酸化物絶縁体となる金属に、配位子が配位した構造(代表的には錯体構造)を有する材料である。例えば、金属有機酸塩、金属無機酸塩、金属ハロゲン化物、又は各種の金属アルコキシド、あるいは、その他の有機酸塩、無機酸塩、ハロゲン化物、又は各種のアルコキシドも、本実施形態の酸化物絶縁体に含まれ得る。
 なお、代表的な酸化物絶縁体の例は、ランタン(La)とジルコニウム(Zr)とからなる酸化物である。この酸化物をゲート絶縁体34として採用し得る。本実施形態においては、酢酸ランタン(III)を、脂肪族ポリカーボネートを含むプロピオン酸(溶媒)に溶解した第1溶液、並びにジルコニウムブトキシドを、脂肪族ポリカーボネートを含むプロピオン酸(溶媒)に溶解した第2溶液を準備する。第1溶液と第2溶液との混合した、出発材としてのゲート絶縁体用前駆体溶液を、例えば、大気中において、所定時間(例えば、10分間~1時間)、約450℃~約550℃で加熱する焼成工程を行うことにより、酸化物絶縁体を形成することができる。
 本実施形態においては、特に、第1の実施形態において説明した脂肪族ポリカーボネートを採用した酸化物絶縁体の前駆体を用いれば、印刷法を用いてゲート絶縁体用前駆体層32のパターンを形成した場合に良好なパターンを形成することができる。より具体的には、酸化物絶縁体の前駆体における脂肪族ポリカーボネートの曳糸性を適切に制御することが可能となるため、良好なゲート絶縁体用前駆体層32のパターンを形成することができる。
 なお、本実施形態においては、上述のゲート絶縁体34の代わりに、例えば、酸化シリコン又は酸窒化シリコンを適用することができる。その場合、ゲート絶縁体34を、公知のCVD法等によりゲート電極24上に形成することができる。
(3)チャネルの形成
 また、本実施形態においては、チャネル44の材料として、酸化されたときに酸化物半導体となる金属の化合物(以下、単に「酸化物半導体」ともいう)を、脂肪族ポリカーボネートを含む溶液中に分散させた酸化物半導体の前駆体の層(以下、「酸化物半導体の前駆体層」ともいう)を焼成することによって形成される。本実施形態では、図9Aに示すように、ゲート絶縁体34上に低エネルギー製造プロセス(例えば、印刷法又はスピンコート法)を用いて出発材であるチャネル用前駆体溶液を塗布することにより、チャネル用前駆体層42を形成することができる。
 その後、チャネル用前駆体層42を、後述する焼成工程を行うことにより、図10Aに示すようにチャネル44が形成される。
 ここで、上述の酸化物半導体の一例は、酸化されたときに酸化物半導体となる金属に、配位子が配位した構造(代表的には錯体構造)を有する材料である。例えば、金属有機酸塩、金属無機酸塩、金属ハロゲン化物、又は各種の金属アルコキシドも本実施形態の酸化物半導体を構成する材料に含まれ得る。なお、代表的な酸化物半導体の例は、インジウム-亜鉛酸化物である。例えば、インジウムアセチルアセトナートと塩化亜鉛を、脂肪族ポリカーボネートを含むプロピオン酸に溶解させた溶液(「InZn溶液」ともいう)を、大気中において、所定時間(例えば、10分間~1時間)、450℃~550℃で加熱する焼成工程を行うことにより、酸化物半導体であるインジウム-亜鉛酸化物(以下、「InZnO」ともいう)を形成することができる。その結果、チャネル44を形成することができる。
 なお、酸化されたときに酸化物半導体となる金属の例は、インジウム、スズ、亜鉛、カドミウム、チタン、銀、銅、タングステン、ニッケル、インジウム-亜鉛、インジウム-スズ、インジウム-ガリウム-亜鉛、アンチモン-スズ、ガリウム-亜鉛の群から選択される1種又は2種以上である。但し、素子性能や安定性等の観点から言えば、インジウム-亜鉛が、酸化されたときに酸化物半導体となる金属として採用されることが好ましい。
 本実施形態においては、特に、第1の実施形態において説明した脂肪族ポリカーボネートを採用したチャネル用前駆体溶液を用いれば、印刷法を用いてチャネル用前駆体層42のパターンを形成した場合に良好なパターンを形成することができる。より具体的には、チャネル用前駆体溶液における脂肪族ポリカーボネートの曳糸性を適切に制御することが可能となるため、良好なチャネル用前駆体層42のパターンを形成することができる。
 また、本実施形態においては、特に、酸化物半導体の層であるチャネル44を形成する際に、本願発明者らがこれまでに創出した、例えば、特許文献4において開示される金属酸化物の製造方法に係る発明を、好適な例として採用することができる。
 代表的なチャネル44の形成方法は、酸化されたときに酸化物半導体となる金属の化合物を、脂肪族ポリカーボネートを含む溶液中に分散させた酸化物半導体の前駆体を、基板上又はその上方に層状に形成する前駆体層の形成工程と、該前駆体層を、該脂肪族ポリカーボネートを90wt%以上分解させる第1温度によって加熱した後、その第1温度よりも高く、かつ該金属と酸素とが結合する温度であって、前述の前駆体又は前述の金属の化合物の示差熱分析法(DTA)における発熱ピーク値である第2温度以上の温度によって該前駆体層を焼成する焼成工程と、を含む。
<TG-DTA(熱重量測定及び示差熱)特性>
 より具体的に説明すると、図11は、薄膜トランジスタのチャネルを形成するための酸化物半導体の前駆体を構成する、第1の実施形態の酸化物前駆体を構成材の一例であるインジウム-亜鉛含有溶液のTG-DTA特性を示すグラフである。また、図12は、薄膜トランジスタの構成要素(例えば、チャネル)を形成するための脂肪族ポリカーボネートのみを溶質とする溶液(エッチングマスク前駆体の代表例)の一例であるポリプロピレンカーボネート溶液のTG-DTA特性の一例を示すグラフである。なお、図11及び図12に示すように、各図中の実線は、熱重量(TG)測定結果であり、図中の点線は示差熱(DTA)測定結果である。
 図11における熱重量測定の結果から、120℃付近には、溶媒の蒸発と考えられる、重量の顕著な減少が見られた。また、図11の(X)に示すように、InZn溶液の示差熱測定のグラフにおける発熱ピークが330℃付近に確認された。従って、330℃付近でインジウム及び亜鉛が、酸素と結合している状態であることが確認される。従って、この330℃が、上述の第2温度に対応する。
 一方、図12における熱重量測定の結果から、140℃付近から190℃付近にかけて、ポリプロピレンカーボネート溶液の溶媒の消失とともに、ポリプロピレンカーボネート自身の一部の分解ないし消失による重量の顕著な減少が見られた。なお、この分解により、ポリプロピレンカーボネートは、二酸化炭素と水に変化していると考えられる。また、図12に示す結果から、190℃付近において、該脂肪族ポリカーボネートが90wt%以上分解され、除去されていることが確認された。従って、この190℃が、上述の第1温度に対応する。なお、さらに詳しく見ると、250℃付近において、該脂肪族ポリカーボネートが95wt%以上分解され、260℃付近において、該脂肪族ポリカーボネートがほぼ全て(99wt%以上)分解されていることが分かる。従って、250℃以上(より好ましくは260℃以上)の加熱処理を行うことによって、実質的に又はほぼ消失又は除去する脂肪族ポリカーボネートを含むエッチングマスク前駆体を採用することにより、確度高く、エッチング対象となる層への影響(代表的には電気的特性への悪影響)を抑制又は防止することができることになる。なお、上述の結果は、比較的短時間の加熱処理による該脂肪族ポリカーボネートの分解についての結果であるが、より長時間加熱処理する場合は、より低温(例えば、180℃)であっても十分に該脂肪族ポリカーボネートが分解することが確認されている。従って、180℃以上の加熱処理を行うことによって、実質的に又はほぼ消失又は除去する脂肪族ポリカーボネートを含むエッチングマスク前駆体を採用することにより、エッチング対象となる層への影響(代表的には電気的特性への悪影響)を抑制又は防止することができる。
 さらに、本願発明者らの研究によれば、第1温度は、例えば、紫外線(例えば、公知の低圧水銀ランプ(SAMCO社製、型式:UV-300H-E)を用いて、185nmと254nmの波長を持つ紫外線)を照射しながら(例えば、公知のヒーターによって)加熱することによって、紫外線を照射せずに加熱するときの温度よりも数十度(例えば、約30℃)の低温化を実現し得ることが確認されている。従って、該脂肪族ポリカーボネートを分解するための加熱工程においては、上述の各酸化物層の前駆体及び/又はエッチングマスクに対して紫外線を照射しながら有機物、例えば、上述の有機溶媒、上述の錯体構造の有機物部分、又は脂肪族ポリカーボネートが分解される温度以上に加熱することが好ましい。これは、最終的に形成された酸化物層が、上述の溶質における有機物部分、溶媒、又は脂肪族ポリカーボネートを可能な限り含まないことが好ましいためである。なお、上述の加熱工程において、必ずしも該有機物が分解された後も該紫外線が照射されることを要しないが、上述の各酸化物層の前駆体及び/又はエッチングマスクに対して紫外線を照射しながら、該酸化物層が形成される温度以上に加熱されることは、より好適な一態様である。なお、前述の紫外線の波長は特に限定されるものではない。185nm又は254nm以外の紫外線であっても同様の効果が奏され得る。
 なお、酸化物半導体を構成する上述の金属と酸素とが結合する温度であって、示差熱測定法(DTA)における発熱ピーク値である温度(第2温度)が、脂肪族ポリカーボネートを分解させる温度に比べて十分に高いこと、あるいは、その発熱ピーク値である温度(第2温度)よりも脂肪族ポリカーボネートを分解させる温度が十分に低いことが好ましい。そのような場合は、より確度高く脂肪族ポリカーボネートを90wt%以上(より好ましくは95wt%以上であり、さらに好ましくは99wt%以上、最も好ましくは、99.9wt%以上)分解できる。
 さらに、上述のとおり、脂肪族ポリカーボネートを分解させる温度(代表的には第1温度以上、好ましくは180℃以上、より好ましくは250℃以上、更に好ましくは260℃以上)で加熱処理を行えば、エッチングマスクが確度高く消失又は除去されることになる。その結果、第2温度以上の加熱によって形成される酸化物(半導体に限らず、導電体又は絶縁体を含む)の電気的特性への影響を確度高く抑制又は排除することが可能となる点は、特筆に値する。
 なお、本願発明者らの研究と分析によれば、第1温度と第2温度との差が10℃以上、より好ましくは50℃以上、さらに好ましくは100℃以上であることによって、酸化物層中の炭素不純物に代表される不純物の残存が抑えられることになる。
 また、酸化物半導体の相状態は、特に限定されない。例えば、結晶状又は多結晶状、あるいはアモルファス状のいずれであってもよい。また、結晶成長の結果として、樹枝状又は鱗片状の結晶の場合も、本実施形態において採用し得る一つの相状態である。加えて、パターニングされた形状(例えば、球状、楕円状、矩形状)にも特定されないことは言うまでもない。
(チャネル用前駆体層のパターン形成及び焼成工程)
 次に、具体的なチャネル44のパターンの形成方法について説明する。なお、このチャネル44のパターンの形成方法の一部又はほぼ全部は、上述の酸化物導電体又は酸化物絶縁体(すなわち、各種の酸化物層)の製造にも適用し得る。
 既に述べたとおり、本実施形態では、図9Aに示すように、ゲート絶縁体34上に低エネルギー製造プロセス(例えば、スピンコート法)を用いてチャネル用前駆体溶液を塗布することにより、チャネル用前駆体層42が形成される。なお、酸化物半導体の前駆体層であるチャネル用前駆体層42の厚さ(wet)は特に限定されない。
 その後、予備焼成(「第1予備焼成」ともいう)工程として、所定時間(例えば、3分間)、例えば150℃で加熱することにより、厚みが約600nmのチャネル用前駆体層42を形成する。この第1予備焼成工程は、主にゲート絶縁体34上のチャネル用前駆体層42のゲル化を促進させるとともに、定着を目的とするものである。
 本実施形態においては、その後、図9B及び図9Cに示すように、第1の実施形態のエッチングマスク前駆体から形成されるエッチングマスク80のパターンを、スクリーン印刷法を用いて、チャネル用前駆体層42上に形成する(エッチングマスク形成工程)。なお、図9C並びに後述する図9E及び図10Bは、より分かり易くするため、「チャネル用前駆体層のパターン形成及び焼成工程」のみを抜粋して画像化した例(平面写真)である。
 続いて、エッチングマスク80を利用して、チャネル用前駆体層42のパターンを形成する。具体的には、エッチングマスク80及びチャネル用前駆体層42を、酸化物前駆体層を溶解し得る溶液である市販のエッチング溶液(関東化学株式会社製、型式「ITO-02」)に接触(代表的には、該エッチング溶液中に浸漬)させる(接触工程)。その結果、図9D及び図9Eに示すように、エッチングマスク80のパターンによって保護されていないチャネル用前駆体層42がエッチングされるため、除去される。一方、エッチングマスク80のパターンによって保護されているチャネル用前駆体層42は、エッチングされることなく、ゲート絶縁体34上に残る。
 その後、エッチングマスク80(特に、脂肪族ポリカーボネート)及びパターンが形成されたチャネル用前駆体層42中の脂肪族ポリカーボネートを分解させるために、所定の温度(第1温度)により第2予備焼成工程(乾燥工程)が行われる。
 本実施形態の第2予備焼成工程では、脂肪族ポリカーボネートを90wt%以上分解させる第1温度によって加熱する。この第2予備焼成工程と、後述する本焼成(焼成工程)とが相俟って、エッチングマスク80自身、及び最終的にチャネル用前駆体層42中の、特に脂肪族ポリカーボネートに起因する炭素不純物に代表される不純物をほぼ消失させることができる。なお、チャネル44中の特に脂肪族ポリカーボネートに起因する炭素不純物に代表される不純物の残存をより確度高く抑える観点から言えば、第1温度は、上述の脂肪族ポリカーボネートを95wt%以上分解させる温度であることが好ましく、その脂肪族ポリカーボネートを99wt%以上分解させる温度であることはさらに好ましい。
 ここで、第2予備焼成工程は、常温常圧乾燥に限られない。例えば、加熱乾燥、減圧乾燥、減圧加熱乾燥など、基板やゲート絶縁体などに悪影響を与えない限り、加熱や減圧などの処理を行ってもよい。なお、第2予備焼成工程は、酸化物半導体層の表面粗さの増減に影響を与え得る工程であるが、溶媒によって乾燥中の挙動が異なるため、溶媒の種類によって、適宜、第2予備焼成工程の温度(第1温度)等の条件が選定される。
 一例としての本実施形態の第2予備焼成工程は、チャネル用前駆体層42を所定時間(例えば、30分間)、例えば180℃以上300℃以下の範囲で加熱する。なお、上述の予備焼成は、例えば、酸素雰囲気中又は大気中(以下、総称して、「酸素含有雰囲気」ともいう。)において行われる。なお、窒素雰囲気中で第2予備焼成工程が行われることも採用し得る一態様である。
 その後、本焼成、すなわち「焼成工程」として、エッチングマスク80及びチャネル用前駆体層42を、例えば、酸素含有雰囲気において、所定時間、180℃以上、より好適には250℃以上、さらに好適には300℃以上、加えて、電気的特性において極めて好適には500℃以上の範囲で加熱する。その結果、図10A及び図10Bに示すように、ゲート絶縁体34上に、酸化物半導体層であるチャネル44が形成される。特筆すべきは、本焼成工程(本実施形態の加熱工程)によってエッチングマスク80も分解及び/又は除去されるため、本実施形態においては、酸化物層の形成とともに、エッチングマスクの除去を実現することができることである(酸化物層形成工程)。従って、エッチングマスク80を活用することによって、製造工程の顕著な削減を実現することが可能となる。なお、本焼成後の酸化物半導体層の最終的な厚さは、代表的には0.01μm以上10μm以下である。特に、0.01μm程度(つまり、10nm程度)の極めて薄い層が形成された場合であっても、クラックが生じにくいことも、特筆に値する。
 ここで、この焼成工程における設定温度は、酸化物半導体の形成過程において酸化物半導体の配位子を分解した上でその金属と酸素とが結合する温度であるとともに、上述の示差熱測定法(DTA)における発熱ピーク値の温度以上の温度(第2温度)が選定される。この焼成工程により、チャネル用前駆体層42中の脂肪族ポリカーボネート、分散剤、及び有機溶媒が、確度高く分解及び/又は除去されることになる。なお、第2温度が第1温度に対して10℃以上高いことは、より確度高く、本焼成後の酸化物半導体層中の炭素不純物に代表される不純物の残存を抑える観点から好適な一態様である。加えて、第2温度が第1温度に対して50℃以上高いことにより、さらに確度高くそのような不純物の残存を抑えることが可能となる。そして、最終的な酸化物半導体層の厚みの制御性及び/又は薄層化の実現、及び不純物の残存の低減の観点から言えば、第2温度が第1温度に対して100℃以上高いことは最も好適な例である。他方、第2温度と第1温度との最大差については特に限定されない。
 本願出願人らの分析によれば、上述の第1温度での加熱によって脂肪族ポリカーボネートがほぼ分解することにより、その後の第2温度での焼成工程(本焼成)においては、その脂肪族ポリカーボネートの分解過程はほぼ生じなくなるとともに、金属と酸素との結合にほぼ特化した反応が行われると考えられる。すなわち、理想的には、第1温度と第2温度の役割を異ならせることが、上述のとおり、非常に薄い層であっても、クラックの生成を生じにくくさせていると考えられる。
 ところで、本実施形態のエッチングマスク80を用いてエッチング処理を行った場合は、エッチングマスク80の保護対象であるチャネル44の半導体としての整流性を確認することができた。しかしながら、特に興味深いことには、市販のレジストをエッチングマスクとして活用した場合のチャネルは、エッチングマスクの材質以外の条件が同じであるにもかかわらず、整流性を示さない場合が存在することが確認された。
 図13は、本実施形態における薄膜トランジスタ100の一部を構成するチャネル44の整流性を示すグラフである。このグラフに示すように、本実施形態のエッチングマスク80を用いてエッチング処理を行った場合は、半導体としての整流性を得ることができる。これは、酸化物層のパターン形成において、加熱工程によってエッチングマスク80の確度高い除去、換言すれば、半導体の電気的特性に影響を及ぼす不純物の残渣の確度高い除去を実現することができるからであると考えられる。また、本実施形態のエッチングマスク80を用いれば、レジストを剥離する際に生じ得る、いわゆるバックチャネル領域への影響が皆無であると考えられることも、本実施形態のエッチングマスク80の特筆すべき有利な点である。なお、このグラフにおいて採用されたインジウムと亜鉛の混合比(質量比)は、インジウムアセチルアセトナートと塩化亜鉛との1kg当りのモル比を調整することによって1:1となっている。但し、インジウムと亜鉛の混合比はこの比率に限定されない。例えば、本願発明者らは、亜鉛を1としたときのインジウムの比率を2とした場合であっても、チャネル44としての整流性を確認している。従って、本実施形態の酸化物層の製造方法の加熱工程によって形成された、エッチングマスク80によって保護されていた酸化物層(チャネル44)を、ゲート絶縁体34を介在させてゲート電極24に接するように形成する酸化物層形成工程を含むことは、薄膜トランジスタの製造方法として好適な一態様である。
 なお、上述の第1予備焼成工程、第2予備焼成工程、及び本焼成(焼成工程)のいずれにおいても、加熱方法は特に限定されない。例えば、恒温槽や電気炉などを用いる従来の加熱方法でもよいが、特に、基板が熱に弱い場合には、基板に熱が伝わらないように紫外線加熱、電磁波加熱やランプ加熱によって酸化物半導体層のみを加熱する方法を用いることが好ましい。
 エッチングマスク80の除去過程及びチャネル44の形成過程において、脂肪族ポリカーボネートは、焼成分解後において酸化物半導体層中に残存する分解生成物を低減、又は消失させることができるだけでなく、緻密な酸化物半導体層の形成に寄与することができる。従って、脂肪族ポリカーボネートを採用することは本実施形態の好適な一態様である。
 なお、本実施形態においては、酸化されたときに酸化物半導体となる金属の化合物と脂肪族ポリカーボネートとの重量比を変動させること、あるいは、脂肪族ポリカーボネート又は金属の化合物の濃度を変えることにより、最終的なチャネル44の厚みを制御することが可能であることも、本願発明者らの研究によって確認された。例えば、非常に薄い層といえる、10nm~50nmの厚みのチャネル44がクラックを発生させることなく形成され得ることが分かった。なお、前述の薄い層のみならず、50nm以上の厚みの層についても、チャネル用前駆体層42の厚みや、前述の重量比などを適宜調整することにより、比較的容易に形成することができる。なお、一般的には、チャネルに用いられる層の厚みは0.01μm(つまり10nm)以上1μm以下であることから、最終的なチャネル44の厚みを制御することが可能な本実施形態の酸化物半導体の前駆体、並びに酸化物半導体層は、薄膜トランジスタを構成する材料として適しているといえる。
 加えて、本実施形態の酸化物半導体の前駆体を採用すれば、当初はかなり厚膜(例えば、10μm以上)の酸化物半導体の前駆体層を形成したとしても、その後の焼成工程によって脂肪族ポリカーボネート等が高い確度で分解されることになるため、焼成後の層の厚みは、極めて薄く(例えば、10nm~100nm)なり得る。さらに、そのような薄い層であっても、クラックの発生が無い、又は確度高く抑制されることになる点は、特筆に値する。従って、当初の厚みを十分に確保できる上、最終的に極めて薄い層を形成することも可能な本実施形態の酸化物半導体の前駆体、並びに酸化物半導体層は、低エネルギー製造プロセスや公知の型押し加工によるプロセスにとって極めて適していることが知見された。また、そのような極めて薄い層であってもクラックの発生が無い、又は確度高く抑制される酸化物半導体層の採用は、本実施形態の薄膜トランジスタ100の安定性を極めて高めることになる。
 さらに、本実施形態においては、上述の酸化物半導体の種類や組み合わせ、その酸化物半導体と脂肪族ポリカーボネートと混合させる比率を適宜調節することにより、チャネルを形成する酸化物半導体層の電気的特性や安定性の向上を図ることができる。
(4)ソース電極及びドレイン電極の形成
 さらにその後、チャネル44の形成方法と同様に、チャネル44上にパターニングされた本実施形態のエッチングマスク80の層を形成した。続いて、図14に示すように、チャネル44及びエッチングマスク80上に、公知のスパッタリング法により、ITO層50を形成する。本実施形態のターゲット材は、例えば、5wt%酸化錫(SnO)を含有するITOであり、室温~100℃の条件下において形成される。その後、約250℃に加熱することによってエッチングマスク80が除去されると、チャネル44上に、ITO層50によるドレイン電極56及びソース電極58が形成される。その結果、図15に示すように、薄膜トランジスタ100が製造される。なお、エッチングマスク80の代わりに、従来技術のフォトリソグラフィー法を用いた公知のレジスト層のパターンを活用することも、採用し得る他の一態様である。
 なお、本実施形態においては、上述のドレイン電極56及びソース電極58の代わりに、例えば、印刷法により、ペースト状の銀(Ag)又はペースト状のITO(酸化インジウムスズ)を用いてドレイン電極及びソース電極のパターンを形成する方法は、採用し得る一態様である。また、ドレイン電極56及びソース電極58の代わりに、公知の蒸着法によって形成された金(Au)又はアルミニウム(Al)のドレイン電極及びソース電極のパターンが採用されてもよい。
<第2の実施形態の変形例(1)>
 本実施形態の薄膜トランジスタは、第2の実施形態におけるチャネルの焼成工程(本焼成)後に、エッチングマスク80を用いたエッチング処理が行われている点を除き、第2の実施形態の薄膜トランジスタ100の製造工程及び構成と同様である。従って、第1又は第2の実施形態と重複する説明は省略する。
 本実施形態は、酸化物半導体層であるチャネル44が形成された後に、チャネル44のパターンを形成する工程を採用する。従って、この変形例(1)においては、第2の実施形態のように、酸化されたときに酸化物層となる酸化物前駆体層のエッチングは行われない。
 図16A及び図16Bは、それぞれ、半導体素子の一例である薄膜トランジスタの製造方法の一過程を示す断面模式図である。なお、図16Aに示される工程の前は、第2の実施形態の図9Aに示される構造が形成されている。また、図16Bに示される工程の後は、第2の実施形態の図10Aに示される構造が形成されることになる。
 この変形例(1)に示されるように、エッチング処理を行う前に、本焼成後のチャネル44を形成することも採用し得る一態様である。図16Aに示すように、第2の実施形態において説明したエッチングマスク80のパターンは、チャネル44上に形成される。その後、チャネル44である酸化物層を溶解する溶液に、エッチングマスク80及びチャネル44を接触(代表的には、該エッチング溶液中に浸漬)させた後、エッチングマスク80が分解する温度以上に加熱される。その結果、図16Bに示すように、パターンが形成されたチャネル44が得られる。なお、この変形例(1)を採用した場合であっても、エッチングマスク80(より具体的には、エッチングマスク80のパターン)によって保護されていた酸化物層(チャネル44)は半導体としての整流性を有することができる。
<第2の実施形態の変形例(2)>
 また、第2の実施形態又は第2の実施形態の変形例(1)においては、酸化物前駆体層を溶解する溶液又は酸化物層を溶解する溶液である所定のエッチング溶液に接触させる接触工程によってチャネル44のパターンを形成しているが、第2の実施形態はエッチング溶液を用いた処理に限定されない。例えば、第2の実施形態の酸化物半導体の前駆体層であるチャネル用前駆体層42をエッチングするための公知のガスのプラズマに曝露する曝露工程を用いて、エッチングマスク80によって保護されていない領域の該チャネル用前駆体層42をエッチングすることも採用し得る一態様である。その結果、該プラズマに曝露されていない領域のチャネル用前駆体層42は、その後に加熱工程が施されることにより、チャネル44となる。加えて、その加熱工程によってエッチングマスク80を分解及び/又は除去することが可能となる。その結果、1つの処理(加熱工程)によって、チャネル44の形成とともにエッチングマスク80の分解及び/又は除去を実現することができる。また、第2の実施形態の変形例(1)において説明した例も、この変形例(2)を適用し得る。具体的には、酸化物半導体層であるチャネル44が形成された後に、プラズマに曝露する曝露工程によってチャネル44のパターンを形成する工程も、採用し得る他の一態様である。上述のいずれの場合であっても、パターンが形成されたチャネル44は、半導体としての整流性を有することができる。
<第2の実施形態の変形例(3)>
 また、第2の実施形態においては、チャネル44のパターンを形成するために、スクリーン印刷法によって形成されたエッチングマスク80が活用されているが、その他の層(例えば、酸化物導電体の層又は酸化物絶縁体の層)のパターンを形成するために、スクリーン印刷法によって形成されたエッチングマスク80を活用することも、採用し得る他の一態様である。上述のその他の層についてエッチングマスク80を採用した場合であっても、パターンが形成された酸化物導電体の層は導電性を備えることができ、パターンが形成された酸化物絶縁体の層は絶縁性を備えることができる。
<その他の実施形態(1)>
 ところで、上述の各実施形態においては、酸化物前駆体層又は酸化物層がエッチング処理の対象であったが、上述の各実施形態はそれらの例に限定されない。例えば、金属の一部をエッチングすることによって該金属のパターンを形成するために、上述の各実施形態のエッチングマスクを用いることができる。
 図17Aは、第1の実施形態のエッチングマスクを用いたクロム(Cr)層のエッチング処理結果を示す平面写真である。また、図17Bは、図17Aの比較例としてのエッチングマスク(公知のレジストマスク)を用いたクロム(Cr)層のエッチング処理結果を示す平面写真である。
 図17Aに示すように、第1の実施形態のエッチングマスクを用いてクロム(Cr)層のエッチング処理を行った場合は、該エッチングマスクの残渣が視認されなかった。しかしながら、図17Bに示すように、比較例のレジストマスクを用いてクロム(Cr)層のエッチング処理を行った場合は、該レジストマスクの残渣が多数視認された。なお、このエッチング処理による金属としての電気的特性(導電性)の実質的な変化は確認されなかった。また、その他の金属のエッチング処理を行った場合であっても、前述と同様の効果が確認される。従って、エッチング処理の対象が金属であっても、第1の実施形態のエッチングマスクを採用することにより、エッチング処理後のエッチングマスクの確度高い除去を実現することができる。
<その他の実施形態(2)>
 また、例えば、絶縁体の一部をエッチングすることによって該絶縁体のパターンを形成するために、上述の各実施形態のエッチングマスクを用いることができる。図18は、第1の実施形態のエッチングマスクを用いた二酸化シリコン層(SiO)のエッチング処理結果を示す平面写真である。
 図18に示すように、第1の実施形態のエッチングマスクを用いて二酸化シリコン(SiO)層のエッチング処理を行った場合、該エッチングマスクの残渣が視認されなかった。なお、このエッチング処理による二酸化シリコン(SiO)層の電気的特性(絶縁性)の実質的な変化は確認されなかった。また、その他の絶縁体のエッチング処理を行った場合であっても、前述と同様の効果が確認される。従って、エッチング処理の対象が絶縁体であっても、第1の実施形態のエッチングマスクを採用することにより、エッチング処理後のエッチングマスクの確度高い除去を実現することができる。
<その他の実施形態(3)>
 ところで、上述の第2の実施形態及びその変形例においては、いわゆる逆スタガ型の構造を有する薄膜トランジスタが説明されているが、上述の各実施形態はその構造に限定されない。例えば、スタガ型の構造を有する薄膜トランジスタのみならず、ソース電極、ドレイン電極、及びチャネルが同一平面上に配置される、いわゆるプレーナ型の構造を有する薄膜トランジスタであっても、上述の各実施形態の効果と同様の効果が奏され得る。さらに、上述の各実施形態のチャネル(すなわち、酸化物半導体層)が基材又は基板上に形成されることも採用し得る他の一態様である。
 以上述べたとおり、上述の各実施形態及び実験例の開示は、それらの実施形態及び実験例の説明のために記載したものであって、本発明を限定するために記載したものではない。加えて、各実施形態の他の組み合わせを含む本発明の範囲内に存在する変形例もまた、特許請求の範囲に含まれるものである。
 本発明は、各種の半導体素子を含む携帯端末、情報家電、センサー、その他の公知の電化製品、MEMS(Micro Electro Mechanical Systems)又はNEMS(Nano Electro Mechanical Systems)、及び医療機器等を含む電子デバイス分野等に広く適用され得る。

Claims (20)

  1.  脂肪族ポリカーボネートを含む、
     スクリーン印刷用のエッチングマスク。
  2.  180℃以上の加熱によって、実質的に消失又は除去する前記脂肪族ポリカーボネートを含む、
     請求項1に記載のエッチングマスク。
  3.  分子量が6千以上40万以下の前記脂肪族ポリカーボネートの比率が該脂肪族ポリカーボネート全体の80質量%以上である、前記脂肪族ポリカーボネートを含むエッチングマスク前駆体から形成される、
     請求項1又は請求項2に記載のエッチングマスク。
  4.  ティー・エイ・インスツルメント社製レオメーター(AR-2000EX)を用いて測定したゼロせん断粘度ηの前記脂肪族ポリカーボネートの溜まり中に、ポリテトラフルオロエチレン(polytetrafluoroethylene)製の直径がDである円柱棒を沈めた後に、前記円柱棒を速度vで引き上げたときの、前記脂肪族ポリカーボネートの溜まりの最表面からの曳糸長Lが測定された場合に、L/(D×v×η)の値が0.25mm-1Pa-1以上である前記脂肪族ポリカーボネートを含むエッチングマスク前駆体から形成される、
     請求項1又は請求項2に記載のエッチングマスク。
  5.  前記エッチングマスク前駆体が基材上に配置されてから30秒後に、前記エッチングマスク前駆体の基材に対する接触角が、30°以上36°以下であるか、あるいは、前記エッチングマスク前駆体が基材上に配置されてから120秒後に、前記エッチングマスク前駆体の基材に対する接触角が、26°以上32°以下である、
     請求項3又は請求項4に記載のエッチングマスク。
  6.  エッチングの対象が酸化物層であり、
     前記酸化物層の上にパターンが形成される前記エッチングマスクであって、
     前記酸化物層を溶解する溶液に前記エッチングマスクを接触させた後に、前記エッチングマスクが分解する温度以上に加熱されることにより、前記パターンによって保護されていた前記酸化物層が整流性を示す、
     請求項1乃至請求項5のいずれか1項に記載のエッチングマスク。
  7.  エッチングの対象が、酸化したときに酸化物層となる酸化物前駆体層であり、
     前記酸化物前駆体層の上にパターンが形成される前記エッチングマスクであって、
     前記酸化物前駆体層を溶解する溶液に前記エッチングマスクを接触させた後に、前記酸化物層が形成される温度以上に加熱されることにより、前記パターンによって保護されていた前記酸化物層が整流性を示す、
     請求項1乃至請求項5のいずれか1項に記載のエッチングマスク。
  8.  エッチングの対象が酸化物層であり、
     前記酸化物層の上にパターンが形成される前記エッチングマスクであって、
     前記酸化物層をエッチングするプラズマに前記エッチングマスクが曝露された後に、前記エッチングマスクが分解する温度以上に加熱されることにより、前記パターンによって保護されていた前記酸化物層が整流性を示す、
     請求項1乃至請求項5のいずれか1項に記載のエッチングマスク。
  9.  エッチングの対象が、酸化したときに酸化物層となる酸化物前駆体層であり、
     前記酸化物前駆体層の上にパターンが形成される前記エッチングマスクであって、
     前記酸化物前駆体層をエッチングするプラズマに前記エッチングマスクが曝露された後に、前記酸化物層が形成される温度以上に加熱されることにより、前記パターンによって保護されていた前記酸化物層が整流性を示す、
     請求項1乃至請求項5のいずれか1項に記載のエッチングマスク。
  10.  前記脂肪族ポリカーボネートが、ポリエチレンカーボネート及びポリプロピレンカーボネートからなる群から選ばれる少なくとも1種である、
     請求項1乃至請求項9のいずれか1項に記載のエッチングマスク。
  11.  脂肪族ポリカーボネートを含む、
     スクリーン印刷用のエッチングマスク前駆体。
  12.  180℃以上の加熱によって、実質的に消失又は除去する前記脂肪族ポリカーボネートを含む、
     請求項11に記載のスクリーン印刷用のエッチングマスク前駆体。
  13.  分子量が6千以上40万以下の前記脂肪族ポリカーボネートの比率が該脂肪族ポリカーボネート全体の80質量%以上である、前記脂肪族ポリカーボネートを含む、
     請求項11又は請求項12に記載のスクリーン印刷用のエッチングマスク前駆体。
  14.  ティー・エイ・インスツルメント社製レオメーター(AR-2000EX)を用いて測定したゼロせん断粘度ηの前記脂肪族ポリカーボネートの溜まり中に、ポリテトラフルオロエチレン(polytetrafluoroethylene)製の直径がDである円柱棒を沈めた後に、前記円柱棒を速度vで引き上げたときの、前記脂肪族ポリカーボネートの溜まりの最表面からの曳糸長Lが測定された場合に、L/(D×v×η)の値が0.25mm-1Pa-1以上である前記脂肪族ポリカーボネートを含む、
     請求項11又は請求項12に記載のスクリーン印刷用のエッチングマスク前駆体。
  15.  酸化物層上に、スクリーン印刷法によって脂肪族ポリカーボネートを含むエッチングマスクのパターンを形成するエッチングマスク形成工程と、
     前記エッチングマスク形成工程の後、前記エッチングマスクによって保護されていない前記酸化物層を溶解する溶液に接触させる接触工程と、
     前記接触工程の後、前記酸化物層及び前記エッチングマスクを前記エッチングマスクが分解する温度以上に加熱する加熱工程とを含む、
     酸化物層の製造方法。
  16.  酸化されたときに酸化物層となる酸化物前駆体層上に、スクリーン印刷法によって脂肪族ポリカーボネートを含むエッチングマスクのパターンを形成するエッチングマスク形成工程と、
     前記エッチングマスク形成工程の後、前記エッチングマスクによって保護されていない前記酸化物前駆体層を溶解する溶液に接触させる接触工程と、
     前記接触工程の後、前記酸化物前駆体層及び前記エッチングマスクを、前記酸化物層が形成される温度以上に加熱する加熱工程とを含む、
     酸化物層の製造方法。
  17.  酸化物層上に、スクリーン印刷法によって脂肪族ポリカーボネートを含むエッチングマスクのパターンを形成するエッチングマスク形成工程と、
     前記エッチングマスク形成工程の後、前記エッチングマスクによって保護されていない前記酸化物層をエッチングするプラズマに曝露する曝露工程と、
     前記曝露工程の後、前記酸化物層及び前記エッチングマスクを前記エッチングマスクが分解する温度以上に加熱する加熱工程とを含む、
     酸化物層の製造方法。
  18.  酸化されたときに酸化物層となる酸化物前駆体層上に、スクリーン印刷法によって脂肪族ポリカーボネートを含むエッチングマスクのパターンを形成するエッチングマスク形成工程と、
     前記エッチングマスク形成工程の後、前記エッチングマスクによって保護されていない前記酸化物前駆体層をエッチングするプラズマに曝露する曝露工程と、
     前記曝露工程の後、前記酸化物前駆体層及び前記エッチングマスクを、前記酸化物層が形成される温度以上に加熱する加熱工程とを含む、
     酸化物層の製造方法。
  19.  前記加熱工程において、前記酸化物前駆体層及び/又は前記エッチングマスクに対して紫外線を照射しながら有機物が分解される温度以上に加熱する、
     請求項15乃至請求項18のいずれか1項に記載の酸化物層の製造方法。
  20.  請求項15乃至請求項19のいずれか1項に記載の酸化物層の製造方法の前記加熱工程によって形成された、前記エッチングマスクによって保護されていた前記酸化物層を、ゲート絶縁体を介在させてゲート電極に接するように形成する酸化物層形成工程を含む、
     薄膜トランジスタの製造方法。
PCT/JP2016/057986 2015-04-16 2016-03-14 エッチングマスク、エッチングマスク前駆体及び酸化物層の製造方法並びに薄膜トランジスタの製造方法 WO2016167064A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
KR1020177029579A KR20170141668A (ko) 2015-04-16 2016-03-14 에칭 마스크, 에칭 마스크 전구체 및 산화물층의 제조 방법 및 박막 트랜지스터의 제조 방법
JP2017512237A JP6697447B2 (ja) 2015-04-16 2016-03-14 エッチングマスク、エッチングマスク前駆体及び酸化物層の製造方法並びに薄膜トランジスタの製造方法
EP16779856.0A EP3285283A4 (en) 2015-04-16 2016-03-14 Etching mask, etching mask precursor, method for manufacturing oxide layer, and method for manufacturing thin-film transistor
US15/565,976 US20180096853A1 (en) 2015-04-16 2016-03-14 Method of producing etching mask, etching mask precursor, and oxide layer, and method of manufacturing thin film transistor
CN201680022181.5A CN107431013B (zh) 2015-04-16 2016-03-14 蚀刻掩模、蚀刻掩模前体、氧化物层的制造方法以及薄膜晶体管的制造方法
TW105110240A TWI692028B (zh) 2015-04-16 2016-03-31 蝕刻罩、蝕刻罩前驅體、氧化物層之製造方法以及薄膜電晶體之製造方法
US16/586,021 US11133191B2 (en) 2015-04-16 2019-09-27 Method of producing etching mask, etching mask precursor, and oxide layer, and method of manufacturing thin film transistor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015-084467 2015-04-16
JP2015084467 2015-04-16

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US15/565,976 A-371-Of-International US20180096853A1 (en) 2015-04-16 2016-03-14 Method of producing etching mask, etching mask precursor, and oxide layer, and method of manufacturing thin film transistor
US16/586,021 Division US11133191B2 (en) 2015-04-16 2019-09-27 Method of producing etching mask, etching mask precursor, and oxide layer, and method of manufacturing thin film transistor

Publications (1)

Publication Number Publication Date
WO2016167064A1 true WO2016167064A1 (ja) 2016-10-20

Family

ID=57126520

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/057986 WO2016167064A1 (ja) 2015-04-16 2016-03-14 エッチングマスク、エッチングマスク前駆体及び酸化物層の製造方法並びに薄膜トランジスタの製造方法

Country Status (7)

Country Link
US (2) US20180096853A1 (ja)
EP (1) EP3285283A4 (ja)
JP (1) JP6697447B2 (ja)
KR (1) KR20170141668A (ja)
CN (1) CN107431013B (ja)
TW (1) TWI692028B (ja)
WO (1) WO2016167064A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018074608A1 (ja) * 2016-10-21 2018-04-26 凸版印刷株式会社 薄膜トランジスタおよびその製造方法
WO2018074607A1 (ja) * 2016-10-21 2018-04-26 凸版印刷株式会社 薄膜トランジスタおよびその製造方法、ならびに薄膜トランジスタ用ゲート絶縁膜形成溶液

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20190094100A (ko) * 2018-02-02 2019-08-12 스미토모 세이카 가부시키가이샤 폴리프로필렌 카보네이트 함유 용액 및 폴리프로필렌 카보네이트 함유층
JP2019167520A (ja) * 2018-03-22 2019-10-03 住友精化株式会社 ポリプロピレンカーボネート含有溶液及びポリプロピレンカーボネート含有層、並びに複合部材の製造方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0517300A (ja) * 1991-07-05 1993-01-26 Hikari Gijutsu Kenkyu Kaihatsu Kk 化合物半導体基体のエツチング方法および製造方法
JPH06510809A (ja) * 1991-09-09 1994-12-01 クツクソン・グループ・ピーエルシー 熱解重合性エステル基含有重合体及びそれらの使用
JP2005340800A (ja) * 2004-04-28 2005-12-08 Semiconductor Energy Lab Co Ltd 配線基板及び半導体装置、並びにその作製方法
JP2012129325A (ja) * 2010-12-14 2012-07-05 Sumitomo Bakelite Co Ltd 基材の加工方法

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002022708A1 (fr) * 2000-09-12 2002-03-21 Teijin Limited Polycarbonates aromatiques et procede de fabrication associe
TWI489519B (zh) 2004-04-28 2015-06-21 Semiconductor Energy Lab 基板上配線,半導體裝置及其製造方法
KR101146667B1 (ko) * 2005-11-07 2012-05-24 삼성에스디아이 주식회사 금속산화물 페이스트 조성물 및 그를 이용한 반도체 전극의제조방법
US20080182011A1 (en) * 2007-01-26 2008-07-31 Ng Hou T Metal and metal oxide circuit element ink formulation and method
JP5322575B2 (ja) * 2008-03-28 2013-10-23 富士フイルム株式会社 レーザー彫刻用樹脂組成物、画像形成材料、レーザー彫刻用レリーフ印刷版原版、レリーフ印刷版、及びレリーフ印刷版の製造方法
DE102008023499A1 (de) * 2008-05-14 2009-11-19 Bayer Materialscience Ag Druckfarbe oder Drucklack, damit beschichteter Schichtstoff und Verfahren zur Herstellung eines Schichtstoffs
US8617799B2 (en) * 2008-09-22 2013-12-31 Api Technologies Corp. Post arrays and methods of making the same
CN102822109A (zh) * 2010-03-29 2012-12-12 日本电气硝子株式会社 密封材料及使用其的糊剂材料
WO2013015414A1 (ja) * 2011-07-27 2013-01-31 日本電気硝子株式会社 封着材料層付きガラス基板、これを用いた有機elデバイス、及び電子デバイスの製造方法
KR20140061363A (ko) * 2011-07-28 2014-05-21 미쓰비시 가가꾸 가부시키가이샤 필름 적층체, 필름 권층체, 및 그 필름 권층체의 제조 방법
US8644000B2 (en) * 2011-09-13 2014-02-04 Fatih Dogan Nanostructured dielectric materials for high energy density multilayer ceramic capacitors
WO2015019771A1 (ja) * 2013-08-09 2015-02-12 国立大学法人北陸先端科学技術大学院大学 酸化物半導体層及びその製造方法、並びに酸化物半導体の前駆体、酸化物半導体層、半導体素子、及び電子デバイス
KR102226809B1 (ko) * 2013-12-16 2021-03-10 고쿠리츠다이가쿠호진 호쿠리쿠 센단 가가쿠 기쥬츠 다이가쿠인 다이가쿠 반도체소자 및 그 제조방법, 및 지방족 폴리카보네이트
JP6481865B2 (ja) * 2014-12-16 2019-03-13 国立大学法人北陸先端科学技術大学院大学 酸化物の前駆体、酸化物層、半導体素子、及び電子デバイス、並びに酸化物層の製造方法及び半導体素子の製造方法
EP3294802B1 (en) * 2015-05-08 2019-10-02 Sun Chemical Corporation Gas barrier coating compositions
JP6709793B2 (ja) * 2015-09-18 2020-06-17 国立大学法人北陸先端科学技術大学院大学 複合部材及び複合部材の製造方法並びに脂肪族ポリカーボネート含有層
DE112015006958T5 (de) * 2015-09-25 2018-07-19 Intel Corporation Gehäuseintegrierte Mikrokanäle
US10784120B2 (en) * 2016-03-14 2020-09-22 Japan Advanced Institute Of Science And Technology Laminate, etching mask, method of producing laminate, method of producing etching mask, and method of producing thin film transistor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0517300A (ja) * 1991-07-05 1993-01-26 Hikari Gijutsu Kenkyu Kaihatsu Kk 化合物半導体基体のエツチング方法および製造方法
JPH06510809A (ja) * 1991-09-09 1994-12-01 クツクソン・グループ・ピーエルシー 熱解重合性エステル基含有重合体及びそれらの使用
JP2005340800A (ja) * 2004-04-28 2005-12-08 Semiconductor Energy Lab Co Ltd 配線基板及び半導体装置、並びにその作製方法
JP2012129325A (ja) * 2010-12-14 2012-07-05 Sumitomo Bakelite Co Ltd 基材の加工方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3285283A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018074608A1 (ja) * 2016-10-21 2018-04-26 凸版印刷株式会社 薄膜トランジスタおよびその製造方法
WO2018074607A1 (ja) * 2016-10-21 2018-04-26 凸版印刷株式会社 薄膜トランジスタおよびその製造方法、ならびに薄膜トランジスタ用ゲート絶縁膜形成溶液
JPWO2018074607A1 (ja) * 2016-10-21 2019-09-05 凸版印刷株式会社 薄膜トランジスタおよびその製造方法、ならびに薄膜トランジスタ用ゲート絶縁膜形成溶液
JP7100851B2 (ja) 2016-10-21 2022-07-14 凸版印刷株式会社 薄膜トランジスタおよびその製造方法、ならびに薄膜トランジスタ用ゲート絶縁膜形成溶液

Also Published As

Publication number Publication date
KR20170141668A (ko) 2017-12-26
US20200027743A1 (en) 2020-01-23
TW201709316A (zh) 2017-03-01
CN107431013A (zh) 2017-12-01
JP6697447B2 (ja) 2020-05-20
US11133191B2 (en) 2021-09-28
EP3285283A4 (en) 2018-12-12
CN107431013B (zh) 2022-01-25
US20180096853A1 (en) 2018-04-05
EP3285283A1 (en) 2018-02-21
JPWO2016167064A1 (ja) 2018-02-08
TWI692028B (zh) 2020-04-21

Similar Documents

Publication Publication Date Title
WO2017158930A1 (ja) 積層体、エッチングマスク、積層体の製造方法、及びエッチングマスクの製造方法、並びに薄膜トランジスタの製造方法
JP5749411B1 (ja) 酸化物半導体層及びその製造方法、並びに酸化物半導体の前駆体、酸化物半導体層、半導体素子、及び電子デバイス
KR102226809B1 (ko) 반도체소자 및 그 제조방법, 및 지방족 폴리카보네이트
US11133191B2 (en) Method of producing etching mask, etching mask precursor, and oxide layer, and method of manufacturing thin film transistor
JP6481865B2 (ja) 酸化物の前駆体、酸化物層、半導体素子、及び電子デバイス、並びに酸化物層の製造方法及び半導体素子の製造方法
JP6441060B2 (ja) 酸化物層及びその製造方法、並びに半導体素子及びその製造方法、並びに電子デバイス

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16779856

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2017512237

Country of ref document: JP

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2016779856

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 15565976

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20177029579

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE