JP7098370B2 - 眼科用顕微鏡及び機能拡張ユニット - Google Patents

眼科用顕微鏡及び機能拡張ユニット Download PDF

Info

Publication number
JP7098370B2
JP7098370B2 JP2018056763A JP2018056763A JP7098370B2 JP 7098370 B2 JP7098370 B2 JP 7098370B2 JP 2018056763 A JP2018056763 A JP 2018056763A JP 2018056763 A JP2018056763 A JP 2018056763A JP 7098370 B2 JP7098370 B2 JP 7098370B2
Authority
JP
Japan
Prior art keywords
optical system
optical
objective lens
oct
lens
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018056763A
Other languages
English (en)
Other versions
JP2018187362A (ja
Inventor
康文 福間
和宏 大森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Topcon Corp
Original Assignee
Topcon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Topcon Corp filed Critical Topcon Corp
Priority to US16/610,259 priority Critical patent/US11503996B2/en
Priority to PCT/JP2018/017568 priority patent/WO2018203577A1/ja
Priority to EP18794987.0A priority patent/EP3620104B1/en
Publication of JP2018187362A publication Critical patent/JP2018187362A/ja
Application granted granted Critical
Publication of JP7098370B2 publication Critical patent/JP7098370B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Eye Examination Apparatus (AREA)

Description

本発明は、被検眼を照明する照明光学系と、照明された被検眼を観察するための観察光学系とを有する眼底カメラ、スリットランプ、眼科手術用顕微鏡等の眼科用顕微鏡に関する。本発明の眼科用顕微鏡は、光コヒーレンストモグラフィ(Optical Coherence Tomography:「OCT」と略称される)により被検眼の断層像を得ることができるOCT光学系を有し、OCT光学系と観察光学系とが独立できる構成となっていることを特徴とし、これにより眼科用顕微鏡の設計の自由度を高めることができる。
また、本発明は、眼科用顕微鏡に着脱可能で、OCTの機能を眼科用顕微鏡に付加することができる、機能拡張ユニットに関する。
眼科用顕微鏡は、患者の被検眼を照明光学系により照明し、レンズ等からなる観察光学系により被検眼を拡大して観察することができる医療用又は検査用の機器である。このような眼科用顕微鏡には、OCT光学系を有することにより、被検眼の断層像を得ることができるものが開発されている。
OCTとは、コヒーレンスが低い(可干渉距離が短い)光源を用いて、干渉計を構成し、これにより生体の断層像を得る技術である。具体的には、コヒーレンスが低い光源を用いて、この光をビームスプリッタで2分し、一方の光(測定光)を偏向光学素子で走査して生体組織に照射して反射又は散乱させ、もう一方の光(参照光)をミラーで反射させる。測定光は、生体組織のいろいろな深さの位置で反射又は散乱し、無数の反射光又は散乱光が戻ってくる。ビームスプリッタに戻ってきた測定光と参照光の反射光を合流させると、参照光と同じ距離だけ経由した測定光の反射光又は散乱光のみが、参照光の反射光と干渉して検出される。したがって、ビームスプリッタとミラーとの位置を調整して参照光の経路長を様々に変更することにより、生体組織の様々な深さで反射した測定光の強さを検出できる。このようなOCT光学系により、生体組織の断層像を得ることができる。
このOCT光学系を眼科用顕微鏡に設けることにより、眼の網膜や角膜、虹彩等の断層像を得ることが可能となり、組織の表面だけでなく内部の状態も観察することが可能となった。これにより眼の疾患の診断精度を高め、また、眼科手術の成功率を高めることができる。
このようなOCT光学系を有する眼科用顕微鏡においては、OCT光学系の光が被検眼に入射できるように、照明光学系と観察光学系を有する顕微鏡にOCT光学系を組み込む必要があり、様々な方式が開発されている。
例えば、観察者の左眼用観察光学系と右眼用観察光学系とからなる観察光学系を有し、左右の観察光学系の光軸が共通して透過する一つの対物レンズを有するガリレオ式の眼科用顕微鏡において、対物レンズの側方から入射したOCT光源の光を、対物レンズの直上で反射部材により反射させ、対物レンズを透過させて被検眼に入射させる方式がある(特許文献1及び2等)。
より詳細に説明すると、図16(特許文献1の図1を引用した図面)に示されるように、眼科用顕微鏡は、左眼用観察光学系の光軸と右眼用観察光学系の光軸をそれぞれ透過させる左右に対となるレンズ群130,140,150,170,180からなる観察光学系と、左眼用観察光学系の光軸と右眼用観察光学系の光軸が共通して透過する一つの対物レンズ110と、OCT光学系200,250,450,460,470と、照明光学系310,320,330を有している。OCT光学系においては、OCT光源200からの出力光が、光ファイバ250を通過して出射され、2枚の走査鏡450,460により方向を制御された後、ビームコンバイナ340において照明光学系からの照明光と合流して、ビームスプリッタ120で反射され、被検眼1000に入射している。
また、ガリレオ式の眼科用顕微鏡において、対物レンズの上部からOCT光源の光を出射させ、対物レンズを透過させて被検眼に入射させる方式がある(特許文献3)。
さらに、ガリレオ式の眼科用顕微鏡において、OCT光学系の光路を、観察光学系の光路と略同軸に合流させて、対物レンズを透過させて被検眼に入射させる方式がある(特許文献4及び5)。
前記の方式はいずれも、観察光学系の光軸とOCT光学系の光軸とが、共通して一つの対物レンズを透過するものであった。
ガリレオ式の眼科用顕微鏡において、OCT光学系の光軸が対物レンズを透過しない方式としては、対物レンズの側方から入射したOCT光源の光を、対物レンズの直下で偏向部材により反射させて、対物レンズを透過させずに被検眼に入射させる方式がある(特許文献6及び7)。
より詳細に説明すると、図17(特許文献7の図3を引用した図面)に示される眼科用顕微鏡においては、観察光学系の光軸が透過する対物レンズ15の下部において、対物レンズ15の側方から入射したOCT光源の光を偏向部材106で反射させて、被検眼にOCT光学系の光を入射させている。尚、この眼科用顕微鏡では、走査用の偏向光学素子である第1スキャナ102aと第2スキャナ102bの間の位置(たとえば、中間位置)と患者眼Eの位置とが光学的に略共役であることが示されている(特許文献7の[0043]段落)。
また、ガリレオ式の眼科用顕微鏡と異なる方式としては、左右の観察光学系にそれぞれ対応する2つの対物レンズを有し、左右の観察光学系の間にステレオ角を持たせたグリノー式の眼科用顕微鏡がある(特許文献8及び9)。グリノー式の眼科用顕微鏡においては、左右の観察光学系の光軸が共通して透過する対物レンズが存在しないため、OCT光学系の光路をその対物レンズを透過させることなく被検眼に入射させることができる。
しかしながら、グリノー式の眼科用顕微鏡では、左右の観察光学系を互いに傾斜させてステレオ角を持たせるため、複雑な光学設計が必要となるものであった。
特開平8-66421号公報 特開2008-264488号公報 特開2008-268852号公報 特表2010-522055号公報 特開2008-264490号公報 米国特許第8366271号明細書 特開2016-206348号公報 特開2016-185177号公報 特開2016-185178号公報
前記のとおり、OCT光学系を備える従来の眼科用顕微鏡においては、ガリレオ式の眼科用顕微鏡とグリノー式の眼科用顕微鏡があるが、グリノー式の眼科用顕微鏡は複雑な光学設計が必要となるものであった。
また、従来のガリレオ式の眼科用顕微鏡においては、特許文献1~5等に示されるように、観察光学系の光軸とOCT光学系の光軸とが、共通して一つの対物レンズを透過する方式が数多く開発されているが、観察光学系とOCT光学系とが独立していないため、OCT光学系と観察光学系とが互いに影響を受けて、光学設計の自由度が制限されるものであった。
従来のガリレオ式の眼科用顕微鏡においては、特許文献6及び7に示されるように、OCT光学系の光軸が対物レンズを透過しない方式も開発されているが、対物レンズと被検眼の間にOCT光学系の光学部材を設けるため、眼科用顕微鏡から被検眼までの距離を十分に確保できなくなるという問題があった。
そこで、本発明は、前記従来の状況に鑑み、OCT光学系を備えるガリレオ式の眼科用顕微鏡において、光学設計の自由度を高める新しい方式の眼科用顕微鏡を開発することを目的とする。
前記課題を解決するため、本願の発明者らは鋭意研究した結果、ガリレオ式の眼科用顕微鏡において、観察光学系の光軸が透過する対物レンズをOCT光学系の光軸が透過しないように配置し、対物レンズとは別にOCT用対物レンズを設けることで、観察光学系とOCT光学系とが独立して、光学設計の自由度が高まることを見出した。そして、OCT光学系の走査用の偏向光学素子とOCT用対物レンズとが光学的に略共役な位置関係となるように配置することにより、小口径のOCT用対物レンズでも測定光を広い照射範囲で走査できることを見出し、本発明を完成するに到った。
すなわち、本発明は、眼科用顕微鏡に関する下記の第1の発明と、機能拡張ユニットに関する下記の第2の発明と、機能拡張セットに関する下記の第3の発明を提供する。
(1) 第1の発明は、被検眼を照明する照明光学系と、前記照明光学系で照明された前記被検眼を観察するための左眼用観察光学系と右眼用観察光学系を有する観察光学系と、前記観察光学系の前記左眼用観察光学系の光軸と前記右眼用観察光学系の光軸が共通して透過する対物レンズと、光コヒーレンストモグラフィにより前記被検眼を検査するための測定光の光路と前記測定光を走査する偏向光学素子を含むOCT光学系とを有する眼科用顕微鏡において、
前記観察光学系の光軸が透過する前記対物レンズを前記OCT光学系の光軸が透過しないように、前記観察光学系と、前記対物レンズと、前記OCT光学系とが配置され、
前記対物レンズとは別に、前記OCT光学系の光軸が透過するOCT用対物レンズを有し、
前記偏向光学素子と前記OCT用対物レンズが、光学的に略共役な位置関係であることを特徴とする、眼科用顕微鏡に関する。
(2) 前記OCT光学系は、
OCT光源からの光を第1の光軸方向に導光する第1光学部材と、
前記第1の光軸方向に導光された光を前記第1の光軸方向に略直交する第2の光軸方向に導光する第1反射部材と、
前記第2の光軸方向に導光された光をリレーする第2光学部材と、
前記第2光学部材によりリレーされた光を前記第2の光軸方向に略直交する第3の光軸方向に導光する第2反射部材と
を有しており、
前記OCT用対物レンズは、前記第3の光軸方向に導光された光を前記被検眼の所定箇所に照射できるように、前記第3の光軸上に配置されていることが好ましい。
(3) 第1の発明の眼科用顕微鏡においては、前記偏向光学素子が、走査する方向が異なる2つの対となる偏向光学素子からなる場合には、
前記2つの偏向光学素子の間の光路上に、リレー光学系を有しており、
前記2つの偏向光学素子のいずれも、前記OCT用対物レンズと光学的に略共役な位置関係であることが好ましい。
(4) 前記いずれかの眼科用顕微鏡においては、前記対物レンズが、円形レンズの部分形状、又は円形レンズに切り欠き若しくは穴を設けた形状を有しており、
前記OCT光学系の光軸が、前記対物レンズの存在しない部分、又は前記対物レンズに設けられた切り欠き若しくは穴を通過することが好ましい。
(5) 前記いずれかの眼科用顕微鏡においては、円形レンズ又は円形レンズの部分からなるレンズを2つに分割し、
分割した一のレンズを、前記対物レンズとし、
分割した他の一のレンズを、前記OCT用対物レンズとすることができる。
(6) 前記いずれかの眼科用顕微鏡においては、前記対物レンズ又は前記OCT用対物レンズの位置を調整する対物レンズ位置制御機構をさらに有することが好ましい。
(7) 前記いずれかの眼科用顕微鏡においては、前記OCT光学系が着脱可能にユニット化されていることが好ましい。
(8) 前記いずれかの眼科用顕微鏡においては、前記被検眼の網膜を観察するために前記被検眼と前記対物レンズの間の光路上に挿脱可能な前置レンズをさらに有することが好ましい。
(9) 第2の発明は、被検眼を照明する照明光学系と、前記照明光学系で照明された被検眼を観察するための左眼用観察光学系と右眼用観察光学系を有する観察光学系と、前記観察光学系の前記左眼用観察光学系の光軸と前記右眼用観察光学系の光軸が共通して透過する対物レンズとを有する眼科用顕微鏡に使用する機能拡張ユニットにおいて、
前記眼科用顕微鏡に対して着脱可能なジョイント部と、
光コヒーレンストモグラフィにより前記被検眼を検査するための測定光の光路と、前記測定光を走査する偏向光学素子と、OCT用対物レンズを含むOCT光学系とを有し、
前記機能拡張ユニットを前記ジョイント部を介して前記眼科用顕微鏡に装着した場合に、前記OCT光学系の光軸が、前記対物レンズを透過せず、前記OCT用対物レンズを透過し、
前記偏向光学素子と前記OCT用対物レンズが、光学的に略共役な位置関係であることを特徴とする、機能拡張ユニットに関する。
(10) 第2の発明の機能拡張ユニットにおいては、前記OCT光学系が、
OCT光源からの光を第1の光軸方向に導光する第1光学部材と、
前記第1の光軸方向に導光された光を前記第1の光軸方向に略直交する第2の光軸方向に導光する第1反射部材と、
前記第2の光軸方向に導光された光をリレーする第2光学部材と、
前記第2光学部材によりリレーされた光を前記第2の光軸方向に略直交する第3の光軸方向に導光する第2反射部材と
を有しており、
前記OCT用対物レンズは、前記第3の光軸方向に導光された光を前記被検眼の所定箇所に照射できるように、前記第3の光軸上に配置されていることが好ましい。
(11) 前記いずれかの機能拡張ユニットにおいては、前記偏向光学素子が、走査する方向が異なる2つの対となる偏向光学素子からなる場合には、
前記2つの偏向光学素子の間の光路上に、リレー光学系を有しており、
前記2つの偏向光学素子のいずれも、前記OCT用対物レンズと光学的に略共役な位置関係であることが好ましい。
(12) 前記いずれかの機能拡張ユニットにおいては、前記被検眼の網膜を観察するために前記被検眼と前記対物レンズの間の光路上に挿脱可能な前置レンズをさらに有することが好ましい。
(13) 第3の発明は、前記いずれかの機能拡張ユニットと、前記対物レンズを交換するための交換用対物レンズとを含むことを特徴とする、機能拡張セットを提供する。
(14) 第3の発明においては、前記交換用対物レンズが、円形レンズの部分形状、又は円形レンズに切り欠き若しくは穴を設けた形状を有しており、
前記対物レンズを前記交換用対物レンズに交換し、前記機能拡張ユニットを前記ジョイント部を介して前記眼科用顕微鏡に装着した場合に、
前記OCT光学系の光軸が、前記交換用対物レンズの存在しない部分、又は前記交換用対物レンズに設けた切り欠き若しくは穴を通過することが好ましい。
第1の発明の眼科用顕微鏡においては、観察光学系の光軸が対物レンズを透過するが、OCT光学系の光軸は対物レンズとは別に設けられたOCT用対物レンズを透過する。このような構成により、本発明の眼科用顕微鏡では、観察光学系とOCT光学系とが独立したものとなっている。このため、本発明の眼科用顕微鏡は、観察光学系とOCT光学系とが互いに影響を受けることなく光学設計を行うことができ、光学設計の自由度が高まるという効果を奏する。また、本発明の眼科用顕微鏡は、OCT光学系の走査用の偏向光学素子とOCT用対物レンズとが光学的に略共役な位置関係であるため、小口径のOCT用対物レンズでも測定光を広い照射範囲で走査することができるという効果を奏する。
第2の発明の機能拡張ユニット及び第3の発明の機能拡張セットは、眼科用顕微鏡の観察光学系の光軸が対物レンズを透過するが、機能拡張ユニットのOCT光学系の光軸は対物レンズを透過せずOCT用対物レンズを透過する。このような構成により、機能拡張ユニットのOCT光学系は、眼科用顕微鏡の観察光学系と独立しており、ユニット化が可能になるとともに、光学設計の自由度が高まるという効果を奏する。そして、機能拡張ユニットは、ジョイント部を介して眼科用顕微鏡に着脱可能であるため、本発明の機能拡張ユニット及び機能拡張セットは、簡便にOCTの機能を眼科用顕微鏡に追加することができるという効果を奏する。また、本発明の機能拡張ユニット及び機能拡張セットは、OCT光学系の走査用の偏向光学素子とOCT用対物レンズとが光学的に略共役な位置関係であるため、小口径のOCT用対物レンズでも測定光を広い照射範囲で走査することができという効果を奏する。
本発明の第1の実施形態の眼科用顕微鏡について、光学系の構成を側面から見たものとして模式的に示す図面である。 本発明の第1の実施形態の眼科用顕微鏡について、光学系の構成を正面から見たものとして模式的に示す図面である。 本発明の第1の実施形態の眼科用顕微鏡で用いられるOCTユニットの光学構成を模式的に示す図面である。 本発明の第1の実施形態の眼科用顕微鏡に使用される対物レンズの形状を模式的に示す図面である。図4(A)は、対物レンズの光軸の方向から見た図面であり、図4(B)は、図4(A)の線分AA´を含む面での断面図である。 本発明の第2の実施形態の眼科顕微鏡について、光学系の構成を側面からみたものとして模式的に示す図面である。 本発明の第2の実施形態の眼科用顕微鏡について、光学系の構成を正面から見たものとして模式的に示す図面である。 本発明の第2の実施形態の眼科用顕微鏡について、OCT光学系の斜視図である。 本発明の第2の実施形態の眼科用顕微鏡について、図7に示したOCT光学系の平面図である。 本発明の第2の実施形態の眼科用顕微鏡について、図7に示したOCT光学系の側面図である。 本発明の第2の実施形態の眼科用顕微鏡について、図7に示したOCT光学系の正面図である。 本発明の第3の実施形態の眼科用顕微鏡に使用される対物レンズの形状を模式的に示す図面である。図11(A)は、対物レンズの光軸の方向から見た図であり、図11(B)は、図11(A)の線分AA´を含む面での断面図である。 本発明の第4の実施形態の眼科用顕微鏡に使用される対物レンズの形状を模式的に示す図面である。図12(A)は、対物レンズの光軸の方向から見た図であり、図12(B)は、図12(A)の線分AA´を含む面での断面図である。 本発明の第5の実施形態の眼科用顕微鏡に使用される対物レンズの形状を模式的に示す図面である。図13(A)は、対物レンズの光軸の方向から見た図であり、図13(B)は、図13(A)の線分AA´を含む面での断面図である。 本発明の第6の実施形態の眼科用顕微鏡に使用される対物レンズの形状を模式的に示す図面である。図14(A)は、対物レンズの光軸の方向から見た図であり、図14(B)は、図14(A)の線分AA´を含む面での断面図である。 本発明の第7の実施形態の眼科用顕微鏡に使用される対物レンズ及びOCT用対物レンズの形状を模式的に示す図面である。図15(A)は、対物レンズの光軸の方向から見た図であり、図15(B)は、図15(A)の線分AA´を含む面での断面図である。 特許文献1の図1を引用した図面である。 特許文献7の図3を引用した図面である。
1. 眼科用顕微鏡
1-1. 本発明の眼科用顕微鏡の概要
本発明の眼科用顕微鏡は、被検眼を照明する照明光学系と、照明光学系で照明された被検眼を観察するための左眼用観察光学系と右眼用観察光学系を有する観察光学系と、観察光学系の左眼用観察光学系の光軸と右眼用観察光学系の光軸が共通して透過する対物レンズと、光コヒーレンストモグラフィにより被検眼を検査するための測定光の光路と測定光を走査する偏向光学素子を含むOCT光学系とを有する眼科用顕微鏡に関するものである。
本発明の眼科用顕微鏡は、観察光学系の光軸が透過する対物レンズをOCT光学系の光軸が透過しないように、観察光学系と、対物レンズと、OCT光学系とが配置されるとともに、対物レンズとは別に、OCT光学系の光軸が透過するOCT用対物レンズを有している。このような構成により、本発明の眼科用顕微鏡では、観察光学系とOCT光学系とが独立したものとなっている。
このため、本発明の眼科用顕微鏡においては、観察光学系とOCT光学系とが互いに影響を受けることなく光学設計を行うことができるため、本発明の眼科用顕微鏡は、光学設計の自由度が高まるという効果を奏する。
例えば、これらに限定されるわけではないが、対物レンズとOCT用対物レンズを独立して位置制御することにより、観察光学系の焦点(観察焦点面)とOCT光学系の焦点(OCT走査面)を、独立して調整する光学設計が可能となる。また、OCT光学系を観察光学系と分離して、OCT光学系を眼科用顕微鏡に着脱可能なユニットとする光学設計も可能となる。さらに、眼科用顕微鏡に一つだけでなく複数のOCT光学系を付け加えて、より詳細に三次元の断層像を得ることができる光学設計も可能となる。
本発明の眼科用顕微鏡は、走査用の偏向光学素子とOCT用対物レンズが、光学的に略共役な位置関係であることを特徴としている。これにより、小口径のOCT用対物レンズを用いた場合でも、測定光を広い範囲で走査することができるという効果を奏する。
ここで、「光学的に略共役な位置関係である」とは、光軸上で共役な2つの位置又はその前後の位置に、それぞれ偏向光学素子とOCT用対物レンズが位置することをいう。また、「共役な位置関係」とは、一方の位置に像が形成された場合に、他方の位置にも同じ像が形成される位置関係をいう。
本発明の眼科用顕微鏡において、OCT光学系の走査用の偏向光学素子は、一つであってもよく、また、2つ以上であってもよい。偏向光学素子を2つ以上用いる場合には、偏向光学素子の少なくとも1つが、OCT用対物レンズと光学的に略共役な位置関係とすればよい。
偏向光学素子を2つ用いる場合には、例えば、1つの偏向光学素子をx軸方向に走査する偏向光学素子とし、もう一つの偏向光学素子をy軸方向に走査する偏向光学素子とすることにより、測定光を2次元で走査(スキャン)することができる。
この場合には、x軸方向に走査する偏向光学素子とOCT用対物レンズとを光学的に略共役な位置関係とすることにより、OCT用対物レンズの口径を小さくしても、x軸方向の走査の幅を大きく保つことができる。また、y軸方向に走査する偏向光学素子とOCT用対物レンズとを光学的に略共役な位置関係とすることにより、OCT用対物レンズの口径を小さくしても、y軸方向の走査の幅を大きく保つことができる。好ましくは、x軸方向に走査する偏向光学素子とy軸方向に走査する偏向光学素子のいずれについても、OCT用対物レンズと光学的に略共役な位置関係とするのがよい。
偏向光学素子として、走査する方向が異なる2つの対となる偏向光学素子を用いる場合には、2つの偏向光学素子の間の光路にリレー光学系を設けることにより、2つの偏向光学素子のいずれについてもOCT用対物レンズと略共役な位置関係となるように光学設計をすることが可能となる。
ここで、リレー光学系とは、レンズ等の光学素子であり2つの偏向光学素子の間に設けられるものであればどのような光学系であってもよく、例えば、2つ以上のレンズからなるレンズ群であってもよい。
また、2つの偏向光学素子の間の距離を20mm程度以下とし、2つの偏向光学素子の中間の位置をOCT用対物レンズと共役な位置とすれば、前記リレー光学系を用いなくても、2つの偏向光学素子のいずれについてもOCT用対物レンズと略共役な位置関係とすることができる。
本発明において「眼科用顕微鏡」とは、被検眼を拡大して観察することができる医療用又は検査用の機器をいい、ヒト用のみならず動物用のものも含む。「眼科用顕微鏡」には、これらに限定されるわけではないが、例えば、眼底カメラ、スリットランプ、眼科手術用顕微鏡等が含まれる。
本発明において、「照明光学系」とは、被検眼を照明するための光学素子を含んで構成されるものである。照明光学系には、さらに光源を含ませることができるが、自然光を被検眼に導くものであってもよい。
また、本発明において、「観察光学系」とは、照明光学系によって照明された被検眼から反射・散乱された戻り光により、被検眼を観察することを可能とする光学素子を含んで構成されるものである。本発明において、観察光学系は、左眼用観察光学系と右眼用観察光学系を有しており、左右の観察光学系により得られる像に視差を生じさせた場合には、双眼視により立体的に観察することも可能となる。
また、本発明の「観察光学系」は、接眼レンズ等を通じて観察者が被検眼を直接観察できるものであってもよく、また、撮像素子等により受光して画像化することにより観察できるものであってもよく、あるいは、両方の機能を備えるものであってもよい。
本発明において、「OCT光学系」とは、OCTの測定光を経由させる光学素子や、測定光を走査する偏向光学素子を含んで構成されるものである。OCT光学系には、さらにOCT光源を含ませることができる。
また、本発明において、「偏向光学素子」とは、光の方向を変えて光を走査することができる光学素子であればどのようなものであってもよい。例えば、これらに限定されるわけではないが、ガルバノミラー、ポリゴンミラー、回転ミラー、MEMS(Micro Electro Mechanical Systems)ミラー等のように、向きが変化する反射部を有する光学素子や、偏向プリズムスキャナやAO素子等のように、電界や音響光学効果等により光の向きを変えることができる光学素子を用いることができる。
本発明において、「照明光学系」、「観察光学系」、「OCT光学系」に使用される光学素子としては、これらに限定されるわけではないが、例えば、レンズ、プリズム、ミラー、光フィルタ、絞り、回折格子、偏光素子等を用いることができる。
本発明において、「対物レンズ」や「OCT用対物レンズ」とは、眼科用顕微鏡において、被検眼の側に設けられたレンズをいう。対物レンズと被検眼の間に一時的に挿入して使用する前置レンズ(ルーペ)は、本発明でいう「対物レンズ」には含まれない。
本発明における「対物レンズ」は、左眼用観察光学系の光軸と前記右眼用観察光学系の光軸が共通して透過する対物レンズであるが、前記のとおり、OCT光学系の光軸は対物レンズを透過しない。また、照明光学系の光軸は、対物レンズを透過してもよく、また、透過しなくともよい。照明光学系の光軸が対物レンズを透過しない場合には、別途に照明用対物レンズを設けることもできる。
1-2. 第1の実施形態
以下、本発明の実施形態の例を、図面を参照しながら詳細に説明する。
図1~4は、本発明の眼科用顕微鏡の一例である第1の実施形態を模式的に示す図面である。図1は、第1の実施形態の眼科用顕微鏡の光学系の構成を、側面から見たものとして示す模式図であり、図2は、正面から見たものとして示す模式図である。また、図3は、OCTユニットの光学構成を模式的に示す図面であり、図4は、対物レンズの形状を模式的に示す図面である。
図1に示されるように、眼科用顕微鏡1の光学系は、対物レンズ2と、照明光学系300と、観察光学系400と、OCT光学系500を有している。
対物レンズ2と、照明光学系300と、観察光学系400は、眼科用顕微鏡本体6に収納されている。一方、OCT光学系500は、機能拡張ユニット7に収納されている。図1においては、眼科用顕微鏡本体6と機能拡張ユニット7を、それぞれ一点鎖線により示す。
眼科用顕微鏡本体6と機能拡張ユニット7とは、図示しないジョイント部により、着脱可能に連結されている。
図1に示されるように、照明光学系300は、対物レンズ2を介して、被検眼8を照明する。照明光学系300は、照明光源9、光ファイバ301、出射口絞り302、コンデンサレンズ303、照明野絞り304、コリメートレンズ305、及び反射ミラー306を含んで構成されている。照明光学系300の光軸を、図1において点線O-300で示す。
照明光源9は、眼科用顕微鏡本体6の外部に設けられている。照明光源9には光ファイバ301の一端が接続されている。光ファイバの他端は、眼科用顕微鏡本体6の内部のコンデンサレンズ303に臨む位置に配置されている。照明光源9から出力された照明光は、光ファイバ301により導光されてコンデンサレンズ303に入射する。
光ファイバ301の出射口(コンデンサレンズ303側のファイバ端)に臨む位置には、出射口絞り302が設けられている。出射口絞り302は、光ファイバ301の出射口の一部領域を遮断するように作用する。出射口絞り302による遮断領域が変更されると、照明光の出射領域が変更される。それにより、照明光による照射角度、つまり被検眼8に対する照明光の入射方向と対物レンズ2の光軸とがなす角度を変更することができる。
照明野絞り304は、対物レンズ2の前側焦点位置U0と光学的に共役な位置(×の位置)に設けられている。コリメートレンズ305は、照明野絞り304を通過した照明光を平行光束にする。反射ミラー306は、コリメートレンズ305によって平行光束にされた照明光を対物レンズ2に向けて反射する。反射された光は、対物レンズ2を透過して、被検眼8に照射される。
被検眼8に照射された照明光(の一部)は、角膜や網膜等の被検眼の組織で反射・散乱される。その反射・散乱した戻り光(「観察光」とも呼ばれる)は、対物レンズ2を透過して、観察光学系400に入射する。
図1に示されるように、観察光学系400は、変倍レンズ系401、ビームスプリッタ402、結像レンズ403、像正立プリズム404、眼幅調整プリズム405、視野絞り406、及び接眼レンズ407を含んで構成されている。観察光学系400の光軸を、図1において点線O-400で示す。
観察光学系400は、照明光学系300により照明されている被検眼8を、対物レンズ2を介して観察するために用いられる。
図1に示されるように、OCT光学系500は、OCTユニット10、光ファイバ501、コリメートレンズ502、照明野絞り509、走査ミラー503a,503b、リレー光学系504、第1レンズ群505、反射ミラー508、第2レンズ群506、及びOCT用対物レンズ507を含んで構成されている。
OCT光学系500の光軸を、図1において点線O-500で示す。
図1に示されるように、第1の実施形態においては、対物レンズ2の中央に穴が設けられている。そして、OCT光学系の光軸O-500は、対物レンズ2の穴を通過することから対物レンズ2を透過していない。そして、OCT光学系の光軸O-500は、OCT用対物レンズ507を透過している。これによりOCT光学系と観察光学系とが独立したものとなっている。
OCTユニット10は、コヒーレンスが低い(可干渉距離が短い)OCT光源からの光を測定光と参照光に分割する。測定光はOCT光学系500により導かれて被検眼8に照射され、被検眼の組織において反射・散乱し、それが戻り光となってOCTユニット10に導かれる。OCTユニット10では、測定光の戻り光と参照光との干渉を検出する。これにより、被検眼の組織の断層像を得ることができる。
図1に示されるように、OCTユニット10は、機能拡張ユニット7の外部に設けられているが、光ファイバ501の一端が接続されており、これにより機能拡張ユニット7と連結している。OCTユニット10により生成された測定光は、光ファイバ501の他端から出射する。出射した測定光は、コリメートレンズ502、照明野絞り509、走査ミラー503a,503b、リレー光学系504、第1レンズ群505、反射ミラー508、第2レンズ群506、OCT用対物レンズ507等を経由して被検眼8に照射され、被検眼8の組織で反射・散乱した測定光の戻り光は、同じ経路を逆向きに進行して光ファイバ501の他端に入射する。
眼底の網膜を観察するときは、図示しない移動手段により、前置レンズ14が被検眼の眼前の光軸O-300、O-400、O-500上に挿入される。この場合には、対物レンズ2の前側焦点位置U0は、眼底の網膜と共役となる。
また、角膜、虹彩等の前眼部を観察するときには、前置レンズを被検眼の眼前から脱離させて観察を行う。
図1に示されるように、コリメートレンズ502は、光ファイバ501の他端から出射した測定光を平行光束にする。コリメートレンズ502と光ファイバ501の他端とは測定光の光軸に沿って相対的に移動可能に構成されている。第1の実施形態では、コリメートレンズ502が移動可能に構成されているが、光ファイバ501の他端が測定光の光軸に沿って移動可能に構成されていてもよい。
照明野絞り509は、OCT用対物レンズ507の前側焦点位置U0と共役である。
OCT光学系における走査ミラー503a,503bは、コリメートレンズ50)により平行光束とされた測定光を2次元的に偏向する偏向光学素子である。走査ミラーは、x軸を中心に旋回可能な偏向面を有する第1走査ミラー503aと、x軸に直交するy軸を中心に旋回可能な偏向面を有する第2走査ミラー503bを含むガルバノミラーとなっている。第1走査ミラー503aと第2走査ミラー503bとの間には、リレー光学系504が設けられている。
走査用の偏向光学素子として第1走査ミラー503aだけを設け、これをx軸中心に旋回して測定光を照射すると、その照射領域をy軸方向に沿った直線状に走査できる。しかしながら、測定光はOCT用対物レンズ507を透過するため、測定光の走査範囲はOCT用対物レンズ507の大きさ(口径)によって制限を受けてしまう。
ここで、第1走査ミラー503aとOCT用対物レンズ507を光学的に略共役な位置関係とすれば、OCT用対物レンズ507の大きさ(口径)による制限を低減し、OCT用対物レンズの口径が小さくとも、広い走査範囲を確保することができる。
また、走査用の偏向光学素子として第2走査ミラー503bだけを設け、これをy軸中心に旋回して測定光を照射すると、その照射領域をx軸方向に沿った直線状に走査できる。しかしながら、測定光はOCT用対物レンズ507を透過するため、測定光の走査範囲はOCT用対物レンズ507の大きさ(口径)によって制限を受けてしまう。
ここで、第2走査ミラー503aとOCT用対物レンズ507を光学的に略共役な位置関係とすれば、OCT用対物レンズ507の大きさ(口径)による制限を低減し、OCT用対物レンズの口径が小さくとも、広い走査範囲とすることができる。
図1に示されるように、本発明の第1の実施形態においては、走査用の偏向光学素子として第1走査ミラー503aと第2走査ミラー503bを有しており、両者を旋回させて測定光を照射することにより、x軸とy軸の2つの方向に広がりをもつ照射領域とすることができる。しかしながら、測定光はOCT用対物レンズ507を透過するため、測定光の照射領域はOCT用対物レンズ507の大きさ(口径)によって制限を受けてしまう。
第1の実施形態の眼科用顕微鏡においては、第1走査ミラー503aと第2走査ミラー503bの間にリレー光学系504が設けられている。そして、第1走査ミラー503aと第2走査ミラー503bはいずれも、OCT用対物レンズ507と光学的に共役な位置関係にある。図1において光学的に共役な位置関係にある箇所を+印で示す。
このような共役な位置関係とすることにより、第1の実施形態の眼科用顕微鏡においては、OCT用対物レンズ507の大きさ(口径)による制限を低減し、OCT用対物レンズの口径が小さくとも、広い照射領域とすることができる。
図1に示される第1レンズ群505は、1以上のレンズを含んで構成される。第2レンズ群506も、1以上のレンズを含んで構成される。
さらに、被検眼8に接する側には、OCT用対物レンズ507が設けられている。
OCT用対物レンズは、光軸に沿って移動可能に構成されており、OCT用対物レンズの位置を制御することにより、OCT光学系の焦点を調整することができる。これにより、OCT光学系の焦点を観察光学系の焦点とは異なる位置に調整することが可能となる。
このように、第1の実施形態の眼科用顕微鏡では、OCT光学系の光軸O-500が対物レンズ2を透過しておらず、OCT用対物レンズ507を透過することにより、観察光学系とOCT光学系とが独立したものとなっている。
このため、第1の実施形態の眼科用顕微鏡では、観察光学系とOCT光学系を独立して制御することが可能であり、また、OCT光学系を眼科用顕微鏡に対して着脱可能なユニットとすることも可能である。
第1の実施形態の眼科用顕微鏡について、さらに図面を参照して詳細に説明する。
図2は、第1の実施形態の眼科用顕微鏡の光学系の構成を、正面から見たものとして示す模式図である。
図2に示されるように、観察光学系は、観察者の左眼用の観察光学系400Lと右眼用の観察光学系400Rに分かれており、それぞれに観察光路を有している。左右の観察光学系の光軸を、図2においてそれぞれ点線O-400L,O-400Rで示す。
図2に示されるように、左右の観察光学系400L,400Rは、それぞれ、変倍レンズ系401、結像レンズ403、像正立プリズム404、眼幅調整プリズム405、視野絞り406、及び接眼レンズ407を含んで構成されている。ビームスプリッタ402は、右眼用の観察光学系400Rのみが有している。
変倍レンズ系401は、複数のズームレンズ401a,401b,401cを含んで構成されている。各ズームレンズ401a,401b,401cは、図示しない変倍機構によって左右の観察光学系の光軸O-400L,O-400Rに沿って移動可能となっている。これにより、被検眼8を観察又は撮影する際の拡大倍率が変更される。
図2に示されるように、右眼用の観察光学系400Rのビームスプリッタ402は、被検眼8から右眼用観察光学系に沿って導光された観察光の一部を分離して撮影光学系に導く。撮影光学系は、結像レンズ1101、反射ミラー1102、及びテレビカメラ1103を含んで構成されている。
テレビカメラ1103は、撮像素子1103aを備えている。撮像素子1103aは、例えば、CCD(Charge Coupled Devices)イメージセンサや、CMOS(Complementary Metal Oxide Semiconductor)イメージセンサ等によって構成される。撮像素子1103aとしては2次元の受光面を有するもの(エリアセンサ)が用いられる。
撮像素子1103aの受光面は、対物レンズ2の前側焦点位置U0と光学的に共役な位置に配置される。
ビームスプリッタ及び撮影光学系は左右双方の観察光学系にあっても良い。左右各々の撮像素子で視差のある画像を取得することで、立体的な画像を得ることができる。
テレビカメラの画像は観察部位の画像を取得すると共に、OCT観察部位のトラッキングにも使用できる。被検眼の固視微動や手術操作等により被検眼がOCT走査中に動いてしまうと、OCTにより得られる断層像にズレが生じてしまうが、テレビカメラの画像を元に眼底の動きを検出して、眼底の動きに合わせてOCT光学系を走査することにより、ズレなくOCTの断層像を得ることが可能となる。
像正立プリズム404は、倒像を正立像に変換する。眼幅調整プリズム405は、観察者の眼幅(左眼と右眼の間の距離)に応じて左右の観察光路の間の距離を調整するための光学素子である。視野絞り406は、観察光の断面における周辺領域を遮断して観察者の視野を制限するものである。視野絞り406は、対物レンズ2の前側焦点位置U0と共役な位置(×の位置)に設けられている。
観察光学系400L,400Rは、観察光学系の光路から挿脱可能に構成されたステレオバリエータを含んで構成されてもよい。ステレオバリエータは、左右の変倍レンズ系401によってそれぞれ案内される左右の観察光学系の光軸O-400L,O-400Rの相対的位置を変更するための光軸位置変更素子である。ステレオバリエータは、例えば、観察光路に対して観察者側に設けられた退避位置に退避される。
第1の実施形態の眼科用顕微鏡においては、主となる観察者が使用する観察光学系の他に、助手となる観察者が使用するための副観察光学系400Sが設けられている。
図2に示されるように、副観察光学系400Sは、照明光学系により照明されている被検眼8で反射・散乱した戻り光(観察光)を、対物レンズ2を経由して助手用接眼レンズ411に導く。副観察光学系の光軸を、図2において点線O-400Sで示す。
副観察光学系400Sにも左右一対の光学系が設けられており、双眼による立体観察が可能である。
図2に示されるように、副観察光学系400Sは、プリズム408、反射ミラー410、及び助手用接眼レンズ411を含んで構成される。第1の実施形態においては、プリズム408と反射ミラー410との間に、さらに結像レンズ409も配置されている。被検眼8からの観察光は、対物レンズ2を透過し、プリズム408の反射面408aにより反射される。反射面408aにより反射された観察光は、結像レンズ409を透過し、反射ミラー410により反射され、助手用接眼レンズ411に導かれる。
観察光学系400L,400Rと副観察光学系400Sは、眼科用顕微鏡本体6に収納されている。
眼底の網膜を観察するときは、図示しない移動手段により、前置レンズ14が被検眼の眼前の光軸O-400S、O-400L、O-400R上に挿入される。この場合には、対物レンズ2の前側焦点位置U0は、眼底の網膜と共役となる。
また、角膜、虹彩等の前眼部を観察するときには、前置レンズを被検眼の眼前から脱離させて観察を行う。
図3は、第1の実施形態の眼科用顕微鏡で用いられるOCTユニット10の光学構成を模式的に示す図面である。
ここではフーリエドメインタイプのOCTを実行可能な眼科装置について説明する。特に、実施形態に係る眼科装置は、スウェプトソースタイプのOCTの手法を適用可能である。なお、スウェプトソースタイプ以外のタイプ、例えばスペクトラルドメインタイプのOCTを実行可能な眼科装置に対して、この発明に係る構成を適用することも可能である。
図3に示されるように、OCTユニット10は、OCT光源ユニット1001から出射された光を測定光LSと参照光LRに分割し、別の光路を経た測定光LSと参照光LRの干渉を検出する干渉計を構成している。
OCT光源ユニット1001は、一般的なスウェプトソースタイプのOCT装置と同様に、出射光の波長を走査(掃引)可能な波長走査型(波長掃引型)光源を含んで構成される。OCT光源ユニット1001は、人の眼では視認できない近赤外の波長において、出力波長を時間的に変化させる。OCT光源ユニット1001から出力された光を符号L0で示す。
OCT光源ユニット1001から出力された光L0は、光ファイバ1002により偏波コントローラ1003に導かれてその偏光状態が調整される。偏波コントローラ1003は、たとえばループ状にされた光ファイバ1002に対して外部から応力を与えることで、光ファイバ1002内を導かれる光L0の偏光状態を調整する。
偏波コントローラ1003により偏光状態が調整された光L0は、光ファイバ1004によりファイバカプラ1005に導かれて測定光LSと参照光LRとに分割される。
図3に示されるように、参照光LRは、光ファイバ1006によりコリメータ1007に導かれて平行光束となる。平行光束となった参照光LRは、光路長補正部材1008及び分散補償部材1009を経由し、コーナーキューブ1010に導かれる。光路長補正部材1008は、参照光LRと測定光LSの光路長(光学距離)を合わせるための遅延手段として作用する。分散補償部材1009は、参照光LRと測定光LSの分散特性を合わせるための分散補償手段として作用する。
コーナーキューブ1010は、コリメータ1007により平行光束となった参照光LRの進行方向を逆方向に折り返す。コーナーキューブ1010に入射する参照光LRの光路と、コーナーキューブ1010から出射する参照光LRの光路とは平行である。また、コーナーキューブ1010は、参照光LRの入射光路及び出射光路に沿う方向に移動可能とされている。この移動により参照光LRの光路(参照光路)の長さが変更される。
図3に示されるように、コーナーキューブ1010を経由した参照光LRは、分散補償部材1009及び光路長補正部材1008を経由し、コリメータ1011によって平行光束から集束光束に変換されて光ファイバ1012に入射し、偏波コントローラ1013に導かれて参照光LRの偏光状態が調整される。
偏波コントローラ1013は、例えば、偏波コントローラ1003と同様の構成を有する。偏波コントローラ1013により偏光状態が調整された参照光LRは、光ファイバ1014によりアッテネータ1015に導かれて、演算制御ユニット12の制御の下で光量が調整される。アッテネータ1015により光量が調整された参照光LRは、光ファイバ1016によりファイバカプラ1017に導かれる。
図1と図3から把握できるように、ファイバカプラ1005により生成された測定光LSは、光ファイバ501によりコリメートレンズ502に導かれる。図1に示されるように、コリメートレンズ502に入射した測定光は、照明野絞り509、走査ミラー503a,503b、リレー光学系504、第1レンズ群505、反射ミラー508、第2レンズ群506、及びOCT用対物レンズ507を経由して、被検眼8に照射される。測定光は、被検眼8の様々な深さ位置において反射・散乱される。被検眼8により測定光の後方散乱光は、往路と同じ経路を逆向きに進行して、図3に示されるように、ファイバカプラ1005に導かれ、光ファイバ1018を経由してファイバカプラ1017に到達する。
ファイバカプラ1017は、光ファイバ1018を介して入射された測定光LSと、光ファイバ1016を介して入射された参照光LRとを合成して(干渉させて)干渉光を生成する。ファイバカプラ1017は、所定の分岐比(例えば50:50)で、測定光LSと参照光LRとの干渉光を分岐することにより、一対の干渉光LCを生成する。ファイバカプラ1017から出射した一対の干渉光は、それぞれ2つの光ファイバ1019,1020により検出器1021に導かれる。
検出器1021は、例えば一対の干渉光LCをそれぞれ検出する一対のフォトディテクタを有し、これらにより検出結果の差分を出力するバランスドフォトダイオード(Balanced Photo Diode:以下、「BPD」という)である。検出器1021は、その検出結果(検出信号)を演算制御ユニット12に送る。演算制御ユニット12は、例えば、一連の波長走査毎に(Aライン毎に)、検出器1021により得られた検出結果に基づくスペクトル分布にフーリエ変換等を施すことで断面像を形成する。演算制御ユニット12は、形成された画像を表示部13に表示させる。
この実施形態では、マイケルソン型の干渉計を採用しているが、例えば、マッハツェンダー型等の任意のタイプの干渉計を適宜に採用することが可能である。
図4は、第1の実施形態の眼科用顕微鏡に使用される対物レンズの形状を示す模式図である。図4(A)は、対物レンズの光軸の方向から見た図であり、図4(B)は、図4(A)の線分AA´を含む面での断面図である。
図4(A)に示されるように、第1の実施形態で使用する対物レンズ2は、円形レンズの中央に穴201を設けた形状をしている。そして、その穴を、OCT光学系の光路P-500が通過している。そして、第1の実施形態の眼科用顕微鏡においては、左眼用観察光学系の光路P-400L、右眼用観察光学系の光路P-400R、及び照明光学系の光路P-300が、それぞれ対物レンズ2の異なる箇所を透過している。また、図示しないが、副観察光学系の光路が、左眼用観察光学系の光路P-400Lの近傍を透過している。
次に、図4(B)に示されるように、対物レンズ2の断面形状は凸レンズの中央に穴を空けた形状となっている。
1-3. 対物レンズの形状
本発明の眼科用顕微鏡に使用する対物レンズとしては、円形レンズを使用することができるが、OCT光学系の光軸と、観察光学系の光軸との成す角度を小さくすることが好ましく、そのためには、円形レンズの部分形状を有する対物レンズ、又は円形レンズに切り欠き若しくは穴を設けた形状を有する対物レンズを用いることが好ましい。
本発明において「円形レンズの部分形状」とは、レンズの光軸方向から平面視した場合に円形のレンズの一部を切り取った形状をいい、これらに限定されるわけではないが、例えば、左眼用観察光学系の光路と右眼用観察光学系の光路が透過するように、半円状、扇形状、矩形状等に切り取った形状のレンズを使用することができる。
また、本発明において、「円形レンズに切り欠き若しくは穴を設けた形状」とは、レンズの光軸方向から平面視した場合に、切り欠きや穴が設けられている形状をいい、これらに限定されるわけではないが、例えば、OCT光学系の光路が透過する部分に切り欠きや穴を設けた形状のレンズを使用することができる。
OCT光学系の光学素子等を配置する十分なスペースを確保するためには、円形レンズに切り欠き又は穴を設けるよりも、円形レンズの部分形状を有する対物レンズを使用する方が好ましい。
このような形状のレンズを用いて、円形レンズにおいて切り取られたレンズが存在しない部分、又はレンズに設けられた切り欠きや穴を、OCT光学系の光路が通過することができる。これにより、OCT光学系の光軸が対物レンズを透過することなく、OCT光学系の光軸と観察光学系の光軸とのなす角度を小さくすることができる。
本発明においては、OCT光学系の光軸と、観察光学系の光軸(左右の観察光路の光軸のいずれか)とのなす角度を1~15°とすることが好ましく、より好ましくは、4~10°とするのがよく、さらに好ましくは6~8°とするのがよい。
本発明の眼科用顕微鏡においては、円形レンズ又は円形レンズの部分からなるレンズを2つに分割し、分割した一方のレンズを、観察光学系の光軸が透過する対物レンズとし、分割したもう一方のレンズを、OCT光学系の光軸が透過する対物レンズとすることができる。
ここで、「円形レンズの部分からなるレンズ」とは、前記した「円形レンズの部分形状」を有するレンズを用いることができる。
このような分割したレンズを用い、それぞれを独立して位置制御可能とすれば、観察光学系とOCT光学系を独立して制御することが可能となる。
1-4. 第2の実施形態
OCT光学系は、観察光学系と照明光学系とを有する眼科用顕微鏡に、拡張機能として付加的に組み込むことができると好ましい。このように付加的に組み込むためには、OCT光学系の光路を2回折り曲げることで、顕微鏡が持つ本来の機能に適合させてコンパクトに組み込むことができることを本発明者らは見出した。
すなわち、本発明の眼科用顕微鏡においては、OCT光学系が、
OCT光源からの光を第1の光軸の方向に導光する第1の光学部材と、
第1の光軸方向に導光された光を第1の光軸方向に略直交する第2の光軸方向に導光する第1反射部材と、
第2の光軸方向に導光された光をリレーする第2光学部材と、
第2の光学部材によりリレーされた光を第2の光軸方向に略直交する第3の光軸方向に導光する第2の反射部材とを有しており、
OCT用対物レンズは、第3の光軸方向に導光された光を被検眼の所定箇所に照射できるように、第3の光軸上に配置することが好ましい。
このような光学構成とすることにより、眼科用顕微鏡が持つ本来の機能に適合させてコンパクトにOCT光学系を組み込むことができる。
以下、光路が2回折り曲げられたOCT工学系を有する本発明の眼科用顕微鏡の実施形態の例を、図面を参照しながら詳細に説明する。
図5~10は、本発明の眼科用顕微鏡の他の一例である第2の実施形態を模式的に示す図面である。
図5は眼科用顕微鏡1の側面模式図であり、図6は同じく正面模式図である。
図5及び図6に示すように、眼科用顕微鏡1にはOCT装置5が併設されている。
眼科用顕微鏡1は、照明光学系300(図6には示していない)と観察光学系400とOCT光学系500とを備えている。
観察光学系400は、観察対象(図5及び図6では被検眼8)の所定箇所を観察することができる。図5に参照されるように、照明光学系300は、被検眼8の観察すべき部分を照明することができる。
眼科用顕微鏡1に併設されたOCT装置5は、被検眼8の断層画像を取得することができる。OCT光学系500は、OCT装置5の一部として眼科用顕微鏡1に組み込まれている。OCT光学系500、前置レンズ14及び被検眼8の反射面(角膜、網膜等)により、測定光の往復導光路が構成される。
図6に明示されるように、観察光学系400は、右眼用観察光学系400Rと左眼用観察光学系400Lを有している。なお、図5では、右眼用観察光学系400Rについては全構成が示され、左眼用観察光学系400Lについては右眼用観察光学系400Rと共用される対物レンズ2のみが示されている。
また、図6に明示されるように、右眼用観察光学系400Rの光軸O-400Rと左眼用観察光学系400Lの光軸O-400Lは、それぞれ対物レンズ2を通過している。
本実施形態では、照明光学系300と、観察光学系400は、眼科用顕微鏡本体6に収納されている。また、OCT光学系500は、機能拡張ユニット7に収納されている。図5及び6おいては、眼科用顕微鏡本体6を一点鎖線で示し、機能拡張ユニット7を破線で示す。
機能拡張ユニット7は、眼科用顕微鏡本体6に対し、図示しないジョイント部により、取り外し/取り付けが可能に連結されている。
図5及び図6に示されるように、OCT装置5は、OCTユニット10及び機能拡張ユニット7からなる。
機能拡張ユニット7には、OCT光学系500が収容されている。
図7はOCT光学系500の斜視図、図8は同じく平面図、図9は同じく側面図、図10は同じく正面図である。なお、図8及び図10では、コリメートレンズ502、走査機能部503及び第1光学部材510(後述する)は図示していない。
図7及び図9において、OCT光学系500は、コリメートレンズ502、走査機能部503、第1光学部材510、第1反射部材511、第2光学部材512、第2反射部材513、及びOCT用対物レンズ507を含んで構成されている。
走査機能部503は走査ミラー503a,503bを有する二次元走査機構である。走査機能部503は、眼科用顕微鏡本体6の背面側(観測者から遠い側)に設けられている。
第1光学部材510は、OCT結像レンズであり、走査機能部503により走査された光を第1の光軸O-501の方向に導光させる。第1の光軸O-501は、眼科用顕微鏡本体6を正面から見たときに、眼科用顕微鏡本体6の右の外寄りの位置において奥から手前に形成されており、走査機能部503により走査された光は、第1の光軸O-501を奥から手前側に向けて導光する。
ここで、図5、図7及び図9に示すように、第1走査ミラー503aと第2走査ミラー503bの間にリレー光学系504を設けることにより、第1走査ミラー503aと第2走査ミラー503bはいずれも、OCT用対物レンズ507を光学的に略共役な位置関係とすることができる。図5において光学的に共役な位置関係にある箇所を+印で示す。
このような共役な位置関係にすることにより、第1の実施形態と同様に、OCT用対物レンズ507の大きさ(口径)による制限を低減し、OCT用対物レンズの口径が小さくとも、広い照射領域とすることが可能となる。
図7,図8,図9及び図10に示すように、第1の光軸O-501を導光する光は第1反射部材511により、第1の光軸O-501の方向に直交する第2の光軸O-502の方向に導光させる。
本実施形態では、図6に参照されるように、第2の光軸O-502は、眼科用顕微鏡本体6の右の外側から内側に向くように形成されている。
第2の光軸O-502には第2光学部材512が配置されており、第2光学部材512を通過した光は第2反射部材513により下向きに(第2の光軸O-502に略直交する方向に)反射される。この反射光路は、第3の光軸方向O-503で示されている。
本実施形態においては、対物レンズ2は、図5に示されるように、光軸O-400に略平行な切断面を有するようにレンズが切り取られた円形レンズの部分形状となっている。
本実施形態では、この円形レンズのレンズが切り取られた部分に、OCT用対物レンズ507が収容されている。
第3の光軸方向O-503に導光された光は、OCT用対物レンズ507により、被検眼8側の所定位置にて合焦される。
なお、図5及び図6では、対物レンズ2の前側焦点位置U0は、被検眼8の手前にあり、被検眼8と前側焦点位置U0との間に前置レンズ14が配置されている。
前置レンズ14は、眼底の網膜を観察するときに使用するレンズであり、図示しない移動手段により、前置レンズ14が被検眼の眼前の光軸O-300、O-400L、O-400R、O-503上に挿入される。この場合には、対物レンズ2の前側焦点位置U0は、眼底の網膜と共役となる。また、角膜、虹彩等の前眼部を観察するときには、前置レンズ14を被検眼8の眼前から脱離させて観察を行う。
上記したようにOCT光学系500の光軸O-503は、OCT用対物レンズ507を通っており、OCT光学系500の光軸O-503は、観察光学系400の光軸O-400と離れている。
したがって、OCT光学系500と観察光学系400とは相互に独立している。
1-5. 第3の実施形態
本発明の眼科用顕微鏡の他の一例である第3の実施形態において使用される対物レンズの形状を、図11に示す。図11(A)は、対物レンズの光軸の方向から見た図であり、図11(B)は、図11(A)の線分AA´を含む面での断面図である。
図11(A)に示されるように、第3の実施形態で使用する対物レンズ2は、円形レンズの一部に切り欠きを設けた形状をしている。そして、その切り欠き部分を、OCT光学系の光路P-500が通過している。
また、図11(B)に示されるように、対物レンズ2の断面形状は、凸レンズの一部を切り取った部分形状となっている。
1-6. 第4の実施形態
本発明の眼科用顕微鏡の他の一例である第4の実施形態において使用される対物レンズの形状を、図12に示す。図12(A)は、対物レンズの光軸の方向から見た図であり、図12(B)は、図12(A)の線分AA´を含む面での断面図である。
図12(A)に示されるように、第4の実施形態で使用する対物レンズ2は、円形レンズの一部を矩形状に切り取った形をしており、左眼用観察光学系の光路P-400Lと右眼用観察光学系の光路P-400Rが、それぞれ対物レンズ2の異なる箇所を透過している。そして、対物レンズ2の近傍を、OCT光学系の光路P-500と照明光学系の光路P-300が通過している。
また、図12(B)に示されるように、対物レンズ2の断面形状は、凸レンズの一部を切り取った部分形状となっている。
1-7. 第5の実施形態
本発明の眼科用顕微鏡の他の一例である第5の実施形態において使用される対物レンズの形状を、図13に示す。図13(A)は、対物レンズの光軸の方向から見た図であり、図13(B)は、図13(A)の線分AA´を含む面での断面図である。
図13(A)に示されるように、第5の実施形態で使用する対物レンズ2は、円形レンズの一部を半円状に切り取った形をしており、左眼用観察光学系の光路P-400L、右眼用観察光学系の光路P-400R、及び照明光学系の光路P-300が、それぞれ対物レンズ2の異なる箇所を透過している。そして、対物レンズ2の近傍を、OCT光学系の光路P-500が通過している。
また、図13(B)に示されるように、対物レンズ2の断面形状は、凸レンズの一部を切り取った部分形状となっている。
1-8. 第6の実施形態
本発明の眼科用顕微鏡の他の一例である第6の実施形態において使用される対物レンズの形状を、図14に示す。図14(A)は、対物レンズの光軸の方向から見た図であり、図14(B)は、図14(A)の線分AA´を含む面での断面図である。
図14(A)に示されるように、第6の実施形態で使用する対物レンズ2は、円形レンズの一部を三日月状に切り取った形をしており、左眼用観察光学系の光路P-400L、右眼用観察光学系の光路P-400R、及び照明光学系の光路P-300が、それぞれ対物レンズ2の異なる箇所を透過している。そして、対物レンズ2の近傍を、OCT光学系の光路P-500が通過している。
また、図14(B)に示されるように、対物レンズ2の断面形状は、凸レンズの一部を切り取った部分形状となっている。
1-9. 第7の実施形態
本発明の眼科用顕微鏡の他の一例である第7の実施形態において使用される対物レンズ及びOCT用対物レンズの形状を、図15に示す。図15(A)は、対物レンズの光軸の方向から見た図であり、図15(B)は、図15(A)の線分AA´を含む面での断面図である。
図15(A)に示されるように、第8の実施形態で使用する対物レンズとOCT用対物レンズは、円形レンズを2つに分割したものである。そして、分割した一のレンズ2は、対物レンズとして使用され、左眼用観察光学系の光路P-400L、右眼用観察光学系の光路P-400R、及び照明光学系の光路P-300が透過している。そして、分割した他の一のレンズ507は、OCT用対物レンズとして使用され、OCT光学系の光路P-500が通過している。
また、図15(B)に示されるように、対物レンズ2とOCT用対物レンズ507の断面形状は、凸レンズを2つに分割した形状となっている。
2. 機能拡張ユニット
本発明の機能拡張ユニットは、眼科用顕微鏡に着脱可能で、OCTの機能を眼科用顕微鏡に付加することができるものである。
本発明の機能拡張ユニットは、被検眼を照明する照明光学系と、前記照明光学系で照明された被検眼を観察するための左眼用観察光学系の光路と右眼用観察光学系の光路を有する観察光学系と、前記観察光学系の前記左眼用観察光学系の光軸と前記右眼用観察光学系の光軸が共通して透過する対物レンズとを有する眼科用顕微鏡に使用するものである。
そして、本発明の機能拡張ユニットは、前記眼科用顕微鏡に対して着脱可能なジョイント部と、
光コヒーレンストモグラフィにより前記被検眼を検査するための測定光の光路と、前記測定光を走査する偏向光学素子と、OCT用対物レンズを含むOCT光学系とを有し、
前記機能拡張ユニットを前記ジョイント部を介して前記眼科用顕微鏡に装着した場合に、前記OCT光学系の光軸が、前記対物レンズを透過せず、前記OCT用対物レンズを透過し、
前記偏向光学素子と前記OCT用対物レンズが、光学的に略共役な位置関係であることを特徴としている。
本発明の機能拡張ユニットのOCT光学系は、眼科用顕微鏡の観察光学系と独立しており、ユニット化が可能になるとともに、光学設計の自由度が高まるという効果を奏する。また、本発明の機能拡張ユニットは、ジョイント部を介して眼科用顕微鏡に着脱可能であるため、簡便にOCTの機能を眼科用顕微鏡に追加することができるという効果を奏する。
本発明の機能拡張ユニットの「ジョイント部」とは、機能拡張ユニットと、眼科用顕微鏡を着脱可能とするものであれば、特に限定されず、これらに限定されるわけではないが、例えば、嵌め合わせにより連結するジョイント部や、ネジを用いて連結するジョイント部とすることができる。
本発明の機能拡張ユニットの具体例は、第1の実施形態の眼科用顕微鏡及び第2の実施形態の眼科用顕微鏡において、機能拡張ユニット(図1及び図6の符号7で示される一点鎖線で囲まれる部分)として記載されているとおりである。
3.機能拡張セット
本発明の機能拡張セットは、前記2.に記載した機能拡張ユニットと、眼科用顕微鏡の対物レンズを交換するための交換用対物レンズとを含み、これらがセットとなったものである。
ここで、交換用対物レンズとしては、前記1-3.に記載した形状の対物レンズを用いることができる。
交換用対物レンズの具体的な例としては、前記第1の実施形態と、前記第3ないし第7の実施形態で使用される対物レンズ(図4及び11~15)を用いることができる。
本発明の機能拡張セットは、ジョイント部を介して機能拡張ユニットを眼科用顕微鏡に着脱可能であるため、簡便にOCTの機能を眼科用顕微鏡に追加することができるという効果を奏する。
本発明の眼科用顕微鏡、機能拡張ユニット、及び機能拡張セットは、眼科用の医療機器を製造する産業において有用である。
図1~15で使用した符号が指し示すものは、以下のとおりである。
1 眼科用顕微鏡
2 対物レンズ
201 対物レンズの穴
300 照明光学系
301 光ファイバ
302 出射光絞り
303 コンデンサレンズ
304 照明野絞り
305 コリメートレンズ
306 反射ミラー
400 観察光学系
400L 左眼用の観察光学系
400R 右眼用の観察光学系
400S 副観察光学系
401 変倍レンズ系
401a,401b,401c ズームレンズ
402 ビームスプリッタ
403 結像レンズ
404 像正立プリズム
405 眼幅調整プリズム
406 視野絞り
407 接眼レンズ
408 プリズム
408a プリズムの反射面
409 結像レンズ
410 反射ミラー
411 助手用接眼レンズ
5 OCT装置
500 OCT光学系
501 光ファイバ
502 コリメートレンズ
503 走査機能部
503a,503b 走査ミラー
504 リレー光学系
505 第1レンズ群
506 第2レンズ群
507 OCT用対物レンズ
508 反射ミラー
509 照明野絞り
510 第1光学部材
511 第1反射部材
512 第2光学部材
513 第2反射部材
6 眼科用顕微鏡本体
7 機能拡張ユニット
8 被検眼
9 照明光源
10 OCTユニット
1001 OCT光源ユニット
1002 光ファイバ
1003 偏波コントローラ
1004 光ファイバ
1005 ファイバカプラ
1006 光ファイバ
1007 コリメータ
1008 光路長補正部材
1009 分散補償部材
1010 コーナーキューブ
1011 コリメータ
1012 光ファイバ
1013 偏波コントローラ
1014 光ファイバ
1015 アッテネータ
1016 光ファイバ
1017 ファイバカプラ
1018 光ファイバ
1019 光ファイバ
1020 光ファイバ
1021 検出器
1101 結像レンズ
1102 反射ミラー
1103 テレビカメラ
1103a 撮像素子
12 演算制御ユニット
13 表示部
14 前置レンズ
O-300 照明光学系の光軸
O-400 観察光学系の光軸
O-400L 左眼用観察光学系の光軸
O-400R 右眼用観察光学系の光軸
O-400S 副観察光学系の光軸
O-500 OCT光学系の光軸
O-501 第1の光軸
O-502 第2の光軸
O-503 第3の光軸
P-300 照明光学系の光路
P-400L 左眼用観察光学系の光路
P-400R 右眼用観察光学系の光路
P-500 OCT光学系の光路
L0 OCT光源ユニットから出力された光
LC 干渉光
LS 測定光
LR 参照光
U0 前側焦点位置

Claims (12)

  1. 被検眼を照明する照明光学系と、前記照明光学系で照明された前記被検眼を観察するための左眼用観察光学系と右眼用観察光学系を有する観察光学系と、前記観察光学系の前記左眼用観察光学系の光軸と前記右眼用観察光学系の光軸が共通して透過する対物レンズと、光コヒーレンストモグラフィにより前記被検眼を検査するための測定光の光路と前記測定光を走査する偏向光学素子を含むOCT光学系とを有する眼科用顕微鏡において、
    前記観察光学系の光軸が透過する前記対物レンズを前記OCT光学系の光軸が透過しないように、前記観察光学系と、前記対物レンズと、前記OCT光学系とが配置され、
    前記対物レンズとは別に、前記OCT光学系の光軸が透過するOCT用対物レンズを有し、
    前記偏向光学素子と前記OCT用対物レンズが、光学的に略共役な位置関係であり、
    前記対物レンズが、円形レンズの部分形状、又は円形レンズに切り欠き若しくは穴を設けた形状を有しており、
    前記OCT光学系の光軸が、前記対物レンズの存在しない部分、又は前記対物レンズに設けられた切り欠き若しくは穴を通過することを特徴とする
    眼科用顕微鏡。
  2. 被検眼を照明する照明光学系と、前記照明光学系で照明された前記被検眼を観察するための左眼用観察光学系と右眼用観察光学系を有する観察光学系と、前記観察光学系の前記左眼用観察光学系の光軸と前記右眼用観察光学系の光軸が共通して透過する対物レンズと、光コヒーレンストモグラフィにより前記被検眼を検査するための測定光の光路と前記測定光を走査する偏向光学素子を含むOCT光学系とを有する眼科用顕微鏡において、
    前記観察光学系の光軸が透過する前記対物レンズを前記OCT光学系の光軸が透過しないように、前記観察光学系と、前記対物レンズと、前記OCT光学系とが配置され、
    前記対物レンズとは別に、前記OCT光学系の光軸が透過するOCT用対物レンズを有し、
    前記偏向光学素子と前記OCT用対物レンズが、光学的に略共役な位置関係であり、
    円形レンズ又は円形レンズの部分からなるレンズを2つに分割し、
    分割した一のレンズを、前記対物レンズとし、
    分割した他の一のレンズを、前記OCT用対物レンズとしたことを特徴とする
    眼科用顕微鏡。
  3. 前記OCT光学系は、
    OCT光源からの光を第1の光軸方向に導光する第1光学部材と、
    前記第1の光軸方向に導光された光を前記第1の光軸方向に略直交する第2の光軸方向に導光する第1反射部材と、
    前記第2の光軸方向に導光された光をリレーする第2光学部材と、
    前記第2光学部材によりリレーされた光を前記第2の光軸方向に略直交する第3の光軸方向に導光する第2反射部材と
    を有しており、
    前記OCT用対物レンズは、前記第3の光軸方向に導光された光を前記被検眼の所定箇所に照射できるように、前記第3の光軸上に配置されていることを特徴とする、請求項1又は2に記載の眼科用顕微鏡。
  4. 前記偏向光学素子は、走査する方向が異なる2つの対となる偏向光学素子からなり、
    前記2つの偏向光学素子の間の光路上に、リレー光学系を有しており、
    前記2つの偏向光学素子のいずれも、前記OCT用対物レンズと光学的に略共役な位置関係であることを特徴とする、請求項1~3のいずれかに記載の眼科用顕微鏡。
  5. 円形レンズ又は円形レンズの部分からなるレンズを2つに分割し、
    分割した一のレンズを、前記対物レンズとし、
    分割した他の一のレンズを、前記OCT用対物レンズとしたことを特徴とする、請求項1に記載の眼科用顕微鏡。
  6. 前記対物レンズ又は前記OCT用対物レンズの位置を調整する対物レンズ位置制御機構をさらに有することを特徴とする、請求項1~5のいずれか1項に記載の眼科用顕微鏡。
  7. 前記OCT光学系が着脱可能にユニット化されていることを特徴とする、請求項1~6のいずれか1項に記載の眼科用顕微鏡。
  8. 前記被検眼の網膜を観察するために前記被検眼と前記対物レンズの間の光路上に挿脱可能な前置レンズをさらに有することを特徴とする、請求項1~7のいずれか1項に記載の眼科用顕微鏡。
  9. 被検眼を照明する照明光学系と、前記照明光学系で照明された被検眼を観察するための左眼用観察光学系と右眼用観察光学系を有する観察光学系と、前記観察光学系の前記左眼用観察光学系の光軸と前記右眼用観察光学系の光軸が共通して透過する対物レンズとを有する眼科用顕微鏡に使用する機能拡張ユニットと、前記対物レンズを交換するための交換用対物レンズとを含む機能拡張セットにおいて、
    前記機能拡張ユニットは、
    前記眼科用顕微鏡に対して着脱可能なジョイント部と、
    光コヒーレンストモグラフィにより前記被検眼を検査するための測定光の光路と、前記測定光を走査する偏向光学素子と、OCT用対物レンズを含むOCT光学系とを有し、
    前記機能拡張ユニットを前記ジョイント部を介して前記眼科用顕微鏡に装着した場合に、前記OCT光学系の光軸が、前記対物レンズを透過せず、前記OCT用対物レンズを透過し、
    前記偏向光学素子と前記OCT用対物レンズが、光学的に略共役な位置関係であり、
    前記交換用対物レンズが、円形レンズの部分形状、又は円形レンズに切り欠き若しくは穴を設けた形状を有しており、
    前記対物レンズを前記交換用対物レンズに交換し、前記機能拡張ユニットを前記ジョイント部を介して前記眼科用顕微鏡に装着した場合に、
    前記OCT光学系の光軸が、前記交換用対物レンズの存在しない部分、又は前記交換用対物レンズに設けた切り欠き若しくは穴を通過することを特徴とする
    機能拡張セット
  10. 前記OCT光学系は、
    OCT光源からの光を第1の光軸方向に導光する第1光学部材と、
    前記第1の光軸方向に導光された光を前記第1の光軸方向に略直交する第2の光軸方向に導光する第1反射部材と、
    前記第2の光軸方向に導光された光をリレーする第2光学部材と、
    前記第2光学部材によりリレーされた光を前記第2の光軸方向に略直交する第3の光軸方向に導光する第2反射部材と
    を有しており、
    前記OCT用対物レンズは、前記第3の光軸方向に導光された光を前記被検眼の所定箇所に照射できるように、前記第3の光軸上に配置されていることを特徴とする、請求項9に記載の機能拡張セット
  11. 前記偏向光学素子が、走査する方向が異なる2つの対となる偏向光学素子からなり、
    前記2つの偏向光学素子の間の光路上に、リレー光学系を有しており、
    前記2つの偏向光学素子のいずれも、前記OCT用対物レンズと光学的に略共役な位置関係であることを特徴とする、請求項10に記載の機能拡張セット
  12. 前記被検眼の網膜を観察するために前記被検眼と前記対物レンズの間の光路上に挿脱可能な前置レンズをさらに有することを特徴とする、請求項10又は11に記載の機能拡張セット
JP2018056763A 2017-05-02 2018-03-23 眼科用顕微鏡及び機能拡張ユニット Active JP7098370B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US16/610,259 US11503996B2 (en) 2017-05-02 2018-05-02 Ophthalmic microscope and functionality enhancement unit
PCT/JP2018/017568 WO2018203577A1 (ja) 2017-05-02 2018-05-02 眼科用顕微鏡及び機能拡張ユニット
EP18794987.0A EP3620104B1 (en) 2017-05-02 2018-05-02 Ophthalmic microscope and functionality enhancement unit

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017091997 2017-05-02
JP2017091997 2017-05-02

Publications (2)

Publication Number Publication Date
JP2018187362A JP2018187362A (ja) 2018-11-29
JP7098370B2 true JP7098370B2 (ja) 2022-07-11

Family

ID=64477851

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018056763A Active JP7098370B2 (ja) 2017-05-02 2018-03-23 眼科用顕微鏡及び機能拡張ユニット

Country Status (1)

Country Link
JP (1) JP7098370B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6989228B2 (ja) * 2017-06-15 2022-01-05 株式会社トプコン 機能拡張ユニット

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120092615A1 (en) 2010-01-20 2012-04-19 Izatt Joseph A Systems and Methods for Surgical Microscope and Optical Coherence Tomography (OCT) Imaging
JP2012213634A (ja) 2011-03-31 2012-11-08 Nidek Co Ltd 眼科用レーザ治療装置
JP2015519095A (ja) 2012-04-05 2015-07-09 バイオプティジェン,インコーポレイテッド 光コヒーレンストモグラフィを使用する手術用顕微鏡、ならびに関連するシステムおよび方法
JP2015205176A (ja) 2014-04-08 2015-11-19 株式会社トプコン 眼科装置
JP2017012429A (ja) 2015-06-30 2017-01-19 株式会社トプコン 眼科用顕微鏡システム

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120092615A1 (en) 2010-01-20 2012-04-19 Izatt Joseph A Systems and Methods for Surgical Microscope and Optical Coherence Tomography (OCT) Imaging
JP2012213634A (ja) 2011-03-31 2012-11-08 Nidek Co Ltd 眼科用レーザ治療装置
JP2015519095A (ja) 2012-04-05 2015-07-09 バイオプティジェン,インコーポレイテッド 光コヒーレンストモグラフィを使用する手術用顕微鏡、ならびに関連するシステムおよび方法
JP2015205176A (ja) 2014-04-08 2015-11-19 株式会社トプコン 眼科装置
JP2017012429A (ja) 2015-06-30 2017-01-19 株式会社トプコン 眼科用顕微鏡システム

Also Published As

Publication number Publication date
JP2018187362A (ja) 2018-11-29

Similar Documents

Publication Publication Date Title
JP6456711B2 (ja) 眼科手術用顕微鏡および眼科手術用アタッチメント
US11871994B2 (en) Ophthalmologic microscope and function expansion unit
JP7178160B2 (ja) 顕微鏡及び機能拡張ユニット
JP6505539B2 (ja) 眼科用顕微鏡
JP7049147B2 (ja) 眼科用顕微鏡及び機能拡張ユニット
JP7165474B2 (ja) 眼科用顕微鏡
JP6818391B2 (ja) 眼科用顕微鏡及び機能拡張ユニット
EP3620104B1 (en) Ophthalmic microscope and functionality enhancement unit
EP3636137B1 (en) Ophthalmic microscope and function expansion unit
JP7098370B2 (ja) 眼科用顕微鏡及び機能拡張ユニット
JP6839902B2 (ja) 眼科用顕微鏡
JP6856429B2 (ja) 眼科用顕微鏡
JP7213378B2 (ja) Oct機能拡張ユニット
JP7117145B2 (ja) 眼科用顕微鏡
WO2018203577A1 (ja) 眼科用顕微鏡及び機能拡張ユニット
JP7042663B2 (ja) 眼科用顕微鏡
JP6839901B2 (ja) 眼科用顕微鏡
JP2019013803A (ja) 眼科手術用顕微鏡および眼科手術用アタッチメント
JP6821443B2 (ja) 眼科用顕微鏡
US12029485B2 (en) Ophthalmic microscope
WO2019044861A1 (ja) 眼科用顕微鏡
JP2019010239A (ja) 眼科用顕微鏡

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180521

AA64 Notification of invalidation of claim of internal priority (with term)

Free format text: JAPANESE INTERMEDIATE CODE: A241764

Effective date: 20180524

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20190212

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20200904

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210318

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220411

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220516

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220603

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220629

R150 Certificate of patent or registration of utility model

Ref document number: 7098370

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150