JP6505539B2 - 眼科用顕微鏡 - Google Patents

眼科用顕微鏡 Download PDF

Info

Publication number
JP6505539B2
JP6505539B2 JP2015147569A JP2015147569A JP6505539B2 JP 6505539 B2 JP6505539 B2 JP 6505539B2 JP 2015147569 A JP2015147569 A JP 2015147569A JP 2015147569 A JP2015147569 A JP 2015147569A JP 6505539 B2 JP6505539 B2 JP 6505539B2
Authority
JP
Japan
Prior art keywords
light
pair
eye
light receiving
main
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015147569A
Other languages
English (en)
Other versions
JP2017023584A (ja
Inventor
石鍋 郁夫
郁夫 石鍋
美智子 中西
美智子 中西
諭史 山本
諭史 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Topcon Corp
Original Assignee
Topcon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Topcon Corp filed Critical Topcon Corp
Priority to JP2015147569A priority Critical patent/JP6505539B2/ja
Publication of JP2017023584A publication Critical patent/JP2017023584A/ja
Application granted granted Critical
Publication of JP6505539B2 publication Critical patent/JP6505539B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Eye Examination Apparatus (AREA)

Description

この発明は、眼科用顕微鏡に関する。
眼科分野では眼を拡大観察するために各種の顕微鏡が使用されている。そのような眼科用顕微鏡として、スリットランプ顕微鏡や手術用顕微鏡などがある。眼科用顕微鏡には、眼を撮影するための撮像素子を備えるものや、立体観察のための両眼視差を与える双眼光学系を備えるものがある。
眼科用顕微鏡を他の眼科装置と組み合わせて使用することがある。たとえば、OCT(Optical Coherence Tomography)装置やレーザ治療装置を眼科用顕微鏡に組み合わせたシステムが知られている。OCT装置は、眼の断面像や3次元画像の取得や、眼組織のサイズ(網膜厚等)の測定や、眼の機能情報(血流情報等)の取得などに使用される。レーザ治療装置は、網膜や隅角の光凝固治療などに使用される。
また、眼に対して手術を行う術者により使用される手術用顕微鏡(術者用顕微鏡)には、助手用顕微鏡が設けられているものがある。助手用顕微鏡は、術者を補佐する助手により使用される。手術用顕微鏡と同様に、助手用顕微鏡の接眼部に術部(観察部位)からの左右の光を導くことにより、助手も術部を立体的に観察することができる。
米国特許第7599591号明細書 米国特許第8922882号明細書 特許第4721981号公報
しかしながら、眼科用顕微鏡を他の眼科装置と組み合わせる場合等のように対物光軸と異なる方向から被検眼に光を照射する場合、大径の対物レンズを使用するため、光学設計や機構設計の自由度が制限されたり、顕微鏡が大型化したりするという問題がある。また、術者用顕微鏡に助手用顕微鏡が設けられている従来の手術用顕微鏡では、術者用顕微鏡とは別に助手用顕微鏡に専用の光学系が設けられているため、構造が複雑になり、顕微鏡が大型化するという問題がある。
この発明は、このような問題を解決するためになされたものであり、その目的は、対物光軸と異なる方向から被検眼に光を照射する場合でも、コンパクトな構成で、助手が双眼で観察部位の像を観察可能な眼科用顕微鏡を提供することにある。
実施形態の眼科用顕微鏡は、照明系と、一対の主受光系と、一対の主接眼系と、制御部と、照射系と、分岐素子と、一対の副受光系とを含む。照明系は、被検眼に照明光を照射可能である。一対の主受光系は、照明系と同軸に設けられ、第1対物レンズ及び第1撮像素子をそれぞれ含み、互いの対物光軸が非平行に配置され、被検眼に照射された照明光の戻り光をそれぞれの第1対物レンズを介してそれぞれの第1撮像素子に導く。一対の主接眼系は、第1表示部と、第1表示部の表示面側に配置された1以上のレンズとをそれぞれ含む。制御部は、一対の主受光系の一方の第1撮像素子からの出力に基づく画像を一対の主接眼系の一方の第1表示部に表示させ、かつ、一対の主受光系の他方の第1撮像素子からの出力に基づく画像を一対の主接眼系の他方の第1表示部に表示させる。照射系は、光源と、対物光軸に非同軸に配置された第2対物レンズとを含み、光源からの光を第2対物レンズを介して被検眼に照射する。分岐素子は、光源と第2対物レンズとの間に配置され、照射系の光路からの分岐光路を形成する。一対の副受光系は、分岐素子により形成された分岐光路に入射した被検眼からの戻り光を一対の第2撮像素子のそれぞれ又は一対の接眼レンズのそれぞれに導く。
実施形態によれば、対物光軸と異なる方向から被検眼に光を照射する場合でも、コンパクトな構成で、助手が双眼で観察部位の像を観察可能な眼科用顕微鏡を提供することができる。
実施形態に係る眼科用顕微鏡の構成の一例を示す概略図である。 実施形態に係る眼科用顕微鏡の構成の一例を示す概略図である。 実施形態に係る眼科用顕微鏡の構成の一例を示す概略図である。 実施形態に係る眼科用顕微鏡の構成の一例を示す概略図である。 実施形態に係る眼科用顕微鏡の構成の一例を示す概略図である。 実施形態に係る眼科用顕微鏡の構成の一例を示す概略図である。 実施形態に係る眼科用顕微鏡の作用を示す概略図である。 実施形態の変形例に係る眼科用顕微鏡の構成の一例を示す概略図である。 実施形態の変形例に係る眼科用顕微鏡の構成の一例を示す概略図である。 実施形態の変形例に係る眼科用顕微鏡の構成の一例を示す概略図である。 実施形態の変形例に係る眼科用顕微鏡の構成の一例を示す概略図である。
この発明に係る眼科用顕微鏡の実施形態の例について、図面を参照しながら詳細に説明する。なお、この明細書において引用された文献の記載内容や任意の公知技術を、以下の実施形態に援用することが可能である。
眼科用顕微鏡は、眼科分野における診療や手術において被検眼の拡大像を観察(撮影)するために使用される。観察対象部位は、患者眼の任意の部位であってよく、たとえば、前眼部においては角膜や隅角や硝子体や水晶体や毛様体などであってよく、後眼部においては網膜や脈絡膜や硝子体であってよい。また、観察対象部位は、瞼や眼窩など眼の周辺部位であってもよい。
眼科用顕微鏡は、被検眼を拡大観察するための顕微鏡としての機能に加え、他の眼科装置としての機能を有する。他の眼科装置としての機能の例として、OCT、レーザ治療、眼軸長測定、屈折力測定、高次収差測定などがある。他の眼科装置は、被検眼の検査や測定や画像化を光学的手法で行うことが可能な任意の構成を備える。以下の実施形態では、OCT機能を顕微鏡に組み合わせた構成を説明する。
以下では、術者により使用される主観察光学系と、術者を補助する助手により使用される副観察光学系とを備える眼科用顕微鏡について説明する。主観察光学系が助手により使用され、副観察光学系が術者により使用されてもよい。
また、以下では、被検眼に照射された照明光の戻り光を撮像素子に導き、接眼系が備えている表示部に撮像素子からの出力に基づく画像を表示させることにより、観察者に被検眼の像を提示する眼科用顕微鏡について説明する。しかしながら、眼科用顕微鏡は、被検眼に照射された照明光の戻り光を接眼レンズ系に導くことにより観察者に被検眼の像を提示する構成を有するものであってもよい。
[構成]
図1〜図6に、実施形態に係る眼科用顕微鏡の構成を示す。図1及び図2は光学系の構成を示す。図1は後眼部を観察するときの光学系を示し、図2は前眼部を観察するときの光学系を示す。図5は照射系に含まれるOCT系の光学系の構成を示す。図4及び図5は後述の主観察光学系と照射系の光路とを模式的に表す。図6は処理系の構成を示す。
眼科用顕微鏡1は、主観察光学系2と、副観察光学系3と、照明系10(10L、10R)と、照射系40とを備える。主観察光学系2は、主受光系20(20L、20R)と、主接眼系30(30L、30R)とを含む。副観察光学系3は、副受光系80(80L、80R)と、副接眼系90(90L、90R)とを含む。照射系40は、OCT系60を含み、主受光系20の対物光軸と異なる方向から被検眼に光を照射する。副観察光学系3の光路は照射系40の光路から分岐される。後眼部(網膜等)を観察するときには、被検眼Eの直前に前置レンズ50が配置される。なお、図1に示すような非接触の前置レンズ50の代わりにコンタクトレンズ等を用いることが可能である。また、隅角を観察するときにはコンタクトミラー(三面鏡等)等を用いることができる。
(照明系10)
照明系10は、被検眼Eに照明光を照射する。図示は省略するが、照明系10は、照明光を発する光源や、照明野を規定する絞りや、レンズ系などを含む。照明系の構成は、従来の眼科装置(たとえばスリットランプ顕微鏡、眼底カメラ、レフラクトメータ等)と同様であってよい。
本実施形態の照明系10L及び10Rは、それぞれ主受光系20L及び20Rと同軸に構成されている。具体的には、術者(観察者)の左眼ELに提示される像を取得するための主受光系(左主受光系)20Lには、たとえばハーフミラーからなるビームスプリッタ11Lが斜設されている。ビームスプリッタ11Lは、主受光系20Lの光路に照明系(左照明系)10Lの光路を結合している。照明系10Lから出力された照明光は、ビームスプリッタ11Lにより反射され、主受光系20Lと同軸で被検眼Eを照明する。同様に、術者の右眼ERに提示される像を取得するための主受光系(右主受光系)20Rには、主受光系20Rの光路に照明系(右照明系)10Rの光路を結合するビームスプリッタ11Rが斜設されている。
主受光系20L(20R)の光軸に対する照明光の位置を変更可能に構成することができる。この構成は、たとえば、従来の眼科手術用顕微鏡と同様に、ビームスプリッタ11L(11R)に対する照明光の照射位置を変更するための手段を設けることにより実現される。
本例では、対物レンズ21L(21R)と被検眼Eとの間にビームスプリッタ11L(11R)が配置されているが、照明光の光路が主受光系20L(20R)に結合される位置は、主受光系20L(20R)の任意の位置でよい。
(主受光系20)
本実施形態では、左右一対の主受光系20L及び20Rが設けられている。主受光系20Lは、術者の左眼ELに提示される像を取得するための構成を有し、主受光系20Rは、右眼ERに提示される像を取得するための構成を有する。主受光系20Lと主受光系20Rは同じ構成を備える。主受光系20L(20R)は、対物レンズ21L(21R)と、結像レンズ22L(22R)と、撮像素子23L(23R)とを含む。
なお、結像レンズ22L(22R)が設けられていない構成を適用することも可能である。本実施形態のように結像レンズ22L(22R)が設けられている場合、対物レンズ21L(21R)と結像レンズ22L(22R)との間をアフォーカルな光路(平行光路)とすることができる。それにより、フィルタ等の光学素子を配置することや、光路結合部材を配置して他の光学系からの光路を結合することが容易になる(すなわち、光学的構成の自由度や拡張性が向上される)。
符号AL1は、主受光系20Lの対物レンズ21Lの光軸(対物光軸)を示し、符号AR1は、主受光系20Rの対物レンズ21Rの光軸(対物光軸)を示す。対物光軸(左対物光軸)AL1と対物光軸(右対物光軸)AR1とがなす角θ1は、図1に示す状態におけるステレオ角を示す。撮像素子23L(23R)は、たとえばCCDイメージセンサやCMOSイメージセンサ等のエリアセンサである。
以上は、被検眼Eの後眼部(眼底)を観察するときの主受光系20の構成である(図1)。一方、前眼部を観察するときには、図2に示すように、対物レンズ21L(21R)に対して被検眼E側の位置に、フォーカスレンズ24L(24R)とウェッジプリズム25L(25R)とが配置される。本例のフォーカスレンズ24L(24R)は凹レンズであり、対物レンズ21L(21R)の焦点距離を延長するように作用する。ウェッジプリズム25L(25R)は、主受光系20L(20R)の光路(対物光軸AL1(AR1))を所定角度だけ外側に偏向する(符号AL2及びAR2で示す)。このように、フォーカスレンズ24L及びウェッジプリズム25Lが主受光系20Lに配置され、かつ、フォーカスレンズ24R及びウェッジプリズム25Rが主受光系20Rに配置される。それにより、後眼部観察用の焦点位置F1から前眼部観察用の焦点位置F2に切り替えられる。
フォーカスレンズ24L及び24R並びにウェッジプリズム25L及び25Rが配置されることにより偏向された左右の対物光路(対物光軸)AL2及びAR2がなす角θ2は、図2に示す状態におけるステレオ角を示す。つまり、フォーカスレンズ24L及び24R並びにウェッジプリズム25L及び25Rが配置されることにより、一対の主受光系20L及び20Rのステレオ角が、後眼部観察用のステレオ角θ1から前眼部観察用のステレオ角θ2に切り替えられる。
フォーカスレンズとして凸レンズを用いることが可能である。その場合、フォーカスレンズは、後眼部観察時に光路に配置され、前眼部観察時に光路から退避される。フォーカスレンズの挿入/退避によって焦点距離を切り替える代わりに、たとえば光軸方向に移動可能なフォーカスレンズを設けることにより焦点距離を連続的又は段階的に変更できるように構成することが可能である。
図2に示す例では、ウェッジプリズム25L(25R)の基底方向は外側である(つまりベースアウト配置である)が、ベースイン配置のウェッジプリズムを用いることができる。その場合、ウェッジプリズムは、後眼部観察時に光路に配置され、前眼部観察時に光路から退避される。ウェッジプリズムの挿入/退避によって光路の方向を切り替える代わりに、プリズム量(及びプリズム方向)が可変なプリズムを設けることにより光路の向きを連続的又は段階的に変更できるように構成することが可能である。
(主接眼系30)
本実施形態では、左右一対の主接眼系30L及び30Rが設けられている。主接眼系(左主接眼系)30Lは、主受光系20Lにより取得された被検眼Eの像を術者の左眼ELに提示するための構成を有し、主接眼系(右主接眼系)30Rは、主受光系20Rにより取得された被検眼Eの像を右眼ERに提示するための構成を有する。主接眼系30Lと主接眼系30Rは同じ構成を備える。主接眼系30L(30R)は、表示部31L(31R)と、主接眼レンズ系32L(32R)とを含む。
表示部31L(31R)は、たとえばLCD等のフラットパネルディスプレイである。表示部31L(31R)の表示面のサイズは、たとえば(対角線長)7インチ以下とされる。左右一対の主接眼系30L及び30Rに設けられる表示デバイスの画面サイズは、術者の眼幅(瞳孔間距離等)や、装置のサイズや、装置の設計(光学系や機構の配置等)などに制約を受ける。すなわち、このような制約条件と見掛け視野の広さはトレードオフの関係にある。このような観点から、表示部31L及び31Rの画面サイズの最大値は7インチ程度と考えられる。なお、主接眼レンズ系32L及び32Rの構成や機構の配置を工夫することにより、7インチを超える画面サイズの表示部31L及び31Rを適用することができ、或いは、小サイズの表示部31L及び31Rを適用することができる。
後述のように、主接眼系30Lと主接眼系30Rとの間隔を変更することが可能である。それにより、術者の眼幅に応じて主接眼系30Lと主接眼系30Rとの間隔を調整することができる。また、主接眼系30Lと主接眼系30Rとの相対的向きを変更することが可能である。つまり、主接眼系30Lの光軸と主接眼系30Rの光軸とがなす角度を変更することが可能である。それにより、両眼EL及びERの輻輳を誘発することができ、術者による立体視を支援することができる。
(照射系40)
照射系40は、照明系10により発せられた照明光と異なる光を、主受光系20の対物光軸(AL1及びAR1、並びにAL2及びAR2)と異なる方向から被検眼Eに照射する。本例の照射系40は、OCTのための光(測定光)を被検眼Eに照射する。
照射系40は、OCT系60と、コリメートレンズ42と、光スキャナ43と、結像レンズ44と、ビームスプリッタ45と、偏向ミラー46と、対物レンズ47とを含む。光スキャナ43には、OCT系60からの光が導かれる。ビームスプリッタ45は、たとえばダイクロイックミラーからなる。ビームスプリッタ45は、赤外光を反射させ、可視光を透過させる。
(OCT系60)
OCT系60は、OCTを実行するための干渉光学系を含む。OCT系60の構成の例を図3に示す。図3に示す光学系は、スウェプトソースOCTの例であり、波長走査型(波長掃引型)光源からの光を測定光と参照光とに分割し、被検眼Eからの測定光の戻り光と参照光路を経由した参照光とを干渉させて干渉光を生成し、この干渉光を検出する。干渉光学系による干渉光の検出結果(検出信号)は、干渉光のスペクトルを示す信号であり、制御部100に送られる。
光源ユニット61は、一般的なスウェプトソースタイプのOCT装置と同様に、出射光の波長を走査(掃引)可能な波長走査型(波長掃引型)光源を含む。光源ユニット61は、人眼では視認できない近赤外の波長帯において、出力波長を時間的に変化させる。
光源ユニット61から出力された光L0は、光ファイバ62により偏波コントローラ63に導かれてその偏光状態が調整され、光ファイバ64によりファイバカプラ65に導かれて測定光LSと参照光LRとに分割される。
参照光LRは、光ファイバ66Aによりコリメータ67に導かれて平行光束に変換され、光路長補正部材68及び分散補償部材69を経由し、コーナーキューブ70に導かれる。光路長補正部材68は、参照光LRの光路長(光学距離)と測定光LSの光路長とを合わせるための遅延手段として作用する。分散補償部材69は、参照光LRと測定光LSとの間の分散特性を合わせるための分散補償手段として作用する。
コーナーキューブ70は、参照光LRの進行方向を逆方向に折り返す。コーナーキューブ70は、参照光LRの入射光路及び出射光路に沿う方向に移動可能とされ、それにより参照光LRの光路の長さが変更される。なお、測定光LSの光路の長さを変更するための手段と、参照光LRの光路の長さを変更するための手段のうちのいずれか一方が設けられていればよい。
コーナーキューブ70を経由した参照光LRは、分散補償部材69及び光路長補正部材68を経由し、コリメータ71によって平行光束から集束光束に変換されて光ファイバ72に入射し、偏波コントローラ73に導かれて参照光LRの偏光状態が調整される。更に、参照光LRは、光ファイバ74によりアッテネータ75に導かれて、制御部100の制御の下で光量が調整される。光量が調整された参照光LRは、光ファイバ76によりファイバカプラ77に導かれる。
一方、ファイバカプラ65により生成された測定光LSは、光ファイバ41により導かれてファイバ端面から出射され、コリメートレンズ52により平行光束とされる。平行光束にされた測定光LSは、光スキャナ43、結像レンズ44、ビームスプリッタ45、偏向ミラー46及び対物レンズ47を経由して被検眼Eに照射される。測定光LSは、被検眼Eの様々な深さ位置において反射・散乱される。被検眼Eからの測定光LSの戻り光は、反射光や後方散乱光を含み、往路と同じ経路を逆向きに進行してファイバカプラ65に導かれ、光ファイバ66Bを経由してファイバカプラ77に到達する。
ファイバカプラ77は、光ファイバ66Bを介して入射された測定光LSと、光ファイバ76を介して入射された参照光LRとを合成して(干渉させて)干渉光を生成する。ファイバカプラ77は、所定の分岐比(たとえば1:1)でこの干渉光を分割することにより、一対の干渉光LCを生成する。ファイバカプラ77から出射した一対の干渉光LCは、それぞれ光ファイバ78A及び78Bにより検出器79に導かれる。
検出器79は、たとえば一対の干渉光LCをそれぞれ検出する一対のフォトディテクタを含み、これらによる検出結果の差分を出力するバランスドフォトダイオード(Balanced Photo Diode)である。検出器79は、その検出結果(検出信号)を制御部100に送る。
本例ではスウェプトソースOCTが適用されているが、他のタイプのOCT、たとえばスペクトラルドメインOCTを適用することが可能である。
図1及び図2に示すように、OCT系60からの光(測定光)は、光ファイバ41により導かれ、そのファイバ端面から出射する。このファイバ端面に臨む位置には、コリメートレンズ42が配置されている。コリメートレンズ42は、ファイバ端面から出射した測定光を平行光束にする。コリメートレンズ42により平行光束とされた測定光は、光スキャナ43に導かれる。なお、コリメートレンズ42は、フォーカスレンズ(或いはフォーカスレンズを構成するレンズ群の1つ)として測定光の光路に沿って移動可能であってもよい。
光スキャナ43は、2次元光スキャナであり、水平方向(x方向)へ光を偏向するxスキャナ43Hと、垂直方向(y方向)へ光を偏向するyスキャナ43Vとを含む。xスキャナ43H及びyスキャナ43Vは、それぞれ任意の形態の光スキャナであってよく、たとえばガルバノミラーが使用される。光スキャナ43は、たとえば、コリメートレンズ42の射出瞳位置又はその近傍位置に配置される。更に、光スキャナ43は、たとえば、結像レンズ44の入射瞳位置又はその近傍位置に配置される。
本例のように2つの1次元光スキャナを組み合わせて2次元光スキャナを構成する場合、2つの1次元光スキャナは所定距離(たとえば10mm程度)だけ離れて配置される。それにより、たとえば、いずれかの1次元光スキャナを上記射出瞳位置及び/又は上記入射瞳位置に配置することができる。
結像レンズ44は、光スキャナ43を通過した平行光束(測定光)を一旦結像させる。結像レンズ44を通過した光は、ビームスプリッタ45に入射する。ビームスプリッタ45に入射した光は、偏向ミラー46に向けて反射される。偏向ミラー46は、ビームスプリッタ45により反射された光を対物レンズ47に向けて反射する。対物レンズ47を通過した光は、被検眼Eに照射される。
OCT系60からの光が主受光系20の対物光軸(AL1及びAR1、並びにAL2及びAR2)と異なる方向から被検眼Eに照射されるように、偏向ミラー46の位置は予め決定されている。本例では、互いの対物光軸が非平行に配置された主受光系20Lと主受光系20Rとの間の位置に偏向ミラー46が配置されている。
図4は、偏向ミラー46及び対物レンズ47の斜視図を模式的に表す。図4では、対物光軸AL1(AL2)に垂直な方向の主受光系20Lの光路の断面と対物光軸AR1(AR2)に垂直な方向の主受光系20Rの光路の断面とが模式的に表されている。
OCT系60からの光を被検眼Eに対してできるだけ垂直方向に近い入射方向から入射させるため、主受光系20の対物光軸(AL1及びAR1、並びにAL2及びAR2)の近傍に偏向ミラー46及び対物レンズ47が配置されている。偏向ミラー46の主受光系20の対物光軸側の端部46aと対物レンズ47の主受光系20の対物光軸側の端部47aとは、主受光系20Lの光路及び主受光系20Rの光路に略接している。
光スキャナ43と偏向ミラー46の偏向面とは、光学的に略共役に配置されている。特に、主受光系20の対物光軸と略平行な方向にOCT系60からの光を偏向するyスキャナ43Vの偏向面と偏向ミラー46の偏向面とが光学的に略共役に配置されている。本例では、主受光系20の一対の対物光軸を含む平面に直交面内においてOCT系60からの光を偏向するyスキャナ43Vの偏向面と偏向ミラー46の偏向面とが光学的に略共役に配置されている。それにより、主受光系20の対物光軸の方向に対して斜設された偏向ミラー46の偏向面のサイズH(図4参照)を小さくすることができる。偏向ミラー46のサイズHを小さくすることで、主受光系20の対物光軸に対し偏向ミラー46及び対物レンズ47をより一層近付けて配置することが可能になる。
本実施形態では、対物レンズ47の主受光系20の対物光軸側の端部47aは、直線状に切り欠かれている。それにより、対物レンズ47の周縁部によって主受光系20Lの観察光路及び主受光系20Rの観察光路が遮られることがなくなる。対物レンズ47の端部を切り欠くことにより、主受光系20の対物光軸に偏向ミラー46及び対物レンズ47をより一層近付けて配置することが可能になる。なお、端部47aは、直線状ではなく、たとえば曲線状に切り欠かれていてもよい。
偏向ミラー46は、偏向面(反射面)の主受光系20の対物光軸側の端部46aが直線状に形成された反射ミラーである。偏向ミラー46の端部46aと対物レンズ47の端部47aとが、主受光系20Lの光路及び主受光系20Rの光路に略接するように配置されている。それにより、主受光系20の対物光軸にできるだけ近い位置に偏向ミラー46及び対物レンズ47を配置することが可能になる。
図5は、主受光系20の対物光軸方向から主受光系20及び照射系40のそれぞれの光路を見たときの光路配置図を模式的に表す。主受光系20Lの対物光軸AL1(AL2)は、対物レンズ21Lのレンズ中心の近傍に設けられる。主受光系20Rの対物光軸AR1(AR2)は、対物レンズ21Rのレンズ中心の近傍に設けられる。照射系40の対物光軸OLは、対物レンズ47のレンズ中心の近傍に設けられる。対物レンズ21Lのレンズ中心と対物レンズ47のレンズ中心との距離D1と対物レンズ21Rのレンズ中心と対物レンズ47のレンズ中心との距離D2とは、略等しい。それにより、主受光系20の対物光軸にできるだけ近い光軸方向から照射系40からの光を入射させることが可能になる。
なお、対物レンズ21Lのレンズ中心と対物レンズ21Rのレンズ中心との距離D3(底辺の長さ)は、距離D1、D2(斜辺の長さ)より長くてよい。それにより、主受光系20の対物光軸により一層近い光軸方向から照射系40からの光を入射させることが可能になる。
以上のように、主受光系20の対物光軸に対して偏向ミラー46及び対物レンズ47を近付けて配置することが可能になる。それにより、OCT系60からの光を被検眼Eに対してできるだけ垂直方向に近い入射方向から入射させることができるようになる。
(副受光系80)
副観察光学系3には、左右一対の副受光系80L及び80Rが設けられている。副受光系(左副受光系)80Lは、術者を補助する助手の左眼ELに提示される像を取得するための構成を有する。副受光系(右副受光系)80Rは、助手の右眼ERに提示される像を取得するための構成を有する。副受光系80Lと副受光系80Rは同じ構成を備える。副受光系80L(80R)は、結像レンズ82L(82R)と、撮像素子83L(83R)とを含む。
被検眼Eに照射された照明光の戻り光は、対物レンズ47及び偏向ミラー46を通過し、ビームスプリッタ45を透過し、副観察光学系3の副受光系80L及び80Rに入射する。副受光系80L及び80Rは、ビームスプリッタ45を透過した照明光の戻り光をそれぞれ導く一対の平行光路を形成する。すなわち、撮像素子83L及び83Rのそれぞれの撮像面の法線は互いに平行である。副受光系80L及び80Rは、形成された平行光路に沿って、ビームスプリッタ45を透過した照明光の戻り光を撮像素子83L及び83Rのそれぞれに導く。それにより、結像レンズ82L(82R)と撮像素子83L(83R)との間をアフォーカルな光路とすることができ、フィルタ等の光学素子を配置することや、光路結合部材を配置して他の光学系からの光路を結合することが容易になる。
(副接眼系90)
副観察光学系3には、左右一対の副接眼系90L及び90Rが設けられている。副接眼系(左副接眼系)90Lは、副受光系80Lにより取得された被検眼Eの像を助手の左眼ELに提示するための構成を有する。副接眼系(右副接眼系)90Rは、副受光系80Rにより取得された被検眼Eの像を助手の右眼ERに提示するための構成を有する。副接眼系90Lと副接眼系90Rは同じ構成を備える。副接眼系90L(90R)は、表示部91L(91R)と、副接眼レンズ系92L(92R)とを含む。
表示部91L(91R)は、たとえばLCD等のフラットパネルディスプレイである。表示部91L(91R)の表示面のサイズは、表示部31L(31R)と同様に、たとえば(対角線長)7インチ以下であってよい。
表示部91L及び91Rには、たとえば、主接眼系30に対する副接眼系90の位置に応じて、撮像素子83L及び83Rの一方又は双方により取得された画像が回転されて表示される。
副観察光学系3(副受光系80及び副接眼系90)は、主受光系20の対物光軸AL1(AL2)又は主受光系20の光路の回りに回転可能であってよい。副観察光学系3を回転させる機構は、公知の回転機構であってよい。この場合でも、主接眼系30に対する副接眼系90の位置に応じて、撮像素子83L及び83Rの一方又は双方により取得された画像が回転されて表示される。それにより、助手は任意の位置で術者と同様に観察部位を双眼で観察することができる。
主接眼系30Lと主接眼系30Rとの間隔と同様に、副接眼系90Lと副接眼系90Rとの間隔を変更することが可能である。それにより、助手の眼幅に応じて副接眼系90Lと副接眼系90Rとの間隔を調整することができる。
(制御部100)
制御部100は、眼科用顕微鏡1の各部の制御を実行する(図6参照)。照明系10の制御の例として次のものがある:光源の点灯、消灯、光量調整;絞りの調整;スリット照明が可能な場合にはスリット幅の調整。撮像素子23、83の制御として、露光調整やゲイン調整や撮影レート調整などがある。
制御部100は、各種の情報を表示部31に表示させる。たとえば、制御部100は、撮像素子23Lにより取得された画像(又はそれを処理して得られた画像)を表示部31Lに表示させ、かつ、撮像素子23Rにより取得された画像(又はそれを処理して得られた画像)を表示部31Rに表示させる。このとき、制御部100は、撮像素子23L(23R)により取得された画像の向きを変更して表示部31L(31R)に表示させることができる。たとえば、本実施形態のように、倒立像を正立像に変換するインバータが受光系に設けられていない場合、制御部100は、撮像素子23L(23R)により取得された画像を反転して正立像として表示部31L(31R)に表示させることができる。また、表示部31L(31R)に表示された画像を反転して左眼EL(右眼ER)に提示するように主接眼レンズ系32L(32R)が構成されている場合、制御部100は、表示部31L(31R)に倒立像を表示するように制御を行う。このような構成により、インバータを設ける必要がなくなるため、光学系に含まれる部材の数を減少させることができ、コストダウンや装置の小型化を図ることができる。
制御部100は、各種の情報を表示部91に表示させる。たとえば、制御部100は、撮像素子83Lにより取得された画像(又はそれを処理して得られた画像)を表示部91L及び91Rの一方に表示させる。更に、制御部100は、撮像素子83Rにより取得された画像(又はそれを処理して得られた画像)を表示部91L及び91Rの他方に表示させる。このとき、制御部100は、主接眼系30に対する副接眼系90の位置に応じて、撮像素子83からの出力に基づく画像を回転させて表示部91に表示させることが可能である。たとえば、副接眼系90が主接眼系30に対して正対する場合、表示部91Lには撮像素子83Rにより撮像された画像を180度回転させて表示され、表示部91Rには撮像素子83Lにより撮像された画像が180度回転されて表示される。それにより、副接眼系90が主接眼系30に対して正対する場合、助手もまた、術者と同様に観察部位を立体的に観察することができる。
また、制御部100は、主接眼系30に対する副接眼系90の位置に応じて、撮像素子83L及び83Rの一方により取得された画像を回転させて表示部91L及び91Rの双方に表示させることが可能である。それにより、主接眼系30に対する副接眼系90の位置が立体的に観察不可能な位置であっても、助手は観察部位を双眼で観察することができる。
光スキャナ43の制御としては次のものがある:予め設定されたOCTスキャンパターンに応じた複数の位置に測定光LSが照射されるように、測定光LSを順次に偏向する。
OCT系60に含まれる制御対象としては、光源ユニット61、偏波コントローラ63、コーナーキューブ70、偏波コントローラ73、アッテネータ75、検出器79などがある。
更に、制御部100は、各種の機構を制御する。そのような機構としては、ステレオ角変更部20A、合焦部24A、光路偏向部25A、間隔変更部30A、及び向き変更部30Bが設けられている。
ステレオ角変更部20Aは、主受光系20Lと主受光系20Rとを相対的に回転移動する。すなわち、ステレオ角変更部20Aは、互いの対物光軸(たとえばAL1とAR1)がなす角度を変更するように主受光系20Lと主受光系20Rとを相対移動させる。この相対移動は、たとえば、主受光系20Lと主受光系20Rとを反対の回転方向に同じ角度だけ移動させるものである。この移動態様においては、互いの対物光軸(たとえばAL1とAR1)がなす角の二等分線の向きは一定である。一方、当該二等分線の向きが変化するように上記相対移動を行うことも可能である。
ステレオ角変更部20Aを制御することにより図2に示す状態からステレオ角が拡大された状態の例を図7に示す。図7に示すステレオ角θ3は、図2に示すステレオ角θ2より大きい。なお、ステレオ角変更部20Aによりステレオ角が変更されても、主接眼系30L及び30Rの相対位置(間隔、相対的向き)は変化しない。また、ステレオ角の変化に対応して、被検眼Eに対する主受光系20L及び20Rの距離を調整したり、主受光系20L及び20Rの焦点距離を変更したりすることにより、焦点位置が移動しないように制御を行うことができる。
合焦部24Aは、左右のフォーカスレンズ24L及び24Rを光路に対して挿入/退避させる。合焦部24Aは、左右のフォーカスレンズ24L及び24Rを同時に挿入/退避させるように構成されていてよい。他の例において、合焦部24Aは、左右のフォーカスレンズ24L及び24Rを(同時に)光軸方向に移動させることによって焦点位置を変更するように構成されてよい。或いは、合焦部24Aは、左右のフォーカスレンズ24L及び24Rの屈折力を(同時に)変更することによって焦点距離を変更するように構成されてよい。
光路偏向部25Aは、左右のウェッジプリズム25L及び25Rを光路に対して挿入/退避させる。光路偏向部25Aは、左右のウェッジプリズム25L及び25Rを同時に挿入/退避させるように構成されていてよい。他の例において、光路偏向部25Aは、左右のウェッジプリズム25L及び25Rのプリズム量(及びプリズム方向)を(同時に)変更することによって左右の主受光系20L及び20Rの光路の向きを変更するように構成されてよい。
間隔変更部30Aは、左右の主接眼系30L及び30Rの間隔を変更する。間隔変更部30Aは、互いの光軸の相対的向きを変化させずに左右の主接眼系30L及び30Rを相対的に移動するように構成されてよい。間隔変更部30Aは、左右の副接眼系90L及び90Rの間隔を変更することも可能である。
向き変更部30Bは、左右の主接眼系30L及び30Rの相対的向きを変更する。向き変更部30Bは、互いの光軸がなす角度を変更するように主接眼系30Lと主接眼系30Rとを相対移動させる。この相対移動は、たとえば、主接眼系30Lと主接眼系30Rとを反対の回転方向に同じ角度だけ移動させるものである。この移動態様においては、互いの光軸がなす角の二等分線の向きは一定である。一方、当該二等分線の向きが変化するように上記相対移動を行うことも可能である。
(データ処理部200)
データ処理部200は、各種のデータ処理を実行する。このデータ処理には、たとえば、画像を形成する処理や、画像を加工する処理などが含まれる。また、データ処理部200は、画像や検査結果や測定結果の解析処理や、被検者に関する情報(電子カルテ情報等)に関する処理を実行可能であってよい。データ処理部200には変倍処理部210とOCT画像形成部220とが設けられている。
変倍処理部210は、撮像素子23により取得された画像を拡大する。この処理は、いわゆるデジタルズーム処理であり、撮像素子23により取得された画像の一部を切り取る処理と、その部分の拡大画像を作成する処理とを含む。画像の切り取り範囲は、観察者(術者、助手)により又は制御部100により設定される。変倍処理部210は、主受光系20Lの撮像素子23Lにより取得された画像(左画像)と、主受光系20Rの撮像素子23Rにより取得された画像(右画像)とに対して、同じ処理を施す。それにより、術者の左眼ELと右眼ERとに同じ倍率の画像が提示される。
また、変倍処理部210は、撮像素子83により取得された画像を拡大する。この処理は、撮像素子23により取得された画像に対するデジタルズーム処理と同様に、撮像素子83により取得された画像の一部を切り取る処理と、その部分の拡大画像を作成する処理とを含む。変倍処理部210は、副受光系80Lの撮像素子83Lにより取得された画像(左画像)と、副受光系80Rの撮像素子83Rにより取得された画像(右画像)とに対して、同じ処理を施す。それにより、助手の左眼ELと右眼ERとに同じ倍率の画像が提示される。
なお、このようなデジタルズーム機能に加えて、又はそれの代わりに、いわゆる光学ズーム機能を設けることが可能である。光学ズーム機能は、左右の主受光系20L及び20R、又は左右の副受光系80L及び80Rのそれぞれに変倍レンズ(変倍レンズ系)を設けることにより実現される。具体例として、変倍レンズを(選択的に)光路に対して挿入/退避する構成や、変倍レンズを光軸方向に移動させる構成がある。光学ズーム機能に関する制御は制御部100によって実行される。
OCT画像形成部220は、OCT系60の検出器79により得られる干渉光LCの検出結果に基づいて、被検眼Eの画像を形成する。制御部100は、検出器79から順次に出力される検出信号をOCT画像形成部220に送る。OCT画像形成部220は、たとえば一連の波長走査毎に(Aライン毎に)、検出器79により得られた検出結果に基づくスペクトル分布にフーリエ変換等を施すことにより、各Aラインにおける反射強度プロファイルを形成する。更に、OCT画像形成部220は、各Aラインプロファイルを画像化することにより画像データを形成する。それにより、Bスキャン像(断面像)やボリュームデータ(3次元画像データ)が得られる。
データ処理部200は、OCT画像形成部220により形成された画像(OCT画像)を解析する機能を備えていてよい。この解析機能としては、網膜厚解析や、正常眼との比較解析などがある。このような解析機能は、公知のアプリケーションを用いて実行される。また、データ処理部200は、主受光系20により取得された画像を解析する機能を備えていてよい。また、データ処理部200は、主受光系20により取得された画像の解析とOCT画像の解析とを組み合わせた解析機能を備えていてもよい。
(ユーザインターフェイス300)
ユーザインターフェイス(UI)300は、観察者等と眼科用顕微鏡1との間で情報のやりとりを行うための機能を備える。ユーザインターフェイス300は、表示デバイスと操作デバイス(入力デバイス)とを含む。表示デバイスは、表示部31又は表示部91を含んでよく、それ以外の表示デバイスを含んでもよい。操作デバイスは、各種のハードウェアキー及び/又はソフトウェアキーを含む。操作デバイスの少なくとも一部と表示デバイスの少なくとも一部とを一体的に構成することが可能である。タッチパネルディスプレイはその一例である。
(通信部400)
通信部400は、他の装置に情報を送信する処理と、他の装置から送られた情報を受信する処理とを行う。通信部400は、既定のネットワーク(LAN、インターネット等)に準拠した通信デバイスを含んでいてよい。たとえば、通信部400は、医療機関内に設けられたLANを介して、電子カルテデータベースや医用画像データベースから情報を取得する。また、外部モニタが設けられている場合、通信部400は、眼科用顕微鏡1により取得される画像を、実質的にリアルタイムで外部モニタに送信することができる。
対物レンズ21L、21Rは実施形態に係る「第1対物レンズ」の一例である。撮像素子23L、23Rは実施形態に係る「第1撮像素子」の一例である。表示部31L、31Rは実施形態に係る「第1表示部」の一例である。主接眼レンズ系32L、32Rは実施形態に係る「第1表示部の表示面側に配置された1以上のレンズ」の一例である。光源ユニット61は実施形態に係る「光源」の一例である。対物レンズ47は実施形態に係る「第2対物レンズ」の一例である。ビームスプリッタ45は実施形態に係る「分岐素子」の一例である。撮像素子83L、83Rは実施形態に係る「第2撮像素子」の一例である。
[効果]
本実施形態の眼科用顕微鏡の効果について説明する。
実施形態に係る眼科用顕微鏡(眼科用顕微鏡1)は、照明系(照明系10L及び10R)と、一対の主受光系(主受光系20L及び20R)と、一対の主接眼系(主接眼系30L及び30R)と、制御部(制御部100)と、照射系(照射系40)と、分岐素子(ビームスプリッタ45)と、一対の副受光系(副受光系80L及び80R)とを含む。照明系は、被検眼(被検眼E)に照明光を照射可能である。一対の主受光系は、照明系と同軸に設けられ、第1対物レンズ(対物レンズ21L及び21R)及び第1撮像素子(撮像素子23L及び23R)をそれぞれ含む。一対の主受光系は、互いの対物光軸(対物光軸AL1、AR1)が非平行に配置され、被検眼に照射された照明光の戻り光をそれぞれの第1対物レンズを介してそれぞれの第1撮像素子に導く。一対の主接眼系は、第1表示部(表示部31L及び31R)と、第1表示部の表示面側に配置された1以上のレンズ(主接眼レンズ系32L及び32R)とをそれぞれ含む。制御部は、一対の主受光系の一方の第1撮像素子からの出力に基づく画像を一対の主接眼系の一方の第1表示部に表示させ、かつ、一対の主受光系の他方の第1撮像素子からの出力に基づく画像を一対の主接眼系の他方の第1表示部に表示させる。照射系は、光源(光源ユニット61)と、対物光軸に非同軸に配置された第2対物レンズ(対物レンズ47)とを含み、光源からの光を第2対物レンズを介して被検眼に照射する。分岐素子は、光源と第2対物レンズとの間に配置され、照射系の光路からの分岐光路を形成する。一対の副受光系は、分岐素子により形成された分岐光路に入射した被検眼からの戻り光を一対の第2撮像素子(撮像素子83L及び83R)のそれぞれ又は一対の接眼レンズのそれぞれに導く。
このような構成では、光源からの光を被検眼に照射する照射系において、光源と第2対物レンズとの間に分岐素子を配置し、分岐素子により分岐された分岐光路に入射した被検眼からの戻り光を一対の副受光系に導く。したがって、照射系と一対の副受光系とにより第2対物レンズが共有される。それにより、一対の主受光系の対物光軸と異なる方向から被検眼に光を照射する場合でも、コンパクトな構成で、一対の副受光系を使用する観察者(助手)が双眼で観察部位の像を観察可能な眼科用顕微鏡を提供することが可能になる。
また、実施形態に係る眼科用顕微鏡では、照射系は、光コヒーレンストモグラフィを用いて被検眼のデータを収集するOCT系(OCT系60)を含んでもよい。OCT系は、OCT光源(光源ユニット61)からの光(光L0)を測定光(測定光LS)と参照光(参照光LR)とに分割し、第2対物レンズを介して被検眼に照射された測定光の戻り光と参照光との干渉光(干渉光LC)を検出する干渉光学系を含む。眼科用顕微鏡は、干渉光の検出結果に基づいて被検眼の画像又は解析結果を生成するデータ処理部(データ処理部200)を含み、分岐素子は、OCT光源と第2対物レンズとの間に配置され、測定光の光路から分岐光路を形成する。
このような構成によれば、OCT系(照射系)と一対の副受光系とにより第2対物レンズが共有される。それにより、一対の主受光系の対物光軸と異なる方向からOCTの測定光を被検眼に照射する場合でも、コンパクトな構成で、一対の副受光系を使用する観察者(助手)が双眼で観察部位の像を観察可能な眼科用顕微鏡を提供することが可能になる。
また、実施形態に係る眼科用顕微鏡では、OCT系は、被検眼を測定光でスキャンするための光スキャナ(光スキャナ43)を含み、分岐素子は、光スキャナと第2対物レンズとの間に配置されていてもよい。
このような構成によれば、被検眼を測定光でスキャンする場合でも、コンパクトな構成で、一対の副受光系を使用する観察者(助手)が双眼で観察部位の像を観察可能な眼科用顕微鏡を提供することが可能になる。
また、実施形態に係る眼科用顕微鏡では、一対の副受光系は、戻り光の一部をそれぞれ導く一対の平行光路を形成してもよい。
このような構成によれば、被検眼からの照明光の戻り光の一部の光路をアフォーカルな光路とすることができ、フィルタ等の光学素子を配置することや、光路結合部材を配置して他の光学系からの光路を結合することが容易になる。
また、実施形態に係る眼科用顕微鏡では、一対の副受光系は、戻り光の一部を一対の第2撮像素子のそれぞれに導いてもよい。一対の副受光系のそれぞれは、第2表示部(表示部91L、91R)と、第2表示部の表示面側に配置された1以上のレンズ(副接眼レンズ系92L、92R)とを含む。制御部は、一対の副受光系の一方の第2撮像素子からの出力に基づく画像を一対の副接眼系の一方の第2表示部に表示させ、かつ、一対の副受光系の他方の第2撮像素子からの出力に基づく画像を一対の副接眼系の他方の第2表示部に表示させる。
このような構成によれば、一対の副接眼系が任意の位置に配置された場合でも、一対の副接眼系を使用する観察者は双眼で観察部位の像の観察が可能な眼科用顕微鏡を提供することができる。
また、実施形態に係る眼科用顕微鏡では、制御部は、一対の主受光系に対する一対の副受光系の位置に応じて第2撮像素子からの出力に基づく画像を回転させて第2表示部に表示させてもよい。
このような構成によれば、一対の主接眼系に対する一対の副接眼系の位置にかかわらず、一対の副接眼系を使用する観察者は双眼で観察部位の像の観察が可能になる。特に、一対の副接眼系が一対の主接眼系に正対する位置である場合、一対の副接眼系を使用する観察者は双眼で観察部位の像を立体的に観察可能な眼科用顕微鏡を提供することができるようになる。
[変形例]
上記の実施形態は、本発明を実施するための例示に過ぎない。本発明を実施しようとする者は、本発明の要旨の範囲内において任意の変形、省略、追加、置換等を施すことが可能である。以下、上記の実施形態における図面を適宜に参照する。
(変形例1)
上記の実施形態において、フォーカスレンズ24L及び24R並びにウェッジプリズム25L及び25Rは、眼底観察時には光路から退避され、前眼部観察時には光路に挿入される。このような動作を自動化することが可能である。実施形態では、被検眼の観察部位を変更するための補助光学部材が使用される。たとえば、眼底観察時には光路に前置レンズ50が配置され、前眼部観察時には光路から退避される。
本変形例の眼科用顕微鏡は、補助光学部材の状態(つまり観察部位の選択)に応じてフォーカスレンズ24L及び24Rの状態を変更する。つまり、制御部100は、補助光学部材による観察部位の変更に応じて、フォーカスレンズ24L及び24Rを連係動作するためのレンズ移動機構を制御する。同様に、制御部100は、補助光学部材による観察部位の変更に応じて、ウェッジプリズム25L及び25Rを連係動作させるためのプリズム移動機構を制御する。
具体例を説明する。制御部100は、前置レンズ50が光路から退避されたことを受けて、フォーカスレンズ24L及び24R並びにウェッジプリズム25L及び25Rを光路に挿入するように合焦部24A及び光路偏向部25Aを制御する。逆に、制御部100は、前置レンズ50が光路に挿入されたことを受けて、フォーカスレンズ24L及び24R並びにウェッジプリズム25L及び25Rから退避させるように合焦部24A及び光路偏向部25Aを制御する。
本変形例の眼科用顕微鏡は、補助光学部材の状態(たとえば、前置レンズ50が光路に挿入されているか否か)を示す情報を生成する構成を備えてよい。たとえば、前置レンズ50を保持するアームの配置状態をマイクロスイッチ等のセンサを用いて検出することができる。或いは、前置レンズ50の挿入/退避を制御部100からの信号に基づき行う構成の場合、制御の履歴を参照することによって前置レンズ50の現在の状態を認識することができる。
他の例として、撮像素子23L及び/又は23Rにより取得される画像と、フォーカスレンズ24L及び24R並びにウェッジプリズム25L及び25Rの現在の状態とに基づいて、前置レンズ50が光路に配置されているか否か判定することができる。たとえば、フォーカスレンズ24L等が光路に配置されている状態において取得された画像をデータ処理部200にて解析することにより当該画像のボケ状態を示す量を求める。このボケ量が閾値以上である場合、前置レンズ50が光路に配置されていると判定する。逆に、ボケ量が閾値未満である場合、前置レンズ50は光路から退避されていると判定する。フォーカスレンズ24L等が光路から退避されている状態において取得された画像を解析する場合についても、同様にして前置レンズ50の状態を判定することが可能である。
本変形例によれば、焦点位置を変更するためのレンズ(フォーカスレンズ24L及び24R)の状態や、光路を偏向するための偏向部材(ウェッジプリズム25L及び25R)の状態を、観察部位の切り替えに応じて自動で変更することができる。したがって、操作性の更なる向上を図ることができる。
(変形例2)
上記の実施形態の照明系(10L及び10R)は、一対の主受光系(20L及び20R)と同軸に配置されている。本変形例では、一対の主受光系に対して非同軸に照明系が配置された構成、つまり、一対の主受光系の対物光軸と異なる方向から照明光を照射可能な構成について説明する。本変形例の光学系の構成例を図8に示す。眼科用顕微鏡1Aの照明系10Sは、たとえばスリット光を被検眼に照射可能である。このような眼科用顕微鏡の典型的な例としてスリットランプ顕微鏡がある。本変形例では、スリットランプ顕微鏡のように、照明系10Sと、主受光系20L及び20Rとの相対位置を変更可能である。つまり、照明系10Sと、主受光系20L及び20Rとが、同一の軸周りに回動可能に構成される。それにより、スリット光で照明されている角膜等の断面を斜め方向から観察することが可能である。
眼科用顕微鏡は、上記実施形態のような同軸照明系と、本変形例のような非同軸照明系との一方又は双方を備えていてよい。双方の照明系を備える場合、たとえば観察部位の切り替えに応じて、使用される照明系の切り替えを行うことができる。
(変形例3)
上記の実施形態では、ビームスプリッタ45が被検眼Eからの照明光の戻り光を透過させることにより当該戻り光を副観察光学系3に導く場合について説明した。しかしながら、図9に示すように、ビームスプリッタ45が被検眼Eからの照明光の戻り光を反射させることにより当該戻り光を副観察光学系3に導いてもよい。
本変形例に係る眼科用顕微鏡1Bでは、図1に示す眼科用顕微鏡1におけるビームスプリッタ45に代えてビームスプリッタ45bが設けられる。ビームスプリッタ45bは、赤外光を透過させ、可視光を反射させる。それにより、被検眼Eからの照明光の戻り光は、ビームスプリッタ45bにより反射され、副観察光学系3に導かれる。また、被検眼Eからの測定光LSの戻り光は、ビームスプリッタ45bを透過し、光スキャナ43に導かれる。
(変形例4)
上記の実施形態では、副観察光学系3の光路はOCT系60の光路から分岐される場合について説明したが、図10に示すように、副観察光学系3の光路は前眼部照明系の光路から分岐されてもよい。
本変形例に係る眼科用顕微鏡1Cでは、図1に示す眼科用顕微鏡1における照射系40に代えて照射系40cが設けられる。照射系40cは、前眼部照明系95と、ビームスプリッタ45cと、偏向ミラー46と、対物レンズ47とを含む。前眼部照明系95は、被検眼Eの前眼部に前眼部照明光を照射する。図示は省略するが、前眼部照明系95は、前眼部照明光を発する光源や、照明野を規定する絞りや、レンズ系などを含む。前眼部照明光を発する光源は、たとえば赤外光(近赤外光)及び/又は可視光を発する。
前眼部照明系95は、主受光系20Lの対物光軸AL1(AL2)及び主受光系20Rの対物光軸AR1(AR2)に非同軸に設けられる。
ビームスプリッタ45cは、前眼部照明系95の光路と副観察光学系3の光路とを同軸に結合する。ビームスプリッタ45cは、たとえばハーフミラーからなる。ビームスプリッタ45cは、前眼部照明光を偏向ミラー46に向けて反射し、被検眼Eからの照明光(照明系10により発せされた照明光)の戻り光の少なくとも一部を透過させる。それにより、被検眼Eからの照明光の戻り光は、ビームスプリッタ45cを透過し、副観察光学系3に導かれる。
眼科用顕微鏡1Cの処理系の構成例を図11に示す。以下、上記実施形態(図6参照)との相違点について説明する。制御部100cは、前眼部照明系95の制御を行う。前眼部照明系95の制御の例として、たとえば、前眼部照明光源の点灯、消灯、光量調整、絞りの調整などがある。
[効果]
本実施形態の変形例の眼科用顕微鏡の効果について説明する。
実施形態の変形例に係る眼科用顕微鏡(眼科用顕微鏡1C)では、照射系(照射系40c)は、被検眼の前眼部を照明する前眼部照明系(前眼部照明系95)を含み、前眼部照明系は、前眼部照明光源と、第2対物レンズ(対物レンズ47)とを含み、分岐素子(ビームスプリッタ45c)は、前眼部照明光源と第2対物レンズとの間に配置され、前眼部照明系の光路から分岐光路を形成してもよい。
このような構成では、前眼部照明系において、前眼部照明光源と第2対物レンズとの間に分岐素子を配置し、分岐素子により分岐された分岐光路に入射した被検眼からの戻り光を一対の副受光系に導く。したがって、前眼部照明系と一対の副受光系とにより第2対物レンズが共有される。それにより、一対の主受光系の対物光軸と異なる方向から被検眼に光を照射する場合でも、コンパクトな構成で、一対の副受光系を使用する観察者(助手)が双眼で観察部位の像を観察可能な眼科用顕微鏡を提供することが可能になる。
上記の実施形態又はその変形例において説明した構成を任意に組み合わせることが可能である。
1 眼科用顕微鏡
10L、10R 照明系
20L、20R 主受光系
21L、21R、47 対物レンズ
23L、23R、83L、83R 撮像素子
30L、30R 主接眼系
31L、31R、91L、91R 表示部
40 照射系
45 ビームスプリッタ
80L、80R 副受光系
90L、90R 副接眼系
100 制御部

Claims (7)

  1. 被検眼に照明光を照射可能な照明系と、
    前記照明系と同軸に設けられ、第1対物レンズ及び第1撮像素子をそれぞれ含み、互いの対物光軸が非平行に配置され、前記被検眼に照射された照明光の戻り光をそれぞれの前記第1対物レンズを介してそれぞれの前記第1撮像素子に導く一対の主受光系と、
    第1表示部と、前記第1表示部の表示面側に配置された1以上のレンズとをそれぞれ含む一対の主接眼系と、
    前記一対の主受光系の一方の前記第1撮像素子からの出力に基づく画像を前記一対の主接眼系の一方の前記第1表示部に表示させ、かつ、前記一対の主受光系の他方の前記第1撮像素子からの出力に基づく画像を前記一対の主接眼系の他方の前記第1表示部に表示させる制御部と、
    光源と、前記対物光軸に非同軸に配置された第2対物レンズとを含み、前記光源からの光を前記第2対物レンズを介して前記被検眼に照射する照射系と、
    前記光源と前記第2対物レンズとの間に配置され、前記照射系の光路からの分岐光路を形成する分岐素子と、
    前記分岐素子により形成された前記分岐光路に入射した前記被検眼からの戻り光を一対の第2撮像素子のそれぞれ又は一対の接眼レンズのそれぞれに導く一対の副受光系と、
    を含む眼科用顕微鏡。
  2. 前記照射系は、前記被検眼の前眼部を照明する前眼部照明系を含み、
    前記前眼部照明系は、前眼部照明光源と、前記第2対物レンズとを含み、
    前記分岐素子は、前記前眼部照明光源と前記第2対物レンズとの間に配置され、前記前眼部照明系の光路から前記分岐光路を形成する
    ことを特徴とする請求項1に記載の眼科用顕微鏡。
  3. 前記照射系は、光コヒーレンストモグラフィを用いて前記被検眼のデータを収集するOCT系を含み、
    前記OCT系は、OCT光源からの光を測定光と参照光とに分割し、前記第2対物レンズを介して前記被検眼に照射された前記測定光の戻り光と前記参照光との干渉光を検出する干渉光学系を含み、
    前記干渉光の検出結果に基づいて前記被検眼の画像又は解析結果を生成するデータ処理部を含み、
    前記分岐素子は、前記OCT光源と前記第2対物レンズとの間に配置され、前記測定光の光路から前記分岐光路を形成する
    ことを特徴とする請求項1に記載の眼科用顕微鏡。
  4. 前記OCT系は、前記被検眼を前記測定光でスキャンするための光スキャナを含み、
    前記分岐素子は、前記光スキャナと前記第2対物レンズとの間に配置されている
    ことを特徴とする請求項3に記載の眼科用顕微鏡。
  5. 前記一対の副受光系は、前記戻り光の一部をそれぞれ導く一対の平行光路を形成する
    ことを特徴とする請求項1〜請求項4のいずれか一項に記載の眼科用顕微鏡。
  6. 前記一対の副受光系は、前記戻り光の一部を前記一対の第2撮像素子のそれぞれに導き、
    前記一対の副受光系のそれぞれは、第2表示部と、前記第2表示部の表示面側に配置された1以上のレンズとを含み、
    前記制御部は、前記一対の副受光系の一方の前記第2撮像素子からの出力に基づく画像を前記一対の副接眼系の一方の前記第2表示部に表示させ、かつ、前記一対の副受光系の他方の前記第2撮像素子からの出力に基づく画像を前記一対の副接眼系の他方の前記第2表示部に表示させる
    ことを特徴とする請求項1〜請求項5のいずれか一項に記載の眼科用顕微鏡。
  7. 前記制御部は、前記一対の主受光系に対する前記一対の副受光系の位置に応じて前記第2撮像素子からの出力に基づく画像を回転させて前記第2表示部に表示させる
    ことを特徴とする請求項6に記載の眼科用顕微鏡。
JP2015147569A 2015-07-27 2015-07-27 眼科用顕微鏡 Active JP6505539B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015147569A JP6505539B2 (ja) 2015-07-27 2015-07-27 眼科用顕微鏡

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015147569A JP6505539B2 (ja) 2015-07-27 2015-07-27 眼科用顕微鏡

Publications (2)

Publication Number Publication Date
JP2017023584A JP2017023584A (ja) 2017-02-02
JP6505539B2 true JP6505539B2 (ja) 2019-04-24

Family

ID=57948995

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015147569A Active JP6505539B2 (ja) 2015-07-27 2015-07-27 眼科用顕微鏡

Country Status (1)

Country Link
JP (1) JP6505539B2 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7042663B2 (ja) * 2017-03-30 2022-03-28 株式会社トプコン 眼科用顕微鏡
US12029485B2 (en) * 2017-08-30 2024-07-09 Topcon Corporation Ophthalmic microscope
JP7117145B2 (ja) * 2017-08-31 2022-08-12 株式会社トプコン 眼科用顕微鏡
WO2019044861A1 (ja) * 2017-08-30 2019-03-07 株式会社トプコン 眼科用顕微鏡
JP7213378B2 (ja) * 2017-08-31 2023-01-26 株式会社トプコン Oct機能拡張ユニット

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4857493A (ja) * 1971-11-16 1973-08-11
DE10336475B9 (de) * 2003-08-08 2006-09-07 Carl Zeiss Mikroskopiesystem
EP2444021B8 (en) * 2004-04-20 2018-04-18 Alcon Research, Ltd. Integrated surgical microscope and wavefront sensor
JP4721981B2 (ja) * 2006-08-09 2011-07-13 三鷹光器株式会社 立体顕微鏡
JP5632386B2 (ja) * 2008-11-26 2014-11-26 カール ツアイス メディテック アクチエンゲゼルシャフト 画像化システム
DE102011102256A1 (de) * 2011-05-23 2012-11-29 Carl Zeiss Meditec Ag Mikroskopiesystem zur augenuntersuchung und verfahren zum betreiben eines mikroskopiesystems

Also Published As

Publication number Publication date
JP2017023584A (ja) 2017-02-02

Similar Documents

Publication Publication Date Title
JP6502720B2 (ja) 眼科用顕微鏡
JP6499937B2 (ja) 眼科用顕微鏡システム
JP6490469B2 (ja) 眼科用顕微鏡システム
JP6499936B2 (ja) 眼科用顕微鏡システム
JP6490519B2 (ja) 眼科用顕微鏡システム
JP6505539B2 (ja) 眼科用顕微鏡
US11871994B2 (en) Ophthalmologic microscope and function expansion unit
JP6915968B2 (ja) 眼科用手術顕微鏡
JP7049147B2 (ja) 眼科用顕微鏡及び機能拡張ユニット
JP6538466B2 (ja) 眼科用顕微鏡
JP6505527B2 (ja) 眼科用顕微鏡
JP2017029333A (ja) 眼科用顕微鏡
US11166631B2 (en) Ophthalmologic microscope and function expansion unit
WO2016170815A1 (ja) 眼科手術用顕微鏡
WO2017002383A1 (ja) 眼科用顕微鏡システム
JP6818391B2 (ja) 眼科用顕微鏡及び機能拡張ユニット
WO2017110145A1 (ja) 眼科用顕微鏡システム
JP7098370B2 (ja) 眼科用顕微鏡及び機能拡張ユニット
JP6839902B2 (ja) 眼科用顕微鏡
JP6577266B2 (ja) 眼科用顕微鏡
JP2017012536A (ja) 眼科用顕微鏡
JP6839901B2 (ja) 眼科用顕微鏡
WO2018203577A1 (ja) 眼科用顕微鏡及び機能拡張ユニット
JP2022091766A (ja) Oct機能拡張ユニット
JP2021062292A (ja) 眼科用手術顕微鏡

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20161226

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180702

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190227

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190305

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190327

R150 Certificate of patent or registration of utility model

Ref document number: 6505539

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250