JP6839901B2 - 眼科用顕微鏡 - Google Patents

眼科用顕微鏡 Download PDF

Info

Publication number
JP6839901B2
JP6839901B2 JP2017091998A JP2017091998A JP6839901B2 JP 6839901 B2 JP6839901 B2 JP 6839901B2 JP 2017091998 A JP2017091998 A JP 2017091998A JP 2017091998 A JP2017091998 A JP 2017091998A JP 6839901 B2 JP6839901 B2 JP 6839901B2
Authority
JP
Japan
Prior art keywords
lens
optical
optical system
eye
objective lens
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017091998A
Other languages
English (en)
Other versions
JP2018187081A (ja
Inventor
福間 康文
康文 福間
和宏 大森
和宏 大森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Topcon Corp
Original Assignee
Topcon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Topcon Corp filed Critical Topcon Corp
Priority to JP2017091998A priority Critical patent/JP6839901B2/ja
Publication of JP2018187081A publication Critical patent/JP2018187081A/ja
Application granted granted Critical
Publication of JP6839901B2 publication Critical patent/JP6839901B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、眼科用顕微鏡に関する。詳しくは、残存収差の補正が可能で、左右眼で観察される像の残像収差が左右で均等に近く、両眼視に好適な眼科用顕微鏡に関する。さらに詳しくは、対物レンズを小口径とすることができ、OCT装置光学系を容易に設置することができる眼科用顕微鏡に関する。
眼科分野では、眼を拡大観察するために各種の眼科用顕微鏡が使用されている。そのような眼科用顕微鏡としては、例えば、眼底カメラ、スリットランプ、手術用顕微鏡等がある。これらの眼科用顕微鏡は、眼を立体観察するために左眼と右眼との間で生じる両眼視差を与える双眼光学系を有している。
従来の典型的な眼科用顕微鏡は、ガリレオ式実体顕微鏡となっている。ガリレオ式実体顕微鏡は、左右の観察光学系の光軸が共通して透過する対物レンズを備えている点、及び左右の観察光学系の光軸が基本的には平行である点を技術的特徴としている。ガリレオ式実体顕微鏡は、他の光学系、光学素子と組み合わせ易いという利点を有している。
一方、ガリレオ式実体顕微境においては、対物レンズと結像光学系が偏心しているため、残存収差が左右で逆の向きになり、残存収差を小さくすることは困難である。
本発明者らは以前に、ガリレオ式実体顕微鏡とは別の方式である、グリノー式実体顕微鏡を採用した眼科用顕微鏡を開発した(特許文献1及び2)。グリノー式実体顕微鏡は、左右の2つに独立した観察光学系を有し、左右の観察光学系の光軸が交差するように配置された顕微鏡である。グリノー式実体顕微鏡は、共通の対物レンズを使用せず、左右の観察光学系のそれぞれが対物レンズを備えている。
グリノー式実体顕微境によれば、対物レンズと結合光学系の偏心を少なくすることが可能であるが、2つの独立した観察光学系を斜交させるため、機構が複雑になるという問題があった。
ところで、眼科用顕微鏡と組み合わせることができる検査装置として、OCT(Optical Coherence Tomography)装置がある。OCT装置は、眼の断面像や三次元画像の取得、眼組織のサイズ(網膜厚等)の測定、眼の機能情報(血流情報等)の取得等に使用することができる。
眼科用顕微鏡にOCT装置を組み込んだ装置が数多く開発されているが、その多くは、ガリレオ式実体顕微境の対物レンズをOCT光学系の光路が透過するものであった(特許文献3〜7)。
また、ガリレオ式実体顕微境の対物レンズをOCT光学系の光路が透過しない方式も開発されている(特許文献8及び9)。
より詳細に説明すると、図11(特許文献9の図2を引用した図面)に示される眼科用顕微鏡においては、観察光学系の光軸が透過する対物レンズ(15)の下部で、対物レンズ(15)の側方から入射したOCT光源の光を偏向部材(106)で反射させて、被検眼にOCT光学系の光を入射させている。
尚、この眼科用顕微鏡では、走査用の偏向光学素子である第1スキャナ(102a)と第2スキャナ(102b)の間の位置(たとえば、中間位置)と患者眼Eの位置とが光学的に略共役であることが示されている(特許文献9の[0043]段落)。
特開2016−185177号公報 特開2016−185178号公報 特開平8−66421号公報 特開2008−264488号公報 特開2008−268852号公報 特表2010−522055号公報 特開2008−264490号公報 米国特許第8366271号明細書 特開2016−206348号公報
従来の眼科用顕微鏡システムに採用されているガリレオ式実体顕微鏡は、図9(A)に模式的に示すように、左眼用観察光学系の光軸(O400L)と右眼用観察光学系の光軸(O400R)が共通して透過する対物レンズ(401)を備えている。左右眼用の観察光学系は、例えば、変倍レンズ(402)や接眼レンズ(408)等からなる。しかしながら、図9(B)に模式的に示すように、変倍レンズの光軸(A402)と、対物レンズの光軸(A401)とは、10〜15mm程度偏心している。このため、左右眼において生じる残存収差の補正が困難である。また、残存収差は対物レンズ(401)の外周側で生じるため、図9(C)に模式的に示すように、被検体(2)を両眼で観察した場合において、倍率色収差やコマ収差が、左眼用の像(V400L)と右眼用の像(V400R)とで逆側に発生し、左右の眼で異なる像を観察しなければならないという問題点がある。ガリレオ式実体顕微鏡には、輻輳角が0°のタイプと、輻輳角が0°でないタイプとが存在するが、いずれのタイプであっても、残存収差を補正によって小さくすることは、困難であった。
また、ガリレオ式実体顕微鏡は、大径の対物レンズを使用する必要があるために、光学設計や機構設計の自由度が制限されるというデメリットを有している。
例えば、特許文献3〜7に示されるように、ガリレオ式実体顕微境にOCT光学系を組み込んだ眼科用顕微鏡は、OCT光学系の光路がガリレオ式実体顕微境の対物レンズを透過する方式となっており、OCT光学系と観察光学系を独立させることができなかった。
OCT光学系の光路がガリレオ式実体顕微境の対物レンズを透過しない方式として、特許文献8及び9に示されるように、対物レンズの下部にOCT光学系を設ける方式があるが、被検眼と眼科用顕微鏡の間の作業空間を十分に確保できなくなるという問題があった。
一方、グリノー式実体顕微鏡においては、図10(A)に示すように、左眼用観察光学系の光軸(O400L)と右眼用観察光学系の光軸(O400R)を斜交させており、これらの光軸が共通して透過する対物レンズを設けず、それぞれの光学系が対物レンズ(401)を有している。そして、図10(B)に示すように、変倍レンズの光軸(A402)と対物レンズの光軸(A401)は偏心しておらず、残存収差を補正可能であり、また、左右眼において生じる倍率色収差、コマ収差が左右眼において逆側に発生するという技術上の問題は発生しない。さらに、グリノー式実体顕微境は、大径の対物レンズを使用しないため、左右の観察光学系の間にOCT光学系を独立して設けることができる。
しかしながら、グリノー式実体顕微境は、図10(A)に示されるように、左眼用観察光学系のピント位置(Q400L)が、右眼用観察光学系のピント位置(Q400R)と重ならず、図10(C)に示されるように周辺のピント差が左右眼の像で逆になるという問題点を有する。
また、グリノー式実体顕微鏡は、2つの独立した観察光学系を斜交させるため、機構的に複雑に成らざるを得ず、変倍光学系の組み立ても困難に成らざるを得ないという不都合があった。
そこで、本発明の目的は、従来の眼科用顕微鏡が有している技術上の問題点を解消し、残存収差の補正が可能で、残存収差を左右で均等に近いものとし、両眼視に好適な眼科用顕微鏡を提供することにある。また、本発明の目的は、対物レンズを小口径とすることができ、OCT光学系を容易に設置することができる眼科用顕微鏡を提供することにある。
本件発明者らは、鋭意検討を行った結果、左右の観察光学系が共通して透過する大口径の対物レンズを廃し、左右の観察光学系のそれぞれに対物レンズを設けることによって、レンズの偏心が解消されて、残存収差の補正が可能となるとともに、対物レンズを小口径化して、OCT光学系を容易に設置することができることを見出した。さらに、本発明者らは、対物レンズを、第1のレンズと、光軸の向きを変更する光学素子と、第2のレンズとを少なくとも有するレンズ群とすることによって、左右の観察光学系を斜交させることなく、対物レンズによって光軸を交差させることができることを見出した。また、本発明者らは、OCT光学系の光軸が透過するOCT用対物レンズと、OCT光学系の測定光を走査する偏向光学素子とを略共役な位置関係とすることにより、小口径のOCT用対物レンズでも測定光を広い照射範囲で走査できることを見出し、本発明を完成するに至った。具体的には本発明は以下の技術的事項から構成される。
(1) 本発明は、被検眼を照明する照明光学系と、前記照明光学系で照明された前記被検眼を観察するための左眼用観察光学系と右眼用観察光学系を有する観察光学系と、光コヒーレンストモグラフィにより前記被検眼を検査するための測定光の光路と前記測定光を走査する偏向光学素子を有するOCT光学系とを備える眼科用顕微鏡において、
前記眼科用顕微鏡内において、前記左眼用観察光学系の光軸と前記右眼用観察光学系の光軸が略平行であり、
前記左眼用観察光学系と前記右眼用観察光学系がそれぞれ対物レンズを有しており、
前記対物レンズが、第1のレンズと、光軸の向きを変更する光学素子と、第2のレンズとを少なくとも有するレンズ群からなり、
前記対物レンズによって、前記左眼用観察光学系の光軸の向きと前記右眼用観察光学系の光軸の向きが、前記被検眼の側で互いに交差する方向に変更され、
前記対物レンズとは別に、前記OCT光学系の光軸が透過するOCT用対物レンズを有し、
前記偏向光学素子と前記OCT用対物レンズが、光学的に略共役な位置関係であることを特徴とする眼科用顕微鏡に関する。
(2)本発明の眼科用顕微鏡においては、前記偏向光学素子が、走査する方向が異なる2つの対となる偏向光学素子からなる場合には、
前記2つの偏向光学素子の間の光路上に、リレー光学系を有しており、
前記2つの偏向光学素子のいずれも、前記OCT用対物レンズと略共役な位置関係であることが好ましい。
(3) 前記いずれかの眼科用顕微鏡においては、前記光軸の向きを変更する光学素子がウェッジプリズムであることが好ましい。
(4) 前記いずれかの眼科用顕微鏡においては、前記第1のレンズが負のパワーを有する凹レンズであり、前記第2のレンズが正のパワーを有する凸レンズであることが好ましい。
(5) 前記いずれかの眼科用鏡顕微鏡においては、前記第1のレンズと、前記光軸の向きを変更する光学素子と、前記第2のレンズが、前記被検眼の側からこの順で並んでいる場合には、
前記左眼用観察光学系の前記第1のレンズの光軸と、前記右眼用観察光学系の前記第1のレンズの光軸が、互いに前記被検眼の側で交差する方向に傾斜していることが好ましい。
(6) 前記いずれかの眼科用顕微鏡においては、前記第1のレンズと、前記光軸の向きを変更する光学素子と、前記第2のレンズが、前記被検眼の側からこの順で並んでいる場合には、
前記左眼用観察光学系の前記第2のレンズの光軸と、前記右眼用観察光学系の前記第2のレンズの光軸が、互いに前記被検眼の側で離れる方向に傾斜していることが好ましい。
本発明によれば、残存収差の補正を可能とし、左右均等に近い残存収差を有した、両眼視に好適な眼科用顕微鏡が提供される。また、本発明によれば、眼科用顕微鏡を構成する光学部品である対物レンズを小口径とすることができ、OCT光学系を容易に設置することができる眼科用顕微鏡が提供される。また、本発明によれば、OCT光学系の偏向光学素子とOCT用対物レンズとが光学的に略共役な位置関係であるため、小口径のOCT用対物レンズでも測定光を広い照射範囲で走査できる眼科用顕微鏡が提供される。
本発明の第1の実施形態の眼科用顕微鏡の光学系の構成を模式的に示す正面図である。 本発明の第1の実施形態の眼科用顕微鏡の光学系の構成を模式的に示す側面図である。 本発明の第1の実施形態の眼科用顕微鏡で用いられるOCTユニットの光学構成を模式的に示す図面である。 本発明の第1の実施形態の眼科用顕微鏡における対物レンズ周辺でのレンズの配置及び光路の配置を模式的に示す断面図である。図4(A)は、対物レンズ周辺でのレンズの配置を示し、図4(B)は、対物レンズ周辺での光路の配置を示す。 本発明の第1の実施形態の眼科用顕微鏡における対物レンズの光学構成を模式的に示す正面図である。図5(A)は、第1の実施形態の眼科用顕微鏡で使用される対物レンズの構成を示し、図5(B)は、対物レンズを構成する各レンズの光軸の向きを示す。 本発明の第2の実施形態の眼科用顕微鏡及び第3の実施形態の眼科用顕微鏡における、対物レンズ周辺での光路の配置を模式的に示す断面図である。図6(A)は、第2の実施形態の眼科用顕微鏡の対物レンズ周辺での光路の配置を示し、図6(B)は、第3の実施形態の眼科用顕微鏡の対物レンズ周辺の光路の配置を示す。 本発明の第4の実施形態の眼科用顕微鏡における、対物レンズの光学構成を模式的に示す正面図である。図7(A)は、第4の実施形態の眼科用顕微鏡で使用される対物レンズの構成を示し、図7(B)は、対物レンズを構成する各レンズの光軸の向きを示す。 本発明の眼科用顕微鏡の第5の実施形態の眼科用顕微鏡における、対物レンズの光学構成を模式的に示す正面図である。図8(A)は、第5の実施形態の眼科用顕微鏡で使用される対物レンズの構成を示し、図8(B)は、対物レンズを構成する各レンズの光軸の向きを示す。 従来技術であるガリレオ式実体顕微鏡、及び当該実体顕微鏡によって、左右眼に観察される像を示した模式図である。図9(A)は、ガリレオ式実体顕微境の左右眼用の観察光学系の光学系の構成を示す模式図であり、図9(B)は、ガリレオ式実体顕微境のそれぞれのレンズの光軸を示す模式図であり、図9(C)は、左右眼により観察される像を示す模式図である。 従来技術であるグリノー式実体顕微鏡、及び当該実体顕微鏡によって、左右眼に観察される像を示した模式図である。図10(A)は、グリノー式実体顕微境の左右眼用の観察光学系の光学系の構成を示す模式図であり、図10(B)は、グリノー式実体顕微境のそれぞれのレンズの光軸を示す模式図であり、図10(C)は、左右眼により観察される象を示す模式図である。 特許文献9の図2を引用した図面である。
1. 本発明の眼科用顕微鏡の概要
本発明の眼科用顕微鏡は、被検眼を照明する照明光学系と、照明光学系で照明された被検眼を観察するための左眼用観察光学系と右眼用観察光学系を有する観察光学系と、光コヒーレンストモグラフィにより被検眼を検査するための測定光の光路と測定光を走査する偏向光学素子を有するOCT光学系とを備える眼科用顕微鏡に関するものである。
本発明の眼科用顕微鏡は、左眼用観察光学系と右眼用観察光学系にそれぞれ小口径化された対物レンズを有しているため、左眼用観察光学系と右眼用観察光学系が共通して透過する大口径の対物レンズを使用する必要がない。このため、対物レンズの光軸とその前にあるレンズの光軸との偏心が小さくなり、残存収差の補正が可能である。また、本発明の眼科用顕微鏡は、大口径の対物レンズを使用する必要がなく、対物レンズを小口径化できるので、OCT光学系等の別の光学系を容易に設置することができる。
本発明の眼科用顕微鏡は、第1のレンズと、光軸の向きを変更する光学素子と、第2のレンズとを少なくとも有するレンズ群を、対物レンズとして使用する。かかる対物レンズにより、左眼用観察光学系の光軸と右眼用観察光学系の光軸の向きが、被検眼の側で互いにに交差する方向に変更されている。したがって、本発明の眼科用顕微鏡は、眼科用顕微鏡内において、左眼用観察光学系の光軸と右眼用観察光学系の光軸を略平行としながら、対物レンズよりも被検眼側で2つの光軸を交差させることができ、グリノー式実体顕微鏡のように左右の観察光学系を斜交して配置する複雑な機構とする必要がない。
また、本発明の眼科用顕微鏡は、対物レンズとは別にOCT用対物レンズを有しており、OCT光学系の光軸はOCT用対物レンズを透過する。これにより、観察光学系とOCT光学系とが独立したものとなっており、光学設計の自由度が高まる。
本発明の眼科用顕微鏡は、走査用の偏向光学素子とOCT用対物レンズが、光学的に略共役な位置関係であることを特徴としている。これにより、小口径のOCT用対物レンズを用いた場合でも、測定光を広い範囲で走査することができる。
ここで、「光学的に略共役な位置関係である」とは、光軸上で共役な2つの位置又はその前後の位置に、それぞれ偏向光学素子とOCT用対物レンズが位置することをいう。また、「共役な位置関係」とは、一方の位置に像が形成された場合に、他方の位置にも同じ像が形成される位置関係をいう。
本発明の眼科用顕微鏡において、OCT光学系の走査用の偏向光学素子は、一つであってもよく、また、2つ以上であってもよい。偏向光学素子を2つ以上用いる場合には、偏向光学素子の少なくとも1つが、OCT用対物レンズと光学的に略共役な位置関係とすればよい。
偏向光学素子を2つ用いる場合には、例えば、1つの偏向光学素子をx軸方向に走査する偏向光学素子とし、もう一つの偏向光学素子をy軸方向に走査する偏向光学素子とすることにより、測定光を2次元で走査(スキャン)することができる。
この場合には、x軸方向に走査する偏向光学素子とOCT用対物レンズとを光学的に略共役な位置関係とすることにより、OCT用対物レンズの口径を小さくしても、x軸方向の走査の幅を大きく保つことができる。また、y軸方向に走査する偏向光学素子とOCT対物レンズとを光学的に略共役な位置関係とすることにより、OCT用対物レンズの口径を小さくしても、y軸方向の走査の幅を大きく保つことができる。好ましくは、x軸方向に走査する偏向光学素子とy軸方向に走査する偏向光学素子のいずれについても、OCT用対物レンズと光学的に略共役な位置関係とするのがよい。
偏向光学素子として、走査する方向が異なる2つの対となる偏向光学素子を用いる場合には、2つの偏向光学素子の間の光路にリレー光学系を設けることにより、2つの偏向光学素子のいずれについてもOCT用対物レンズと略共役な位置関係となるように光学設計をすることが可能となる。
ここで、リレー光学系とは、レンズ等の光学素子であり2つの偏向光学素子の間に設けられるものであればどのような光学系であってもよく、例えば、2つ以上のレンズからなるレンズ群であってもよい。
また、2つの偏向光学素子の間の距離を20mm程度以下とし、2つの偏向光学素子の中間の位置をOCT用対物レンズと共役な位置とすれば、前記リレー光学系を用いなくても、2つの偏向光学素子のいずれについてもOCT用対物レンズと略共役な位置関係とすることができる。
本発明において「眼科用顕微鏡」とは、被検眼を拡大して観察することができる医療用又は検査用の機器をいい、ヒト用のみならず動物用のものも含む。「眼科用顕微鏡」には、これらに限定されるわけではないが、例えば、眼底カメラ、スリットランプ、眼科手術用顕微鏡等が含まれる。
本発明の眼科用顕微鏡は、眼科分野における診療や手術において被検眼の拡大像を観察(撮影)するために使用される。観察対象部位は、患者眼の任意の部位であってよく、たとえば、前眼部においては角膜や虹彩、隅角や硝子体や水晶体や毛様体などであってよく、後眼部においては網膜や脈絡膜や硝子体であってよい。また、観察対象部位は、瞼や眼窩など眼の周辺部位であってもよい。
本発明の眼科用顕微鏡は、被検眼を拡大観察するための顕微鏡としての機能に加え、他の眼科装置としての機能を有することができる。他の眼科装置としての機能の例として、OCTの他に、レーザ治療、眼軸長測定、屈折力測定、高次収差測定などがある。他の眼科装置は、被検眼の検査や測定や画像化を光学的手法で行うことが可能な任意の構成を備える。
本発明の眼科用顕微鏡は、各レンズの位置や傾き等の制御や光源の制御を行うための制御部や、撮像した画像を表示する表示部等を含ませることができる。また、これらの制御部や表示部は、眼科用顕微鏡とは別のものとしてもよい。
本発明において、「照明光学系」とは、被検眼を照明するための光学素子を含んで構成されるものである。照明光学系には、さらに光源を含ませることができるが、自然光を被検眼に導くものであってもよい。
本発明において、「観察光学系」とは、照明光学系によって照明された被検眼において反射・散乱された戻り光により、被検眼を観察することを可能とする光学素子を含んで構成されるものである。本発明において、観察光学系は、左眼用観察光学系と右眼用観察光学系を有しており、左右の観察光学系により得られる像に視差を生じさせた場合には、双眼視により立体的に観察することも可能となる。
また、本発明の「観察光学系」は、接眼レンズ等を通じて観察者が直接被検眼を観察できるものであってもよく、また、撮像素子等により受光して画像化することにより観察できるものであってもよく、あるいは、両方の機能を備えるものであってもよい。
本発明において、「OCT光学系」とは、OCTの測定光を経由させる光学素子や、測定光を走査する偏向光学素子を含んで構成されるものである。OCT光学系には、さらにOCT光源を含ませることができる。
また、本発明において、「偏向光学素子」とは、光の方向を変えて光を走査することができる光学素子であればどのようなものであってもよい。例えば、これらに限定されるわけではないが、ガルバノミラー、ポリゴンミラー、回転ミラー、MEMS(Micro Electro Mechanical Systems)ミラー等のように、向きが変化する反射部を有する光学素子や、偏向プリズムスキャナやAO素子等のように、電界や音響光学効果等により光の向きを変えることができる光学素子を用いることができる。
本発明において、「照明光学系」、「観察光学系」、「OCT光学系」に使用される光学素子としては、これらに限定されるわけではないが、例えば、レンズ、プリズム、ミラー、光フィルタ、絞り、回折格子、偏光素子等を用いることができる。
本発明において、左眼用観察光学系の光軸と右眼用観察光学系の光軸が、眼科用顕微鏡内で「略平行」であるとは、左右眼の観光学系の光軸が眼科用顕微鏡内の主要な経路でほぼ平行となっていることをいい、光軸の一部が非平行となっていてもよく、また、主要な経路では5°以下の範囲で平行となっていればよい。しかしながら、光学系のレンズを配置しやすくするためには、できるだけ0°に近づけて平行とするのがよく、3°以下の範囲で平行とするのが好ましい。
本発明において、「対物レンズ」や「OCT用対物レンズ」とは、眼科用顕微鏡において、被検眼の側に設けられたレンズ又はレンズ群をいう。例えば、対物レンズが3つのレンズ群からなる場合、被検眼の側から3つ目までのレンズが対物レンズとなる。また、対物レンズが4つのレンズ群からなる場合、被検眼の側から4つ目までのレンズが対物レンズとなる。ただし、対物レンズと被検眼の間に一時的に挿入して使用する前置レンズ(ルーペ)は、本発明でいう「対物レンズ」には含まれない。
本発明において、「光軸の向きを変更させる光学素子」は、光路の方向を変更することができる光学素子であればよく、これらに限定されるわけではないが、屈折・反射により光路を変更するプリズムを用いることができ、ウェッジプリズムや、光軸の位置と向きを変更することができるロンボイド型のプリズム等を用いることができる。
2. 第1の実施形態
以下、本発明の実施形態の例を、図面を参照しながら詳細に説明する。
図1〜4は、本発明の眼科用顕微鏡の一例である第1の実施形態を模式的に示す図面である。図1は、第1の実施形態の眼科用顕微鏡の光学系の構成を模式的に示す正面図であり、図2は、光学系の構成の側面図である。また、図3は、OCTユニットの光学構成を模式的に示す図面であり、図4は、対物レンズ周辺でのレンズの配置及び光路の配置を模式的に示す断面図である。
図1の正面図に示されるように、眼科用顕微鏡(1)の光学系は、観察者の左眼用の観察光学系(400L)と右眼用の観察光学系(400R)からなる観察光学系と、OCT光学系(500)を有している。
また、図2の側面図に示されるように、眼科用顕微鏡(1)の光学系は、さらに照明光学系(300)を有している。観察光学系(400)は、照明光学系(300)により照明されている被検眼(8)を、拡大して観察するために用いられる。
図1及び図2に示されるように、観察光学系(400)と、OCT光学系(500)と、照明光学系(300)は、一点鎖線で示される眼科用顕微鏡本体(6)に収納されている。
図1において、左眼用の観察光学系(400L)の光軸を点線(O−400L)で示し、右眼用の観察光学系(400R)の光軸を点線(O−400R)で示す。また、OCT光学系の光軸を点線(O−500)で示す。
図1に示されるように、左眼用観察光学系の光軸(O−400L)と、右眼用観察光学系の光軸(O−400R)は、眼科用顕微鏡本体(6)内において、平行となっている。
したがって、第1の実施形態の眼科用顕微鏡(1)は、グリノー式実体顕微鏡のように左右の観察光学系を斜交して配置する複雑な機構とする必要がない。
図1に示されるように、左右の観察光学系(400L,400R)は、それぞれ、対物レンズ(401)を有している。対物レンズ(401)は、レンズ群からなる対物レンズであり、第1のレンズ(401a)、光軸の向きを変更する光学素子(401b)、及び第2のレンズ(401c)を含んで構成されている。
第1の実施形態においては、光軸の向きを変更する光学素子(401b)として、ウェッジプリズムが用いられ、基底方向は内側(ベースイン)である。ウェッジプリズムにより、左右の観察光学系の光軸(O−400L,O−400R)は、被検眼の側で互いに交差する方向に向きが変更される。
左右の観察光学系の光軸(O−400L,O−400R)の交点は対物レンズ(401)の前側焦点位置(U0)に略一致するのが望ましい。
第1の実施形態においては、第1のレンズ(401a)は、負のパワーを有する凹レンズである。左右の第1のレンズの光軸は、内側(互いに被検眼の側で交差する方向)に傾斜している。
また、第2のレンズ(401c)は、正のパワーを有する凸レンズである。
第1の実施形態の眼科用顕微鏡で使用する対物レンズ(401)は、従来のガリレオ式実体顕微境のような、左右の観察光学系の光軸が共通して透過する一枚の大口径のレンズではなく、左右の観察光学系が独立して有している対物レンズである。したがって、図1に示されるように、対物レンズ(401)を小口径とすることができ、左右の観察光学系(400L,400R)の間に、OCT光学系(500)を容易に設置することができる。
また、図1に示されるように、左右の対物レンズ(401)は、左右の観察光学系の光軸(O−400L,O−400R)を、被検眼の側で交差するように向きを変更できるので、被検眼の同一の箇所を左右眼により両眼観察することを可能としている。
図1に示されるように、第1の実施形態の眼科用顕微鏡は、対物レンズ(401)の他に、OCT用対物レンズ(509)を有しており、OCT光学系の光軸(O−500)が対物レンズ(401)を透過せずに、OCT用対物レンズ(509)を透過している。
このような構成により、第1の実施形態の眼科用顕微鏡では、観察光学系とOCT光学系(500)とが独立しており、光学設計の自由度を高めることができる。
図1に示されるように、眼科用顕微鏡本体(6)の下端には、複数の貫通孔を有する照明用対物レンズ(7)が設けられている。照明用対物レンズ(7)の3つの貫通孔のうち、2つの貫通孔には、第1のレンズ(401a)が位置しており、照明用対物レンズ(7)のもう一つの貫通孔の上部には、OCT用対物レンズ(509)が位置している。そして、照明用対物レンズ(7)の3つの貫通孔を、左眼用観察光学系の光軸(O−400L)と、右眼用観察光学系の光軸(O−400R)と、OCT光学系の光軸(O−500)とが通過している。照明用対物レンズ(7)は、照明光を透過するために用いられる。
以下、第1の実施形態の眼科用顕微鏡について、さらに詳細に説明する。
図2に示されるように、照明光学系(300)は、被検眼(8)を照明するものであり、照明光源(9)、光ファイバ(301)、出射口絞り(302)、コンデンサレンズ(303)、照明野絞り(304)、コリメートレンズ(305)、反射ミラー(306)、及び照明用対物レンズ(7)を含んで構成されている。これらの照明光学系(300)の光軸を、図2において点線(O−300)で示す。
照明光源(9)は、眼科用顕微鏡本体(6)の外部に設けられている。照明光源(9)には光ファイバ(301)の一端が接続されている。光ファイバの他端は、眼科用顕微鏡本体(6)の内部のコンデンサレンズ(303)に臨む位置に配置されている。照明光源(9)から出力された照明光は、光ファイバ(301)により導光されてコンデンサレンズ(303)に入射する。
光ファイバ(301)の出射口(コンデンサレンズ(303)側のファイバ端)に臨む位置には、出射口絞り(302)が設けられている。出射口絞り(302)は、光ファイバ(301)の出射口の一部領域を遮断するように作用する。出射口絞り(302)による遮断領域が変更されると、照明光の出射領域が変更される。それにより、照明光による照射角度を変更することができる。
照明野絞り(304)は、対物レンズ(401)の前側焦点位置(U0)と光学的に共役な位置(×の位置)に設けられている。コリメートレンズ(305)は、照明野絞り(304)を通過した照明光を平行光束にする。反射ミラー(306)は、コリメートレンズ(305)によって平行光束にされた照明光を被検眼(8)に向けて反射する。反射された光は、照明用対物レンズ(7)を介して被検眼(8)に照射される。
被検眼(8)に照射された照明光(の一部)は、角膜や網膜等の被検眼の組織で反射・散乱される。その反射・散乱した戻り光(「観察光」とも呼ばれる)は、観察光学系(400)に入射する。
図1に示されるように、左右の観察光学系(400L,400R)は、それぞれ、対物レンズ(401)、変倍レンズ(402)、ビームスプリッタ(403)、結像レンズ(404)、像正立プリズム(405)、眼幅調整プリズム(406)、視野絞り(407)、及び接眼レンズ(408)を含んで構成されている。ビームスプリッタ(403)は、右眼用の観察光学系(400R)のみ有している。
変倍レンズ(402)は、複数のズームレンズ(402a,402b,402c)を含んだレンズ群となっている。各ズームレンズ(402a,402b,402c)は、図示しない変倍機構によって左右の観察光学系の光軸(O−400L,O−400R)に沿って移動可能となっている。これにより、被検眼(8)を観察又は撮影する際の拡大倍率が変更される。
図1に示されるように、右眼用の観察光学系(400R)のビームスプリッタ(403)は、被検眼(8)から右眼用観察光路に沿って導光された観察光の一部を分離して撮影光学系に導く。撮影光学系は、結像レンズ(1101)、及びテレビカメラ(1102)を含んで構成されている。
テレビカメラ(1102)は、撮像素子(1102a)を備えている。撮像素子(1102a)は、例えば、CCD(Charge Coupled Devices)イメージセンサや、CMOS(Complementary Metal Oxide Semiconductor)イメージセンサ等によって構成される。撮像素子(1102a)としては2次元の受光面を有するもの(エリアセンサ)が用いられる。
撮像素子(1102a)の受光面は、対物レンズ(401)の前側焦点位置(U0)と光学的に共役な位置に配置される。
ビームスプリッタ及び撮影光学系は左右双方の観察光学系にあっても良い。左右各々の撮像素子で視差のある画像を取得することで、立体的な画像を得ることができる。
テレビカメラの画像は観察画像とするだけでなく、OCT観察部位のトラッキングにも使用できる。被検眼の固視微動や手術操作等により被検眼がOCT走査中に動いてしまうと、OCTにより得られる断層像にズレが生じてしまうが、テレビカメラの画像を元に眼底の動きを検出して、眼底の動きに合わせてOCT光学系を走査することにより、ズレなくOCTの断層像を得ることが可能となる。
像正立プリズム(405)は、倒像を正立像に変換する。眼幅調整プリズム(406)は、観察者の眼幅(左眼と右眼の間の距離)に応じて左右の観察光路の間の距離を調整するための光学素子である。視野絞り(407)は、観察光の断面における周辺領域を遮断して観察者の視野を制限するものである。視野絞り(407)は、対物レンズ(401)の前側焦点位置(U0)と共役な位置(×の位置)に設けられている。
観察光学系(400L,400R)は、観察光学系の光路から挿脱可能に構成されたステレオバリエータを含んで構成されてもよい。ステレオバリエータは、左右の変倍レンズ系(402)によってそれぞれ案内される左右の観察光学系の光軸(O−400L,O−400R)の相対的位置を変更するための光軸位置変更素子である。ステレオバリエータは、例えば、観察光学系の光路に対して観察者側に設けられた退避位置に退避される。
図1に示されるように、眼底の網膜を観察するときは、図示しない移動手段により、前置レンズ(14)が被検眼の眼前の光軸O−400L、O−400R、O−500上に挿入される。この場合には、対物レンズ(401)の前側焦点位置(U0)は、眼底の網膜と共役となる。
また、角膜、虹彩等の前眼部を観察するときには、前置レンズ(14)を被検眼の眼前から脱離させ、対物レンズ(401)の前側焦点位置(U0)を前眼部に一致させて観察を行う。
図1に示されるように、OCT光学系(500)は、OCTユニット(10)、光ファイバ(501)、コリメートレンズ(502)、照明野絞り(503)、走査ミラー(504a,504b)、リレー光学系(505)、第1レンズ群(506)、第2レンズ群(507)、反射ミラー(508)、及びOCT用対物レンズ(509)を含んで構成されている。
OCTユニット(10)は、コヒーレンスが低い(可干渉距離が短い)OCT光源からの光を測定光と参照光に分割する。測定光はOCT光学系(500)により導かれて被検眼(8)に照射され、被検眼の組織において反射・散乱し、それが戻り光となってOCTユニット(10)に導かれる。OCTユニット(10)では、測定光の戻り光と参照光との干渉を検出する。これにより、被検眼の組織の断層像を得ることができる。
図1に示されるように、OCTユニット(10)は、眼科用顕微鏡本体(6)の外部に設けられているが、光ファイバ(501)の一端が接続されており、これにより眼科用顕微鏡本体(6)と連結している。OCTユニット(10)により生成された測定光は、光ファイバ(501)の他端から出射する。出射した測定光は、コリメートレンズ(502)、照明野絞り(503)、走査ミラー(504a,504b)、リレー光学系(505)、第1レンズ群(506)、第2レンズ群(507)、反射ミラー(508)、OCT用対物レンズ(509)を経由して被検眼(8)に照射され、被検眼(8)の組織で反射・散乱した測定光の戻り光は、同じ経路を逆向きに進行して光ファイバ(501)の他端に入射する。
図1に示されるように、コリメートレンズ(502)は、光ファイバ(501)の他端から出射した測定光を平行光束にする。コリメートレンズ(502)と光ファイバ(501)の他端とは測定光の光軸に沿って相対的に移動可能に構成されている。第1の実施形態では、コリメートレンズ(502)が移動可能に構成されているが、光ファイバ(501)の他端が測定光の光軸に沿って移動可能に構成されていてもよい。
照明野絞り(503)は、対物レンズ(401)の前側焦点位置(U0)と共役である。
OCT光学系における走査ミラー(504a,504b)は、コリメートレンズ(502)により平行光束とされた測定光を2次元的に偏向する偏向光学素子である。走査ミラーは、x軸を中心に旋回可能な偏向面を有する第1走査ミラー(504a)と、x軸と直交するy軸を中心に旋回可能な偏向面を有する第2走査ミラー(504b)を含むガルバノミラーとなっている。第1走査ミラー(504a)と第2走査ミラー(504b)との間には、リレー光学系(505)が設けられている。
走査用の偏向光学素子として第1走査ミラー(504a)だけを設け、これをx軸中心に旋回して測定光を照射すると、その照射領域をy軸方向に沿った直線状に走査できる。しかしながら、測定光はOCT用対物レンズ(509)を透過するため、測定光の走査範囲はOCT用対物レンズ(509)の大きさ(口径)によって制限を受けてしまう。
ここで、第1走査ミラー(504a)とOCT用対物レンズ(509)を光学的に略共役な位置関係とすれば、OCT用対物レンズ(509)の大きさ(口径)による制限を低減し、OCT用対物レンズの口径が小さくとも、広い走査範囲を確保することができる。
また、走査用の偏向光学素子として第2走査ミラー(504b)だけを設け、これをy軸中心に旋回して測定光を照射すると、その照射領域をx軸方向に沿った直線状に走査できる。しかしながら、測定光はOCT用対物レンズ(509)を透過するため、測定光の走査範囲はOCT用対物レンズ(509)の大きさ(口径)によって制限を受けてしまう。
ここで、第2走査ミラー(504a)とOCT用対物レンズ(509)を光学的に略共役な位置関係とすれば、OCT用対物レンズ(509)の大きさ(口径)による制限を低減し、OCT用対物レンズの口径が小さくとも、広い走査範囲とすることができる。
図1に示されるように、本発明の第1の実施形態においては、走査用の偏向光学素子として第1走査ミラー(504a)と第2走査ミラー(504b)を有しており、両者を旋回させて測定光を照射することにより、x軸とy軸の2つの方向に広がりをもつ照射領域とすることができる。しかしながら、測定光はOCT用対物レンズ(509)を透過するため、測定光の照射領域はOCT用対物レンズ(509)の大きさ(口径)によって制限を受けてしまう。
第1の実施形態の眼科用顕微鏡においては、第1走査ミラー(504a)と第2走査ミラー(504b)の間にリレー光学系(505)が設けられている。そして、第1走査ミラー(504a)と第2走査ミラー(504b)はいずれも、OCT用対物レンズ(509)と光学的に共役な位置関係にある。図1において光学的に共役な位置関係にある箇所を+印で示す。
このような共役な位置関係とすることにより、第1の実施形態の眼科用顕微鏡においては、OCT用対物レンズ(509)の大きさ(口径)による制限を低減し、OCT用対物レンズの口径が小さくとも、広い照射領域とすることができる。
図1に示される第1レンズ群(506)は、1以上のレンズを含んで構成され、第2レンズ群(507)も、1以上のレンズを含んで構成されている。
さらに、被検眼(8)に接する側には、OCT用対物レンズ(509)が設けられている。OCT用対物レンズ(509)は、光軸に沿って移動可能に構成されており、OCT用対物レンズの位置を制御することにより、OCT光学系の焦点(OCT走査面)を調整することができる。これにより、OCT光学系の焦点(OCT走査面)を、観察光学系の焦点(観察焦点面)とは異なる位置に調整することが可能となる。
図3は、第1の実施形態の眼科用顕微鏡で用いられるOCTユニット(10)の光学構成を模式的に示す図面である。
ここではフーリエドメインタイプのOCTを実行可能な眼科装置について説明する。特に、実施形態に係る眼科装置は、スウェプトソースタイプのOCTの手法を適用可能である。なお、スウェプトソースタイプ以外のタイプ、例えばスペクトラルドメインタイプのOCTを実行可能な眼科装置に対して、この発明に係る構成を適用することも可能である。
図3に示されるように、OCTユニット(10)は、OCT光源ユニット(1001)から出射された光を測定光(LS)と参照光(LR)に分割し、別の光路を経た測定光(LS)と参照光(LR)の干渉を検出する干渉計を構成している。
OCT光源ユニット(1001)は、一般的なスウェプトソースタイプのOCT装置と同様に、出射光の波長を走査(掃引)可能な波長走査型(波長掃引型)光源を含んで構成される。OCT光源ユニット(1001)は、人の眼では視認できない近赤外の波長において、出力波長を時間的に変化させる。OCT光源ユニット(1001)から出力された光を符号L0で示す。
OCT光源ユニット(1001)から出力された光L0は、光ファイバ(1002)により偏波コントローラ(1003)に導かれてその偏光状態が調整される。偏波コントローラ(1003)は、たとえばループ状にされた光ファイバ(1002)に対して外部から応力を与えることで、光ファイバ(1002)内を導かれる光L0の偏光状態を調整する。
偏波コントローラ(1003)により偏光状態が調整された光L0は、光ファイバ(1004)によりファイバカプラ(1005)に導かれて測定光(LS)と参照光(LR)とに分割される。
図3に示されるように、参照光(LR)は、光ファイバ(1006)によりコリメータ(1007)に導かれて平行光束となる。平行光束となった参照光LRは、光路長補正部材(1008)及び分散補償部材(1009)を経由し、コーナーキューブ(1010)に導かれる。光路長補正部材(1008)は、参照光(LR)と測定光(LS)の光路長(光学距離)を合わせるための遅延手段として作用する。分散補償部材(1009)は、参照光(LR)と測定光(LS)の分散特性を合わせるための分散補償手段として作用する。
コーナーキューブ(1010)は、コリメータ(1007)により平行光束となった参照光(LR)の進行方向を逆方向に折り返す。コーナーキューブ(1010)に入射する参照光(LR)の光路と、コーナーキューブ(1010)から出射する参照光(LR)の光路とは平行である。また、コーナーキューブ(1010)は、参照光(LR)の入射光路及び出射光路に沿う方向に移動可能とされている。この移動により参照光(LR)の光路(参照光路)の長さが変更される。
図3に示されるように、コーナーキューブ(1010)を経由した参照光(LR)は、分散補償部材(1009)及び光路長補正部材(1008)を経由し、コリメータ(1011)によって平行光束から集束光束に変換されて光ファイバ(1012)に入射し、偏波コントローラ(1013)に導かれて参照光(LR)の偏光状態が調整される。
偏波コントローラ(1013)は、例えば、偏波コントローラ(1003)と同様の構成を有する。偏波コントローラ(1013)により偏光状態が調整された参照光LRは、光ファイバ(1014)によりアッテネータ(1015)に導かれて、演算制御ユニット(12)の制御の下で光量が調整される。アッテネータ(1015)により光量が調整された参照光(LR)は、光ファイバ(1016)によりファイバカプラ(1017)に導かれる。
図3に示されるように、ファイバカプラ(1005)により生成された測定光(LS)は、光ファイバ(501)に導かれるが、光ファイバ(501)から出射した測定光は、図1に示されるように、コリメートレンズ(502)に導かれる。そして、図1に示されるように、コリメートレンズ(502)に入射した測定光は、照明野絞り(503)、走査ミラー(504a,504b)、リレー光学系(505)、第1レンズ群(506)、第2レンズ群(507)、反射ミラー(508)、及びOCT用対物レンズ(509)を経由して、被検眼(8)に照射される。測定光は、被検眼(8)の様々な深さ位置において反射・散乱される。被検眼(8)による測定光の後方散乱光は、往路と同じ経路を逆向きに進行して、図3に示されるように、ファイバカプラ(1005)に導かれ、光ファイバ(1018)を経由してファイバカプラ(1017)に到達する。
ファイバカプラ(1017)は、光ファイバ(1018)を介して入射された測定光(LS)と、光ファイバ(1016)を介して入射された参照光(LR)とを合成して(干渉させて)干渉光を生成する。ファイバカプラ(1017)は、所定の分岐比(例えば50:50)で、測定光(LS)と参照光(LR)との干渉光を分岐することにより、一対の干渉光(LC)を生成する。ファイバカプラ(1017)から出射した一対の干渉光(LC)は、それぞれ2つの光ファイバ(1019,1020)により検出器(1021)に導かれる。
検出器(1021)は、例えば一対の干渉光(LC)をそれぞれ検出する一対のフォトディテクタを有し、これらにより検出結果の差分を出力するバランスドフォトダイオード(Balanced Photo Diode:以下、「BPD」という)である。検出器(1021)は、その検出結果(検出信号)を演算制御ユニット(12)に送る。演算制御ユニット(12)は、例えば、一連の波長走査毎に(Aライン毎に)、検出器(1021)により得られた検出結果に基づくスペクトル分布にフーリエ変換等を施すことで断面像を形成する。演算制御ユニット(12)は、形成された画像を表示部(13)に表示させる。
この実施形態では、マイケルソン型の干渉計を採用しているが、例えば、マッハツェンダー型等の任意のタイプの干渉計を適宜に採用することが可能である。
図4は、第1の実施形態の眼科用顕微鏡における、対物レンズ周辺でのレンズの配置及び光路の配置を模式的に示す断面図である。図4(A)は、対物レンズ周辺でのレンズの配置を示し、図4(B)は、対物レンズ周辺での光路の配置を示す。
図4(A)に示されるように、眼科用顕微鏡本体(6)の鏡筒内に、照明用対物レンズ(7)が設けられている。照明用対物レンズ(7)には3つの貫通孔(7a,7b,7c)が設けられたおり、そのうち2つの貫通孔(7a,7c)には、第1のレンズ(401a)が設けられている。
図4(B)に示されるように、眼科用顕微鏡本体(6)の鏡筒内に、左眼用観察光学系の光路(P−400L)、右眼用観察光学系の光路(P−400R)、照明光学系の光路(P−300)、及びOCT光学系の光路(P−500)が配置されている。このうち、左眼用観察光学系の光路(P−400L)は、図4(A)に示される照明用対物レンズ(7)の貫通孔(7c)を通過しており、右眼用観察光学系の光路(P−400R)は、図4(A)に示される照明用対物レンズ(7)の貫通孔(7a)を通過している。また、OCT光学系の光路(P−500)は、図4(A)に示される照明用対物レンズ(7)の貫通孔(7b)を通過している。
本発明の眼科用顕微鏡においては、それぞれの光学系が独自の対物レンズを有するため、それぞれの光学系の光路を独立させて、独立に制御することも可能となる。
照明用対物レンズ(7)は照明光路P−300のみをカバーする小口径のレンズでも良い。この場合は貫通孔(7a,7b,7c)を設けた大口径の照明用対物レンズを使用する必要がない。
図5は、第1の実施形態の眼科用顕微鏡における、対物レンズの光学構成を模式的に示す正面図である。
図5(A)は、第1の実施形態の眼科用顕微鏡で使用される対物レンズの構成を示し、図5(B)は、対物レンズを構成する各レンズの光軸の向きを示す。
図5(A)に示されるように、第1の実施形態の眼科用顕微鏡で使用される対物レンズ(401)は、第1のレンズ(401a)、光軸の向きを変更する光学素子(401b)、及び第2のレンズ(401c)を含んで構成されている。そして、第1のレンズ(401a)は、負のパワーを有する凹レンズであり、光軸の向きを変更する光学素子(401b)は、ウェッジプリズムであり、第2のレンズ(401c)は、正のパワーを有する凸レンズである。
図5(B)に示されるように、第1のレンズの光軸(A−401a)は、内側(互いに被検眼の側で交差する方向)に傾斜している。ここで、対物レンズ(401)の前側焦点位置(U0)で各々の光軸は交差している。
3. 第2及び第3の実施形態
次に、本発明の他の実施形態の例を、図面を参照しながら説明する。
図6は、本発明の眼科用顕微鏡の他の一例である第2の実施形態の眼科用顕微鏡及び第3の実施形態の眼科用顕微鏡における、対物レンズ周辺での光路の配置を模式的に示す断面図である。
図6(A)は、第2の実施形態の眼科用顕微鏡の対物レンズ周辺での光路の配置を示し、図6(B)は、第3の実施形態の眼科用顕微鏡の対物レンズ周辺での光路の配置を示す。
図6(A)に示されるように、第2の実施形態の眼科用顕微鏡では、眼科用顕微鏡本体(6)の鏡筒内に、左眼用観察光学系の光路(P−400L)と、右眼用観察光学系の光路(P−400R)と、照明光学系の光路(P−300)、OCT光学系の光路(P−500)に加えて、副観察光学系の左眼用の光路(P−400SL)と右眼用の光路(P−400SR)が配置されている。
副観察光学系は、主となる観察者(術者)以外の助手となる観察者が被検眼を観察するために用いられる。
本発明の眼科用顕微鏡においては、観察光学系とOCT光学系がそれぞれ独自の対物レンズを有するため、このように多くの光学系の光路を独立させて配置することも可能である。
図6(B)に示されるように、第3の実施形態の眼科用顕微鏡では、眼科用顕微鏡本体(6)の鏡筒の中心付近に、左眼用観察光学系の光路(P−400L)と、右眼用観察光学系の光路(P−400R)と、照明光学系の光路(P−300)と、OCT光学系の光路(P−500)とを集中するように配置している。これにより、観察光学系の光路とOCT光学系の光路を重ならせることなく、それぞれの光路のなす角度を小さくすることができるため、顕微鏡による形状観察とOCTによる断層観察を同時にできる範囲を広げることができる。
4. 対物レンズの構成
本発明の眼科用顕微鏡で使用する対物レンズは、少なくとも、第1のレンズ、光軸の向きを変更する光学素子、及び第2のレンズを含んで構成されるレンズ群からなる対物レンズである。
ここで、第1のレンズと、光軸の向きを変更する光学素子と、第2のレンズは、どのような順序により並んでいてもよい。
また、これらのレンズにさらに他レンズや光学素子を加えて、対物レンズとして用いるレンズ群とすることもできる。
また、第1のレンズと、第2のレンズは、いかなるレンズを用いることもでき、焦点を合わせて被検眼を拡大することができるように、適宜設計することができる。好ましくは、第1のレンズと第2のレンズのいずれか一方を、正のパワーを有する凸レンズとし、もう一方を負のパワーを有する凹レンズとするのがよい。
光軸の向きを変更させる光学素子としては、光路の方向を変更することができる光学素子であればいかなるものでも使用することができ、これらに限定されるわけではないが、例えば、屈折・反射により光路を変更するプリズムを用いることができる。このようなプリズムとしては、例えば、ウェッジプリズムや、光軸の位置を向きと変更することができるロンボイド型のプリズム等を用いることができる。
被検眼の側から、第1のレンズと、光軸の向きを変更する光学素子と、第2のレンズとを、この順に並べた場合には、光軸の向きを変更する光学素子によって、左右の観察光学系の光軸の向きが被検眼の側で交差するように変更される。このため、左眼用観察光学系の第1のレンズの光軸と、右眼用観察光学系の第1のレンズの光軸が、互いに被検眼の側で交差する方向に傾斜していることが好ましい。ここで、「レンズの光軸」とは、「光学系の光軸」とは異なり、レンズ単体の光軸を意味する。
また、被検眼の側から、第1のレンズと、光軸の向きを変更する光学素子と、第2のレンズとを、この順に並べた場合には、左眼用観察光学系の第2のレンズの光軸と、右眼用観察光学系の第2のレンズの光軸が、互いに被検眼の側で離れる方向に傾斜していることが好ましい。
このような構成とすることにより、図10に示したような、周辺のピント差が左右眼の像で逆になるという問題を大きく改善することができる。
5. 第4の実施形態
図7は、本発明の眼科用顕微鏡の他の一例である第4の実施形態の眼科用顕微鏡における、対物レンズの光学構成を模式的に示す正面図である。
図7(A)は、第4の実施形態の眼科用顕微鏡で使用される対物レンズの構成を示し、図7(B)は、対物レンズを構成する各レンズの光軸の向きを示す。
図7(A)に示されるように、第4の実施形態の眼科用顕微鏡で使用される対物レンズ(401)は、第1のレンズ(401a)、光軸の向きを変更する光学素子(401b)、及び第2のレンズ(401c)を含んで構成されている。そして、第1のレンズ(401a)は、負のパワーを有する凹レンズであり、光軸の向きを変更する光学素子(401b)は、ウェッジプリズムであり、第2のレンズ(401c)は、正のパワーを有する凸レンズである。
図7(B)に示されるように、第2のレンズの光軸(A−401c)は、互いに被検眼の側で離れる方向に傾斜している。
このような構成とすることにより、図10に示したような、周辺のピント差が左右眼の像で逆になるという問題を大きく改善することができる。
6. 第5の実施形態
図8は、本発明の眼科用顕微鏡の他の一例である第5の実施形態の眼科用顕微鏡における、対物レンズの光学構成を模式的に示す正面図である。
図8(A)は、第5の実施形態の眼科用顕微鏡で使用される対物レンズの構成を示し、図8(B)は、対物レンズを構成する各レンズの光軸の向きを示す。
図8(A)及び(B)に示されるように、第5の実施形態の眼科用顕微鏡で使用される対物レンズ(401)は、被検眼の側から、ウェッジプリズム(401b)、負のパワーを有する凹レンズ(401a)、及び正のパワーを有する凸レンズ(401c)がこの順に並んでいる。
以上、本発明の実施形態を説明したが、本発明は、上記した実施形態に限定されるものでなく、要旨を逸脱しない条件の変更等は、全て本発明の適用範囲である。
本発明の眼科用顕微鏡は、残存収差の補正を可能とし、左右均等に近い収差とピント差を有し、両眼視に好適な眼科用顕微鏡であり、また、対物レンズを小口径とすることができ、OCT光学系を容易に設置することができるので、光学機器産業、医療機器関連産業において利用することができる。
図1〜10で使用した符号が指し示すものは、以下のとおりである。
1 眼科用顕微鏡
2 被検体
300 照明光学系
301 光ファイバ
302 出射光絞り
303 コンデンサレンズ
304 照明野絞り
305 コリメートレンズ
306 反射ミラー
400 観察光学系
400L 左眼用の観察光学系
400R 右眼用の観察光学系
401 対物レンズ
401a 第1のレンズ
401b 光軸の向きを変更する光学素子
401c 第2のレンズ
402 変倍レンズ
402a,402b,402c ズームレンズ
403 ビームスプリッタ
404 結像レンズ
405 像正立プリズム
406 眼幅調整プリズム
407 視野絞り
408 接眼レンズ
500 OCT光学系
501 光ファイバ
502 コリメートレンズ
503 照明野絞り
504a,504b 走査ミラー
505 リレー光学系
506 第1レンズ群
507 第2レンズ群
508 反射ミラー
509 OCT用対物レンズ
6 眼科用顕微鏡本体
7 照明用対物レンズ
7a,7b,7c 貫通孔
8 被検眼
9 照明光源
10 OCTユニット
1001 OCT光源ユニット
1002 光ファイバ
1003 偏波コントローラ
1004 光ファイバ
1005 ファイバカプラ
1006 光ファイバ
1007 コリメータ
1008 光路長補正部材
1009 分散補償部材
1010 コーナーキューブ
1011 コリメータ
1012 光ファイバ
1013 偏波コントローラ
1014 光ファイバ
1015 アッテネータ
1016 光ファイバ
1017 ファイバカプラ
1018 光ファイバ
1019 光ファイバ
1020 光ファイバ
1021 検出器
1101 結像レンズ
1102 テレビカメラ
1102a 撮像素子
12 演算制御ユニット
13 表示部
14 前置レンズ
A−401 対物レンズの光軸
A−402 変倍レンズの光軸
A−401a 第1のレンズの光軸
A−401c 第2のレンズの光軸
O−300 照明光学系の光軸
O−400 観察光学系の光軸
O−400L 左眼用観察光学系の光軸
O−400R 右眼用観察光学系の光軸
O−500 OCT光学系の光軸
P−300 照明光学系の光路
P−400L 左眼用観察光学系の光路
P−400R 右眼用観察光学系の光路
P−400SL 副観察光学系の左眼用の光路
P−400SR 副観察光学系の右眼用の光路
P−500 OCT光学系の光路
Q400L 左眼用観察光学系のピント位置
Q400R 右眼用観察光学系のピント位置
V400L 左眼用の像
V400R 右眼用の像
L0 OCT光源ユニットから出力された光
LC 干渉光
LS 測定光
LR 参照光
U0 前側焦点位置

Claims (6)

  1. 被検眼を照明する照明光学系と、前記照明光学系で照明された前記被検眼を観察するための左眼用観察光学系と右眼用観察光学系を有する観察光学系と、光コヒーレンストモグラフィにより前記被検眼を検査するための測定光の光路と前記測定光を走査する偏向光学素子を有するOCT光学系とを備える眼科用顕微鏡において、
    前記眼科用顕微鏡内において、前記左眼用観察光学系の光軸と前記右眼用観察光学系の光軸が略平行であり、
    前記左眼用観察光学系と前記右眼用観察光学系がそれぞれ対物レンズを有しており、
    前記対物レンズが、第1のレンズと、光軸の向きを変更する光学素子と、第2のレンズとを少なくとも有するレンズ群からなり、
    前記対物レンズによって、前記左眼用観察光学系の光軸の向きと前記右眼用観察光学系の光軸の向きが、前記被検眼の側で互いに交差する方向に変更され、
    前記対物レンズとは別に、前記OCT光学系の光軸が透過するOCT用対物レンズを有し、
    前記偏向光学素子と前記OCT用対物レンズが、光学的に略共役な位置関係である
    ことを特徴とする眼科用顕微鏡。
  2. 前記偏向光学素子は、走査する方向が異なる2つの対となる偏向光学素子からなり、
    前記2つの偏向光学素子の間の光路上に、リレー光学系を有しており、
    前記2つの偏向光学素子のいずれも、前記OCT用対物レンズと略共役な位置関係であることを特徴とする、請求項1に記載の眼科用顕微鏡。
  3. 前記光軸の向きを変更する光学素子がウェッジプリズムであることを特徴とする、請求項1又は2に記載の眼科用顕微鏡。
  4. 前記第1のレンズが負のパワーを有する凹レンズであり、前記第2のレンズが正のパワーを有する凸レンズであることを特徴とする、請求項1〜3のいずれか1項に記載の眼科用顕微鏡。
  5. 前記対物レンズにおいて、前記第1のレンズと、前記光軸の向きを変更する光学素子と、前記第2のレンズが、前記被検眼の側からこの順で並んでおり、
    前記左眼用観察光学系の前記第1のレンズの光軸と、前記右眼用観察光学系の前記第1のレンズの光軸が、互いに前記被検眼の側で交差する方向に傾斜していることを特徴とする、請求項1〜4のいずれか1項に記載の眼科用顕微鏡。
  6. 前記対物レンズにおいて、前記第1のレンズと、前記光軸の向きを変更する光学素子と、前記第2のレンズが、前記被検眼の側からこの順で並んでおり、
    前記左眼用観察光学系の前記第2のレンズの光軸と、前記右眼用観察光学系の前記第2のレンズの光軸が、互いに前記被検眼の側で離れる方向に傾斜していることを特徴とする、請求項1〜5のいずれか1項に記載の眼科用顕微鏡。
JP2017091998A 2017-05-02 2017-05-02 眼科用顕微鏡 Active JP6839901B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017091998A JP6839901B2 (ja) 2017-05-02 2017-05-02 眼科用顕微鏡

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017091998A JP6839901B2 (ja) 2017-05-02 2017-05-02 眼科用顕微鏡

Publications (2)

Publication Number Publication Date
JP2018187081A JP2018187081A (ja) 2018-11-29
JP6839901B2 true JP6839901B2 (ja) 2021-03-10

Family

ID=64477805

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017091998A Active JP6839901B2 (ja) 2017-05-02 2017-05-02 眼科用顕微鏡

Country Status (1)

Country Link
JP (1) JP6839901B2 (ja)

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5438456A (en) * 1991-03-14 1995-08-01 Grinblat; Avi Optical stereoscopic microscope system
US5382988A (en) * 1992-07-31 1995-01-17 Nidek Co., Ltd. Stereoscopic retinal camera with focus detection system
JP4302213B2 (ja) * 1998-01-30 2009-07-22 株式会社トプコン 立体顕微鏡及び細隙灯顕微鏡
US8366271B2 (en) * 2010-01-20 2013-02-05 Duke University Systems and methods for surgical microscope and optical coherence tomography (OCT) imaging
US20120184846A1 (en) * 2011-01-19 2012-07-19 Duke University Imaging and visualization systems, instruments, and methods using optical coherence tomography
JP6410468B2 (ja) * 2014-05-22 2018-10-24 株式会社トプコン 眼科装置
JP2016206348A (ja) * 2015-04-20 2016-12-08 株式会社トプコン 眼科手術用顕微鏡
JP6499937B2 (ja) * 2015-06-30 2019-04-10 株式会社トプコン 眼科用顕微鏡システム

Also Published As

Publication number Publication date
JP2018187081A (ja) 2018-11-29

Similar Documents

Publication Publication Date Title
JP6456711B2 (ja) 眼科手術用顕微鏡および眼科手術用アタッチメント
JP6502720B2 (ja) 眼科用顕微鏡
WO2017104162A1 (ja) 眼科装置
JP6505539B2 (ja) 眼科用顕微鏡
JP7178160B2 (ja) 顕微鏡及び機能拡張ユニット
US11871994B2 (en) Ophthalmologic microscope and function expansion unit
JP7049147B2 (ja) 眼科用顕微鏡及び機能拡張ユニット
JP7165474B2 (ja) 眼科用顕微鏡
EP3620104B1 (en) Ophthalmic microscope and functionality enhancement unit
EP3636137B1 (en) Ophthalmic microscope and function expansion unit
WO2016170815A1 (ja) 眼科手術用顕微鏡
JP6839902B2 (ja) 眼科用顕微鏡
JP6856429B2 (ja) 眼科用顕微鏡
JP7098370B2 (ja) 眼科用顕微鏡及び機能拡張ユニット
JP6818391B2 (ja) 眼科用顕微鏡及び機能拡張ユニット
JP6839901B2 (ja) 眼科用顕微鏡
JP6821443B2 (ja) 眼科用顕微鏡
JP2019013803A (ja) 眼科手術用顕微鏡および眼科手術用アタッチメント
JP7042663B2 (ja) 眼科用顕微鏡
JP7213378B2 (ja) Oct機能拡張ユニット
WO2018203577A1 (ja) 眼科用顕微鏡及び機能拡張ユニット
JP7117145B2 (ja) 眼科用顕微鏡
JP2019010239A (ja) 眼科用顕微鏡
WO2019044861A1 (ja) 眼科用顕微鏡

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200501

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20200904

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210215

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210215

R150 Certificate of patent or registration of utility model

Ref document number: 6839901

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250