JP7098231B2 - Electroplated whetstone - Google Patents
Electroplated whetstone Download PDFInfo
- Publication number
- JP7098231B2 JP7098231B2 JP2018033503A JP2018033503A JP7098231B2 JP 7098231 B2 JP7098231 B2 JP 7098231B2 JP 2018033503 A JP2018033503 A JP 2018033503A JP 2018033503 A JP2018033503 A JP 2018033503A JP 7098231 B2 JP7098231 B2 JP 7098231B2
- Authority
- JP
- Japan
- Prior art keywords
- grindstone
- talc
- electrodeposited
- electrodeposition
- base
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B24—GRINDING; POLISHING
- B24D—TOOLS FOR GRINDING, BUFFING OR SHARPENING
- B24D18/00—Manufacture of grinding tools or other grinding devices, e.g. wheels, not otherwise provided for
- B24D18/0018—Manufacture of grinding tools or other grinding devices, e.g. wheels, not otherwise provided for by electrolytic deposition
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B24—GRINDING; POLISHING
- B24D—TOOLS FOR GRINDING, BUFFING OR SHARPENING
- B24D5/00—Bonded abrasive wheels, or wheels with inserted abrasive blocks, designed for acting only by their periphery; Bushings or mountings therefor
- B24D5/12—Cut-off wheels
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D15/00—Electrolytic or electrophoretic production of coatings containing embedded materials, e.g. particles, whiskers, wires
-
- C—CHEMISTRY; METALLURGY
- C25—ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
- C25D—PROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
- C25D7/00—Electroplating characterised by the article coated
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Polishing Bodies And Polishing Tools (AREA)
- Dicing (AREA)
Description
本発明は、めっき層で砥粒を固定した砥石部を備える電着砥石に関する。 The present invention relates to an electrodeposition grindstone including a grindstone portion in which abrasive grains are fixed by a plating layer.
切削装置は、様々な被加工物の切削加工に広く用いられている。例えば、半導体ウェーハを複数のデバイスチップに分割する際の切削加工は切削装置を用いて実施される。また、LED(Light Emitting Diode)パッケージには、ガラス繊維にエポキシ樹脂を含侵させて形成したガラスエポキシ基板などが用いられており、このガラスエポキシ基板を分割してデバイスパッケージを得る際にも切削装置による切削加工が行われる。 Cutting devices are widely used for cutting various workpieces. For example, a cutting process for dividing a semiconductor wafer into a plurality of device chips is performed using a cutting device. In addition, a glass epoxy board formed by impregnating glass fiber with an epoxy resin is used for the LED (Light Emitting Diode) package, and the glass epoxy board is also cut when the device package is obtained by dividing the glass epoxy board. Cutting is performed by the device.
切削加工は、切削装置に備えられたスピンドルの先端部に装着される円環状の砥石(切削ブレード)を用いて実施される。この砥石は、例えば、ダイヤモンド等でなる砥粒をニッケル等を含むめっき層で固定することにより形成される。特許文献1には、ダイヤモンド等の砥粒が混入された硫酸ニッケル等の電解液に電着用の基盤を浸漬し、該基盤に砥粒を含むめっき層を成長させて円環状の砥石を製造する方法が開示されている。
The cutting process is performed using an annular grindstone (cutting blade) mounted on the tip of a spindle provided in the cutting device. This grindstone is formed, for example, by fixing abrasive grains made of diamond or the like with a plating layer containing nickel or the like. In
切削装置のスピンドルを回転させ、円環状の砥石を回転させながら被加工物に切り込ませると、砥石のめっき層から露出した砥粒が被加工物と接触して被加工物が切削される。そして、切削加工を続けるとめっき層が摩耗して露出していた砥粒が脱落し、新たな砥粒がめっき層から露出する。この作用は自生発刃と呼ばれており、自生発刃により砥石の切削機能が維持される。 When the spindle of the cutting device is rotated and the annular grindstone is rotated to cut into the workpiece, the abrasive grains exposed from the plating layer of the grindstone come into contact with the workpiece and the workpiece is cut. Then, when the cutting process is continued, the plating layer is worn and the exposed abrasive grains fall off, and new abrasive grains are exposed from the plating layer. This action is called a self-generated blade, and the self-generated blade maintains the cutting function of the grindstone.
ニッケルを含むめっき層で砥粒を固定した砥石では、砥粒が比較的強くめっき層に固定される。そのため、被加工物を切削しても砥粒がめっき層から脱落しにくく、自生発刃が生じにくい。自生発刃が適度に発生しないと、例えば露出した砥粒間に切削屑が蓄積して切削抵抗が増大したり(目詰まり)、露出した砥粒が摩耗により平滑化され砥石の切れ味が低下する(目つぶれ)などの現象が生じる。このような状態の砥石で切削加工を行うと、被加工物にチッピングと呼ばれる欠けが形成される等の加工不良が生じる。 In a grindstone in which the abrasive grains are fixed by a plating layer containing nickel, the abrasive grains are relatively strongly fixed to the plating layer. Therefore, even if the workpiece is cut, the abrasive grains are less likely to fall off from the plating layer, and spontaneous blade formation is less likely to occur. If the self-generated blade is not generated appropriately, for example, cutting chips may accumulate between the exposed abrasive grains and the cutting resistance may increase (clogging), or the exposed abrasive grains may be smoothed by wear and the sharpness of the grindstone may decrease. Phenomena such as (blinding) occur. When cutting is performed with a grindstone in such a state, processing defects such as chipping, which is called chipping, occur in the workpiece.
また、特にガラス、セラミックス、ガラスエポキシ樹脂や、樹脂と電極との複合材料などの、難削材と呼ばれる切削加工が困難な材料の切削加工では、自生発刃が生じにくい。そのため、ニッケルを含むめっき層で砥粒を固定した砥石を用いると、元来切削しにくい難削材の切削加工がますます困難になるという問題がある。 Further, in particular, in the cutting process of a material called a difficult-to-cut material, which is difficult to cut, such as glass, ceramics, glass epoxy resin, and a composite material of a resin and an electrode, spontaneous blade generation is unlikely to occur. Therefore, if a grindstone in which the abrasive grains are fixed with a plating layer containing nickel is used, there is a problem that it becomes more difficult to cut a difficult-to-cut material that is originally difficult to cut.
本発明はかかる問題に鑑みてなされたものであり、加工不良の発生を抑制することが可能な電着砥石を提供することを課題とする。 The present invention has been made in view of such a problem, and an object of the present invention is to provide an electrodeposition grindstone capable of suppressing the occurrence of processing defects.
本発明の一態様によれば、ニッケルを含むめっき層で砥粒を固定した砥石部を備え、該砥石部には、該砥石部の2.2体積%以上15.0体積%以下のタルクが含有されている電着砥石が提供される。 According to one aspect of the present invention, a grindstone portion in which abrasive grains are fixed by a plating layer containing nickel is provided, and the grindstone portion contains 2.2% by volume or more and 15.0% by volume or less of talc of the grindstone portion. The contained electrodeposition grindstone is provided.
また、本発明の一態様において、該砥石部には、該砥石部の2.2体積%以上6.2体積%以下のタルクが含有されていてもよい。また、本発明の一態様において、該砥石部に含有されているタルクの平均粒径は、0.6μm以上10.0μm以下であってもよい。 Further, in one aspect of the present invention, the grindstone portion may contain talc of 2.2% by volume or more and 6.2% by volume or less of the grindstone portion. Further, in one aspect of the present invention, the average particle size of talc contained in the grindstone portion may be 0.6 μm or more and 10.0 μm or less.
また、本発明の一態様において、該電着砥石は、円環状の該砥石部のみによって構成されていてもよい。また、本発明の一態様において、該電着砥石は、把持部を有する円環状の基台と、該基台の外縁部に形成された該砥石部と、によって構成されていてもよい。 Further, in one aspect of the present invention, the electrodeposited grindstone may be composed of only the annular grindstone portion. Further, in one aspect of the present invention, the electrodeposited grindstone may be composed of an annular base having a grip portion and the grindstone portion formed on the outer edge portion of the base.
本発明の一態様に係る電着砥石は、ニッケルよりも硬度が低く潤滑性を有する材料であるタルクが含有された砥石部を備える。この電着砥石を用いて切削加工を行うことにより、電着砥石の自生発刃が促されるとともに電着砥石と被加工物との間の摩擦が低減され、加工不良の発生を抑制することが可能となる。 The electrodeposited grindstone according to one aspect of the present invention includes a grindstone portion containing talc, which is a material having a hardness lower than that of nickel and having lubricity. By performing cutting using this electrodeposition grindstone, the self-generated blade of the electrodeposition grindstone is promoted, the friction between the electrodeposition grindstone and the workpiece is reduced, and the occurrence of machining defects can be suppressed. It will be possible.
以下、添付図面を参照して本発明の実施形態を説明する。本実施形態は、電着によって形成された砥石(電着砥石)に関する。図1(A)及び図1(B)に、本実施形態で用いることが可能な電着砥石の構成例を示す。 Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings. The present embodiment relates to a grindstone (electroplated grindstone) formed by electrodeposition. 1 (A) and 1 (B) show a configuration example of an electrodeposition grindstone that can be used in this embodiment.
図1(A)は、砥石部3からなる電着砥石1の構成例を示す斜視図である。電着砥石1は、中央部に貫通孔3aを有する円環状の砥石部3のみによって構成され、その全体が電着によって形成された切刃となっている。砥石部3は、例えばニッケルを含むめっき層でダイヤモンド等の砥粒を固定することにより形成される。円環状の砥石部3によって構成される電着砥石1は、ワッシャータイプと呼ばれる。
FIG. 1A is a perspective view showing a configuration example of an electrodeposited
図1(B)は、基台7及び砥石部9を備える電着砥石5の構成例を示す斜視図である。電着砥石5は、中央部に貫通孔7aを有する円環状の基台7と、基台7の外縁部に電着によって形成された砥石部9とによって構成されている。砥石部9は、例えばニッケルを含むめっき層でダイヤモンド等の砥粒を固定することにより形成される。基台7の外縁部に砥石部9を電着した電着砥石5は、ハブタイプと呼ばれる。
FIG. 1B is a perspective view showing a configuration example of an
また、基台7は幅方向に突出した円環状の把持部7bをその中央部に有する。切削装置を用いて切削加工を行う際、切削装置の使用者(オペレータ)は把持部7bを持って電着砥石5を切削装置に装着することができる。
Further, the
電着砥石1,5は、切削装置に備えられたスピンドルの先端部に装着される。この状態でスピンドルを回転させると、電着砥石1,5はスピンドルの軸心を回転軸として回転する。そして、電着砥石1,5を回転させた状態で被加工物に切り込ませることにより、被加工物の切削加工が実施される。
The
なお、電着砥石1,5を用いて切削される被加工物の材料に制限はない。例えば、シリコンやSiC等の半導体材料、ガラス、セラミックス、ガラスエポキシ樹脂や、樹脂と電極との複合材料など、種々の材料の切削加工に用いることができる。
There are no restrictions on the material of the workpiece to be cut using the
被加工物の切削は、砥石部3,9のめっき層から露出した砥粒が被加工物に接触することによって行われる。そして、切削加工を続けるとめっき層が摩耗して露出していた砥粒が脱落し、新たな砥粒がめっき層から露出される。この作用は自生発刃と呼ばれており、自生発刃により砥石の切削機能が維持される。
The work piece is cut by the abrasive grains exposed from the plating layers of the
しかしながら、ニッケルを含むめっき層で砥粒を固定した砥石部3,9では、砥粒が比較的強くめっき層に固定される。そのため、被加工物を切削しても砥粒がめっき層から脱落しにくく、自生発刃が生じにくい。特に、ガラス、セラミックス、ガラスエポキシ樹脂や、樹脂と電極との複合材料など、切削加工が困難な材料(難削材)を切削する場合、自生発刃はより生じにくくなる。このような状態の砥石部3,9で切削加工を行うと、被加工物にチッピングと呼ばれる欠けが形成される等の加工不良が生じる。
However, in the
そこで、本実施形態では、電着砥石1の砥石部3、電着砥石5の砥石部9にタルク(含水珪酸マグネシウム(Mg3Si4O10(OH)2))を含有させる。タルクはニッケルよりも硬度が低く(モース硬度1)、砥石部3,9にタルクを含有させるとめっき層が脆弱化して摩耗しやすくなり、自生発刃が促されることが期待できる。自生発刃を適度に発生させることにより電着砥石1,5の切削機能を維持し、切削加工時の加工不良の発生を抑制できる。
Therefore, in the present embodiment, talc (hydrous magnesium silicate (Mg 3 Si 4 O 10 (OH) 2 )) is contained in the
さらに、タルクは潤滑性を有する材料であるため、砥石部3,9にタルクを含有させると切削加工時に電着砥石1,5と被加工物との間の摩擦が低減されることが期待できる。この摩擦の低減により、切削加工時に被加工物の欠け(チッピング)などの切削不良の発生が抑制される。
Further, since talc is a material having lubricity, it can be expected that if talc is contained in the
砥石部3,9に含有されるタルクの量は、めっき層の材料、砥粒の材料及び粒径、被加工物の材料などに応じて適宜設定することができるが、加工不良を低減し、且つ電着砥石1,5の強度が一定以上に保たれる範囲に設定することが好ましい。
The amount of talc contained in the
例えば、砥石部3,9に対するタルクの含有量が、2.0体積%以上15.0体積%以下、好ましくは2.2体積%以上15.0体積%以下、より好ましくは2.2体積%以上6.2体積%以下となるように、砥石部3,9にタルクを含有させることができる。このタルクの含有量は、例えばアルキメデス法によって測定することができる。
For example, the content of talc with respect to the
また、タルクの粒径もタルクの含有量と同様に適宜設定できる。例えば、レーザー回折法で測定したときの平均粒径が0.6μm以上10.0μm以下であるタルクを用いることができる。 Further, the particle size of talc can be appropriately set in the same manner as the content of talc. For example, talc having an average particle size of 0.6 μm or more and 10.0 μm or less as measured by a laser diffraction method can be used.
以上のように、ニッケルを含むめっき層で砥粒を固定した砥石部3,9にタルクを含有させることにより、切削加工時の加工不良を抑制できる。
As described above, by containing talc in the
次に、砥石部にタルクが含有された電着砥石の製造方法の例について説明する。図1(A)に示す電着砥石1、図1(B)に示す電着砥石5はそれぞれ、電解めっき等を用いて製造できる。
Next, an example of a method for manufacturing an electrodeposited grindstone containing talc in the grindstone portion will be described. The
図2は、ワッシャータイプの電着砥石1の製造に用いられる製造装置2の構成例を模式的に示す断面図である。図2に示すように、電着砥石1を製造する際はまず、ダイヤモンド等の砥粒が混入されたニッケルめっき液16が収容されためっき浴槽4を準備する。ニッケルめっき液16の材料は任意に選択でき、例えば、硫酸ニッケルや硝酸ニッケル等のニッケルを含む電解液を用いることができる。
FIG. 2 is a cross-sectional view schematically showing a configuration example of a
また、ニッケルめっき液16には電着砥石1の砥石部3に含有させるタルクが添加される。具体的には、図2に示すように、タルクと界面活性剤とを混合して生成した混合液18がニッケルめっき液16に添加される。この界面活性剤は、タルクをニッケルめっき液16中に分散させる機能を有する。なお、界面活性剤の材料は任意に選択できる。ニッケルめっき液16に混合液18を添加すると、ニッケルめっき液16中にタルクが概ね均等に分散される。
Further, talc contained in the
次に、ステンレスやアルミニウム等の金属材料で形成された円盤状の基台20とニッケル電極6とを、めっき浴槽4内のニッケルめっき液16に浸漬する。基台20の表面には、所望の砥石部3の形状に対応したマスク22が形成されている。例えば、図1(A)に示すような円環状の砥石部3を形成する場合には、上面視で円環状の開口部を有するマスク22が形成される。
Next, the disk-shaped
また、基台20はスイッチ8を介して直流電源10のマイナス端子(負極)に接続され、ニッケル電極6は直流電源10のプラス端子(正極)に接続される。なお、スイッチ8はニッケル電極6と直流電源10との間に配置されてもよい。
Further, the
次に、モータ等の回転駆動源12によってファン14を回転させてニッケルめっき液16を攪拌しながら、基台20と直流電源10との間に配置されたスイッチ8を短絡させる。これにより、基台20を陰極、ニッケル電極6を陽極としてニッケルめっき液16に直流電流が流れ、基台20の表面のマスク22で覆われていない領域にニッケルを含むめっき層が電着され、タルク及び砥粒を含む砥石部3が形成される。
Next, the
図3(A)は、基台20の表面に砥石部3が形成された状態を示す断面図である。図3(A)に示すように、基台20の表面のマスク22で覆われていない領域には、ニッケルを含むめっき層中にタルク及び砥粒が概ね均等に分散された円環状の砥石部3が形成される。
FIG. 3A is a cross-sectional view showing a state in which the
その後、基台20の表面に形成された砥石部3を基台20から剥離する。図3(B)は、砥石部3が基台20から剥離される様子を示す断面図である。これにより、砥石部3が基台20から分離され、砥石部3から構成されるワッシャータイプの電着砥石1が得られる。
After that, the
なお、図1(B)に示す電着砥石5も電着砥石1と同様の方法で製造することができる。図4は、ハブタイプの電着砥石5の製造に用いられる製造装置24の構成例を模式的に示す断面図である。なお、以下で説明する構成以外については、製造装置2(図2)の説明を参酌できる。
The
まず、電着砥石1の製造方法と同様に、ダイヤモンド等の砥粒が混入されたニッケルめっき液16が収容されためっき浴槽4を準備する。そして、タルクと界面活性剤とを混合して生成した混合液18をニッケルめっき液16に添加する。ニッケルめっき液16及び混合液18に用いることができる材料は、電着砥石1の製造方法と同様であるため説明を省略する。
First, similarly to the method for manufacturing the
次に、ステンレスやアルミニウム等の金属材料で形成された基台26とニッケル電極6とを、めっき浴槽4内のニッケルめっき液16に浸漬する。なお、基台26は後の工程を経て電着砥石5の砥石部9を支持する基台7(図1(B)参照)となるため、基台26の形状は基台7に対応した形状とする。
Next, the
具体的には、図5(A)に示すように、基台26は電着砥石5の基台7の形状に対応して円環状に形成されており、その中心部には貫通孔26aが設けられている。この貫通孔は、基台7の中央部に設けられる貫通孔7a(図1(B)参照)に相当する。
Specifically, as shown in FIG. 5A, the
基台26の表面には、所望の砥石部9の形状に対応したマスク28が形成されている。例えば、図1(B)に示すように基台7の外縁部に沿って円環状の砥石部9を形成する場合は、上面視で基台26の外縁部に沿って形成された円環状の開口部を有するマスク28が形成される。そして、電着砥石1の製造方法と同様にして、基台26の表面のマスク28で覆われていない領域にニッケルを含むめっき層が電着され、タルク及び砥粒を含む砥石部9が形成される。
A
その後、マスク28を基台26から除去する。これにより、表面に砥石部9が形成された基台26が得られる。図5(A)は、基台26の表面に砥石部9が形成された状態を示す断面図である。
After that, the
そして、基台26の外縁部をエッチングすることにより、基台26に覆われた砥石部9の一部を露出させる。これにより、図5(B)に示すように基台7の外縁部に砥石部9が形成されたハブタイプの電着砥石5が得られる。また、上記のエッチングによって把持部7bの形状を調整してもよい。
Then, by etching the outer edge portion of the
以上の製造方法を用いることにより、タルクが含有された砥石部3,9を備えた電着砥石1,5を製造することができる。
By using the above manufacturing method, the
次に、タルクが含有された砥石部を備える電着砥石の評価結果について説明する。ここでは、砥石部に含有されたタルクの量が異なる複数の電着砥石でそれぞれ被加工物を切削し、切削によって被加工物に生じた欠け(チッピング)のサイズを測定することにより加工の精度を評価した。また、砥石部に含有されたタルクの量が異なる複数の電着砥石の弾性率を測定し、この弾性率から電着砥石の強度を評価した。 Next, the evaluation result of the electrodeposition grindstone including the grindstone portion containing talc will be described. Here, the machining accuracy is measured by cutting the workpiece with multiple electrodeposited grindstones containing different amounts of talc in the grindstone and measuring the size of the chipping (chipping) generated in the workpiece by cutting. Was evaluated. In addition, the elastic moduli of a plurality of electrodeposited grindstones having different amounts of talc contained in the grindstone portion were measured, and the strength of the electrodeposited grindstone was evaluated from this elastic modulus.
評価には、上述の製造方法に従って製造した、砥石部にタルクが含有されたワッシャータイプ(図1(A)参照)の電着砥石を用いた。電着砥石の外径は53.4mm、内径は40mm、厚さは0.10mmであり、砥粒にはふるいで分級されたときの平均粒径が9μmであるダイヤモンド粒を用いた。なお、砥粒の集中度は50(12.5体積%)であった。 For the evaluation, a washer-type (see FIG. 1 (A)) electrodeposited grindstone having talc contained in the grindstone portion manufactured according to the above-mentioned manufacturing method was used. The outer diameter of the electrodeposited grindstone was 53.4 mm, the inner diameter was 40 mm, the thickness was 0.10 mm, and diamond grains having an average particle size of 9 μm when classified by sieving were used as the abrasive grains. The concentration ratio of the abrasive grains was 50 (12.5% by volume).
また、タルクの含有量による影響を評価するため、砥石部に含まれるタルクの量が異なる7種類の電着砥石を作製した。電着砥石の作製には、レーザー回折法で測定したときの平均粒径が0.8μmのタルクを用いた。作製された7種類の電着砥石の砥石部に含有されたタルクの量をアルキメデス法を用いて測定したところ、7種類の砥石部にはそれぞれ、砥石部に対して0.0体積%(タルクを添加していない電着砥石)、1.0体積%、2.2体積%、6.2体積%、11.4体積%、15.0体積%、17.5体積%のタルクが含有されていた。 Further, in order to evaluate the influence of the talc content, seven types of electrodeposited grindstones having different amounts of talc contained in the grindstone portion were prepared. To prepare the electrodeposited grindstone, talc having an average particle size of 0.8 μm as measured by a laser diffraction method was used. When the amount of talc contained in the grindstone portion of the seven types of electrodeposited grindstones produced was measured using the Archimedes method, each of the seven types of grindstone portions was 0.0% by volume (talc) with respect to the grindstone portion. , 1.0% by volume, 2.2% by volume, 6.2% by volume, 11.4% by volume, 15.0% by volume, 17.5% by volume of talc. Was there.
次に、7種類の電着砥石をそれぞれ整形し、目立て及び真円出しを行った。その後、被加工物を切削装置のチャックテーブルによって吸引保持し、電着砥石に切削水(水温20℃の純水)を供給しながら電着砥石を被加工物に切り込ませて該被加工物を切削する加工を、7種類の電着砥石それぞれについて行った。 Next, each of the seven types of electrodeposited grindstones was shaped, and sharpened and rounded. After that, the workpiece is sucked and held by the chuck table of the cutting device, and the electrodeposited grindstone is cut into the workpiece while supplying cutting water (pure water at a water temperature of 20 ° C.) to the electrodeposited grindstone. Was cut for each of the seven types of electrodeposited grindstones.
被加工物には、長さ100mm、幅100mm、厚さ0.4mmのホウケイ酸ガラスを用いた。そして、電着砥石を30000回転/minの速度で回転させ、電着砥石をその下端が被加工物の下端よりも下側に位置するように配置し、被加工物の長さ方向と概ね平行な方向に沿って被加工物と電着砥石とを5mm/sの速度で相対的に移動させることにより被加工物を切削した。この切削加工を被加工物の幅方向に5.0mm間隔で19回行うことにより、被加工物を20の小片に分割した。 As the work piece, borosilicate glass having a length of 100 mm, a width of 100 mm, and a thickness of 0.4 mm was used. Then, the electrodeposition grindstone is rotated at a speed of 30,000 rpm, and the electrodeposition grindstone is arranged so that the lower end thereof is located below the lower end of the workpiece, and is substantially parallel to the length direction of the workpiece. The workpiece was cut by relatively moving the workpiece and the electrodeposited grindstone at a speed of 5 mm / s along the same direction. By performing this cutting process 19 times at intervals of 5.0 mm in the width direction of the workpiece, the workpiece was divided into 20 small pieces.
その後、チャックテーブルを水平方向に90°回転させ、同様の条件で被加工物をその幅方向と概ね平行な方向に沿って切削することにより、各小片をさらに20分割した。このようにして、被加工物を400個のチップに分割した。 Then, the chuck table was rotated by 90 ° in the horizontal direction, and the workpiece was cut along a direction substantially parallel to the width direction under the same conditions, so that each small piece was further divided into 20 pieces. In this way, the workpiece was divided into 400 chips.
その後、得られた400個のチップから5個のチップを選択し、5個のチップそれぞれについて、切削加工によって切削面に生じたチッピングの、被加工物の厚さ方向と垂直な方向における長さを測定した。そして、チッピングの最大の長さをチッピングサイズとし、5個のチップのチッピングサイズの平均値(平均チッピングサイズ)を算出した。 After that, 5 chips were selected from the obtained 400 chips, and for each of the 5 chips, the length of the chipping generated on the cutting surface by the cutting in the direction perpendicular to the thickness direction of the workpiece. Was measured. Then, the maximum length of chipping was set as the chipping size, and the average value (average chipping size) of the chipping sizes of the five chips was calculated.
上記の平均チッピングサイズの算出を、タルクの含有量が異なる7種類の電着砥石を用いて得たチップそれぞれについて行った。図6は、電着砥石の砥石部に含有されたタルクの量と平均チッピングサイズとの関係を示すグラフである。なお、図6では、タルクが含有されていない電着砥石(タルクの含有量が0.0体積%の電着砥石)を用いて得たチップの平均チッピングサイズを基準(100%)として、他の電着砥石を用いて得たチップの平均チッピングサイズの比率を示している。 The above average chipping size was calculated for each of the chips obtained by using seven types of electrodeposited grindstones having different talc contents. FIG. 6 is a graph showing the relationship between the amount of talc contained in the grindstone portion of the electrodeposited grindstone and the average chipping size. In FIG. 6, the average chipping size of the tip obtained by using an electrodeposition grindstone containing no talc (an electrodeposition grindstone having a talc content of 0.0% by volume) is used as a reference (100%). The ratio of the average chipping size of the chips obtained by using the electrodeposition grindstone of No. 1 is shown.
図6に示すように、タルクの含有量が2.2体積%以上となると平均チッピングサイズが大幅に低減されている。これは、タルクの含有量が2.2体積%以上となると、砥石部に含まれるめっき層がタルクにより脆弱化して自生発刃が適度に生じるとともに、タルクの潤滑性によって電着砥石と被加工物との間の摩擦が低減され、加工の精度が向上したためと推察される。従って、電着砥石の砥石部に含有されるタルクの量は、特に2.2体積%以上とすることが好ましい。 As shown in FIG. 6, when the talc content is 2.2% by volume or more, the average chipping size is significantly reduced. This is because when the content of talc is 2.2% by volume or more, the plating layer contained in the grindstone is weakened by the talc and spontaneous blades are generated appropriately, and the lubricity of the talc causes the electrodeposited grindstone and the workpiece to be processed. It is presumed that the friction with the object was reduced and the processing accuracy was improved. Therefore, the amount of talc contained in the grindstone portion of the electrodeposition grindstone is particularly preferably 2.2% by volume or more.
また、タルクの含有量が異なる7種類の電着砥石の強度を評価するため、各電着砥石の弾性率を測定した。弾性率は、切削加工後の電着砥石の先端部に所定の荷重を負荷して得た応力-歪み曲線から算出した。そして、弾性率が高い電着砥石ほど変形しにくく強度が高いとして、電着砥石の強度を評価した。 Further, in order to evaluate the strength of seven types of electrodeposited grindstones having different talc contents, the elastic modulus of each electrodeposited grindstone was measured. The elastic modulus was calculated from the stress-strain curve obtained by applying a predetermined load to the tip of the electrodeposited grindstone after cutting. Then, the strength of the electrodeposited grindstone was evaluated, assuming that the electrodeposited grindstone having a higher elastic modulus is less likely to be deformed and has higher strength.
図7は、電着砥石の砥石部に含有されたタルクの量と電着砥石の弾性率との関係を示すグラフである。なお、図7では、タルクが含有されていない電着砥石(タルクの含有量が0.0体積%の電着砥石)の弾性率を基準(100%)として、他の電着砥石の弾性率の比率を示している。 FIG. 7 is a graph showing the relationship between the amount of talc contained in the grindstone portion of the electrodeposited grindstone and the elastic modulus of the electrodeposited grindstone. In FIG. 7, the elastic modulus of the other electrodeposited grindstone is based on the elastic modulus (100%) of the electrodeposited grindstone containing no talc (electroplated grindstone having a talc content of 0.0% by volume). Shows the ratio of.
図7より、タルクの含有量が1.0体積%以上6.2体積%以下の電着砥石の弾性率は、タルクが含有されていない電着砥石の弾性率よりも高く、強度が向上している。このようにタルクを少量添加した際に電着砥石の弾性率が上昇する理由は必ずしも明らかではないが、タルクの添加量が少量である場合、タルクの粒子がめっき層の内部に均等に分散し、めっき層の転移を抑制するためと推察される。 From FIG. 7, the elastic modulus of the electrodeposited grindstone having a talc content of 1.0% by volume or more and 6.2% by volume or less is higher than the elastic modulus of the electrodeposited grindstone containing no talc, and the strength is improved. ing. The reason why the elastic modulus of the electrodeposited grindstone increases when a small amount of talc is added in this way is not always clear, but when the amount of talc added is small, the talc particles are evenly dispersed inside the plating layer. It is presumed that this is to suppress the transition of the plating layer.
タルクの含有量が1.0体積%から増加すると、弾性率は徐々に低下する。これは、タルクの含有量の増加によって砥石部に含まれるめっき層が脆弱化したことに起因すると推察される。しかしながら、いずれの電着砥石でも切削加工時に電着砥石が変形して蛇行する様子は観察されず、各電着砥石は被加工物の切削に必要な強度を備えていることが確認できた。 As the talc content increases from 1.0% by volume, the modulus of elasticity gradually decreases. It is presumed that this is because the plating layer contained in the grindstone portion became weak due to the increase in the talc content. However, it was not observed that the electrodeposited grindstone deformed and meandered during cutting with any of the electrodeposited grindstones, and it was confirmed that each electrodeposited grindstone had the strength required for cutting the workpiece.
但し、タルクの含有量が17.5体積%に達すると弾性率の比率が30%程度となり、弾性率が急激に低下していることが分かる。この電着砥石では、特に難削材などの加工が困難になる場合がある。そのため、電着砥石の強度を大きく低下させることなく平均チッピングサイズを低減するためには、特にタルクの含有量を2.2体積%以上15.0体積%以下とすることが好ましい。 However, when the talc content reaches 17.5% by volume, the elastic modulus ratio becomes about 30%, and it can be seen that the elastic modulus sharply decreases. With this electrodeposition grindstone, it may be particularly difficult to process difficult-to-cut materials. Therefore, in order to reduce the average chipping size without significantly reducing the strength of the electrodeposited grindstone, it is particularly preferable that the talc content is 2.2% by volume or more and 15.0% by volume or less.
また、特にタルクの含有量が6.2体積%以下の電着砥石は、タルクが含有されていない電着砥石と比較して弾性率が高く、電着砥石の強度が向上している。そのため、タルクの含有量を2.2体積%以上6.2体積%以下とすると、電着砥石の強度を向上させつつチッピングの発生を抑制できる。 Further, in particular, the electrodeposited grindstone having a talc content of 6.2% by volume or less has a high elastic modulus as compared with the electrodeposited grindstone containing no talc, and the strength of the electrodeposited grindstone is improved. Therefore, when the content of talc is 2.2% by volume or more and 6.2% by volume or less, the occurrence of chipping can be suppressed while improving the strength of the electrodeposited grindstone.
以上の評価結果より、砥石部にタルクを含有させた電着砥石を用いることにより、切削加工時のチッピングを低減し、精度の高い切削加工を行うことが可能となる。 From the above evaluation results, by using an electrodeposited grindstone containing talc in the grindstone portion, it is possible to reduce chipping during cutting and perform highly accurate cutting.
その他、上記実施形態に係る構造、方法等は、本発明の目的の範囲を逸脱しない限りにおいて適宜変更して実施できる。 In addition, the structure, method, and the like according to the above-described embodiment can be appropriately modified and implemented as long as they do not deviate from the scope of the object of the present invention.
1 電着砥石
3 砥石部
3a 貫通孔
5 電着砥石
7 基台
7a 貫通孔
7b 把持部
9 砥石部
2 製造装置
4 めっき浴槽
6 ニッケル電極
8 スイッチ
10 直流電源
12 回転駆動源
14 ファン
16 ニッケルめっき液
18 添加剤
20 基台
22 マスク
24 製造装置
26 基台
28 マスク
1
Claims (5)
該砥石部には、該砥石部の2.2体積%以上15.0体積%以下のタルクが含有されていることを特徴とする電着砥石。 Equipped with a grindstone part where the abrasive grains are fixed with a plating layer containing nickel,
The electrodeposition grindstone is characterized in that the grindstone portion contains talc of 2.2% by volume or more and 15.0% by volume or less of the grindstone portion.
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018033503A JP7098231B2 (en) | 2018-02-27 | 2018-02-27 | Electroplated whetstone |
KR1020190012006A KR102605418B1 (en) | 2018-02-27 | 2019-01-30 | Electrodeposited grindstone |
CN201910127838.XA CN110193790B (en) | 2018-02-27 | 2019-02-20 | Electrodeposited abrasive article |
TW108106102A TWI781293B (en) | 2018-02-27 | 2019-02-22 | Electroplating grindstone |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018033503A JP7098231B2 (en) | 2018-02-27 | 2018-02-27 | Electroplated whetstone |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2019147221A JP2019147221A (en) | 2019-09-05 |
JP7098231B2 true JP7098231B2 (en) | 2022-07-11 |
Family
ID=67751685
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2018033503A Active JP7098231B2 (en) | 2018-02-27 | 2018-02-27 | Electroplated whetstone |
Country Status (4)
Country | Link |
---|---|
JP (1) | JP7098231B2 (en) |
KR (1) | KR102605418B1 (en) |
CN (1) | CN110193790B (en) |
TW (1) | TWI781293B (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113622013B (en) * | 2021-10-12 | 2021-12-10 | 南通伟腾半导体科技有限公司 | Preparation method of composite deposition layer of wafer cutting blade |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016168655A (en) | 2015-03-13 | 2016-09-23 | 株式会社ディスコ | Manufacturing method of electrodeposition grindstone |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59100561U (en) * | 1982-12-27 | 1984-07-06 | 荒川 康雄 | Electroplated grindstone that prevents clogging |
JPH061324Y2 (en) * | 1986-06-30 | 1994-01-12 | 三菱マテリアル株式会社 | Electroformed thin blade grindstone |
JPS63221977A (en) * | 1987-03-10 | 1988-09-14 | Mitsubishi Heavy Ind Ltd | Electrodeposited grindstone |
GB2263911B (en) * | 1991-12-10 | 1995-11-08 | Minnesota Mining & Mfg | Tool comprising abrasives in an electrodeposited metal binder dispersed in a binder matrix |
JP3992168B2 (en) | 1998-09-17 | 2007-10-17 | 株式会社ディスコ | Electrodeposition blade manufacturing method |
CN101935219B (en) * | 2010-09-30 | 2012-09-26 | 福州双屹砂轮有限公司 | Efficient silicon carbide corundum rare earth ceramic composite grinding wheel and manufacture method thereof |
CN103056788B (en) * | 2012-12-26 | 2016-01-27 | 厦门宇信金刚石工具有限公司 | A kind of preparation method of sharp epoxy resin binder diamond grinding tool |
JP2017087353A (en) * | 2015-11-10 | 2017-05-25 | 株式会社ディスコ | Method for production of electro-deposited grind stone |
CN106041767B (en) * | 2016-07-12 | 2018-07-27 | 广东工业大学 | A kind of resinoid bond super-hard abrasive tool and its manufacturing method and application with interior cooling micro-structure |
CN107057641A (en) * | 2016-12-31 | 2017-08-18 | 东莞市淦宏信息科技有限公司 | A kind of special-purpose grinding fluid of synthetic sapphire camera eyeglass |
-
2018
- 2018-02-27 JP JP2018033503A patent/JP7098231B2/en active Active
-
2019
- 2019-01-30 KR KR1020190012006A patent/KR102605418B1/en active IP Right Grant
- 2019-02-20 CN CN201910127838.XA patent/CN110193790B/en active Active
- 2019-02-22 TW TW108106102A patent/TWI781293B/en active
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2016168655A (en) | 2015-03-13 | 2016-09-23 | 株式会社ディスコ | Manufacturing method of electrodeposition grindstone |
Also Published As
Publication number | Publication date |
---|---|
CN110193790A (en) | 2019-09-03 |
TWI781293B (en) | 2022-10-21 |
TW201936330A (en) | 2019-09-16 |
KR102605418B1 (en) | 2023-11-22 |
KR20190102994A (en) | 2019-09-04 |
CN110193790B (en) | 2023-05-05 |
JP2019147221A (en) | 2019-09-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2986416A1 (en) | Abrasive article and method of forming | |
TW201714690A (en) | Abrasive diamond grain for wire tool and wire tool | |
JP7098231B2 (en) | Electroplated whetstone | |
JPS63174877A (en) | Electroformed thin blade grinding stone | |
CN110125825B (en) | Annular grinding tool and method for manufacturing annular grinding tool | |
CN113172779B (en) | High-strength scribing knife for semiconductor wafer step cutting and manufacturing method | |
JP7408232B2 (en) | Manufacturing method of circular grindstone | |
JP2011115867A (en) | Thin-edged blade | |
JP2017164881A (en) | Cutting blade | |
CN110315415B (en) | Ring-shaped grinding tool for cutting using cutting water mixed with carbon dioxide | |
JP6893312B2 (en) | Blade manufacturing method | |
JP2006062009A (en) | Resin-bond thin blade grinding wheel | |
JP5721877B2 (en) | Thin blade | |
JP7184464B2 (en) | Annular grindstone manufacturing method | |
JP2022165654A (en) | electroformed blade | |
JP5496780B2 (en) | Thin blade | |
JP2010173015A (en) | Nickel-plated film, cutting tool using the nickel-plated film, and method of forming the nickel-plated film | |
JP2012192487A (en) | Cutting blade | |
JP5725733B2 (en) | Thin blade | |
JP2015107530A (en) | Wire tool and wire tool manufacturing method | |
TW202107597A (en) | Dressing plate and cutting blade dressing method suppressing occurrence of processing defects | |
JP2022153867A (en) | electroformed blade | |
JP5729809B2 (en) | Agglomerated abrasive | |
JP2011025375A (en) | Electroforming blade | |
JP2014231121A (en) | Electrodeposited wire tool |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20201209 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20211130 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20211228 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20220224 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20220628 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20220628 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7098231 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |