JP5729809B2 - Agglomerated abrasive - Google Patents

Agglomerated abrasive Download PDF

Info

Publication number
JP5729809B2
JP5729809B2 JP2011058146A JP2011058146A JP5729809B2 JP 5729809 B2 JP5729809 B2 JP 5729809B2 JP 2011058146 A JP2011058146 A JP 2011058146A JP 2011058146 A JP2011058146 A JP 2011058146A JP 5729809 B2 JP5729809 B2 JP 5729809B2
Authority
JP
Japan
Prior art keywords
abrasive grains
grains
superabrasive
cutting blade
size
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011058146A
Other languages
Japanese (ja)
Other versions
JP2012192489A (en
Inventor
池田 吉隆
吉隆 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Seimitsu Co Ltd
Original Assignee
Tokyo Seimitsu Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Seimitsu Co Ltd filed Critical Tokyo Seimitsu Co Ltd
Priority to JP2011058146A priority Critical patent/JP5729809B2/en
Publication of JP2012192489A publication Critical patent/JP2012192489A/en
Application granted granted Critical
Publication of JP5729809B2 publication Critical patent/JP5729809B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、例えば電子材料を切断加工する切断ブレードに用いて有効な凝集砥粒に関する。   The present invention relates to agglomerated abrasive grains effective for use in, for example, a cutting blade for cutting an electronic material.

従来、電子材料であるQFNパッケージ(Quad Flat Non-leaded package)やアクリル樹脂付きガラスエポキシ基板などの被切断材(被加工物)を切断して個片化したり、溝加工を施したりする加工には、高精度が要求されており、このような切断加工や溝加工等(以下「切断加工」と省略)には、樹脂ボンド砥石等の切断ブレードが使用されている。
この種の切断ブレードとしては、例えば下記特許文献1、2に示されるように、円形薄板状の基材と、前記基材内に分散され、ダイヤモンドやcBN(立方晶窒化ホウ素)からなる超砥粒と、前記基材の外周縁部に形成された切れ刃と、を備えたものが知られている。
Conventionally, for cutting materials such as QFN package (Quad Flat Non-leaded package) which is an electronic material, glass epoxy substrate with acrylic resin, etc., and cutting into individual pieces or grooving High precision is required, and a cutting blade such as a resin bond grindstone is used for such cutting and grooving (hereinafter abbreviated as “cutting”).
As this type of cutting blade, for example, as shown in Patent Documents 1 and 2 below, a super-abrasive composed of a circular thin plate-like substrate and diamond or cBN (cubic boron nitride) dispersed in the substrate. The thing provided with the grain and the cutting edge formed in the outer-periphery edge part of the said base material is known.

この切断ブレードを用いて被切断材を切断加工する際には、基材をその中心軸回りに回転させつつ、基材の外周縁部をなす切れ刃を被切断材に接触させる。切れ刃には、基材の径方向外方へ向けて突出するように超砥粒が露出しており、これら超砥粒が被切断材に切り込んでいく。切断ブレードには、切れ味を高めて加工速度を上げることが求められ、かつ、切断面(処理面)の加工品位を十分に確保することが要求される。このような加工性能は、基材内の超砥粒の性質によるところが大きい。
また、超砥粒は、前述した切断ブレード以外に、例えば高精度な平坦化加工を目的とした研削砥石等にも用いられている。
When cutting the material to be cut using this cutting blade, the cutting blade that forms the outer peripheral edge of the base material is brought into contact with the material to be cut while rotating the base material around its central axis. Superabrasive grains are exposed at the cutting edge so as to protrude outward in the radial direction of the base material, and these superabrasive grains cut into the material to be cut. The cutting blade is required to increase the sharpness and increase the processing speed, and is required to sufficiently secure the processing quality of the cut surface (processed surface). Such processing performance largely depends on the properties of the superabrasive grains in the substrate.
In addition to the above-described cutting blade, superabrasive grains are also used in, for example, grinding wheels for the purpose of high-precision flattening.

特開平1−115574号公報Japanese Patent Laid-Open No. 1-115574 特開2006−62009号公報JP 2006-62009 A

しかしながら、前述した従来の超砥粒においては、下記の問題があった。
すなわち、例えば超砥粒を切断ブレードに用いた場合に、生産性を向上させる目的で切断の加工速度を上げると、被切断材の切断面にチッピング、電極バリ、スクラッチ(特に電極面の傷)等が生じることがあった。
また、研削砥石等に超砥粒を用いた場合に、研削面(処理面)を高品位に形成することへの要望があった。
However, the conventional superabrasive grains described above have the following problems.
That is, for example, when superabrasive grains are used for a cutting blade, if cutting speed is increased for the purpose of improving productivity, chipping, electrode burrs, scratches (particularly electrode surface scratches) on the cut surface of the material to be cut Etc. may occur.
In addition, when superabrasive grains are used for a grinding wheel or the like, there has been a demand for forming a ground surface (treated surface) with high quality.

本発明は、このような事情に鑑みてなされたものであって、加工品位を十分に確保しつつ、加工速度を高めて生産性を向上できる凝集砥粒を提供することを目的としている。   This invention is made | formed in view of such a situation, Comprising: It aims at providing the agglomerated abrasive grain which can raise processing speed and can improve productivity, ensuring process quality enough.

このような課題を解決して、前記目的を達成するために、本発明は以下の手段を提案している。
すなわち、本発明の凝集砥粒は、複数の超砥粒同士が合成樹脂材料により仮止めされた中間体を、無電解めっき又は電解めっきすることにより、これら超砥粒同士が金属相により結合され、前記超砥粒の角部が、前記金属相の外面から突出していることを特徴としている。
In order to solve such problems and achieve the above object, the present invention proposes the following means.
That is, the agglomerated abrasive grains of the present invention are bonded to each other by a metal phase by electroless plating or electrolytic plating an intermediate body in which a plurality of super abrasive grains are temporarily fixed with a synthetic resin material. The corners of the superabrasive grains protrude from the outer surface of the metal phase.

本発明の凝集砥粒によれば、ダイヤモンドやcBNからなる硬質の超砥粒が複数含まれているので、例えば当該凝集砥粒を切断ブレードや研削砥石等の加工工具に用いた場合に、これら超砥粒により切れ味が高められ、加工速度を上げることができる。また、凝集砥粒内の超砥粒同士は、金属相により互いに強固に結合されているので、該凝集砥粒から超砥粒が容易に脱落することが防止され、超砥粒の保持力が高められている。従って、凝集砥粒から超砥粒が容易に脱落して処理面のスクラッチ等を生じさせるようなことが防止されている。
また、凝集砥粒に含まれる各超砥粒は、処理面に対して一つ一つが小さく作用するから、例えば単体の大きな超砥粒のみを用いた従来の加工工具の構成に対比して、本発明の凝集砥粒を用いた加工工具によれば高品位な処理面を形成できる。
According to the agglomerated abrasive grains of the present invention, since a plurality of hard superabrasive grains made of diamond or cBN are included, for example, when the agglomerated abrasive grains are used in a processing tool such as a cutting blade or a grinding wheel, these The sharpness is enhanced by the superabrasive grains, and the processing speed can be increased. Also, since the superabrasive grains in the agglomerated abrasive grains are firmly bonded to each other by the metal phase, the superabrasive grains are prevented from easily falling off from the agglomerated abrasive grains, and the holding power of the superabrasive grains is reduced. Has been enhanced. Therefore, it is possible to prevent the superabrasive grains from easily falling off from the agglomerated abrasive grains and causing scratches on the treated surface.
In addition, each superabrasive grain contained in the agglomerated abrasive grains acts small on the treated surface, so that, for example, in contrast to the configuration of a conventional processing tool using only a single large superabrasive grain, According to the processing tool using the aggregated abrasive grains of the present invention, a high-quality treated surface can be formed.

よって、この凝集砥粒を用いた切断ブレードや研削砥石等の加工工具によれば、被加工物の処理面の加工品位を十分に確保しつつ、加工速度を高めることができ、生産性(加工能率)を向上することができる。   Therefore, according to a processing tool such as a cutting blade or a grinding wheel using the agglomerated abrasive grains, it is possible to increase the processing speed while ensuring sufficient processing quality of the processing surface of the workpiece, and productivity (processing Efficiency).

また、本発明の凝集砥粒において、前記金属相が、Niめっき又はCuめっきにより形成されていることとしてもよい。   In the agglomerated abrasive grain of the present invention, the metal phase may be formed by Ni plating or Cu plating.

この場合、凝集砥粒の金属相が、例えば無電解めっきによるNiめっき又はCuめっきで形成されているので、該金属相が凝集砥粒の各超砥粒を強固に保持することになり、前記各超砥粒の保持力が高められるとともに、凝集砥粒の強度が向上する。
また、凝集砥粒を製造する際に、例えば従来の粉末冶金・焼結・破砕による製造手法に比較して、該凝集砥粒の大きさを制御しやすく、かつ、熱による衝撃や外力による衝撃が加わらないので、凝集砥粒内における各超砥粒と金属相との界面などに割れや隙間が生じることがない。さらに、各超砥粒に対して、熱による劣化を防止する効果が得られる。よって、凝集砥粒の前述した効果が十分に発揮される。
In this case, since the metal phase of the aggregated abrasive grains is formed by Ni plating or Cu plating by electroless plating, for example, the metal phase firmly holds each superabrasive grain of the aggregated abrasive grains, The holding power of each superabrasive grain is increased, and the strength of the aggregated abrasive grains is improved.
In addition, when producing agglomerated abrasive grains, the size of the agglomerated abrasive grains can be controlled more easily compared to, for example, conventional powder metallurgy / sintering / crushing techniques, and impacts caused by heat or external force can be controlled. Therefore, cracks and gaps do not occur at the interface between each superabrasive grain and the metal phase in the aggregated abrasive grains. Furthermore, the effect which prevents deterioration by a heat | fever is acquired with respect to each superabrasive grain. Therefore, the effects described above of the aggregated abrasive grains are sufficiently exhibited.

また、本発明の凝集砥粒において、前記超砥粒の大きさが、凝集砥粒の大きさの1/2以下であることとしてもよい。   In the aggregated abrasive grains of the present invention, the size of the superabrasive grains may be ½ or less of the size of the aggregated abrasive grains.

この場合、凝集砥粒に含まれる各超砥粒の大きさが、凝集砥粒(全体)の大きさの1/2以下と十分に小さいので、超砥粒の作用(切れ味向上)が得られつつ、処理面のスクラッチ等を防止する効果が確実に得られる。すなわち、凝集砥粒の大きさとそれに含まれる超砥粒の大きさとのバランスがよく、前述した作用効果を奏するのに適している。尚、超砥粒の大きさが凝集砥粒の大きさの1/2よりも大きい場合は、所望の凝集砥粒の大きさが得られにくくなる。   In this case, the size of each superabrasive grain contained in the aggregated abrasive grains is sufficiently small to be 1/2 or less of the size of the aggregated abrasive grains (whole), so that the action of the superabrasive grains (improvement of sharpness) can be obtained. However, the effect of preventing scratches and the like on the processing surface can be reliably obtained. That is, there is a good balance between the size of the aggregated abrasive grains and the size of the superabrasive grains contained in the aggregated abrasive grains, which is suitable for achieving the above-described effects. In addition, when the size of the superabrasive grains is larger than ½ of the size of the aggregated abrasive grains, it is difficult to obtain a desired aggregated abrasive grain size.

本発明の凝集砥粒によれば、加工品位を十分に確保しつつ、加工速度を高めて生産性を向上することができる。   According to the agglomerated abrasive grain of the present invention, it is possible to increase the processing speed and improve the productivity while sufficiently securing the processing quality.

本発明の一実施形態に係る凝集砥粒を用いた切断ブレードを示す正面図である。It is a front view which shows the cutting blade using the aggregated abrasive grain which concerns on one Embodiment of this invention. 図1のA−A断面を示す側断面図である。It is a sectional side view which shows the AA cross section of FIG. 図2のB部の拡大図である。It is an enlarged view of the B section of FIG. 本発明の一実施形態に係る凝集砥粒を拡大して示す断面図である。It is sectional drawing which expands and shows the aggregate abrasive grain which concerns on one Embodiment of this invention.

以下、本発明の一実施形態に係る凝集砥粒10及びこれを用いた切断ブレード(加工工具)1について、図1〜図4を参照して説明する。
本実施形態の切断ブレード1は、電子材料であるQFNパッケージ、アクリル樹脂付きガラスエポキシ基板、SONパッケージ(Small Outline Non-leaded package)などの被切断材(被加工物)を精密切断加工するものである。この切断ブレード1は、電子材料切断用ブレードとして、Cuリードフレーム+樹脂モールドパッケージを切断する分野に用いて有効である。
Hereinafter, agglomerated abrasive grains 10 according to an embodiment of the present invention and a cutting blade (processing tool) 1 using the same will be described with reference to FIGS.
The cutting blade 1 according to the present embodiment is a material for precisely cutting a workpiece (workpiece) such as a QFN package, which is an electronic material, a glass epoxy substrate with acrylic resin, and a SON package (Small Outline Non-leaded package). is there. This cutting blade 1 is effective in the field of cutting a Cu lead frame + resin mold package as an electronic material cutting blade.

図1〜図3に示されるように、切断ブレード1は、円形薄板状の樹脂ボンド相からなる基材2と、基材2内に分散された硬質の砥粒と、基材2の外周縁部に形成された切れ刃3と、を備えている。また、基材2の中央には、該基材2の厚さ方向を向く両外面6、6に開口して断面円形状をなす取付孔5が形成されている。   As shown in FIG. 1 to FIG. 3, the cutting blade 1 includes a base material 2 made of a circular thin plate-shaped resin bond phase, hard abrasive grains dispersed in the base material 2, and an outer peripheral edge of the base material 2. And a cutting edge 3 formed in the portion. Further, an attachment hole 5 having a circular cross section is formed in the center of the base material 2 so as to open on both outer surfaces 6 and 6 facing the thickness direction of the base material 2.

切断ブレード1は、取付孔5を用いて不図示の切断加工装置の主軸に装着され、その中心軸O回りに回転されつつ該中心軸Oに垂直な方向に送り出されることにより、基材2外周の環状をなす切れ刃3を被切断材に切り込んで被切断材を切断加工し、例えば矩形状の切断片(チップ)を複数形成する。
本実施形態の切断ブレード1は、基材2の外径が58mm程度、取付孔5の内径が40mm程度、基材2の厚さが0.3mm程度となっている。
The cutting blade 1 is mounted on a main shaft of a cutting device (not shown) using an attachment hole 5 and is rotated around the central axis O while being sent out in a direction perpendicular to the central axis O. A cutting blade 3 having an annular shape is cut into a material to be cut, and the material to be cut is cut to form, for example, a plurality of rectangular cut pieces (chips).
In the cutting blade 1 of this embodiment, the outer diameter of the base material 2 is about 58 mm, the inner diameter of the mounting hole 5 is about 40 mm, and the thickness of the base material 2 is about 0.3 mm.

基材2を構成する樹脂ボンド相としては、例えばフェノール樹脂、エポキシ樹脂、ポリイミド樹脂等が用いられる。尚、基材2をフェノール樹脂で作製した場合は、他の樹脂に比べて耐摩耗性が高められる。また、エポキシ樹脂で作製した場合は、硬化収縮が小さいことから製造時における反りや割れ等が生じにくくなり、寸法精度に優れた切断ブレード1が得られる。   As a resin bond phase which comprises the base material 2, a phenol resin, an epoxy resin, a polyimide resin etc. are used, for example. In addition, when the base material 2 is produced with a phenol resin, abrasion resistance is improved as compared with other resins. Further, when produced with an epoxy resin, since the curing shrinkage is small, warping and cracking during production are less likely to occur, and the cutting blade 1 having excellent dimensional accuracy can be obtained.

そして、図3に示されるように、この切断ブレード1は、基材2内に分散される前記砥粒として、複数の超砥粒8が金属相9により互いに結合されてなる凝集砥粒10を備えている。すなわち、凝集砥粒10は、ダイヤモンド砥粒又はcBN砥粒である超砥粒8を少なくとも2つ以上含み、これら超砥粒8同士が金属相9により結合された構成である。凝集砥粒10は、基材2の切れ刃3と外面6とにそれぞれ突出(露出)するように均等に分散配置されている。
また、基材2内には、凝集砥粒10以外に、他の砥粒やフィラーが分散配置されていても構わない。
As shown in FIG. 3, the cutting blade 1 includes aggregated abrasive grains 10 in which a plurality of superabrasive grains 8 are bonded to each other by a metal phase 9 as the abrasive grains dispersed in the base material 2. I have. That is, the agglomerated abrasive grains 10 include at least two superabrasive grains 8 that are diamond abrasive grains or cBN abrasive grains, and the superabrasive grains 8 are bonded together by the metal phase 9. The agglomerated abrasive grains 10 are uniformly distributed so as to protrude (expose) from the cutting edge 3 and the outer surface 6 of the substrate 2.
In addition to the agglomerated abrasive grains 10, other abrasive grains and fillers may be dispersed in the substrate 2.

図4に示されるように、凝集砥粒10は、球状をなす金属相9の外面から、超砥粒8の角部を複数突出させるように形成されている。尚、金属相9の形状は、図示する球状に限定されるものではなく、複数の超砥粒8を強固に保持でき、該金属相9の外面からこれら超砥粒8の角部を突出可能なものであればよいことから、球状以外の例えば多面体状や塊状であっても構わない。   As shown in FIG. 4, the aggregated abrasive grains 10 are formed so that a plurality of corners of the superabrasive grains 8 protrude from the outer surface of the spherical metal phase 9. The shape of the metal phase 9 is not limited to the spherical shape shown in the figure, and a plurality of superabrasive grains 8 can be firmly held, and the corners of the superabrasive grains 8 can protrude from the outer surface of the metal phase 9. For example, a polyhedral shape or a lump shape other than a spherical shape may be used.

また、金属相9は、Niめっき又はCuめっきにより形成されている。本実施形態では、金属相9は無電解のNiめっき又はCuめっきにより形成されている。   The metal phase 9 is formed by Ni plating or Cu plating. In this embodiment, the metal phase 9 is formed by electroless Ni plating or Cu plating.

また、凝集砥粒10の大きさ(凝集砥粒10の平均粒径)は、150μm以下となっている。また、凝集砥粒10に含まれる各超砥粒8の大きさ(超砥粒8の平均粒径)は、凝集砥粒10(全体)の大きさの1/2以下となっている。本実施形態においては、凝集砥粒10の大きさ:150μm以下に対して、超砥粒8の大きさ:75μm以下となっている。また、凝集砥粒10の超砥粒8の大きさの下限は、凝集砥粒10の大きさの1/5以上であることが好ましい。
尚、凝集砥粒10の大きさの下限は、15μm以上であることが好ましい。
Further, the size of the aggregated abrasive grains 10 (average particle diameter of the aggregated abrasive grains 10) is 150 μm or less. Further, the size of each superabrasive grain 8 included in the aggregated abrasive grains 10 (average grain size of the superabrasive grains 8) is ½ or less of the size of the aggregated abrasive grains 10 (whole). In the present embodiment, the size of the superabrasive grains 8 is 75 μm or less while the size of the aggregated abrasive grains 10 is 150 μm or less. In addition, the lower limit of the size of the superabrasive grains 8 of the aggregated abrasive grains 10 is preferably 1/5 or more of the size of the aggregated abrasive grains 10.
In addition, it is preferable that the minimum of the magnitude | size of the aggregate abrasive grain 10 is 15 micrometers or more.

凝集砥粒10は、例えば下記のように作製される。
まず、例えばアクリル樹脂等の合成樹脂材料からなるスプレーコーティング剤を用意し、作業台等の平滑な作業面上にスプレー塗布する。
Agglomerated abrasive grains 10 are produced, for example, as follows.
First, for example, a spray coating agent made of a synthetic resin material such as an acrylic resin is prepared and spray-coated on a smooth work surface such as a work table.

次いで、この作業面上に超砥粒8を転がすようにして、複数の超砥粒8同士が前記合成樹脂材料により仮止めされた中間体を作製する。尚、前記中間体は、2〜5個の超砥粒8が仮止めされた状態となっていることが好ましい。また、前記合成樹脂材料は、超砥粒8同士を仮止めできる程度の少量でよく、前記中間体において超砥粒8同士の間に僅かに存在する程度となっている。   Next, an intermediate body in which a plurality of superabrasive grains 8 are temporarily fixed with the synthetic resin material is produced by rolling the superabrasive grains 8 on the work surface. The intermediate is preferably in a state in which 2 to 5 superabrasive grains 8 are temporarily fixed. Moreover, the synthetic resin material may be a small amount that can temporarily fix the superabrasive grains 8, and is slightly present between the superabrasive grains 8 in the intermediate.

次いで、これら中間体を無電解めっきすることにより、凝集砥粒10が作製される。ここで、凝集砥粒10の大きさは、めっき時間により制御されている。
また、めっき後において、作製した凝集砥粒10をスクリーン(ふるい)に通すことにより、所望の大きさの凝集砥粒10を精度よく選別することができる。
Next, aggregated abrasive grains 10 are produced by electroless plating these intermediates. Here, the size of the aggregated abrasive grains 10 is controlled by the plating time.
In addition, after plating, the produced aggregated abrasive grains 10 are passed through a screen (sieving), whereby the aggregated abrasive grains 10 having a desired size can be accurately selected.

また、本実施形態の切断ブレード1は、下記のように製造される。
この切断ブレード1は、ドクターブレード法により成形された単層体を厚さ方向にプレス・焼結することにより作製されている。尚、前記単層体の代わりに、複数の層を厚さ方向に積層した積層体をプレス・焼結して切断ブレード1を作製してもよい。
Moreover, the cutting blade 1 of this embodiment is manufactured as follows.
The cutting blade 1 is manufactured by pressing and sintering a single layer formed by the doctor blade method in the thickness direction. Note that the cutting blade 1 may be manufactured by pressing and sintering a laminated body in which a plurality of layers are laminated in the thickness direction instead of the single layer body.

詳しくは、樹脂ボンド相の原料となる粉状又は粒状の熱硬化性樹脂材料に、凝集砥粒10及び有機溶剤を混ぜてスラリーを作り、このスラリー内に凝集砥粒10が均等に分散されるように混合する。次いで、このスラリーを、ドクターブレード法を用いて厚さ調整し、フィルム状に成形する。   Specifically, the aggregated abrasive grains 10 and the organic solvent are mixed with the powdery or granular thermosetting resin material used as the raw material of the resin bond phase to form a slurry, and the aggregated abrasive grains 10 are uniformly dispersed in the slurry. Mix like so. Next, the thickness of this slurry is adjusted using a doctor blade method and formed into a film.

次いで、前記フィルム状に成形した単層体又は積層体をホットプレス装置(不図示)の金型内に配設する。この状態で、ホットプレスによる熱間成型を行う。これにより、熱硬化性樹脂材料が焼き固められ、基材2が作製される。   Next, the single layer or laminate formed in the film shape is disposed in a mold of a hot press apparatus (not shown). In this state, hot forming by hot pressing is performed. Thereby, a thermosetting resin material is baked and hardened, and the base material 2 is produced.

次いで、基材2の外周縁部に研削・研磨加工等を施して、図1に示される基材2の外形を形成するとともに、切れ刃3を形成する。また、基材2の平面視中央部に、取付孔5を形成する。
このようにして、切断ブレード1が製造される。
Next, the outer peripheral edge portion of the base material 2 is subjected to grinding / polishing processing to form the outer shape of the base material 2 shown in FIG. 1 and the cutting edge 3 is formed. In addition, an attachment hole 5 is formed in the central portion of the base material 2 in plan view.
In this way, the cutting blade 1 is manufactured.

以上説明した本実施形態の切断ブレード1を用いて被切断材を切断加工する際には、基材2をその中心軸O回りに回転させつつ、基材2の外周縁部をなす切れ刃3を被切断材に接触させる。切れ刃3には、基材2の径方向外方へ向けて突出するように凝集砥粒10が露出しており、該凝集砥粒10が被切断材に切り込んでいく。
本実施形態の切断ブレード1は、前述した特別の構成を備えた凝集砥粒10を用いているので、下記の優れた効果を奏する。
When cutting the material to be cut using the cutting blade 1 of the present embodiment described above, the cutting blade 3 that forms the outer peripheral edge of the base material 2 while rotating the base material 2 around its central axis O. Is brought into contact with the material to be cut. The agglomerated abrasive grains 10 are exposed on the cutting edge 3 so as to protrude outward in the radial direction of the substrate 2, and the agglomerated abrasive grains 10 are cut into the material to be cut.
Since the cutting blade 1 of the present embodiment uses the agglomerated abrasive grains 10 having the special configuration described above, the following excellent effects are exhibited.

すなわち、凝集砥粒10には、ダイヤモンドやcBNからなる硬質の超砥粒8が複数含まれているので、これら超砥粒8により切れ味が高められ、加工速度を上げることができる。また、凝集砥粒10内の超砥粒8同士は、金属相9により互いに強固に結合されているので、該凝集砥粒10から超砥粒8が容易に脱落することが防止され、超砥粒8の保持力が高められている。従って、凝集砥粒10から超砥粒8が容易に脱落して処理面のスクラッチ等を生じさせるようなことが防止されている。
また、凝集砥粒10に含まれる各超砥粒8は、処理面に対して一つ一つが小さく作用するから、例えば単体の大きな超砥粒(凝集砥粒10の大きさと同程度の大きさの超砥粒)のみを用いた従来の切断ブレードの構成に対比して、本実施形態の凝集砥粒10を用いた切断ブレード1によれば高品位な処理面を形成できる。
That is, since the agglomerated abrasive grains 10 include a plurality of hard superabrasive grains 8 made of diamond or cBN, the sharpness is enhanced by the superabrasive grains 8 and the processing speed can be increased. Further, since the superabrasive grains 8 in the agglomerated abrasive grains 10 are firmly bonded to each other by the metal phase 9, the superabrasive grains 8 are prevented from easily falling off from the agglomerated abrasive grains 10, and the superabrasive The holding power of the grains 8 is increased. Accordingly, it is possible to prevent the superabrasive grains 8 from easily falling off from the aggregated abrasive grains 10 and causing scratches on the treated surface.
In addition, each superabrasive grain 8 included in the aggregated abrasive grains 10 acts small on the treated surface, so that, for example, a single large superabrasive grain (a size comparable to the size of the aggregated abrasive grains 10). Compared with the configuration of the conventional cutting blade using only the superabrasive grains), the cutting blade 1 using the aggregated abrasive grains 10 of the present embodiment can form a high-quality treated surface.

よって、この凝集砥粒10を用いた切断ブレード1によれば、被加工物の処理面の加工品位を十分に確保しつつ、加工速度を高めることができ、生産性(加工能率)を向上することができる。   Therefore, according to the cutting blade 1 using the agglomerated abrasive grains 10, the processing speed can be increased while sufficiently ensuring the processing quality of the processed surface of the workpiece, and the productivity (processing efficiency) is improved. be able to.

また、凝集砥粒10の金属相9が、Niめっき又はCuめっきで形成されているので、該金属相9が凝集砥粒10の各超砥粒8を強固に保持することになり、前記各超砥粒8の保持力が高められるとともに、凝集砥粒10の強度が向上する。
また、凝集砥粒10を製造する際に、例えば従来の粉末冶金・焼結・破砕による製造手法に比較して、該凝集砥粒10の大きさを制御しやすく(詳しくは、めっき時間により粒径コントロールが容易に行える)、かつ、熱による衝撃や外力による衝撃が加わらないので、凝集砥粒10内における各超砥粒8と金属相9との界面などに割れや隙間が生じることがない。さらに、各超砥粒8に対して、熱による劣化を防止する効果が得られる。よって、凝集砥粒10の前述した効果が十分に発揮される。
Further, since the metal phase 9 of the agglomerated abrasive grains 10 is formed by Ni plating or Cu plating, the metal phase 9 firmly holds the superabrasive grains 8 of the agglomerated abrasive grains 10. The holding power of the superabrasive grains 8 is increased and the strength of the aggregated abrasive grains 10 is improved.
Further, when the aggregated abrasive grains 10 are manufactured, the size of the aggregated abrasive grains 10 can be easily controlled as compared with, for example, a conventional powder metallurgy / sintering / crushing manufacturing method. The diameter can be easily controlled), and no impact by heat or external force is applied, so that no cracks or gaps occur at the interface between each superabrasive grain 8 and the metal phase 9 in the aggregated abrasive grain 10. . Furthermore, the effect of preventing deterioration due to heat is obtained for each superabrasive grain 8. Therefore, the effects described above of the aggregated abrasive grains 10 are sufficiently exhibited.

また、凝集砥粒10に含まれる各超砥粒8の大きさが、凝集砥粒10(全体)の大きさの1/2以下と十分に小さいので、超砥粒8の作用(切れ味向上)が得られつつ、処理面のスクラッチ等を防止する効果が確実に得られる。すなわち、凝集砥粒10の大きさとそれに含まれる超砥粒8の大きさとのバランスがよく、前述した作用効果を奏するのに適している。尚、超砥粒8の大きさが凝集砥粒10の大きさの1/2よりも大きい場合は、所望の凝集砥粒10の大きさが得られにくくなる。   Moreover, since the size of each superabrasive grain 8 contained in the aggregated abrasive grains 10 is sufficiently small to be 1/2 or less of the size of the aggregated abrasive grains 10 (whole), the action of the superabrasive grains 8 (improves sharpness). As a result, it is possible to reliably obtain the effect of preventing scratches on the processing surface. That is, the balance between the size of the agglomerated abrasive grains 10 and the size of the superabrasive grains 8 included in the aggregated abrasive grains 10 is good, and it is suitable for achieving the above-described effects. In addition, when the size of the superabrasive grains 8 is larger than ½ of the size of the aggregated abrasive grains 10, it is difficult to obtain the desired size of the aggregated abrasive grains 10.

また、凝集砥粒10の超砥粒8の大きさの下限が、凝集砥粒10の大きさの1/5以上であるので、切断面との摩擦抵抗が十分に低減される。すなわち、凝集砥粒10の超砥粒8の大きさが、凝集砥粒10の大きさの1/5未満である場合は、超砥粒8の突出量が小さくなるとともに凝集砥粒10と切断面との接触部分が増えて、摩擦抵抗が大きくなるおそれがある。   Further, since the lower limit of the size of the superabrasive grains 8 of the aggregated abrasive grains 10 is 1/5 or more of the size of the aggregated abrasive grains 10, the frictional resistance with the cut surface is sufficiently reduced. That is, when the size of the superabrasive grains 8 of the aggregated abrasive grains 10 is less than 1/5 of the size of the aggregated abrasive grains 10, the protruding amount of the superabrasive grains 8 is reduced and the aggregated abrasive grains 10 are cut. The contact portion with the surface may increase, and the frictional resistance may increase.

尚、本発明は前述の実施形態に限定されるものではなく、例えば下記に示すように、本発明の趣旨を逸脱しない範囲において種々の変更を加えることができる。   The present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the spirit of the present invention, for example, as shown below.

前述の実施形態では、凝集砥粒10が切断ブレード1に用いられることとして説明したが、これに限定されるものではなく、それ以外の加工工具である研削砥石等に用いても構わない。   In the above-described embodiment, it has been described that the agglomerated abrasive grains 10 are used for the cutting blade 1.

また、切断ブレード1に用いる凝集砥粒10の大きさが、15μm以上150μm以下であることとしたが、これに限定されるものではない。すなわち、例えば、凝集砥粒10が切断ブレード1以外の他の加工工具に用いられる場合には、前記他の加工工具に対応して、凝集砥粒10の大きさも種々に設定され得る。   In addition, the size of the aggregated abrasive grains 10 used for the cutting blade 1 is 15 μm or more and 150 μm or less, but is not limited thereto. That is, for example, when the agglomerated abrasive grains 10 are used for a processing tool other than the cutting blade 1, the size of the agglomerated abrasive grains 10 can be variously set corresponding to the other processing tools.

また、凝集砥粒10の金属相9が無電解めっきにより作製されるとしたが、それ以外の電解めっき等により作製されていても構わない。   Moreover, although the metal phase 9 of the aggregated abrasive grains 10 is prepared by electroless plating, it may be prepared by other electrolytic plating or the like.

以下、本発明を実施例により具体的に説明する。ただし本発明はこの実施例に限定されるものではない。   Hereinafter, the present invention will be specifically described by way of examples. However, the present invention is not limited to this embodiment.

[切断試験1]
[実施例1]
本発明の実施例1として、平均粒径40μmの超砥粒8を複数含み、金属相9がNi無電解めっきで形成された平均粒径80μmの凝集砥粒10が、樹脂ボンド相からなる基材2内に分散された切断ブレード1を作製した。また、凝集砥粒10は、基材2内の集中度が100となるように分散配置した。この切断ブレード1の各寸法は、外径58mm、内径40mm、厚さ0.3mmである。
[Cutting test 1]
[Example 1]
As Example 1 of the present invention, a plurality of superabrasive grains 8 having an average particle size of 40 μm are included, and an agglomerated abrasive grain 10 having an average particle size of 80 μm formed by Ni electroless plating is formed of a resin bond phase. A cutting blade 1 dispersed in the material 2 was produced. Further, the aggregated abrasive grains 10 were dispersed and arranged so that the degree of concentration in the substrate 2 was 100. The dimensions of the cutting blade 1 are an outer diameter of 58 mm, an inner diameter of 40 mm, and a thickness of 0.3 mm.

この切断ブレード1を切断加工装置に装着し、被切断材としてQFNパッケージ:4×4mm、24Pinを用いて切断加工を行い、QFNパッケージの切断面において厚さ方向(縦方向)に突出するように形成された電極バリの大きさ(Zバリ)と、切断面に露出した隣り合う電極間距離と、樹脂面(切断面)に生じたチッピングのうち、チッピング幅が20μm以上であるものの発生頻度(樹脂面チッピング)と、主軸電流値とを測定した。尚、前記電極間距離とは、切断面に露出した隣り合う電極同士において、一方の電極から他方の電極に向かうように電極バリが形成された場合に、該電極バリの先端から他方の電極までの距離を言う。また、隣り合う電極同士の両方に、互いに接近するように対向して電極バリが形成された場合には、これら電極バリの先端同士の間の距離を言う。
また、試験の条件としては、フランジ:φ52mm、主軸回転数:20000min−1、送り速度:25mm/secとした。
試験の結果を、表1に示す。
The cutting blade 1 is mounted on a cutting device, and cutting is performed using a QFN package: 4 × 4 mm, 24 Pin as a material to be cut so that the cutting surface of the QFN package protrudes in the thickness direction (longitudinal direction). Of the size of the formed electrode burr (Z burr), the distance between adjacent electrodes exposed on the cut surface, and the chipping generated on the resin surface (cut surface), the frequency of occurrence of those having a chipping width of 20 μm or more ( Resin surface chipping) and the spindle current value were measured. The distance between the electrodes refers to the distance from the tip of the electrode burr to the other electrode when the electrode burr is formed from one electrode to the other electrode between adjacent electrodes exposed on the cut surface. Say the distance. Moreover, when an electrode burr | flash is formed so that it may oppose to both adjacent electrodes so that it may mutually approach, the distance between the tips of these electrode burrs is said.
The test conditions were flange: φ52 mm, spindle rotation speed: 20000 min −1 , and feed rate: 25 mm / sec.
The test results are shown in Table 1.

[実施例2]
また、実施例2として、実施例1で説明した平均粒径40μmの超砥粒8を複数含む凝集砥粒10の代わりに、平均粒径30μmの超砥粒8を複数含む凝集砥粒10を用いた。それ以外は実施例1と同じ条件として、切断ブレード1を作製し試験を行った。
[Example 2]
Further, as Example 2, instead of the aggregated abrasive grains 10 including a plurality of superabrasive grains 8 having an average grain size of 40 μm described in Example 1, aggregated abrasive grains 10 including a plurality of superabrasive grains 8 having an average grain diameter of 30 μm are used. Using. Other than that, the cutting blade 1 was manufactured and tested under the same conditions as in Example 1.

[実施例3]
また、実施例3として、実施例1で説明した凝集砥粒10の代わりに、平均粒径20μmの超砥粒8を複数含む凝集砥粒10を用いた。それ以外は実施例1と同じ条件として、切断ブレード1を作製し試験を行った。
[Example 3]
As Example 3, instead of the aggregated abrasive grains 10 described in Example 1, aggregated abrasive grains 10 including a plurality of superabrasive grains 8 having an average particle diameter of 20 μm were used. Other than that, the cutting blade 1 was manufactured and tested under the same conditions as in Example 1.

[実施例4]
また、実施例4として、実施例1で説明した凝集砥粒10の代わりに、平均粒径15μmの超砥粒8を複数含む凝集砥粒10を用いた。それ以外は実施例1と同じ条件として、切断ブレード1を作製し試験を行った。
[Example 4]
Further, as Example 4, instead of the aggregated abrasive grains 10 described in Example 1, aggregated abrasive grains 10 including a plurality of superabrasive grains 8 having an average particle diameter of 15 μm were used. Other than that, the cutting blade 1 was manufactured and tested under the same conditions as in Example 1.

[実施例5]
また、実施例5として、実施例1で説明した凝集砥粒10の代わりに、平均粒径10μmの超砥粒8を複数含む凝集砥粒10を用いた。それ以外は実施例1と同じ条件として、切断ブレード1を作製し試験を行った。
[Example 5]
Further, as Example 5, instead of the aggregated abrasive grains 10 described in Example 1, aggregated abrasive grains 10 including a plurality of superabrasive grains 8 having an average particle diameter of 10 μm were used. Other than that, the cutting blade 1 was manufactured and tested under the same conditions as in Example 1.

[実施例6]
また、実施例6として、実施例1で説明した凝集砥粒10の代わりに、平均粒径50μmの超砥粒8を複数含む凝集砥粒10を用いた。それ以外は実施例1と同じ条件として、切断ブレード1を作製し試験を行った。
[Example 6]
Further, as Example 6, instead of the aggregated abrasive grains 10 described in Example 1, aggregated abrasive grains 10 including a plurality of superabrasive grains 8 having an average particle diameter of 50 μm were used. Other than that, the cutting blade 1 was manufactured and tested under the same conditions as in Example 1.

[比較例1]
一方、比較例1として、樹脂ボンド相からなる基材内に、従来の超砥粒のみが分散された切断ブレードを作製した。尚、前記超砥粒には、粒度#200(粒径65−80μm)のものを用いた。それ以外は実施例1と同じ条件として、切断ブレードを作製し試験を行った。
[Comparative Example 1]
On the other hand, as Comparative Example 1, a cutting blade in which only conventional superabrasive grains were dispersed in a base material composed of a resin bond phase was produced. The superabrasive grains having a particle size of # 200 (particle size: 65-80 μm) were used. Other than that, a cutting blade was prepared and tested under the same conditions as in Example 1.

Figure 0005729809
Figure 0005729809

[評価]
表1に示される通り、実施例1〜6のように、超砥粒8を少なくとも2つ以上含み、これら超砥粒8同士が金属相9により結合された凝集砥粒10を備えた切断ブレード1においては、Zバリが43μm以下、電極間距離が125μm以上となり、切断加工による電極バリの発生が抑制されることがわかった。また、樹脂面チッピングが2.5%以下となり、チッピングが抑制された。また、主軸電流値が2.6A以下となり、切断加工時の摩擦抵抗が低減することが確認された。
[Evaluation]
As shown in Table 1, as in Examples 1 to 6, a cutting blade including agglomerated abrasive grains 10 including at least two superabrasive grains 8 and these superabrasive grains 8 bonded together by a metal phase 9. In No. 1, the Z burr was 43 μm or less and the distance between the electrodes was 125 μm or more, and it was found that the generation of the electrode burr due to the cutting process was suppressed. Moreover, the resin surface chipping was 2.5% or less, and the chipping was suppressed. In addition, the spindle current value was 2.6 A or less, and it was confirmed that the frictional resistance during cutting was reduced.

特に、凝集砥粒10に含まれる各超砥粒8の大きさが、凝集砥粒10の大きさの1/2以下である実施例1〜5については、Zバリが39μm以下、樹脂面チッピングが0%(つまりチッピング深さ20μm以上のチッピングが皆無)となって、優れた効果を奏することが確認された。
さらに、凝集砥粒10に含まれる各超砥粒8の大きさが、凝集砥粒10の大きさの1/2以下で、かつ、1/5以上である実施例1〜3については、Zバリが25μm以下、電極間距離が163μm以上、主軸電流値が2.5A以下となって、顕著な効果を奏することが確認された。
Particularly, in Examples 1 to 5 in which the size of each superabrasive grain 8 included in the aggregated abrasive grains 10 is 1/2 or less of the size of the aggregated abrasive grains 10, the Z burr is 39 μm or less, and the resin surface chipping is performed. Was 0% (that is, there was no chipping with a chipping depth of 20 μm or more), and it was confirmed that an excellent effect was exhibited.
Further, in Examples 1 to 3 in which the size of each superabrasive grain 8 included in the aggregated abrasive grain 10 is 1/2 or less of the size of the aggregated abrasive grain 10 and 1/5 or more, Z It was confirmed that the burrs were 25 μm or less, the distance between the electrodes was 163 μm or more, and the main shaft current value was 2.5 A or less, which produced a remarkable effect.

一方、基材内に従来の超砥粒のみが分散された比較例1の切断ブレードにおいては、実施例1〜6に比べて、Zバリ、電極間距離、樹脂面チッピング及び主軸電流値が、すべて悪い結果となった。   On the other hand, in the cutting blade of Comparative Example 1 in which only the conventional superabrasive grains are dispersed in the base material, the Z burr, the interelectrode distance, the resin surface chipping, and the spindle current value are compared with Examples 1-6. All were bad results.

[切断試験2]
[実施例7]
本発明の実施例7として、平均粒径30μmの超砥粒8を複数含み、金属相9がCu無電解めっきで形成された平均粒径60μmの凝集砥粒10が、樹脂ボンド相からなる基材2内に分散された切断ブレード1を作製した。また、凝集砥粒10は、基材2内の集中度が75となるように分散配置した。この切断ブレード1の各寸法は、外径58mm、内径40mm、厚さ0.3mmである。
[Cutting test 2]
[Example 7]
As Example 7 of the present invention, a group of superabrasive grains 8 having an average particle diameter of 30 μm, a metal phase 9 formed by Cu electroless plating, and an aggregated abrasive grain 10 having an average grain diameter of 60 μm is formed of a resin bond phase. A cutting blade 1 dispersed in the material 2 was produced. Further, the aggregated abrasive grains 10 were dispersed and arranged so that the degree of concentration in the substrate 2 was 75. The dimensions of the cutting blade 1 are an outer diameter of 58 mm, an inner diameter of 40 mm, and a thickness of 0.3 mm.

この切断ブレード1を切断加工装置に装着し、被切断材としてアクリル樹脂付きガラスエポキシ基板(ガラエポ基板)を用いて切断加工を行い、このガラエポ基板の切断面における樹脂バリの大きさ(樹脂バリ)と、切断面の透明性やスクラッチの状態(切断面)と、切断面に露出した電極バリのうち、バリ長さが50μm以上であるものの発生頻度(電極バリ)と、主軸電流値とを測定した。
また、試験の条件としては、フランジ:φ52mm、主軸回転数:20000min−1、送り速度:20mm/secとした。
試験の結果を、表2に示す。
The cutting blade 1 is mounted on a cutting apparatus and cut using a glass epoxy substrate (glass epoxy substrate) with acrylic resin as a material to be cut. The size of the resin burr on the cut surface of the glass epoxy substrate (resin burr) Measures the transparency of the cut surface and the state of scratch (cut surface), the frequency of occurrence of electrode burrs exposed on the cut surface with a burr length of 50 μm or more (electrode burr), and the spindle current value did.
The test conditions were flange: φ52 mm, spindle speed: 20000 min −1 , and feed rate: 20 mm / sec.
The test results are shown in Table 2.

[実施例8]
また、実施例8として、実施例7で説明した平均粒径30μmの超砥粒8を複数含む凝集砥粒10の代わりに、平均粒径20μmの超砥粒8を複数含む凝集砥粒10を用いた。それ以外は実施例7と同じ条件として、切断ブレード1を作製し試験を行った。
[Example 8]
Further, as Example 8, instead of the agglomerated abrasive grains 10 including a plurality of superabrasive grains 8 having an average grain diameter of 30 μm described in Example 7, agglomerated abrasive grains 10 including a plurality of superabrasive grains 8 having an average grain diameter of 20 μm are used. Using. Otherwise, the cutting blade 1 was produced and tested under the same conditions as in Example 7.

[実施例9]
また、実施例9として、実施例7で説明した凝集砥粒10の代わりに、平均粒径15μmの超砥粒8を複数含む凝集砥粒10を用いた。それ以外は実施例7と同じ条件として、切断ブレード1を作製し試験を行った。
[Example 9]
Further, as Example 9, instead of the aggregated abrasive grains 10 described in Example 7, aggregated abrasive grains 10 including a plurality of superabrasive grains 8 having an average particle diameter of 15 μm were used. Otherwise, the cutting blade 1 was produced and tested under the same conditions as in Example 7.

[実施例10]
また、実施例10として、実施例7で説明した凝集砥粒10の代わりに、平均粒径10μmの超砥粒8を複数含む凝集砥粒10を用いた。それ以外は実施例7と同じ条件として、切断ブレード1を作製し試験を行った。
[Example 10]
Further, as Example 10, instead of the aggregated abrasive grains 10 described in Example 7, aggregated abrasive grains 10 including a plurality of superabrasive grains 8 having an average particle diameter of 10 μm were used. Otherwise, the cutting blade 1 was produced and tested under the same conditions as in Example 7.

[実施例11]
また、実施例11として、実施例7で説明した凝集砥粒10の代わりに、平均粒径50μmの超砥粒8を複数含む凝集砥粒10を用いた。それ以外は実施例7と同じ条件として、切断ブレード1を作製し試験を行った。
[Example 11]
Further, as Example 11, instead of the aggregated abrasive grains 10 described in Example 7, aggregated abrasive grains 10 including a plurality of superabrasive grains 8 having an average particle diameter of 50 μm were used. Otherwise, the cutting blade 1 was produced and tested under the same conditions as in Example 7.

[比較例2]
一方、比較例2として、樹脂ボンド相からなる基材内に、従来の超砥粒のみが分散された切断ブレードを作製した。尚、前記超砥粒には、粒度#230(粒径55−60μm)のものを用いた。それ以外は実施例7と同じ条件として、切断ブレードを作製し試験を行った。
[Comparative Example 2]
On the other hand, as Comparative Example 2, a cutting blade was produced in which only conventional superabrasive grains were dispersed in a base material composed of a resin bond phase. The superabrasive grains having a particle size of # 230 (particle size 55-60 μm) were used. Except for this, the cutting blade was produced and tested under the same conditions as in Example 7.

Figure 0005729809
Figure 0005729809

[評価]
表2に示される通り、実施例7〜11のように、複数の超砥粒8同士が金属相9で結合された凝集砥粒10を備えた切断ブレード1においては、樹脂バリが89μm以下、電極バリが11%以下となり、切断加工による樹脂バリ及び電極バリの発生が抑制されることがわかった。また、主軸電流値が3.3A以下となり、切断加工時の摩擦抵抗が低減することが確認された。
[Evaluation]
As shown in Table 2, as in Examples 7 to 11, in the cutting blade 1 including the aggregated abrasive grains 10 in which a plurality of superabrasive grains 8 are bonded together by the metal phase 9, the resin burr is 89 μm or less, It was found that the electrode burrs were 11% or less, and the generation of resin burrs and electrode burrs due to cutting was suppressed. In addition, the spindle current value was 3.3 A or less, and it was confirmed that the frictional resistance during the cutting process was reduced.

特に、凝集砥粒10に含まれる各超砥粒8の大きさが、凝集砥粒10の大きさの1/2以下である実施例7〜10については、樹脂バリが79μm以下、切断面が半透明又は白濁(つまり加工品位が高い)、電極バリが3%以下となって、優れた効果を奏することが確認された。
さらに、凝集砥粒10に含まれる各超砥粒8の大きさが、凝集砥粒10の大きさの1/2以下で、かつ、1/5以上である実施例7〜9については、樹脂バリが63μm以下、切断面が半透明(加工品位が非常に高い)、主軸電流値が3.1A以下となって、顕著な効果を奏することが確認された。
In particular, in Examples 7 to 10 in which the size of each superabrasive grain 8 included in the aggregated abrasive grain 10 is 1/2 or less of the size of the aggregated abrasive grain 10, the resin burr is 79 μm or less, and the cut surface is It was confirmed that the film was translucent or cloudy (that is, the processing quality was high), and the electrode burr was 3% or less, and an excellent effect was exhibited.
Further, in Examples 7 to 9 in which the size of each superabrasive grain 8 included in the aggregated abrasive grain 10 is 1/2 or less of the size of the aggregated abrasive grain 10 and 1/5 or more, the resin It was confirmed that the burr was 63 μm or less, the cut surface was translucent (the processing quality was very high), the spindle current value was 3.1 A or less, and a remarkable effect was obtained.

一方、基材内に従来の超砥粒のみが分散された比較例2の切断ブレードにおいては、実施例7〜11に比べて、樹脂バリ、電極バリ及び主軸電流値が、すべて悪い結果となった。   On the other hand, in the cutting blade of Comparative Example 2 in which only the conventional superabrasive grains are dispersed in the base material, the resin burrs, electrode burrs, and spindle current values are all poor compared to Examples 7-11. It was.

8 超砥粒
9 金属相
10 凝集砥粒
8 Super abrasive grains 9 Metal phase 10 Agglomerated abrasive grains

Claims (3)

複数の超砥粒同士が合成樹脂材料により仮止めされた中間体を、無電解めっき又は電解めっきすることにより、これら超砥粒同士が金属相により結合され、
前記超砥粒の角部が、前記金属相の外面から突出していることを特徴とする凝集砥粒。
By performing electroless plating or electrolytic plating on an intermediate body in which a plurality of superabrasive grains are temporarily fixed with a synthetic resin material, the superabrasive grains are bonded by a metal phase,
Agglomerated abrasive grains characterized in that corners of the superabrasive grains protrude from the outer surface of the metal phase.
請求項1に記載の凝集砥粒であって、
前記金属相が、Niめっき又はCuめっきにより形成されていることを特徴とする凝集砥粒。
The agglomerated abrasive grain according to claim 1,
Agglomerated abrasive grains, wherein the metal phase is formed by Ni plating or Cu plating.
請求項1又は2に記載の凝集砥粒であって、
前記超砥粒の大きさが、凝集砥粒の大きさの1/2以下であることを特徴とする凝集砥粒。
The agglomerated abrasive grain according to claim 1 or 2,
The size of the superabrasive grain is 1/2 or less of the size of the aggregated abrasive grain.
JP2011058146A 2011-03-16 2011-03-16 Agglomerated abrasive Active JP5729809B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011058146A JP5729809B2 (en) 2011-03-16 2011-03-16 Agglomerated abrasive

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011058146A JP5729809B2 (en) 2011-03-16 2011-03-16 Agglomerated abrasive

Publications (2)

Publication Number Publication Date
JP2012192489A JP2012192489A (en) 2012-10-11
JP5729809B2 true JP5729809B2 (en) 2015-06-03

Family

ID=47084899

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011058146A Active JP5729809B2 (en) 2011-03-16 2011-03-16 Agglomerated abrasive

Country Status (1)

Country Link
JP (1) JP5729809B2 (en)

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01146664A (en) * 1987-11-30 1989-06-08 Nippon Gureen Kenkyusho:Kk Bridge-type metal bonded diamond grinding wheel and its manufacturing method
JPH0215977A (en) * 1988-06-30 1990-01-19 Nisshin Daiyamondo Kk Diamond grindstone and manufacture thereof
JPH0615572A (en) * 1992-07-01 1994-01-25 Matsushita Electric Ind Co Ltd Grinding wheel
ZA943646B (en) * 1993-05-27 1995-01-27 De Beers Ind Diamond A method of making an abrasive compact
CH686787A5 (en) * 1993-10-15 1996-06-28 Diametal Ag Abrasive lining for abrasive products and methods of making the abrasive coating.
JP3712832B2 (en) * 1997-06-05 2005-11-02 豊田バンモップス株式会社 Resinoid super abrasive wheel
JPH11277442A (en) * 1998-03-26 1999-10-12 Mitsubishi Materials Corp Sharp-edged grinding tool and manufacture thereof
JP2000198073A (en) * 1999-01-05 2000-07-18 Disco Abrasive Syst Ltd Grinding wheel
JP2004001165A (en) * 2002-04-11 2004-01-08 Showa Denko Kk Metal-coated abrasive, grinding wheel using metal-coated abrasive, and method for manufacturing metal-coated abrasive
JP2008174744A (en) * 2006-12-21 2008-07-31 Mitsubishi Materials Corp Abrasive grain product, method for producing the same, and grinding whetstone

Also Published As

Publication number Publication date
JP2012192489A (en) 2012-10-11

Similar Documents

Publication Publication Date Title
CN105538174B (en) A kind of emery wheel block and preparation method thereof, buffing wheel
JP6325182B2 (en) Cutting blade manufacturing method and cutting blade
CN104874863A (en) Manufacture method for dry and wet dual-purpose diamond saw blade
CN204604125U (en) Plating hub type saw blade
JP5841437B2 (en) Cutting blade and method for manufacturing the same
CN106493635A (en) A kind of surface has the diadust grinding block of trench structure and processing method
JP2006082187A (en) Thin blade grinding wheel
JP5729809B2 (en) Agglomerated abrasive
JP5676324B2 (en) Resin bond grindstone
KR20140061415A (en) A grinding tool for machining brittle materials and a method of making a grinding tool
CN107379277B (en) Diamond saw blade
JP2013154425A (en) Cutting blade
JP6641590B2 (en) Manufacturing method of cutting blade
JP5953328B2 (en) MOUNTING MATERIAL, WORK PROCESSING METHOD USING THE SAME AND MOUNTING BODY FOR FLAT
JP5651045B2 (en) Cutting blade
CN215700940U (en) Semiconductor silicon chip thinning grinding wheel
JP2002239912A (en) Beveling wheel for machining outer circumferential part of silicone wafer, and method for manufacturing the same
JP4661025B2 (en) Metal bond grindstone and manufacturing method thereof
JP2011251350A (en) Thin-edged blade
JP6207015B2 (en) Cutting blade and method for manufacturing the same
JP3086670B2 (en) Super abrasive whetstone
JP4078815B2 (en) Electroformed thin blade whetstone
JP2010115768A (en) Cbn grinding wheel
JPS6257872A (en) Sintered metal bond grinding wheel
JP2021098260A (en) Resin blade

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20120905

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131017

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140715

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140717

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140910

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20141118

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150218

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20150225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150401

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150403

R150 Certificate of patent or registration of utility model

Ref document number: 5729809

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250