JP7090358B1 - 削孔機用集塵フード - Google Patents

削孔機用集塵フード Download PDF

Info

Publication number
JP7090358B1
JP7090358B1 JP2021063818A JP2021063818A JP7090358B1 JP 7090358 B1 JP7090358 B1 JP 7090358B1 JP 2021063818 A JP2021063818 A JP 2021063818A JP 2021063818 A JP2021063818 A JP 2021063818A JP 7090358 B1 JP7090358 B1 JP 7090358B1
Authority
JP
Japan
Prior art keywords
hood
drilling machine
dust collecting
intake pipe
hood portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2021063818A
Other languages
English (en)
Other versions
JP2022158718A (ja
Inventor
三代嗣 安富
Original Assignee
株式会社ジオテック
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ジオテック filed Critical 株式会社ジオテック
Priority to JP2021063818A priority Critical patent/JP7090358B1/ja
Application granted granted Critical
Publication of JP7090358B1 publication Critical patent/JP7090358B1/ja
Publication of JP2022158718A publication Critical patent/JP2022158718A/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Drilling And Exploitation, And Mining Machines And Methods (AREA)

Abstract

【課題】フード下端と地面の間に隙間を開けて掘削を行う際にも隙間からの繰粉の吹出が生じ難い削孔機用集塵フードの提供。【解決手段】上端が天井部2bで閉塞され且つ下端2cが開口する筒状に形成され、天井部にボーリングロッドが回転自在に挿通されるロッド挿通部2dを有するフード部2と、フード部の側面に接続され、該フード部の内室と連通する吸気管3と、フード部の開口する下端の周縁に、内向きに突出して設けられた内フランジ4とを備えた構成とする。掘鑿孔から吹込む繰粉粒子を含む固気混相流は、天井部に衝突し内室側壁に沿ったダウンフローとなるが、内フランジによりフード部下端でフード部中心方向に偏向される。従って、隙間からの吹出流となる場合、フード部下端において流れの方向が大きく旋回するような流線となり繰粉粒子にはフード部中心方向に強い遠心力が働き繰粉粒子の吹き出しは抑制される。【選択図】図2

Description

本発明は、ボーリングマシンにおいてボーリングロッドに装着され、ボーリング孔の孔口から噴出する繰粉を集塵するための削孔機用集塵フードに関する。
ボーリングにおいては、ボーリングポンプや空気圧縮機により、輸送流体(圧送水又は圧縮空気)をボーリングロッドを通して孔底に送り、ビットを冷却するとともに、切削により生じる繰粉(スライム)を孔外に輸送し排除する。輸送流体として圧送水を用いる場合は「水堀り」、圧縮空気を用いる場合は「空気堀り」と呼ばれている。水堀りの場合、繰粉は繰粉が水に混合したスラリー状のスライムとして孔底から孔口へ輸送・排出されるため、排出されたスライムから繰粉の性状を把握し孔底の地山の性状を予測することは困難である。一方、空気堀りの場合、繰粉は空気輸送で排出されるため、排出される繰粉を観察して孔底の地山の性状を把握することが可能となる。従って、孔底の地山の性状予測が重要とされるトンネル工事などでは、空気堀りを用いることが好ましい。然し乍ら、圧縮空気によって高速で孔口から噴出する繰粉が孔外に拡散すると、作業環境が悪化すると共に安全性の上でも問題が大きい。そこで、この場合、切削孔の孔口を集塵フードで覆い、高真空度の吸引ポンプにより集塵フードから繰粉を吸引排出してその下流側に設けられる繰粉収集ホッパに繰粉を収集することで繰粉が孔外に拡散するのを抑えている。斯かる目的で使用される集塵フードとしては、特許文献1~7に記載のものが公知である。これらの集塵フードをフード形状により分類すると、次の通りである。
(1)円筒型フード形状(特許文献1)(図42参照)
フード形状を下端が開口し上端が閉塞された盲端円筒形(茶筒形)とし、側面に吸引排気管を接続した形状。
(2)上部C面取り円筒型フード形状(特許文献2)
フード形状を、下半分を短円筒状とし上半分を円錐台状とした上部C面取り円筒形とし、側面に吸引排気管を接続した形状。
(3)ラッパ型フード形状(特許文献3,4,5)(図43参照)
フード形状を、盲端円筒形(茶筒形)としてその下端部分を拡開させたラッパ形状とし、側面に吸引排気管を接続した形状。
(4)盃型カバー付円筒型フード形状(特許文献6)
円筒型フード形状の内筒を覆って盃型(盲端円錐台形)の外筒を設けて、内筒側面に吸引排気管を接続した形状。
また、特許文献5では、内部にエジェクタ構造を設けたものが記載されている。
特開昭62-129497号公報(フード付ドリル) 特開平6-33678号公報(集塵削岩装置) 特開2003-120164号公報(掘削土排土集塵装置) 特開昭53-129102号公報(さく岩機の粉塵排除装置) 特開昭54-2704号公報(さく岩機の粉塵排除装置) 特明111308号公報(鑿岩機ニ組合ハセタル粉塵偏向装置)
粉体工学の基礎編集委員会編,「粉体工学の基礎」,日刊工業新聞社,1992年,pp.203-222.
削孔機用集塵フードでは、掘鑿孔から噴出する空気に比較的大粒径の繰粉が混合している。また、繰粉の性状は掘鑿現場によって、水分の少ない岩粒状のものから水分の多い粘土状のものまで様々な性状がある。そのため、特許文献5のように内部にエジェクタ構造を設けたり、特許文献6のように2重筒状としたりすると、集塵フード内部に繰粉が詰まり易くなるため好ましくなく、できる限り単純な形状とすることが好ましい。
一方、特許文献3,4に記載されたようなラッパ型フード形状のものは、基本的に拡開した下端部分はゴムなどの可撓性部材で構成され、この下端部分を掘鑿孔周囲の対物面上に密着させて、フード内空間を外界から遮断して使用される(特許文献4参照)。然し乍ら、実際の掘鑿現場では、掘鑿しながらリアルタイムに繰粉の性状を観察して、孔底の地山の性状を把握する必要があるため、集塵フード下端と掘鑿孔周囲の対物面との間に隙間を開け、通過する繰粉を観察できるようにして使用する必要がある。この場合、ラッパ型フード形状では、隙間を空けた場合にこの隙間から繰粉が吹き出し易いという問題がある。
一方、特許文献1,2のような円筒型フード形状の集塵フードは、ラッパ型フード形状のものと比べると、集塵フード下端と掘鑿孔周囲の対物面との間に隙間を開けた際にも繰粉が吹き出し難い。然し乍ら、吸引排気管の下流側に設けられる繰粉集積ホッパ内に繰粉が溜まってくると、吸引ポンプからの吸引排気管の吸引圧(真空度)が低下する。一方、掘鑿孔から噴出する固気混合流体は、空気圧縮機による加圧によってほぼ一定の流速に保たれる。そのため、繰粉集積ホッパ内の繰粉の集積により吸引排気管の吸引圧がある一定の圧力まで低下すると、集塵フード下端と掘鑿孔周囲の対物面との隙間から繰粉の吹き出しが生じるという問題があった。
そこで、本発明の目的は、集塵フード下端と掘鑿孔周囲の対物面との間に隙間を開けた状態で掘削作業を行う際にも、この隙間からの繰粉の吹き出しが生じにくい削孔機用集塵フードを提供することにある。
本発明に係る削孔機用集塵フードの第1の構成は、上端が天井部で閉塞され且つ下端が開口する筒状に形成され、前記天井部にボーリングロッドが回転自在に挿通されるロッド挿通部を有するフード部と、
前記フード部の側面に接続され、該フード部の内室と連通する吸気管と、
前記フード部の開口する下端の周縁に、内向きに突出して設けられた内フランジと
を備えたことを特徴とする。
この構成により、掘鑿孔からフード部の内室に吹き込む繰粉粒子を含む固気混相流は、天井部に衝突して一部は吸気管へ吸引は排気され、一部は内室側壁に沿ったダウンフローとなってフード部下端方向へ流れるが、内フランジによりフード部下端に於いてダウンフローはフード部中心方向に偏向される。従って、フード部下端と地面との間の隙間から吹き出し流となる場合、フード部下端において流れの方向が内向きから外向きへと大きく旋回するような流線となるが、これにより固気混相流中の繰粉粒子にはフード部中心方向に強い遠心力が働くため、繰粉粒子の吹き出しは抑制される。また、フード部下端に於いて流れの方向をフード部中心方向に偏向することで、吸気管の真空度が下がった場合に於けるフード部下端と地面との間の隙間からの吹き出し流量も減少し、繰粉粒子の吹き出しが生じにくくなる。
本発明に係る削孔機用集塵フードの第2の構成は、前記第1の構成に於いて、前記フード部は、平面視で長円形の長円筒形に形成され、
前記吸気管は、前記フード部の長円形断面の長円の長軸方向に張り出した側部に接続されており、
前記ロッド挿通部は、前記天井部中心から前記吸気管の接続された側に偏倚して設けられていることを特徴とする。
この構成により、吸気管の真空度が下がった場合に於けるフード部下端と地面との間の隙間からの吹き出し流量をさらに減少させることができ、繰粉粒子の吹き出しが生じにくくなる。
ここで、「長円形」とは円を一方向(長軸方向)に引き延ばした形状(オーバル(oval))を意味し、楕円のほか帯直円(レーストラック形;陸上競技場のトラックや小判のような形状)、卵形も含む。
本発明に係る削孔機用集塵フードの第3の構成は、前記第2の構成に於いて、前記内フランジは、前記フード部の長円形断面の長軸方向に張り出した左右の側部のうち、前記吸気管の接続された側と反対側の側部下端の延出幅が、他の下端部分の延出幅に比べて幅広に形成されていることを特徴とする。
この構成により、最もダウンフローの流速が大きい部分である、吸気管の接続された側と反対側の側部下端部分が内フランジで閉塞され、この部分に吹き下ろすダウンフローが内フランジで内向きに偏向されることにより、エジェクタ効果が生じる。これにより、吸気管の真空度が下がった場合に於けるフード部下端と地面との間の隙間からの吹き出し流量をさらに減少させることができ、繰粉粒子の吹き出しが生じにくくなる。
本発明に係る削孔機用集塵フードの第4の構成は、前記第1乃至3の何れか一の構成に於いて、前記吸気管は、前記フード部と接続された接続部の内径が、前記フード部の内室に向かって拡開する漏斗状に形成されていることを特徴とする。
この構成により、集塵フードの内室全体の気圧を下げることが出来、吸気管の真空度が下がった場合に於けるフード部下端と地面との間の隙間からの吹き出し流量をさらに減少させることができ、繰粉粒子の吹き出しが生じにくくなる。
以上のように、本発明の削孔機用集塵フードによれば、フード部の開口する下端の周縁に内向きに突出して内フランジを設けたことにより、フード部下端において流れの方向が内向きから外向きへと大きく旋回するような流線となり、繰粉粒子の吹き出しは抑制される。また、吸気管の真空度が下がった場合に於けるフード部下端と地面との間の隙間からの吹き出し流量も減少し、繰粉粒子の吹き出しが生じにくくなる。また、フード部を、平面視で長円形の長円筒形に形成して、吸気管を長円の長軸方向に張り出した側部に接続して設け、ロッド挿通部を、天井部中心から吸気管の接続された側に偏倚して設けることで、吸気管の真空度が下がった場合に於けるフード部下端と地面との間の隙間からの吹き出し流量をさらに減少させることができ、繰粉粒子の吹き出しが生じにくくなる。
本発明の実施例1に係る削孔機用集塵フードの(a)平面図及び(b)A-A線断面図である。 図1の削孔機用集塵フードの(a)左斜め上方向から視た斜視図及び(b)正面斜め下方向から視た斜視図である。 一般的な空気堀りボーリング工程に於ける繰粉輸送系の空気の流れを示す図である。 削孔機用集塵フードの数値計算モデルを示す図である。 実施例1の削孔機用集塵フード1の場合の入力風速50m/sに対する各吸引圧における流れの場の計算結果を示す図である。 円筒型フード形状の削孔機用集塵フード(従来型)の場合の入力風速50m/sに対する各吸引圧における流れの場の計算結果を示す図である。 ラッパ型フード形状の削孔機用集塵フード(従来型)の場合の入力風速50m/sに対する各吸引圧における流れの場の計算結果を示す図である。 実施例1の削孔機用集塵フード1及び円筒型集塵フード(比較例1)の場合の入力風速50,60,70m/sに対する吸引圧に対する吹き出し・吸い込み流量の関係を示す図である。 ラッパ型集塵フード(比較例2)及び円筒型集塵フード(比較例1)の場合の入力風速50,60,70m/sに対する吸引圧に対する吹き出し・吸い込み流量の関係を示す図である。 入力風速50m/s,吸引圧1kPaにおける削孔機用集塵フード1内の流線の様子を示す図である。 比較例1として示した円筒型集塵フードの入力風速50m/s,吸引圧1000Paでの隙間空間Sの中央の水平面内に於ける圧力場の分布を示す 本発明の実施例2に係る削孔機用集塵フードの(a)平面図及び(b)A-A線断面図である。 図12の削孔機用集塵フードの(a)左斜め上方向から視た斜視図及び(b)正面斜め下方向から視た斜視図である。 実施例2の削孔機用集塵フード1の場合の入力風速50,60,70m/sに対する吸引圧に対する吹き出し・吸い込み流量の関係を示す図である。 実施例1,実施例2,比較例1の各削孔機用集塵フードの入力風速50,60,70m/sに対する、吹き出し流量の比較を示す図である。 本発明の実施例3に係る削孔機用集塵フードの(a)平面図及び(b)A-A線断面図である。 図16の削孔機用集塵フードの(a)左斜め上方向から視た透過斜視図及び(b)正面斜め下方向から視た透過斜視図である。 実施例3の削孔機用集塵フード1の場合の入力風速50,60,70m/sに対する、吸引圧に対する吹き出し・吸い込み流量の関係を示す図である。 実施例1,実施例3,比較例1の各削孔機用集塵フードの入力風速50,60,70m/sに対する、吹き出し流量の比較を示す図である。 実施例4.1の削孔機用集塵フードの(a)平面図及び(b)A-A線断面図を示す図である。 図20の削孔機用集塵フードの(a)左斜め上方向から視た透過斜視図及び(b)正面斜め下方向から視た透過斜視図を示す図である。 実施例4.1の削孔機用集塵フードの入力風速50m/sに対する各吸引圧における流れの場の計算結果を示す図である。 実施例4.1の削孔機用集塵フードの入力風速50m/s,吸引圧1000Paでの隙間空間Sの中央の水平面(xy面)内に於ける圧力場の分布を示す図である。 実施例4.1の削孔機用集塵フード1及び円筒型集塵フード(比較例1)の場合の入力風速50,60,70m/sに対する吸引圧に対する吹き出し・吸い込み流量の関係を示す図である。 本発明の実施例4に係る削孔機用集塵フードの(a)平面図及び(b)A-A線断面図である。 図25の削孔機用集塵フードの(a)左斜め上方向から視た透過斜視図及び(b)正面斜め下方向から視た透過斜視図である。 実施例4の削孔機用集塵フード1の場合の入力風速50m/sに対する各吸引圧における流れの場の計算結果を示す図である。 実施例4の削孔機用集塵フード1の場合の入力風速50m/sに対する各吸引圧における流線の計算結果を示す図である。 実施例4の削孔機用集塵フード1の場合の入力風速50,60,70m/sに対する、吸引圧に対する吹き出し・吸い込み流量の関係を示す図である。 実施例1,実施例4,比較例1の各削孔機用集塵フードの入力風速50,60,70m/sに対する、吹き出し流量の比較を示す図である。 本発明の実施例5に係る削孔機用集塵フードの(a)平面図及び(b)A-A線断面図である。 図31の削孔機用集塵フードの(a)左斜め上方向から視た透過斜視図及び(b)正面斜め下方向から視た透過斜視図である。 実施例5の削孔機用集塵フード1の場合の入力風速50m/sに対する各吸引圧における流れの場の計算結果を示す図である。 入力風速50m/s,吸引圧1kPaにおける実施例1及び実施例5の削孔機用集塵フード1のxz断面における圧力場及び流れ方向の分布を示す図である。 実施例5の削孔機用集塵フード1の場合の入力風速50,60,70m/sに対する、吸引圧に対する吹き出し・吸い込み流量の関係を示す図である。 実施例1,実施例5,比較例1の各削孔機用集塵フードの入力風速50,60,70m/sに対する、吹き出し流量の比較を示す図である。 本発明の実施例6に係る削孔機用集塵フードの(a)平面図及び(b)A-A線断面図である。 図37の削孔機用集塵フードの(a)左斜め上方向から視た透過斜視図及び(b)正面斜め下方向から視た透過斜視図である。 実施例6の削孔機用集塵フード1の場合の入力風速50m/sに対する各吸引圧における流れの場の計算結果を示す図である。 実施例6の削孔機用集塵フード1の場合の入力風速50,60,70m/sに対する、吸引圧に対する吹き出し・吸い込み流量の関係を示す図である。 実施例5,実施例6,比較例1の各削孔機用集塵フードの入力風速50,60,70m/sに対する、(a)吹き出し流量の比較を示す図、及び(b)吸い込み流量の比較を示す図である。 比較例1に係る円筒型集塵フードの(a)平面図及び(b)A-A線断面図である。 比較例2に係るラッパ型集塵フードの(a)平面図及び(b)A-A線断面図である。
以下、本発明を実施するための形態について、図面を参照しながら説明する。
(1)構成
図1は、本発明の実施例1に係る削孔機用集塵フードの(a)平面図及び(b)A-A線断面図である。図2は、図1の削孔機用集塵フードの(a)左斜め上方向から視た斜視図及び(b)正面斜め下方向から視た斜視図である。図1,図2において、削孔機用集塵フード1は、フード部2,吸気管3,及び内フランジ4を備えている。フード部2は、上端が天井部2bで閉塞され且つ下端側に下端開口2cを有する円筒状に形成されている。天井部2bの中央には、ボーリングロッドRが回転自在に挿通されるロッド挿通部2dが貫設されている。吸気管3は、フード部2の側面上部に接続され、該フード部2の内室2aと連通している。吸気管3の出口側の吸気端3aには排気ホースが接続され、吸引ポンプによる吸引排気が行われる(図3参照)。内フランジ4は、フード部2の下端の周縁に、内向きに突出して設けられている。本実施例では、内フランジ4は、フード部2の下端全周に亘って一定幅とされている。
(2)作用効果
図3は、一般的な空気堀りボーリング工程に於ける繰粉輸送系の空気の流れを示す図である。ビット冷却及び繰粉輸送用の空気は、圧縮ポンプ及び圧縮タンクによって圧縮され、ボーリングロッド内の管腔を通して掘鑿孔(ボーリング孔)Hの孔底に送られ、ボーリングロッドの先端のビット(JIS M 0103:2003(ボーリング用機械・器具用語)参照)に設けられた噴射孔から掘鑿孔H内へ噴射される。噴射された圧縮空気は、ビットでの掘鑿により孔底で生じる繰粉(くりこ)(掘屑(ほりくず),ボーリング作業中にビットで砕かれて削孔先端に生じる岩石の砕屑物。)を巻き込んで、固気混相流として掘鑿孔口へと流動し繰粉を掘鑿孔口へ輸送する。この掘鑿孔口から噴射する固気混相流は、掘鑿孔口にボーリングロッドに環装するように設置された削孔機用集塵フード1の内室2aに流入する。削孔機用集塵フード1の吸気管3の吸気端3aには、排気ホースの上流端が接続され、該排気ホースの下流端は、繰粉収集ホッパに接続され、繰粉収集ホッパの内室は、吸気用の吸引ポンプにより高真空度に減圧されている。これにより、削孔機用集塵フード1の内室2aに流入した固気混相流体は、吸気管3から繰粉収集ホッパへと吸引排出され、繰粉は繰粉収集ホッパで捕集され集積される。
従来のラッパ型フード形状の削孔機用集塵フード(特許文献3,4,5参照)では、削孔機用集塵フード下端の拡開した下端部分を、掘鑿孔Hの孔口周囲の地盤Gに密着させて、削孔機用集塵フード下端から外部空間へ固気混相流が流出しないようにして掘鑿作業が行われていた。しかし、この場合、掘鑿作業を行う作業者は、現在の繰粉の性状を掘鑿孔口において直接観察することはできず、繰粉収集ホッパ内に集積された繰粉サンプルを見に行く必要があり、作業効率が悪くなるとともに、繰粉の性状の変化に応じたリアルタイムに掘削作業の変更等の対応が難しくなる。そこで、本発明では、図3に示した様に、削孔機用集塵フード1の下端と孔口周囲の地盤Gとの間に隙間空間Sを設けて、この隙間空間Sから繰粉の性状を観察できるようにする。このとき、隙間空間Sの幅(削孔機用集塵フード1下端と地盤Gとの距離)は、2~5cm程度とされる。通常、吸引ポンプにより削孔機用集塵フード1の吸気管3の吸気端3aは高真空度に設定されるため、隙間空間Sから外部へ固気混相流が噴出することはなく、隙間空間Sを通して外部から削孔機用集塵フード1の内室2aへ外気が吸い込まれる。然し乍ら、繰粉収集ホッパに繰粉が蓄積されてゆくと、吸気管3の吸気端3aの真空度(外気圧と吸引圧との差圧)は徐々に低下してゆき、ある一定の真空度まで低下すると隙間空間Sから部分的に外部へ固気混相流が噴出するようになる。この隙間空間Sから部分的に外部へ固気混相流が噴出するようになる真空度を「噴出開始点」と呼ぶ。噴出開始点から更に真空度が低下してゆくと、隙間空間Sから外部へ噴出する流量が隙間空間Sから内室2aへ吸い込まれる流量を上回るようになり、更に真空度が低下してゆくと、隙間空間Sの全体から外部へ固気混相流が噴出するようになる。隙間空間Sから外部へ噴出する流量と隙間空間Sから内室2aへ吸い込まれる流量とが等しくなる真空度を「流入出均衡点」と呼ぶ。隙間空間Sを開けて削孔機用集塵フード1を使用する場合、隙間空間Sから外部への固気混相流の噴出を抑制するには、この噴出開始点及び流入出均衡点をできる限り低くする(低真空度にする)ことが重要であると考えられる。
また、隙間空間Sから外部への繰粉の噴出の抑制を考える場合、空気の流れの場だけでなく固気混相流内における繰粉の運動も考慮する必要がある。複雑な形状を有する繰粉の固気混相流内における運動を直接計算することは困難であるため、ここでは、繰粉を球体粒子と仮定して考察する。一般に、流体内に於ける球体粒子の運動は、次の式で表される(非特許文献1参照)。
Figure 0007090358000002
ここで、tは時間、Dpは球(繰粉粒子)の直径、vは繰粉粒子の速度ベクトル、uは空気の速度ベクトル、ρp(=2.6~2.7×103[kg/m3])は繰粉粒子の密度、ρf(=1.293[kg/m3])は空気の密度、μ(=1.511×10-5 [m3/s])は空気の動粘度、Fは繰粉粒子に作用する外力、Rは繰粉粒子と空気の相対速度の瞬間値に対する流体抵抗である。式(1)に於いてπDp 3/6は繰粉粒子の体積である。また、式(1)の左辺では、加速する球(繰粉粒子)に対してその球が排除した空気質量の半分だけ見掛けの球の質量が増加するので、球の見掛けの質量m’=(πDp 3/6)(ρp+ρf/2)が用いられている。式(1)の右辺第3項は流体の非定常運動に関する項であり、右辺第4項はBasset項と呼ばれる粒子運動の履歴に関する項である。右辺第3項,第4項は、通常の非定常粒子運動では無視できる。また、空気の密度ρfは繰粉粒子の密度ρpに対して十分小さいので、右辺のρf/2は無視できる。従って、空気流体が極端な非定常状態ではければ、式(1)は次のように簡略化される。
Figure 0007090358000003
ここで、流体抵抗Rは、レイノルズ数Reのみの関数として表される抵抗係数C=C(Re)を用いて次のように表される(非特許文献1,p.205参照)。
Figure 0007090358000004
一方、繰粉粒子に作用する外力Fは、重力、遠心力、静電気力、熱泳動力、拡散動力などが考えられる。地盤の掘鑿時に生じる繰粉粒子の場合、比較的粒径が大きく質量が大きいと考えられるため、外力Fとしては重力mpg及び遠心力Fが支配的であると考えられる。従って、繰粉粒子の運動方程式は次のように表される。
Figure 0007090358000005
ここで、uは空気流体の流線に対する接線方向速度、rは空気流体の流線の曲率半径、r^は空気流体の流線の曲率半径方向の単位ベクトル、z^は鉛直上方向きの単位ベクトルである。つまり、遠心力Fは空気流体の流線の曲率半径方向(外向き)に働く。この式(4a)から、繰粉粒子に作用する遠心力Fを内向き(ボーリングロッドの中心軸向き)としてやることにより、削孔機用集塵フード1の下端と地盤Gとの隙間空間Sから外部への繰粉粒子の噴出を抑制することが出来ると考えられる。
そこで、以下では、削孔機用集塵フード1に掘鑿孔Hから空気が吹き込んだ場合の、隙間空間S付近に於ける流れの方向、及び隙間空間Sから外部空間へ流出する流量を数値計算によって評価することで、隙間空間Sから外部への固気混相流の噴出抑制効果について評価する。本実施例の削孔機用集塵フード1の噴出抑制効果を評価するに当たって、比較対象としては、従来技術で挙げた円筒型フード形状(特許文献1)(図42)とラッパ型フード形状(特許文献3,4,5)の集塵フード(図43)を用いる。
図4に、本実施例の削孔機用集塵フード1の場合の数値計算モデルを示す。今回の評価では、隙間空間Sの幅は20mmとする。尚、周辺外部空間は、隙間から離れた部分は注目部分の流れへの影響が軽微で必要ないので、計算量を減らすために、隙間から遠方の部分は削って省略している。他の形状の集塵フードの場合にもこれと同様の数値計算モデルを使用する。この数値計算モデルにおいて、周辺外部空間は自由流入出境界(相対気圧0 Pa)とし、地面、集塵フード内室の内壁、掘鑿孔内壁、及びボーリングロッド表面は静止壁境界(速度0、圧力勾配0)とし、掘鑿孔最深部の流入境界(inlet)は流速指定境界とし、吸引管出口の流出境界(outlet)は静圧指定境界とする。そして、流入境界(inlet)からの入力流速Uinを特定の値(50m/s,60m/s,70m/s)に固定して、流出境界(outlet)の静圧-poutを0~-5kPaまで段階的に変化させて流れの場を数値計算し、それぞれの(Uin,pout)において、地面と集塵フード下端との間の隙間から流入又は流出する空気の流れの流量を計算する。今回の評価では、流速はマッハ0.3(~100m/s)より小さい領域であるため空気は非圧縮性流体とし、計算アルゴリズムとしてはSIMPLE法(SIMPLE(semi-implicit method for pressure-linked equation) method)を用い、乱流モデルとしては標準k-εモデルを用いて計算を行う。
図5は、実施例1の削孔機用集塵フード1の場合の入力風速50m/sに対する各吸引圧における流れの場の計算結果を示す図である。図6は、円筒型集塵フード(比較例1)の場合の入力風速50m/sに対する各吸引圧における流れの場の計算結果を示す図である。図7は、ラッパ型集塵フード(比較例2)の場合の入力風速50m/sに対する各吸引圧における流れの場の計算結果を示す図である。ここで、「円筒型集塵フード(比較例1)」は、従来技術で挙げた円筒型フード形状(特許文献1)の集塵フードを指し、「ラッパ型集塵フード(比較例2)」は、ラッパ型フード形状(特許文献3,4,5)の集塵フードを指す。また、図5~図7において、背景色の濃淡は速度場を示し、色が濃いほど流速が速いことを示す。また、各図内の白矢印は流れの方向を示す。「xz断面」は、吸気管3の中心軸とボーリングロッドRの中心軸とを含む垂直面(xz面)で切った断面であり、「xy断面(下端隙間中央)」は、集塵フードの下端と地面との隙間の中央の水平面(xy面)で切った断面である。
図6より、円筒型集塵フード(比較例1)においては、掘鑿孔Hから吹き出た空気は、フード部2の内室2aの天井面に衝突して放射状に拡散し、吸気管3の部分ではそのまま吸気管3へと吸い込まれる一方、吸気管3以外の部分では内室2aの側壁に沿ったダウンフローとなっている。吸引圧が大きい場合には、このダウンフローは地面に衝突する前に吸気管3の方向に偏向されて隙間空間Sからの吹き出し流は生じないが、吸引圧が小さい場合には、このダウンフローが地面に衝突して四方に拡散し、隙間空間Sからの吹き出し流が生じる。図7より、ラッパ型集塵フード(比較例2)においては流れの場はより複雑であり、天井面から内室2aの側壁に沿って生じるダウンフローは、側壁が拡開し始める部分で側壁から剥離し、吸引圧が小さい場合には、ほぼ垂直に地面に衝突して四方に拡散し、隙間空間Sからの吹き出し流が生じる。また、側壁の拡開する部分では、吹き出し流の一部が上方に吸い上げられて渦流を生じる。
一方、実施例1の削孔機用集塵フード1の場合、図5より、円筒型集塵フード(比較例1)と同様に、掘鑿孔Hから吹き出た空気は、フード部2の内室2aの天井面に衝突して放射状に拡散し、吸気管3の部分ではそのまま吸気管3へと吸い込まれる一方、吸気管3以外の部分では内室2aの側壁に沿ったダウンフローとなっている。このダウンフローは、内室2aの下端部で内フランジ4に衝突して、水平内向きの流れに偏向されている。吸引圧が小さい場合には、この水平内向きの流れは内フランジ4の内端において大きく旋回して吹き出し流となる。図10に、入力風速50m/s,吸引圧1kPaにおける削孔機用集塵フード1内の流線の様子を示す。吸気管3と反対側(右側)に、隙間空間Sからの強い吹き出し流が見られるが、内フランジ4の内端縁で、内向きの流れから外向きの流れへと大きく旋回していることが分かる。この旋回流では繰粉粒子には大きな内向きの遠心力が働くと考えられる。これにより、隙間空間Sからの繰粉粒子の吹き出しは大きく抑制される。
図8は、実施例1の削孔機用集塵フード1及び円筒型集塵フード(比較例1)の場合の入力風速50,60,70m/sに対する吸引圧に対する吹き出し・吸い込み流量の関係を示す図である。図9は、ラッパ型集塵フード(比較例2)及び円筒型集塵フード(比較例1)の場合の入力風速50,60,70m/sに対する吸引圧に対する吹き出し・吸い込み流量の関係を示す図である。図8,図9において、各グラフの横軸は吸引圧pout(吸気管3の流出境界(outlet)の気圧(≦0Pa)と外部空間の気圧(0Pa)との差圧の絶対値)を表す。縦軸の「吹出・吸込流量」が正の領域は隙間空間Sからの空気の吹き出し流量、負の領域は隙間空間Sからの空気の吸い込み流量を表している。また、正の領域のみで変化する曲線(Flux(out))は隙間空間Sからの吹出流量を示し、負の領域のみで変化する曲線(Flux(in))は隙間空間Sからの吸込流量を示し、正の領域から負の領域へ跨がって変化する曲線(Flux(total))は前記両曲線を足し合わせた隙間全体の吹出・吸込流量を示す。隙間全体の吹出・吸込流量曲線(Flux(total))が0となる吸引圧pout (0)が「流入出均衡点」であり、吹出流量曲線(Flux(out))が0となる吸引圧pout (1)が「噴出開始点」である。(表1)に各集塵フードにおける入力風速50,60,70m/sに対する流入出均衡点及び噴出開始点を示す。
Figure 0007090358000006
図8,図9及び(表1)より、本実施例1の削孔機用集塵フード1は、円筒型集塵フード(比較例1)及びラッパ型集塵フード(比較例2)に比べ、流入出均衡点及び噴出開始点がともに低下しており、各比較例と比べて隙間空間Sから外部への繰粉噴出抑制効果が高いことが分かる。また、比較例1と比較例2を比べると、比較例2よりも比較例1のほうが繰粉噴出抑制効果が高いことが分かる。
図11に、比較例1として示した円筒型集塵フードの入力風速50m/s,吸引圧1000Paでの隙間空間Sの中央の水平面内に於ける圧力場の分布を示す。図11では圧力を色の濃淡で示しており、色が薄い方が低圧、色が濃い方が高圧を示す。図11において、比較例1の円筒型集塵フードでは、領域A,Aにおいて、地面と衝突する強いダウンフローが見られる。そこで、本実施例ではこの領域A,Aを被覆するように、実施例1の円筒型集塵フードの内フランジを変形する。図12に、本発明の実施例2に係る削孔機用集塵フードの(a)平面図及び(b)A-A線断面図を示す。図13に、図12の削孔機用集塵フードの(a)左斜め上方向から視た斜視図及び(b)正面斜め下方向から視た斜視図を示す。図12,図13において、実施例1の削孔機用集塵フードに対応する構成部分には、同符号を附す。本実施例2の削孔機用集塵フードは、実施例1と比べて、内フランジ4の形状のみが異なっている。本実施例2では、内フランジ4の形状として、吸気管3の中心軸とフード部2の中心軸とを含む垂直面(図12(a)のA-A線。以下「フード対称面」という。)に対して対称となるように、円弧状の延出部4a,4aを設けた点が相違する。延出部4a,4aは、フード対称面の左右に、フード部2の中心よりやや吸気管3寄りに偏倚して形成されている。
以上のような構成の実施例2に係る削孔機用集塵フード1について、実施例1と同様にして流れの計算を行った。図14は、実施例2の削孔機用集塵フード1の場合の入力風速50,60,70m/sに対する、吸引圧に対する吹き出し・吸い込み流量の関係を示す図である。図15は、実施例1,実施例2,比較例1の各削孔機用集塵フードの入力風速50,60,70m/sに対する、吹き出し流量の比較を示す図である。また、(表2)に各集塵フードにおける入力風速50,60,70m/sに対する流入出均衡点及び噴出開始点を示す。図14,図15及び表2より、実施例2の削孔機用集塵フード1は、実施例1の削孔機用集塵フード1と比べ、より隙間空間Sからの空気の吹き出しが抑制される傾向にあることが分かる。
Figure 0007090358000007
図16に、本発明の実施例3に係る削孔機用集塵フードの(a)平面図及び(b)A-A線断面図を示す。図17に、図16の削孔機用集塵フードの(a)左斜め上方向から視た透過斜視図及び(b)正面斜め下方向から視た透過斜視図を示す。図16,図17において、実施例1の削孔機用集塵フードに対応する構成部分には、同符号を附す。本実施例2の削孔機用集塵フードは、実施例1と比べて、内フランジ4の形状のみが異なっている。本実施例3では、内フランジ4の形状として、内側に向かって斜め下方に傾斜した形状となるように形成した点が相違する。
以上のような構成の実施例3に係る削孔機用集塵フード1について、実施例1と同様にして流れの計算を行った。図18は、実施例3の削孔機用集塵フード1の場合の入力風速50,60,70m/sに対する、吸引圧に対する吹き出し・吸い込み流量の関係を示す図である。図19は、実施例1,実施例3,比較例1の各削孔機用集塵フードの入力風速50,60,70m/sに対する、吹き出し流量の比較を示す図である。また、(表3)に各集塵フードにおける入力風速50,60,70m/sに対する流入出均衡点及び噴出開始点を示す。図18,図19及び表3より、実施例3の削孔機用集塵フード1は、実施例1の削孔機用集塵フード1と比べ、やや隙間空間Sからの空気の吹き出し抑止効果が劣る傾向が見られるが、比較例1の削孔機用集塵フード1と比べると、より隙間空間Sからの空気の吹き出しが抑制される傾向にあることが分かる。
Figure 0007090358000008
本実施例では、削孔機用集塵フード1のフード部2の形状を、平面視で長円形の長円筒状とした場合について説明する。尚、本実施例では、長円形の具体的な形状としては、帯直円形状のものについて説明するが、長円形形状としては、本発明では楕円形や卵形を採用することもできる。
まず、フード部2を内フランジのない長円筒状とした場合について説明する。図20に、内フランジのない長円筒状フード部を有する削孔機用集塵フード(以下「実施例4.1の削孔機用集塵フード」という。)の(a)平面図及び(b)A-A線断面図を示す。図21に、図20の削孔機用集塵フードの(a)左斜め上方向から視た透過斜視図及び(b)正面斜め下方向から視た透過斜視図を示す。図20,図21において、実施例1の削孔機用集塵フードに対応する構成部分には、同符号を附す。実施例4.1の削孔機用集塵フード1においては、フード部2の形状は平面視で長円形であり、吸気管3は、長円形の長軸方向に張り出した側部に接続されている。ロッド挿通部2dは、天井部2bの中心から吸気管3の接続された側(図20,図21では左側)に偏倚して設けられている。図20,図21では、フード部2の平面視形状は帯直円形(レーストラック形)であり、ロッド挿通部2dは帯直円の左側円弧の中心位置に設けられている。このような構成の実施例4.1の削孔機用集塵フード1について、実施例1と同様にして流れの計算を行った。
図22は、内フランジのない長円筒状フード部を有する削孔機用集塵フード1の入力風速50m/sに対する各吸引圧における流れの場の計算結果を示す図である。図22において、背景色の濃淡は速度場を示し、色が濃いほど流速が速いことを示す。また、各図内の白矢印は流れの方向を示す。「xz断面」は、吸気管3の中心軸とボーリングロッドRの中心軸とを含む垂直面(xz面)で切った断面であり、「xy断面(下端隙間中央)」は、集塵フードの下端と地面との隙間の中央の水平面(xy面)で切った断面である。
図22より、実施例4.1の削孔機用集塵フード1においては、掘鑿孔Hから吹き出た空気は、フード部2の内室2aの天井面に衝突して放射状に拡散し、吸気管3の部分ではそのまま吸気管3へと吸い込まれる一方、吸気管3以外の部分では内室2aの側壁に沿ったダウンフローとなっている。吸引圧が大きい場合には、このダウンフローは地面に衝突する前に吸気管3の方向に偏向されて隙間空間Sからの吹き出し流は生じないが、吸引圧が小さい場合には、このダウンフローが地面に衝突して四方に拡散し、隙間空間Sからの吹き出し流が生じる。特に、吸気管3が接続された側と反対側(右側)の円弧状側面の中央周辺に強いダウンフローが生じている。比較例1の場合(図6,図11参照)と比較すると、フード部2が円筒形の場合には、強いダウンフローはxz面の左右に2つに分かれて生じているが(図11参照)、フード部2が長円筒形の場合には、強いダウンフローは吸気管3が接続された側と反対側(右側)の円弧状側面の中央の一カ所に集中して生じている。図23に、実施例4.1として示した内フランジのない長円筒型集塵フードの入力風速50m/s,吸引圧1000Paでの隙間空間Sの中央の水平面(xy面)内に於ける圧力場の分布を示す。図23では圧力を色の濃淡で示しており、色が薄い方が低圧、色が濃い方が高圧を示す。図23より、実施例4.1の長円筒型集塵フードでは、吸気管3が接続された側と反対側(右側)の領域Aにおいて、地面と衝突する強いダウンフローによる高圧帯が生じており、この高圧帯から地面に沿って流れが拡散していることが分かる。また、領域Aほど強くはないが、吸気管3が接続された側(左側)の半円状の側壁に沿った三日月形状の領域Bにも、ダウンフローによる高圧帯が生じており、この高圧帯から地面に沿って流れが拡散していることが分かる。
図24は、実施例4.1の削孔機用集塵フード1及び円筒型集塵フード(比較例1)の場合の入力風速50,60,70m/sに対する吸引圧に対する吹き出し・吸い込み流量の関係を示す図である。図24において、各グラフの横軸は吸引圧pout(吸気管3の流出境界(outlet)の気圧(≦0Pa)と外部空間の気圧(0Pa)との差圧の絶対値)を表す。縦軸の「吹出・吸込流量」が正の領域は隙間空間Sからの空気の吹き出し流量、負の領域は隙間空間Sからの空気の吸い込み流量を表している。また、正の領域のみで変化する曲線(Flux(out))は隙間空間Sからの吹出流量を示し、負の領域のみで変化する曲線(Flux(in))は隙間空間Sからの吸込流量を示し、正の領域から負の領域へ跨がって変化する曲線(Flux(total))は前記両曲線を足し合わせた隙間全体の吹出・吸込流量を示す。(表4)に各集塵フードにおける入力風速50,60,70m/sに対する流入出均衡点及び噴出開始点を示す。
Figure 0007090358000009
図24及び(表4)より、比較例1の円筒型集塵フードと比べて、実施例4.1の削孔機用集塵フード1では、流入出均衡点は低下するが、噴出開始点は却って増加していることが分かる。これは、比較例1の円筒型集塵フードでは、強いダウンフローが地面と衝突する領域は、図11の領域A,Aのように二カ所に分散されていたが、実施例4.1の削孔機用集塵フード1では図23の中央の領域Aのように一カ所に集中したため、図23の領域Aの気圧が、図11の領域A,Aに比べて、より高圧になりやすいことに起因していると考えられる。
そこで、本実施例4では、この図23の領域Aを被覆するように、内フランジを設ける。図25は、本発明の実施例4に係る削孔機用集塵フードの(a)平面図及び(b)A-A線断面図である。図26は、図25の削孔機用集塵フードの(a)左斜め上方向から視た透過斜視図及び(b)正面斜め下方向から視た透過斜視図である。図25,図26において、実施例1の削孔機用集塵フードに対応する構成部分には、同符号を附す。本実施例4の削孔機用集塵フード1は、フード部2の形状は平面視で長円形であり、吸気管3は、長円形の長軸方向に張り出した側部(図25,図26の左側側部)に接続されている。ロッド挿通部2dは、天井部2bの中心から吸気管3の接続された側(図25,図26では右側)に偏倚して設けられている。図25,図26では、フード部2の平面視形状は帯直円形(レーストラック形)であり、ロッド挿通部2dは帯直円の左側円弧の中心位置に設けられている。内フランジ4は、フード部2の下端の周縁に、全周に亘って内向きに突出して設けられている。本実施例4では、内フランジ4は、吸気管3の側と反対側(図25,図26の右側)に円弧面状の延出部4bが形成されており、吸気管3の側(図25,図26の左側)に三日月形状の延出部4cが形成されている。円弧状の延出部4bは、図23の領域Aの部分を被覆するように設けたものであり、三日月形状の延出部4cは図23の領域Bの部分を被覆するように設けたものである。
以上のような構成の実施例4の削孔機用集塵フード1について、実施例1と同様にして流れの計算を行った。図27は、実施例4の削孔機用集塵フード1の場合の入力風速50m/sに対する各吸引圧における流れの場の計算結果を示す図である。図28は、実施例4の削孔機用集塵フード1の場合の入力風速50m/sに対する各吸引圧における流線の計算結果を示す図である。図27,図28より、吸引圧0Paでは、フード部2の下端と地面との間の隙間空間S全体から空気の吹き出しが生じているが、流線を見ると、フード部2の内室に沿って生じるダウンフローが内フランジ4で内向きの流れとなり、この内向きの流れが内フランジ4の内端でほぼ180度旋回して外向きの流れとなって隙間空間Sから吹き出している。従って、このダウンフローによって輸送される繰粉には、内フランジ4の内端付近で強い遠心力が働くため、隙間空間Sから外部への吹き出しは抑制される。吸引圧400Pa付近では、内フランジ4の延出部4bで内向きに偏向された流れが強くなるが、吸気管3からの吸引圧は弱く、この偏向された内向きの流れがボーリングロッドRの左右両側に分かれて、隙間空間Sを通過して外部へ吹き出している。従って、この状態が最も繰粉の吹き出しが生じ易いと考えられる。さらに吸引圧が増加して吸引圧800Pa以上になると、内フランジ4の延出部4bで内向きに偏向されたダウンフローは、吸気管3からの吸引圧により、ボーリングロッドRの付近で上向きの流れに偏向されて吸気管3へと向かう流れとなる。さらに、内フランジ4の延出部4bの内端付近では、内フランジ4の延出部4bで内向きに偏向されたダウンフローによってエジェクタ効果が生じて、隙間空間Sを通して外部空間から内室2aへ誘導される流れが形成されている。このエジェクタ効果によって、より繰粉の吹き出しが抑制されると考えられる。
図29は、実施例4の削孔機用集塵フード1の場合の入力風速50,60,70m/sに対する、吸引圧に対する吹き出し・吸い込み流量の関係を示す図である。図30は、実施例1,実施例4,比較例1の各削孔機用集塵フードの入力風速50,60,70m/sに対する、吹き出し流量の比較を示す図である。また、(表5)に各集塵フードにおける入力風速50,60,70m/sに対する流入出均衡点及び噴出開始点を示す。図29,図30及び(表5)より、実施例4の削孔機用集塵フード1は、実施例1の削孔機用集塵フード1と比べると、流入流量及び噴出開始点はほぼ同程度まで抑えられており、流入出均衡点は、実施例1の削孔機用集塵フード1よりも低下している。これは、実施例4の削孔機用集塵フード1は、実施例1の削孔機用集塵フード1よりも流入流量が増加するためである。従って、実施例4の削孔機用集塵フード1は、実施例1の削孔機用集塵フード1よりも、より隙間空間Sからの空気の吹き出しが抑制されることが分かる。
Figure 0007090358000010
本実施例5では、吸気管3の接続部形状を改良することにより、繰粉の吹き出し抑制を図った削孔機用集塵フード1について説明する。図31に、本発明の実施例5に係る削孔機用集塵フードの(a)平面図及び(b)A-A線断面図を示す。図32に、図31の削孔機用集塵フードの(a)左斜め上方向から視た透過斜視図及び(b)正面斜め下方向から視た透過斜視図を示す。図31,図32において、実施例1の削孔機用集塵フードに対応する構成部分には、同符号を附す。本実施例5の削孔機用集塵フードは、実施例1と比べて、吸気管3の接続部形状のみが異なる。本実施例5の吸気管3は、フード部2と接続された接続部3bの内径が、フード部2の内室2aに向かって拡開する漏斗状に形成されれいる。
以上のような構成の実施例5に係る削孔機用集塵フード1について、実施例1と同様にして流れの計算を行った。図33は、実施例5の削孔機用集塵フード1の場合の入力風速50m/sに対する各吸引圧における流れの場の計算結果を示す図である。図33において、背景色の濃淡は速度場を示し、色が濃いほど流速が速いことを示す。また、各図内の白矢印は流れの方向を示す。「xz断面」は、吸気管3の中心軸とボーリングロッドRの中心軸とを含む垂直面(xz面)で切った断面であり、「xy断面(下端隙間中央)」は、集塵フードの下端と地面との隙間の中央の水平面(xy面)で切った断面である。
図33より、吸気管3のフード部2との接続部を、フード部2側に向かって拡開する漏斗状とすることで、フード部2の内室2aから吸気管3への流れがスムーズとなり、実施例1の場合よりも、フード部下端の隙間空間から吹き出し難くなることが分かる。これをより明確に示すため、図34に、入力風速50m/s,吸引圧1kPaにおける実施例1及び実施例5の削孔機用集塵フード1のxz断面における圧力場及び流れ方向の分布を示す。図34において、背景色が圧力場を示し、色が薄いほど低圧であることを示す。また、矢印の向きが流れの方向、矢印の大きさが流速を示す。図34(a)は実施例1の削孔機用集塵フード1の圧力場及び流れ方向の分布、図34(b)は実施例5の削孔機用集塵フード1の圧力場及び流れ方向の分布を示している。実施例1の削孔機用集塵フード1では、吸気管3のフード部2との接続部において流れの渋滞が生じ、この接続部において急な圧力勾配が生じるため、フード部2の内室2aの気圧は吸気管3の管腔内の気圧に比べて大きく高くなる。一方、実施例5の削孔機用集塵フード1では、吸気管3のフード部2との接続部において順圧力勾配の流れとなっており、漏斗状の接続部の入口から出口に向かって層流が維持されて流路抵抗が小さくなり、この接続部における圧力勾配が緩やかになる。これにより、フード部2の内室2aの全体的な気圧は、実施例1の場合に比べて低下するため、実施例1の場合よりも、フード部下端の隙間空間からの吹き出しが生じにくくなると考えられる。
図35は、実施例5の削孔機用集塵フード1の場合の入力風速50,60,70m/sに対する、吸引圧に対する吹き出し・吸い込み流量の関係を示す図である。図36は、実施例1,実施例5,比較例1の各削孔機用集塵フードの入力風速50,60,70m/sに対する、吹き出し流量の比較を示す図である。図35,図36において、各グラフの横軸は吸引圧pout(吸気管3の流出境界(outlet)の気圧(≦0Pa)と外部空間の気圧(0Pa)との差圧の絶対値)を表す。縦軸の「吹出・吸込流量」が正の領域は隙間空間Sからの空気の吹き出し流量、負の領域は隙間空間Sからの空気の吸い込み流量を表している。また、正の領域のみで変化する曲線(Flux(out))は隙間空間Sからの吹出流量を示し、負の領域のみで変化する曲線(Flux(in))は隙間空間Sからの吸込流量を示し、正の領域から負の領域へ跨がって変化する曲線(Flux(total))は前記両曲線を足し合わせた隙間全体の吹出・吸込流量を示す。また、(表6)に各集塵フードにおける入力風速50,60,70m/sに対する流入出均衡点及び噴出開始点を示す。図35,図36及び(表6)より、本実施例5の削孔機用集塵フード1は、円筒型集塵フード(比較例1)及び内フランジ付円筒型集塵フード(実施例1)に比べ、流入出均衡点及び噴出開始点がともに低下しており、各比較例と比べて隙間空間Sから外部への繰粉噴出抑制効果が高いことが分かる。また、実施例1と実施例5を比べると、実施例1よりも実施例5のほうが繰粉噴出抑制効果が高いことが分かる。
Figure 0007090358000011
図37に、本発明の実施例6に係る削孔機用集塵フードの(a)平面図及び(b)A-A線断面図を示す。図38に、図37の削孔機用集塵フードの(a)左斜め上方向から視た透過斜視図及び(b)正面斜め下方向から視た透過斜視図を示す。図37,図38において、実施例4,実施例5の削孔機用集塵フードに対応する構成部分には、同符号を附す。本実施例6の削孔機用集塵フードは、実施例4と比べて、吸気管3の接続部形状のみが異なる。本実施例6の吸気管3は、フード部2と接続された接続部3bの内径が、フード部2の内室2aに向かって拡開する漏斗状に形成されれいる。
以上のような構成の実施例6に係る削孔機用集塵フード1について、実施例1と同様にして流れの計算を行った。図39は、実施例6の削孔機用集塵フード1の場合の入力風速50m/sに対する各吸引圧における流れの場の計算結果を示す図である。図39において、背景色の濃淡は速度場を示し、色が濃いほど流速が速いことを示す。また、各図内の白矢印は流れの方向を示す。「xz断面」は、吸気管3の中心軸とボーリングロッドRの中心軸とを含む垂直面(xz面)で切った断面であり、「xy断面(下端隙間中央)」は、集塵フードの下端と地面との隙間の中央の水平面(xy面)で切った断面である。
図39より、実施例5と同様、吸気管3のフード部2との接続部を、フード部2側に向かって拡開する漏斗状とすることで、フード部2の内室2aから吸気管3への流れがスムーズとなり、実施例1の場合よりも、フード部下端の隙間空間から吹き出し難くなることが分かる。
図40は、実施例6の削孔機用集塵フード1の場合の入力風速50,60,70m/sに対する、吸引圧に対する吹き出し・吸い込み流量の関係を示す図である。図41は、実施例5,実施例6,比較例1の各削孔機用集塵フードの入力風速50,60,70m/sに対する、(a)吹き出し流量の比較を示す図、及び(b)吸い込み流量の比較を示す図である。図40,図41において、各グラフの横軸は吸引圧pout(吸気管3の流出境界(outlet)の気圧(≦0Pa)と外部空間の気圧(0Pa)との差圧の絶対値)を表す。縦軸の「吹出・吸込流量」が正の領域は隙間空間Sからの空気の吹き出し流量、負の領域は隙間空間Sからの空気の吸い込み流量を表している。また、正の領域のみで変化する曲線(Flux(out))は隙間空間Sからの吹出流量を示し、負の領域のみで変化する曲線(Flux(in))は隙間空間Sからの吸込流量を示し、正の領域から負の領域へ跨がって変化する曲線(Flux(total))は前記両曲線を足し合わせた隙間全体の吹出・吸込流量を示す。また、(表7)に各集塵フードにおける入力風速50,60,70m/sに対する流入出均衡点及び噴出開始点を示す。図40,図41及び(表7)より、本実施例6の削孔機用集塵フード1は、円筒型集塵フード(比較例1)に比べ、流入出均衡点及び噴出開始点がともに低下しており、各比較例と比べて隙間空間Sから外部への繰粉噴出抑制効果が高いことが分かる。また、実施例5と実施例6を比べると、繰粉噴出抑制効果は同程度であることが分かる。但し、図41(b)の吸い込み流量のグラフでは、実施例6の削孔機用集塵フード1は、実施例5の削孔機用集塵フード1よりもより吸い込み流量が大きくなる。
Figure 0007090358000012
1 削孔機用集塵フード
2 フード部
2a 内室
2b 天井部
2c 下端開口
2d ロッド挿通部
3 吸気管
3a 吸気端
4 内フランジ
4a,4b,4c 延出部
R ボーリングロッド
H 掘鑿孔
G 地盤
S 隙間空間

Claims (3)

  1. 上端が天井部で閉塞され且つ下端が開口する筒状に形成され、前記天井部にボーリングロッドが回転自在に挿通されるロッド挿通部を有するフード部と、
    前記フード部の側面に接続され、該フード部の内室と連通する吸気管と、
    前記フード部の開口する下端の周縁に、内向きに突出して設けられた内フランジと
    を備え
    前記フード部は、平面視で長円形の長円筒形に形成され、
    前記吸気管は、前記フード部の長円形断面の長軸方向に張り出した側部に接続されており、
    前記ロッド挿通部は、前記天井部中心から前記吸気管の接続された側に偏倚して設けられており、
    前記内フランジは、前記フード部の長円形断面の長軸を通る垂直面を対称面として面対称な形状であり、且つ、前記内フランジは、前記フード部の長円形断面の長軸方向に張り出した左右の側部のうち前記吸気管の接続された側とは反対側の側部下端における延出幅が、前記フード部の他の下端部分における延出幅と比べて幅広に形成されていることを特徴とする削孔機用集塵フード。
  2. 前記フード部は、平面視で帯直円形であり、
    前記内フランジは、
    前記吸気管が接続された側と反対側の前記フード部側面の半円形状の下端縁に、内側に向かって円弧形状に張り出すように延出して形成された円弧形延出部(4b)と、
    前記吸気管が接続された側の前記フード部側面の半円形状の下端縁に、外側に向かって凹湾する三日月形状に張り出すように延出して形成された三日月形延出部(4c)と、
    を備えていることを特徴とする請求項1記載の削孔機用集塵フード。
  3. 前記吸気管は、前記フード部と接続された接続部の内径が、前記フード部の内室に向かって拡開する漏斗状に形成されていることを特徴とする請求項1又は2記載の削孔機用集塵フード。
JP2021063818A 2021-04-02 2021-04-02 削孔機用集塵フード Active JP7090358B1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021063818A JP7090358B1 (ja) 2021-04-02 2021-04-02 削孔機用集塵フード

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021063818A JP7090358B1 (ja) 2021-04-02 2021-04-02 削孔機用集塵フード

Publications (2)

Publication Number Publication Date
JP7090358B1 true JP7090358B1 (ja) 2022-06-24
JP2022158718A JP2022158718A (ja) 2022-10-17

Family

ID=82155935

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021063818A Active JP7090358B1 (ja) 2021-04-02 2021-04-02 削孔機用集塵フード

Country Status (1)

Country Link
JP (1) JP7090358B1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5760992U (ja) * 1980-09-25 1982-04-10
JPS57123893U (ja) * 1981-01-21 1982-08-02
JPS57151490U (ja) * 1981-03-16 1982-09-22
JPS6216189U (ja) * 1985-07-12 1987-01-30
JPH1150776A (ja) * 1997-07-31 1999-02-23 Matsuda Astec Kk さく岩機
JP2005220609A (ja) * 2004-02-05 2005-08-18 Eito Kogyo Kk 掘削具、掘削装置、粉塵吸引手段、斜坑穴掘削装置、立坑掘削システム

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5760992U (ja) * 1980-09-25 1982-04-10
JPS57123893U (ja) * 1981-01-21 1982-08-02
JPS57151490U (ja) * 1981-03-16 1982-09-22
JPS6216189U (ja) * 1985-07-12 1987-01-30
JPH1150776A (ja) * 1997-07-31 1999-02-23 Matsuda Astec Kk さく岩機
JP2005220609A (ja) * 2004-02-05 2005-08-18 Eito Kogyo Kk 掘削具、掘削装置、粉塵吸引手段、斜坑穴掘削装置、立坑掘削システム

Also Published As

Publication number Publication date
JP2022158718A (ja) 2022-10-17

Similar Documents

Publication Publication Date Title
KR20010014570A (ko) 싸이클론 집진장치의 압력손실 저감 장치
CN109025864A (zh) 钻孔干式钻进的除尘系统及其除尘方法
JP7090358B1 (ja) 削孔機用集塵フード
US20230226477A1 (en) Adjustable abrasive and dust separator
CN107906371A (zh) 砂浆管输压力缓释系统
CN106362948A (zh) 颗粒筛选设备
JP5879423B1 (ja) 破砕機の粉塵飛散防止用カバー
CN105392595B (zh) 分离器装置、切割机以及用于分离碎屑和冷却剂的方法
CA1062245A (en) Drill cuttings separation and control apparatus
JPH1037651A (ja) 穿孔装置のプレクリーナ
JP4874408B2 (ja) 塵埃分離装置、及びそれを用いた塵埃除去装置
CN110522342A (zh) 手持式表面清洁装置
JPS59145079A (ja) 粉体粒子の風力分級装置
JP3921258B2 (ja) ブラスト装置
JP6328229B2 (ja) 分級機
CN210080061U (zh) 一种空气选粉装置
ATE241050T1 (de) Saugbagger
CN208592080U (zh) 一种风幕式粮食除尘装置
CN106513312A (zh) 射流分级装置
JP6972385B2 (ja) 遠心送風機
CN209286945U (zh) 一种设置旋风分离器的冷却除尘风机
CN207255827U (zh) 一种抽气式铣刀冷却装置
CN207429972U (zh) 除尘装置和制砂生产线
CN217093962U (zh) 一种旋风分离器
JP3542303B2 (ja) フロス分離器

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211217

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20211217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220303

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220328

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220531

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220607

R150 Certificate of patent or registration of utility model

Ref document number: 7090358

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150