JP7077888B2 - データ処理装置および埋設物検出装置 - Google Patents
データ処理装置および埋設物検出装置 Download PDFInfo
- Publication number
- JP7077888B2 JP7077888B2 JP2018171738A JP2018171738A JP7077888B2 JP 7077888 B2 JP7077888 B2 JP 7077888B2 JP 2018171738 A JP2018171738 A JP 2018171738A JP 2018171738 A JP2018171738 A JP 2018171738A JP 7077888 B2 JP7077888 B2 JP 7077888B2
- Authority
- JP
- Japan
- Prior art keywords
- unit
- data
- peak
- change
- depth
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Landscapes
- Geophysics And Detection Of Objects (AREA)
- Radar Systems Or Details Thereof (AREA)
Description
従来のウォールスキャナでは、フーリエ変換による周波数解析を用いたノイズ成分の除去方法や各軸方向の縞状ノイズ成分を抽出し、データから除去するフィルタリング処理が用いられている。
本発明の目的は、埋設物の周囲に材質変化がある場合でもノイズ成分を除去することが可能であり、リアルタイムに埋設物を検出することが可能なデータ処理装置および埋設物検出装置を提供することである。
また、ノイズを除去することにより、信号強度のピークをより正確に検出することができる。
これにより、例えば信号強度の減少中に突然増加することによりノイズが発生したと判定することができ、そのノイズを除去することができる。
これにより、例えば信号強度が減少している最中に突然増加した場合に、その増加を減少とすることができ、そのノイズを除去することができる。
このように、ノイズの除去した後の増減のデータを用いて信号強度のピークを検出するため、より正確にピークの検出を行うことができる。
このように、移動方向に連続してピークが続き、更に、その形状が所定形状である場合に、埋設物が存在していると判定することができる。なお、所定形状は、例えば山形状が挙げられる。
これにより、ノイズ処理後に判定を行うため、より正確にグループが所定形状であるか否かを判定することができる。
これにより、例えば深さ位置が深くなっている最中に突然浅くなった場合に、その浅くなる変化を深くなる変化とすることができ、そのノイズを除去することができる。
これにより、例えば深さ位置が深くなっている最中に突然浅くなった場合に、その浅くなる変化を深くなる変化とすることができ、そのノイズを除去することができる。
このように3つの条件を満たす場合に、山形状の波形であると判定でき、埋設物の有無を判定することができる。
埋設物の形状によっては波形が平らな山形状になる場合(第1条件および第2条件は満たすが、第3条件を満たさない場合)があるが、そのような場合であっても、信号強度に基づいて埋設物の有無を判定することができる。
このように山形状の波形のピーク位置を検出することにより、埋設物の位置を検出することができる。
<1.構成>
(1-1.埋設物検出装置1の概要)
図1は、本発明に係る実施の形態における埋設物検出装置1をコンクリート100上に配置した状態を示す斜視図である。図2は、本実施の形態における埋設物検出装置1の概略構成を示すブロック図である。
本体部2の上面に把手3が設けられている。本体部2の下部に4つの車輪が回転自在に取り付けられている。作業者は、コンクリート100内部の埋設物を検出する際には、把手3を把持して車輪4を回転させながら埋設物検出装置1をコンクリート100の表面100a上で移動させる。
エンコーダ7は、車輪4に設けられており、車輪4の回転に基づいてインパルス制御モジュール5に反射波の受信タイミングを制御するための信号を送信する。
メイン制御モジュール6は、インパルス制御モジュール5で受信された反射波に関するデータを受け取り、埋設物の検出を行う。
表示部8は、本体部2の上面に設けられており、埋設物101a、101b、101c、101dの位置を示す画像を表示する。
図3は、インパルス制御モジュール5の構成を示すブロック図である。
インパルス制御モジュール5は、制御部10と、送信アンテナ11と、受信アンテナ12と、パルス発生部13と、ディレイ部14と、ゲート部15と、を有する。
これにより、インパルス制御モジュール5は、エンコーダか7からの入力をトリガとして、送信アンテナ11から電磁波を複数回出力する。そして、インパルス制御モジュール5は、ディレイ部14によるディレイICを用いて受信タイミングを遅らせることで受信アンテナ12との距離ごとの受信データを取得することができる。
また、図4に示すデータは、エンコーダ7の入力があった後からエンコーダ7の入力が次にあるときまでのデータである。受信タイミングを除々に遅らせることによって、受信アンテナ12からの距離が長い位置からの反射波を受信するが、エンコーダ7からの入力があると、受信タイミングの遅延が元に戻され、再び受信タイミングを除々に遅らせる。すなわち、移動方向Aにおける所定の計測位置(エンコーダ7からの入力があった位置)における深さ方向Bの反射波を受信することになる。このような図4に示すエンコーダ7の入力があった後から次のエンコーダの入力があるまでの反射波のデータを1ライン分のデータという。制御部10は、1ライン分のデータが貯まるごとに、その1ライン分のRF(Radio Frequency)データをメイン制御モジュール6へ送信する。
なお、埋設物検出装置1は動かされているため、計測位置は厳密に同じ位置ではなく、深さ方向Bもコンクリート100の表面100aに対して厳密に垂直な方向ではない。
図5は、メイン制御モジュール6の構成を示すブロック図である。
メイン制御モジュール6は、受信部21と、RFデータ管理部22と、前処理部23と、埋設物判定部24と、判定結果登録部25と、表示制御部26と、を有する。
RFデータ管理部22は、受信部21が受信した1ライン分のRFデータを記憶する。
前処理部23は、1ライン分のデータ毎に、信号強度のピークを検出する。
埋設物判定部24は、前処理部23において検出された1ライン分のRFデータごとの信号強度のピークを用いて、埋設物の有無の判定を行う。また、埋設物判定部24は、埋設物101の位置を検出する。
判定結果登録部25は、埋設物判定部24によって検出された埋設物の位置をRFデータ管理部22に登録する。
表示制御部26は、移動方向Aと深さ方向Bの平面において信号強度を色で階調処理した画像、および埋設物101の位置を表示部8に表示させる制御を行う。
前処理部23は、ゲイン調整部31と、差分処理部32と、移動平均処理部33と、一次微分処理部34と、チャタリング除去部35と、ピーク検出部36と、を有する。
ゲイン調整部31は、1ラインごとにRFデータに対してゲイン調整を行う。送信アンテナ11および受信アンテナ12からの距離が大きくなる(ディレイ時間が大きくなると)受信感度が弱くなるため、後述する画像を表示する際に白と黒の濃淡が少なくなる。そのため、ゲイン調整部31は、深さ位置が深いほど、信号強度に掛ける(増幅する)ゲイン値(×1~×20)を大きくする。
差分処理部32は、ゲイン調整したRFデータから、基準点との差分を算出することによって、変化した箇所のRFデータを抽出する。図7(a)は、差分処理を行う前の画像データを示す図であり、図7(b)は、差分処理を行った後の画像データを示す図である。図7(a)は、図6(b)を同じ画像データである。
移動平均処理部33は、差分処理を行ったRFデータについて、1ラインごとに移動平均処理を行う。本実施の形態では、例えば8点平均で移動平均処理を行うことができる。
図8(a)は、移動平均処理を行った画像データを示す図であり、図8(b)は、図8(a)のラインL1のRFデータの信号強度を示す図である。図8(b)の横軸は深さ位置を示し、矢印方向に沿って深くなっている。図8(b)の縦軸は信号強度を示し、矢印方向に沿って信号強度が強くなっている。
一次微分処理部34は、下向きのピークを検出するために、差分処理が行われたデータに対して一次微分処理を行う。一次微分処理部34は、所定の深さ位置における信号強度から、次の深さ位置における信号強度への差分を算出する。
図9は、図8(b)のP10~P3の間の拡大図である。図10は、図9のグラフの信号強度および一次微分処理の結果の表150を示す図である。後述するが、図10には、チャタリング処理の結果と、グラフ151も示されている。
シーケンスナンバーnの差分は、シーケンスナンバーn+1の信号強度からシーケンスナンバーnの信号強度を引いた値となっている。例えば、シーケンスナンバーが7番の差分は、8番目の信号強度(416)から7番目の信号強度(432)を引いた値(-15)となっている。
このように、一次微分処理部34は、1ラインの全てのデータに対して一次微分処理を行う。
チャタリング除去部35は、一次微分処理が行われた結果に対してチャタリング除去処理を行う。
すなわち、チャタリング除去部35は、所定の深さ位置から、より深い側の次の深さ位置への信号強度の変化が増加であるか減少であるかを判定する。
一方、チャタリングの発生した11番目の変化(+/-)の値は1であり、その次の12番目の変化(+/-)の値は-1であり、13番目の変化(+/-)の値は-1である。そのため、チャタリング除去部35は、10番目のチャタリング処理後の変化(+/-)の値である-1を、11番目の変化(+/-)の値として保持する。
また、チャタリングの発生した35番目の変化(+/-)の値は1であり、その次の36番目の変化(+/-)の値は-1であり、37番目の変化(+/-)の値は1である。そのため、チャタリング除去部35は、34番目のチャタリング処理後の変化(+/-)の値である-1を、35番目の変化(+/-)の値として保持する。
以上のようなチャタリング除去部35によるチャタリング除去処理が、ラインのRFデータ毎に行われる。
ピーク検出部36は、チャタリング除去処理を行った後の1ラインのRFデータのピークを検出する。本実施の形態では、下向きのピーク(黒色のピーク)が埋設物の位置を示すため、下向きのピークを検出する。このため、ピーク検出部36は、チャタリング除去処理後の変化が、負の変化から正の変化に変わるポイントをピークとして検出する。具体的には、図10の表T1に示すように、シーケンスナンバー36におけるチャタリング除去処理後の変化が負(-)の変化となっており、シーケンスナンバー37におけるチャタリング除去処理後の変化が正(+)の変化となっていることから、ピーク検出部36は、シーケンスナンバー37の深さ位置において信号強度が下向きのピークとなっていると検出する。
埋設物判定部24は、図5に示すように、グルーピング部51と、チャタリング除去部52と、形状判定部53と、信号強度判定部54と、を有する。グルーピング部51は、ピーク検出部36によって検出された複数のピークのうち、移動距離に対して連続したピークをグループとして検出する。チャタリング除去部52は、グループのチャタリングを除去する。形状判定部53は、グループが山形状であるか否かに基づいて埋設物の有無を判定し、埋設物が存在すると判定した場合には、グループにおける深さ位置のピークを検出し、埋設物の位置とする。信号強度判定部54は、山形状と判定されなかった場合に、グループの信号強度に基づいて埋設物の有無を判定する。
グルーピング部51は、ピーク検出部36によるピーク検出結果をグルーピングする。グルーピング部51は、過去のラインから順番にピーク検出結果の有無を確認する。その結果を始点として進行方向に対して連続するピーク検出の有無をチェックする。図11は、前処理部23による前処理後の画像データを示す図である。図11では、今回取得したラインL2が示されている。図12(a)~(d)は、グルーピング部51による処理を説明するための図である。
図12(a)は、ピークの位置QSを見つけた状態を示す。図12(b)は、次のピークの位置Q2が、現在のラインのピークの位置QSの移動方向Bの5pixel以内且つ、上側5pixel以内に存在する場合を示す。図12(b)では、ピークの位置が移動方向において上昇(浅い側に移動)していることになる。図12(c)は、次のラインのピークの位置Q2が、現在のラインのピークの位置QSの移動方向Bの5pixel以内且つ、下側5pixel以内に存在する場合を示す。図12(c)では、ピークの位置が移動方向において下降(深い側に移動)していることになる。
そして、図12(d)に示すように、次のラインのピークが、現在のラインのピークの位置Q3の移動方向Bの5pixel以内且つ、上下の5pixel以内に存在しない場合には、ピークの位置Qeをグループの終点(図11で■で示す)とする。
以上のように、グルーピング部51は、ピークの位置のグルーピングを行う。図11では、黒丸と黒四角の間が線で繋がれたグループ(例えばグループG1)が示されている。
次に、チャタリング除去部52について説明する。後述する形状判定部53によってグループの形状の判定が行われるが、その前にチャタリングの除去が行われる。図13は、グルーピングされた複数のピークの位置を示す図である。図13では、移動後方Bにおいて、始点であるピークの位置Qsを1番目(No.1)とすると、周囲が上昇傾向であるのにもかかわらず、5番目(No.5)のピークの位置Q5が、4番目(No.4)のピークの位置Q4よりも下方(深い方向)に移動しており、チャタリングであることがわかる。このようなチャタリングがチャタリング除去部52によって除去される。
図14の表152に示すように、1番目と2番目の間、2番目と3番目の間、3番目と4番目の間、5番目と6番目の間、6番目と7番目の間、7番目と8番目の間が正の変化にもかかわらず、チャタリングのために4番目と5番目の間が負の変化となっている。
一方、チャタリング除去部52は、2~3番目の変化が正(+)であり、3~4番目の変化が正(+)であり、4~5番目の変化が負(-)であるため、2~3番目のチャタリング除去処理後の変化は、チャタリング除去処理後の1~2番目の変化の正(+)が保持される。
なお、チャタリング除去部52は、11~12番目の変化と12~13番目の変化と13~14番目の変化が全て正(-)であるため、11~12番目の変化を負(-)と判断する。
形状判定部53は、チャタリング除去処理後のグループの形状が所定の山形状であるか否かを判定する。図15は、山形状と判定するための条件を示す図である。形状判定部53は、第1条件、第2条件、および第3条件の3つの条件を満たす場合に、グループが山形状であると判定する。
形状判定部53は、これら3つの条件を満たす場合に、グループの形状が山形状であると判定し、埋設物が存在すると判定する。
また、形状判定部53は、第1~第3条件までの判定を行う際に、グループの位置の上向きのピークも検出する。
形状判定部53は、最も浅くなっている位置をグループの頂点とし、その位置を記憶する。
形状判定部53は、位置の変化が増加から減少に変わるポイントをグループの頂点とする。例えば、図14では、7番目から8番目の変化が正(+)であり、8番目から9番目の変化が負(-)であるため、図13に示すように、8番目の位置がピークであると判定される。このピークの位置に埋設物が存在することが検出される。
埋設物の形状・材質の違いによって画像データ内の山の形状、特に頂点付近が平らになる場合があるため、山形状と判定するための条件(第1条件、第2条件、第3条件)に当て嵌まらない場合がある。例えば、図16に示すように、石膏ボード201越しに板状の木材202をスキャンした場合、図17の画像データのR3に示すように、頂点が平らになる。すなわち、図18の画像データの模式図に示すように、第1条件および第2条件を満たすが、上下方向の幅が7pixelであるため第3条件を満たさない。
信号強度判定部54は、グループにおける全ての受信強度の強さ(AD値)を確認する。なお、本実施の形態では、黒色が濃く出る場合には、AD値が小さい値(マイナス方向)になるように設定されている。
そして、グルーピングした全てのAD値が所定の閾値よりも小さい場合、すなわち、閾値よりも黒色が濃く出る場合に、埋設物が存在すると判断する。
判定結果登録部25は、埋設物判定部24で判定した結果(グループ、ピーク位置など)をRFデータ管理部22に登録する。
表示制御部26は、データ画像にグループ、ピーク位置などを示して、表示部8に表示させる。図19は、表示部8に表示させる画像を示す図である。図19では、縦軸が深さ方向を示し、横軸が移動距離を示す。また、グループが線として示され、グループにおける始点が黒色の三角で示され、終点が黒色の四角で示されている。また、形状判定部53で検出されたピークが×印で示されている。
次に、本発明にかかる実施の形態の埋設物検出装置1の動作について説明する。
(2-1.インパルス制御モジュール処理)
図20は、インパルス制御モジュール5の処理を示すフロー図である。
インパルス制御モジュール処理が開始されると、ステップS1において、エンコーダ7から入力されると、ステップS2において、インパルス出力制御が開始され、パルス発生部13からのパルスに基づいて送信アンテナ11から一定周期(例えば、1MHz)で電磁波のパルスが出力される。
次に、ステップS4において、制御部10は、受信アンテナ12からゲート部15を介して受信したRFデータをAD変換する。
次に、ステップS6において、AD変換されたRFデータをメイン制御モジュール6に送信する。
そして、ステップS7において、インパルス制御が停止される。
次に、作業者によって埋設物検出装置1が移動方向Aに移動されると、エンコーダ7からの入力があり、ステップS2~S7の制御が行われ、次の1ライン分のデータが取得され、メイン制御モジュール6に送信される。
図21は、メイン制御モジュール6の処理を示すフロー図である。
次に、ステップS13において、埋設物判定部24によって埋設物判定処理が行われる。
次に、ステップS14において、埋設物判定部24によって判定された結果が、判定結果登録部25によって登録される。
次に、各ステップにおける処理について詳しく説明する。
図22は、前処理を示すフロー図である。
次に、ステップS22において、差分処理部32が、基準の値との差分を算出し、RFデータの変化が抽出される。
次に、ステップS23において、移動平均処理部33が差分処理された1ライン分のRFデータに対して移動平均処理を行う。例えば、8点平均を用いて移動平均処理を行うことができる。
次に、ステップS25において、チャタリング除去部35が、一次微分処理後のデータに対して、チャタリング除去処理を行う。
最後に、ステップS26において、ピーク検出部36が、チャタリング除去処理が行われた判定結果を用いて信号強度のピークを検出する。
次に、図22のステップS21のゲイン調整処理について説明する。図23は、ゲイン調整処理を示すフロー図である。
そして、ゲイン調整部31がシーケンスナンバー1の信号強度のデータについてステップS32の処理を行った後、制御はステップS33に進む。
ステップS33では、シーケンスナンバーが最大値であるか否かが判定され、シーケンスナンバーが最大値でない場合には、制御はステップS31に戻り、シーケンスナンバーが1つ繰り上げられ、シーケンスナンバー2の受信データが選択される。そして、シーケンスナンバー2のデータについてステップS32の処理が行われる。
ステップS32では、各々シーケンスナンバーの信号強度のデータに対して所定倍率が掛けられる。
例えば1ラインのRFデータのdelay時間の最も短いシーケンスNo.1のデータ(最も浅い位置のデータともいえる)に対して所定倍率を掛けると、シーケンスNo.1の次にdelay時間の短いシーケンスNo.2のデータに対して所定倍率が掛けられ、シーケンスNoが最大になるまでシーケンスナンバー順に所定倍率が掛けられる。具体的には、深さ方向に対して倍率を大きくしており、浅い側から1~25pixelのデータに対しては倍率を1倍とし、26~50pixelのデータに対しては倍率を2倍とし、51~75pixelのデータに対しては倍率を3倍とし、順に倍率を大きくし、500~511pixelのデータに対しては倍率を21倍と設定することができる。
このゲイン調整処理によって、図6(b)に示す画像データのように、明暗を明確にすることができる。
次に、図22のステップS22の差分処理について説明する。図24は、差分処理を示すフロー図である。
そして、差分処理部32がシーケンスナンバー1のデータについてステップS42、S43の処理を行った後、制御はステップS44に進む。
ステップS44では、シーケンスナンバーが最大値であるか否かが判定され、シーケンスナンバーが最大値でない場合には、制御はステップS41に戻り、シーケンスナンバーが1つ繰り上げられ、シーケンスナンバー2の受信データが選択される。そして、シーケンスナンバー2のデータについてステップS42、43の処理が行われる。
ステップS42では、差分処理部32が、今回のラインまでの過去のゲイン調整した受信データ(過去受信した全ての受信データ)の平均値を算出する。
次に、ステップS43において、差分処理部32は、算出した平均値を基準点の値とし、その値と、今回のラインの受信データとの差分を算出する。
このように順次番号が繰り上げられ1ラインの全ての受信データに対して差分処理が行われるまで、ステップS42、S43が繰り返される。
この差分処理によって、図7(b)に示す画像データのように、RFデータの変化を抽出することができる。
次に、図22のステップS23の差分結果の一次微分処理について説明する。図25は、差分結果の一次微分処理を示すフロー図である。
差分結果の一次微分処理が開始されると、ステップS51において、一次微分処理部34が、差分結果のうち、シーケンスナンバー1の差分結果を選択する。
次に、ステップS53において、シーケンスナンバーが最大値であるか否かが判定され、シーケンスナンバーが最大値でない場合には、制御はステップS51に戻り、1つ番号が繰り上げられ、シーケンスナンバー2の受信データが選択される。そして、シーケンスナンバー2とシーケンスナンバー3の差分が算出される。
すなわち、シーケンスナンバーnの一次微分処理を行う場合には、シーケンスナンバーn+1の差分結果のデータから、シーケンスナンバーnの差分結果のデータを引くことによって、シーケンスナンバーnのデータに対して一次微分処理を行うことができる。
これによって、図10の表150の左から4番目の欄の差分が算出される。
次に、図22のステップS24のチャタリング除去処理について説明する。図26は、チャタリング除去処理を示すフロー図である。
チャタリング除去処理が開始されると、ステップS61において、チャタリング除去部35が、一次微分処理が行われたシーケンスナンバー1を選択する。
ステップS67では、シーケンスナンバーが最大値であるか否かが判定され、シーケンスナンバーが最大値でない場合には、制御はステップS61に戻り、1つ番号が繰り上げられ、シーケンスナンバー2の受信データが選択される。
ここで、n番目のデータについてチャタリング除去処理を行うとして、ステップS62~S66について説明する。
そして、ステップS66において、チャタリング除去部35は、前回のシーケンスナンバーの状態を、今回のシーケンスナンバーの状態として記憶する。シーケンスナンバーnが選択されているため、チャタリング除去部35は、シーケンスナンバーn-1について記憶したチャタリング除去処理後の正(+)または負(-)の結果を、シーケンスナンバーnのチャタリング除去処理後の結果として記憶する。
これによって、図10の表150の最も右側のチャタリング処理後の変化を得ることができる。
次に、図22のステップS25のピーク検出処理について説明する。図27は、ピーク検出処理を示すフロー図である。
そして、ピーク検出部36は、シーケンスナンバー1のデータについて、ステップS72、S73の制御を行った後、制御はステップS74に進む。
ステップS74では、シーケンスナンバーが最大値であるか否かが判定され、シーケンスナンバーが最大値でない場合には、制御はステップS71に戻り、シーケンスナンバーが1つ繰り上げられ、シーケンスナンバー2の受信データが選択される。そして、シーケンスナンバー2のデータについてステップS72、S73の処理が行われる。
ここで、n番目のデータについてピーク検出処理を行うとして、ステップS72~S73について説明する。
そして、前回のシーケンスナンバーn-1の状態が負(-)で、今回のシーケンスナンバーnの状態が正(+)である場合、ピーク検出部36は、ステップS73において、n番目の座標を記憶する。座標は、例えば、ピクセルを単位とし、移動距離(ラインの番号ともいえる)と深さ位置で示すことができる。
これにより、上述したように、例えば、図10の表150のシーケンスナンバー37をピークとして検出することができる。
次に、図21のステップS13に示す埋設物判定処理について説明する。図28は、埋設物判定処理を示すフロー図である。
次に、ステップS82において、チャタリング除去部52が、グルーピングされたグループに対してチャタリング除去処理を行う。
次に、ステップS83において、形状判定部53または信号強度判定部54が埋設物判定処理を行う。
次に、ステップS84において、形状判定部53によって検出されたピークの位置に、表示制御部26が×印をつけて表示部8に表示させる。
図28のステップS81のピーク検出結果のグルーピング処理について説明する。図29は、ピーク検出結果のグルーピング処理を示すフロー図である。
過去に取得した全てのデータを対象とし、ステップS92では、グルーピング部51は、過去の古いデータを処理の対象として選択する。そして、ステップS103において、グルーピング部51は、今回取得したラインまでの過去に取得したデータの全てに対して処理を行ったか判定し、処理を行っていない場合、制御はステップS92へと戻り、次に古いデータが処理の対象とされる。このように、例えば、最も古いラインのシーケンスナンバー1から順にステップS93~ステップS102の処理が行われる。
ステップS94において、グルーピング部51は、所定範囲内にピークが検出された位置があるか否かを判定する。所定範囲にピークが検出されない場合には、制御はステップS103へと進む。所定範囲は適宜設定することができ、例えば、1つのラインに設定してもよいし、1つのラインのシーケンスナンバーで設定してもよい。
次に、ステップS96において、グルーピング部51は、ピークを検出した点を記憶する。この点は、ピクセルを単位とする座標であり、例えば、移動距離(ラインの番号ともいえる)と深さ位置で示すことができる。なお、この点が、図11及び図19の始点(●)に対応する。
次に、ステップS93において、検出状態が“検出中”となっているため、制御はステップS97に進む。
ステップS97において、グルーピング部51は、ステップS96で記憶した位置から所定範囲内にピークを検出した位置があるか否かを判定する。この所定範囲内は、例えば、図12(a)~図12(d)で説明した移動方向5pixel以内であって、上下5pixel以内に設定することができる。ピークを検出した位置が所定範囲内に存在する場合には、ステップS98において、グルーピング部51は、連続した位置があるとして、その位置を記憶する。
次に、ステップS100において、グルーピング部51は、比較結果を正(+)または負(-)として記憶する。ここで、今回の深さ位置が前回の深さ位置よりも浅くなっている場合は、深さ位置が上昇しているとして正(+)が記憶される。また、今回の深さ位置が前回の深さ位置よりも深くなっている場合には、深さ位置が下降しているとして負(-)が記憶される。
次に、ステップS93において、検出状態が“検出中”となっているため、制御はステップS97に進む。
このステップS97では、前回にステップS98で記憶した点から所定範囲内に、ピークを検出した点が存在するか否かが検出され、存在する場合には、ステップS99において、その点が記憶される。そして、ステップS100において、前回の点と比較結果が記憶される。これにより、図14に示すように連続している点が順次グループとされるとともに、次の点への変化が上昇または下降であるかも記憶される。
ステップS101において、グルーピング部51は、連続する点がないと判断し、それまでの検出結果を保存する。なお、最後に検出された点が、図11及び図19の終点(■)に対応する。
そして、ステップS103において、過去に取得したラインの全てのデータについて処理が行われたと判断されると、処理が終了する。
図28のステップS82のチャタリング除去処理について説明する。図30は、チャタリング除去処理を示すフロー図である。
チャタリング除去処理は、グルーピングした結果の全てのデータを対象として行われる。
チャタリング除去処理が開始されると、ステップS111において、チャタリング除去部52がグルーピングされたデータの始点側から順にデータを選択する。例えば、ステップS111において、チャタリング除去部52は、図14に示す1番目から2番目への変化のデータを処理の対象とする。
次に、ステップS113において、チャタリング除去部52は、連続する3つの比較結果がすべて0よりも大きいか否かを判定する。図14の表152に示すデータでは、1番目から2番目への変化と、2番目から3番目への変化と、3番目から4番目への変化が全て0よりも大きいため、チャタリング除去部52は、図14の表153に示すように、チャタリング除去後の1番目から2番目への変化の状態を正(+)(浅い方向に上昇しているといえる)とする。
このようにして、グルーピングした全てのデータの変化に対して処理が行われる。
ステップS117において、チャタリング除去部52は、チャタリング除去後の状態を前回の状態とする。例えば、4番目から5番目の変化を処理の対象とした場合、図14では、4番目から5番目への変化が負(-)であり、5番目から6番目への変化が正(+)であり、6番目から7番目への変化が正(+)である。このため、4番目から5番目の変化の状態は、図14の表153に示すように、前回である3番目から4番目のチャタリング処理後の状態である正(+)とされる。
以上の処理により、図14のチャタリング除去後の表153が得られる。
図28のステップS83の埋設物判定処理について説明する。図31は、埋設物判定処理を示すフロー図である。
埋設物判定処理は、グルーピングした結果の全てのデータを対象として行われる。
埋設物判定処理が開始されると、ステップS121において、形状判定部53がグルーピングされたデータの始点側から順にデータを選択する。例えば、ステップS121において、形状判定部53は、図14に示す1番目から2番目への変化のチャタリング除去後のデータを処理の対象とする。
ステップS123において、形状判定部53は、チャタリング除去処理後の変化の結果が正(+)であるか否かを判定する。例えば、図14に示す1番目から2番目への変化のチャタリング除去処理後の結果は正(+)であるため、制御はステップS124に進む。
次に、ステップS125において、形状判定部53は、+(プラス)カウントが0か否かを判定する。+(プラス)カウントが0であるため、制御はステップS126へと進む。
ステップS126では、形状判定部53は、1番目のY座標(深さ位置)を記憶し、始点を設定する。
次に、ステップS138において、形状判定部53は、グルーピングした結果の全てのデータについて処理が終了したか否かを判定し、終了していない場合には、制御はステップS121へと戻り、次のデータ(2番目から3番目への変化)が処理対象として選択される。
次に、ステップS123において、形状判定部53は、チャタリング除去処理後の変化の結果が正(+)であるか否かを判定する。例えば、図14に示す2番目から3番目への変化のチャタリング除去処理後の結果は正(+)であるため、制御はステップS124に進む。
そして、ステップS127において、形状判定部53は、+(プラス)カウントに+1を加えて、+2に設定する。
ステップS128では、形状判定部53は、+カウントが5以上になっているか否かを判定する。ここでカウントが5以上ある場合には、連続して5pixel以上、Y軸方向に上昇していることという条件1を満たしていることになる。
ステップS129では、形状判定部53は、-(マイナス)カウントが0か否かを判定する。-(マイナス)カウントが0であるため、制御はステップS130へと進む。
次に、ステップS131において、形状判定部53は、-(マイナス)カウントに+1を加える。
ステップS133では、形状判定部53は、始点のY座標と頂点のY座標との差を算出する。図13および図14のデータでは、1番目のY座標と8番目のY座標の差が算出される。
算出した差が10以上である場合には、ステップS135において、形状判定部53はグ、ループが山形状であると判定し、埋設物が存在すると判定する。
一方、図18に示すような算出した差が10未満の場合、制御はステップS136へと進み、埋設物判定処理2が実行される。埋設物判定処理2は、埋設物の形状が丸ではなく、平な場合に埋設物を判定する処理である。
次に、図31のステップS136の埋設物判定処理2について説明する。図32は、埋設物判定処理2を示すフロー図である。
埋設物判定処理2が開始されると、ステップS141において、信号強度判定部54がグルーピングされたデータの始点側から順にデータを選択する。例えば、ステップS141において、信号強度判定部54は、図14に示す1番目のデータを処理の対象とする。
次に、ステップS142において、信号強度判定部54は、1番目の受信データの値(受信強度/AD値)を読み出す。
次に、ステップS144において、信号強度判定部54は、グルーピングした結果の全てのデータについて処理が終了したか否かを判定し、終了していない場合には、制御はステップS141へと戻り、次のデータ(2番目)が処理対象として選択される。
[他の実施形態]
以上、本発明の一実施形態について説明したが、本発明は上記実施形態に限定されるものではなく、発明の要旨を逸脱しない範囲で種々の変更が可能である。
上記実施の形態では、埋設物検出装置1およびメイン制御モジュール6(データ処理装置の一例)の制御方法として、図20~図32に示すフローチャートに従って、実施する例を挙げて説明したが、これに限定されるものではない。
例えば、図20~図32に示すフローチャートに従って実施される埋設物検出装置1およびメイン制御モジュール6(データ処理装置の一例)の制御方法をコンピュータに実行させるプログラムとして、本発明を実現しても良い。
またプログラムの一つの利用形態は、インターネット等の伝送媒体、光・電波・音波などの伝送媒体中を伝送し、コンピュータにより読みとられ、コンピュータと協働して動作する態様であってもよい。
また、上述したコンピュータは、CPU(Central Processing Unit)等のハードウェアに限らずファームウェアや、OS、更に周辺機器を含むものであってもよい。
なお、以上説明したように、電力消費体の制御方法はソフトウェア的に実現してもよいし、ハードウェア的に実現しても良い。
上記実施の形態では、埋設物の一例として鉄筋を例に挙げて説明したが、鉄筋にかぎらなくてもよく、ガス管、水道管、木材等であってもよく、また、埋設物が設けられた対象物としてもコンクリートに限られるものではない。
上記実施の形態では、階調処理によって黒が埋設物を示すように設定したが、これに限らず白が埋設物を示すように設定してもよい。
上記実施の形態の前処理におけるチャタリング除去処理(ステップS25)では、所定数の一例として3つのデータを用いているが、3つに限られるものではない。また、埋設物判定処理におけるチャタリング除去処理(ステップS82)でも所定数の一例として3つのデータを用いているが、3つに限られるものではない。
本実施の形態では、埋設物検出装置1内にメイン制御モジュール6が設けられているが、メイン制御モジュール6が埋設物検出装置1と別に設けられていてもよい。この場合、例えば、埋設物検出装置には、本体部2と、把手3と、車輪4と、インパルス制御モジュール5と、エンコーダ7等が設けられており、タブレットなどにメイン制御モジュール6と表示部8を設けてもよい。埋設物検出装置とタブレットの間は無線または有線によって通信が行われてもよい。
2 :本体部
3 :把手
4 :車輪
5 :インパルス制御モジュール
6 :メイン制御モジュール(データ処理装置の一例)
7 :エンコーダ
8 :表示部
10 :制御部
11 :送信アンテナ
12 :受信アンテナ
13 :パルス発生部
14 :ディレイ部
15 :ゲート部
21 :受信部(受信部の一例)
22 :RFデータ管理部
23 :前処理部
24 :埋設物判定部(埋設物判定部の一例)
25 :判定結果登録部
26 :表示制御部
31 :ゲイン調整部
32 :差分処理部
33 :移動平均処理部
34 :一次微分処理部(差分算出部の一例)
35 :チャタリング除去部(第1ノイズ除去部の一例)
36 :ピーク検出部(信号強度ピーク検出部の一例)
37 :シーケンスナンバー
41 :増減判定部
43 :ステップ
51 :グルーピング部(グルーピング部の一例)
52 :チャタリング除去部(第2ノイズ除去部の一例)
53 :形状判定部(形状判定部の一例)
54 :信号強度判定部(信号強度判定部の一例)
100 :コンクリート
100a :表面
101 :埋設物
101a :埋設物
101b :埋設物
101c :埋設物
101d :埋設物
151 :グラフ
202 :木材
534 :形状判定部
Claims (10)
- 対象物の表面を移動しながら前記対象物に向かって放射した電磁波の反射波に関するデータを用いて前記対象物内の埋設物を検出するためのデータ処理装置であって、
移動に伴ったタイミング毎に計測された反射波に関するデータを受信する受信部と、
前記タイミングにおける前記対象物の深さ方向の信号強度の変化に基づいて、前記データからノイズを除去する第1ノイズ除去部と、
前記第1ノイズ除去部によるノイズの除去後に、各々の前記タイミングにおける前記対象物の深さ方向の前記信号強度のピークを検出する信号強度ピーク検出部と、
各々の前記タイミングにおいて検出された前記信号強度のピークに基づいて前記埋設物の有無を判定する埋設物判定部と、を備え、
前記埋設物判定部は、
各々の前記タイミングで検出された前記信号強度のピークにおける前記深さ位置のうち、移動方向において所定間隔以内で連続している複数の前記信号強度のピークにおける深さ位置を、1つのグループとするグルーピング部と、
連続していると判定された複数の前記ピークの深さ位置の変化に基づいて、前記第1ノイズ除去部と同様の処理によって前記データからノイズを除去する第2ノイズ除去部と、
前記第2ノイズ除去部によるノイズ処理後に、前記移動方向と前記深さ方向における平面において、前記グループが所定形状となっている場合、前記埋設物が存在すると判定し、前記所定形状ではない場合、前記埋設物が存在しないと判定する形状判定部と、
を有している、
データ処理装置。 - 前記深さ方向またはその反対の表面方向において、所定の前記深さ位置の信号強度の、1つ前のタイミングで計測された前記データの前記深さ位置の信号強度からの変化の差分を検出する差分算出部を更に備え、
前記第1ノイズ除去部は、所定数の隣り合う深さ位置の差分に基づいてノイズを除去する、請求項1に記載のデータ処理装置。 - 前記第1ノイズ除去部は、
前記所定の深さ位置を含む所定数の隣り合う前記深さ位置における差分が増加または減少のいずれかにおいて一致する場合には、一致する増加または減少を前記所定の深さ位置におけるノイズ除去処理後の増加または減少の結果として採用し、
前記所定数の隣り合う前記深さ位置における変化の増加または減少が一致しない場合には、前記1つ前のタイミングで計測された前記データの深さ位置におけるノイズ除去処理後の増加または減少の結果を前記所定の深さ位置におけるノイズ処理後の増加または減少の結果として採用する、
請求項2に記載のデータ処理装置。 - 前記信号強度ピーク検出部は、
前記差分が減少から増加に変化する深さ位置を前記信号強度のピークとして検出する、
請求項3に記載のデータ処理装置。 - 前記グルーピング部は、前記移動方向において、所定の前記タイミングで取得されたデータの前記ピークの深さ位置の、前記所定のタイミングの1つ前のタイミングで取得されたデータの前記ピークの深さ位置からの位置変化が、前記深さ方向への位置変化または表面方向への位置変化のいずれの方向への位置変化であるかを判定し、
前記第2ノイズ除去部は、所定数の隣り合う前記ピークの前記深さ位置における前記位置変化の方向に基づいてノイズを除去する、
請求項1から4のいずれか1項に記載のデータ処理装置。 - 前記第2ノイズ除去部は、
所定の前記ピークの前記深さ位置を含む前記所定数の隣り合う前記ピークの前記深さ位置における前記位置変化の方向が一致する場合には、一致した位置変化の方向を前記所定の深さ位置におけるノイズ除去処理後の位置変化の方向の結果として採用し、
前記所定数の隣り合う前記ピークの前記深さ位置における位置変化の方向が一致しない場合には、前記所定のピークの1つ前のタイミングで取得されたデータの前記ピークの前記深さ位置におけるノイズ除去処理後の位置変化の方向の結果を、前記所定のピークの前記深さ位置におけるノイズ除去処理後の位置変化の方向の結果として採用する、
請求項5に記載のデータ処理装置。 - 前記所定形状とは、山形状であり、
前記形状判定部は、
前記移動方向に沿って、前記信号強度のピークの前記深さ位置が所定量以上、連続して浅くなる第1条件と、
前記移動方向に沿って、前記ピークの前記深さ位置が所定量以上、連続して深くなる第2条件と、
前記グループの深さ位置の幅が所定量以上である第3条件の全ての条件を満たした場合に、前記グループが山形状の波形であると判定する、
請求項1から6のいずれか1項に記載のデータ処理装置。 - 前記埋設物判定部は、
前記第1条件および前記第2条件を満たすが、前記第3条件を満たさない場合、
前記グループにおける全ての前記ピークの各々の前記信号強度に基づいて、前記埋設物の有無を判定する信号強度判定部を更に有する、
請求項7に記載のデータ処理装置。 - 前記形状判定部は、山形状であると判定された前記グループの前記深さ位置のピークを検出する、
請求項1から8のいずれか1項に記載のデータ処理装置。 - 請求項9記載のデータ処理装置と、
前記山形状のグループを表示可能な表示部と、を備え、
前期表示部には、前記山形状のグループとともに前記検出された位置のピークを示す表示が行われる、
埋設物検出装置。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018171738A JP7077888B2 (ja) | 2018-09-13 | 2018-09-13 | データ処理装置および埋設物検出装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018171738A JP7077888B2 (ja) | 2018-09-13 | 2018-09-13 | データ処理装置および埋設物検出装置 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2020041984A JP2020041984A (ja) | 2020-03-19 |
JP7077888B2 true JP7077888B2 (ja) | 2022-05-31 |
Family
ID=69798098
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2018171738A Active JP7077888B2 (ja) | 2018-09-13 | 2018-09-13 | データ処理装置および埋設物検出装置 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP7077888B2 (ja) |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000145368A (ja) | 1998-11-09 | 2000-05-26 | Osaka Gas Co Ltd | 地中推進工法における埋設状況の検出装置 |
JP2000338255A (ja) | 1999-05-27 | 2000-12-08 | Kinden Corp | 埋設物探査処理方法及び装置、並びに埋設物探査処理プログラムを記録した記録媒体 |
JP2001033548A (ja) | 1999-07-22 | 2001-02-09 | Osaka Gas Co Ltd | リアルタイム探査方法及び装置 |
JP2002107449A (ja) | 2000-10-02 | 2002-04-10 | Rikogaku Shinkokai | 探査レーダ及び探査方法 |
JP2002214356A (ja) | 2001-01-18 | 2002-07-31 | Kyushu Electric Power Co Inc | 非開削ドリリング工法用地中レーダ装置 |
US20030012411A1 (en) | 2001-07-13 | 2003-01-16 | Sjostrom Keith Jerome | System and method for displaying and collecting ground penetrating radar data |
JP2004012349A (ja) | 2002-06-07 | 2004-01-15 | Kinden Corp | 適応制御型測定処理方法及び装置、埋設物探査処理方法及び装置、適応制御型測定処理プログラム、埋設物探査処理プログラム、並びにそれらのプログラムを記録した記録媒体 |
US20050156776A1 (en) | 2003-11-25 | 2005-07-21 | Waite James W. | Centerline and depth locating method for non-metallic buried utility lines |
JP2006098112A (ja) | 2004-09-28 | 2006-04-13 | Kddi Corp | 地中レーダ画像処理法 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH01227980A (ja) * | 1988-03-08 | 1989-09-12 | Osaka Gas Co Ltd | 地中埋設物体の探査方法および深さ検出用シート |
JP2961336B2 (ja) * | 1991-09-13 | 1999-10-12 | 日本電信電話株式会社 | 不可視物体探査方法 |
JPH09288188A (ja) * | 1996-04-23 | 1997-11-04 | Osaka Gas Co Ltd | 地中埋設物の検出方法および装置 |
JPH10268060A (ja) * | 1997-03-28 | 1998-10-09 | Nippon Telegr & Teleph Corp <Ntt> | 埋設物探査装置の自重分散構造 |
JP2893010B1 (ja) * | 1998-02-27 | 1999-05-17 | 大阪瓦斯株式会社 | 探査方法及び装置 |
-
2018
- 2018-09-13 JP JP2018171738A patent/JP7077888B2/ja active Active
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000145368A (ja) | 1998-11-09 | 2000-05-26 | Osaka Gas Co Ltd | 地中推進工法における埋設状況の検出装置 |
JP2000338255A (ja) | 1999-05-27 | 2000-12-08 | Kinden Corp | 埋設物探査処理方法及び装置、並びに埋設物探査処理プログラムを記録した記録媒体 |
JP2001033548A (ja) | 1999-07-22 | 2001-02-09 | Osaka Gas Co Ltd | リアルタイム探査方法及び装置 |
JP2002107449A (ja) | 2000-10-02 | 2002-04-10 | Rikogaku Shinkokai | 探査レーダ及び探査方法 |
JP2002214356A (ja) | 2001-01-18 | 2002-07-31 | Kyushu Electric Power Co Inc | 非開削ドリリング工法用地中レーダ装置 |
US20030012411A1 (en) | 2001-07-13 | 2003-01-16 | Sjostrom Keith Jerome | System and method for displaying and collecting ground penetrating radar data |
JP2004012349A (ja) | 2002-06-07 | 2004-01-15 | Kinden Corp | 適応制御型測定処理方法及び装置、埋設物探査処理方法及び装置、適応制御型測定処理プログラム、埋設物探査処理プログラム、並びにそれらのプログラムを記録した記録媒体 |
US20050156776A1 (en) | 2003-11-25 | 2005-07-21 | Waite James W. | Centerline and depth locating method for non-metallic buried utility lines |
JP2006098112A (ja) | 2004-09-28 | 2006-04-13 | Kddi Corp | 地中レーダ画像処理法 |
Also Published As
Publication number | Publication date |
---|---|
JP2020041984A (ja) | 2020-03-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10722215B2 (en) | Ultrasound diagnostic device and ultrasound diagnostic device control method | |
US7657099B2 (en) | Method and apparatus for processing line pattern using convolution kernel | |
JP2020534518A5 (ja) | ||
WO2017053877A3 (en) | Ultrasonic imaging devices and methods | |
JP6328966B2 (ja) | 距離画像生成装置、物体検出装置および物体検出方法 | |
JP2008096199A (ja) | 地中レーダ | |
JP5775287B2 (ja) | 移動目標対応型スキャン相関方法 | |
JP7077888B2 (ja) | データ処理装置および埋設物検出装置 | |
EP1235080A3 (en) | Ultrasonic imaging method and ultrasonic imaging apparatus | |
CN1372644A (zh) | 场分布测量方法及装置 | |
JP6984582B2 (ja) | 埋設物検出装置および埋設物検出方法 | |
KR20160144148A (ko) | 광학 장치 및 깊이 정보 생성 방법 | |
JP7378203B2 (ja) | データ処理装置および埋設物検出装置 | |
JP6339446B2 (ja) | 探知装置、探知方法、およびプログラム | |
JP6988853B2 (ja) | 埋設物検出装置および埋設物検出方法 | |
JP6984630B2 (ja) | 埋設物検出装置および埋設物検出方法 | |
JP3785715B2 (ja) | 目標検出装置 | |
JP6589619B2 (ja) | 超音波診断装置 | |
JP5172887B2 (ja) | 車両の周辺監視装置 | |
JP2009193390A (ja) | 車両周辺監視装置、車両、車両周辺監視用プログラム、車両周辺監視方法 | |
JP2007333404A (ja) | インパルスレーダ | |
JP7371370B2 (ja) | 埋設物検出装置および埋設物検出方法 | |
KR101952291B1 (ko) | 다중 빔 초음파 카메라의 영상에서 물체의 등장을 감지하는 방법 | |
JP2013545568A5 (ja) | ||
JP7003908B2 (ja) | 埋設物検出装置および埋設物検出方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20210224 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20220120 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20220201 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20220218 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20220419 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20220502 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7077888 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |