JP7069886B2 - 単結晶運搬装置および単結晶運搬方法 - Google Patents

単結晶運搬装置および単結晶運搬方法 Download PDF

Info

Publication number
JP7069886B2
JP7069886B2 JP2018048542A JP2018048542A JP7069886B2 JP 7069886 B2 JP7069886 B2 JP 7069886B2 JP 2018048542 A JP2018048542 A JP 2018048542A JP 2018048542 A JP2018048542 A JP 2018048542A JP 7069886 B2 JP7069886 B2 JP 7069886B2
Authority
JP
Japan
Prior art keywords
single crystal
temperature
gripping mechanism
crystal
elastic body
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018048542A
Other languages
English (en)
Other versions
JP2019156696A (ja
Inventor
彰 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2018048542A priority Critical patent/JP7069886B2/ja
Publication of JP2019156696A publication Critical patent/JP2019156696A/ja
Application granted granted Critical
Publication of JP7069886B2 publication Critical patent/JP7069886B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Handcart (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Description

本発明は、単結晶運搬装置および単結晶運搬方法に関し、より詳しくは、大型結晶を把持し移動する運搬中にクラックの発生を抑制しうる単結晶運搬装置および単結晶運搬方法に関する。
タンタル酸リチウムLiTaO(以下LTとも記す)やニオブ酸リチウムLiNbO(以下LNとも記す)単結晶は、主に、携帯電話の送受信用のデバイスに用いられる表面弾性波フィルターの材料として広く利用されている。LTやLNの単結晶インゴットは、原料を充填した坩堝を高温に加熱して溶融し、坩堝内の原料融液の液面に上方から種結晶を接触させた後に上昇させることで単結晶を育成する、いわゆるチョクラルスキー法と呼ばれる単結晶育成方法で得られている。チョクラルスキー法による単結晶育成では、坩堝周囲に高周波電源を流すワークコイルが配置されており、このワークコイルに高周波電源を流すことにより生じる誘導加熱によって坩堝を発熱させ、坩堝内の原料を溶融している。チョクラルスキー法では種結晶の上昇に伴い、原料融液から引き上げられるように単結晶が成長し、単結晶が育成された後に、冷却工程に入り一定温度になった後、結晶育成炉より取り出す。その後、結晶内の応力を取り除く為、熱処理炉を用いて熱処理を行う。近年では、大量の需要がある酸化物単結晶の低コスト化の要求が強い。そのため、製造現場では生産性向上を期待して、育成される単結晶の長さをより長くすることや、大口径化することが増えている。
これは、シリコン単結晶の場合でも同じであり、単結晶を結晶育成炉から取り出し、次の処理工程へ移動する時には、単結晶が重いため手動では難しく、専用の運搬台車が用いられている。例えば、特許文献1には、シリコン単結晶の取り出し運搬装置が開示されており、引き上げたシリコン単結晶を架台で反転させ、水平状態で運搬するリフト付き台車が記載されている。また、特許文献2には、引き上げたシリコン単結晶を傾動でき、水平状態で載せて運搬する運搬台車が記載されている。この運搬台車は、単結晶の下端を受ける受台において、長手方向に移動位置を決められるよう構成されている。
ところで、表面弾性波フィルターの材料とし利用されているLTやLNの単結晶インゴットは、脆い材料であり単結晶にクラックが入りやすい。特に急激な温度変化でクラックが入りやすいため単結晶の育成中だけでなく、育成後も注意が必要である。一般に育成後に冷却して切り離された単結晶は、乾燥炉で1日程度温度をなじませた後、アニール、ポーリングと言った熱処理工程に入る。切り離された単結晶を熱処理炉に入れる場合は、例えば、特許文献3のように、乾燥炉内で60℃程度の温度で単結晶の温度をなじませている。従来では、単結晶を60℃程度に温めた後、ガーゼ等で単結晶を包み、保温を行った上で手作業により熱処理炉まで運搬して炉内に設置している。
特開平3-218933号公報 特開平9-221387号公報 特開昭57-118087号公報
しかし、昨今の単結晶の長尺化や大口径化により単結晶の重量も大きくなり、作業者の労力負担が大きく、単結晶を落として破損させる場合もある。前記特許文献1や特許文献2に示されているような半導体単結晶の運搬台車等の利用も考えられるが、このような運搬台車には、半導体単結晶を保温する機構がないので、LTやLNの単結晶インゴットを運搬しようとすると、運送中に冷却されてクラックが入る恐れがある。
そこで本発明は、上記従来技術の問題点に鑑み、表面弾性波フィルターの材料とし利用されているLTやLNの単結晶等の長尺化や大口径化に対応し、大型結晶を把持して移動する運搬中にクラックの発生を抑制することが可能な単結晶運搬装置および単結晶運搬方法を提供することを目的とする。
本発明者は、上記課題を解決するために、単結晶運搬装置の機構を鋭意検討して、単結晶を保持する単結晶把持機構部に、把持部を昇温する昇温機構部を設けることで、運搬中にクラックの発生を抑制できることを確認して本発明を完成した。
すなわち、本発明の第1の発明によれば、単結晶を保持する把持機構部と、前記把持機構部の一部を昇温する昇温機構部とを有する単結晶運搬装置であって、前記把持機構部は、単結晶の側面を把持する複数のハンド部を備え、前記複数のハンド部のそれぞれは、単結晶の下面の一部を係止可能な係止部を備え、前記昇温機構部は、前記把持機構のうち単結晶の側面と下面に当接する部分に対して昇温することを特徴とする単結晶運搬装置が提供される。
また、本発明の第2の発明によれば、第1の発明において、前記昇温機構部は、前記把持機構部と分離して設置されることを特徴とする単結晶運搬装置が提供される。
また、本発明の第3の発明によれば、第1又は第2の発明において、前記複数のハンド部を開閉させる操作部備え、前記複数のハンド部のそれぞれは、単結晶の側面に接触する弾性体を備えることを特徴とする単結晶運搬装置が提供される。
また、本発明の第4の発明によれば、第3の発明において、前記弾性体は、耐熱性のゴムが用いられ、前記昇温機構部により昇温された熱を保持する蓄熱部であることを特徴とする単結晶運搬装置が提供される。
また、本発明の第5の発明によれば、第3又は第4の発明において、前記複数のハンド部は、平面視において屈曲部を有する一対のハンド部であり、前記一対のハンド部は、前記屈曲部を互いに対向させた状態で配置され、前記操作部による操作によって互いに近づく方向又は離れる方向に移動することを特徴とする単結晶運搬装置が提供される。
また、本発明の第の発明によれば、第から第のいずれかの発明において、前記ハンド部の上下方向の寸法は、単結晶の運搬先である熱処理炉の本体部と、前記本体部から下方に移動している単結晶載置テーブルとの間の寸法よりも小さいことを特徴とする単結晶運搬装置が提供される。
また、本発明の第の発明によれば、上記の単結晶運搬装置を用いて単結晶を運搬する方法であって、単結晶を保持する前に前記把持機構部の一部を前記昇温機構部により所定の温度に昇温することと、昇温された前記把持機構部により単結晶を保持して運搬することと、を含むことを特徴とする単結晶運搬方法が提供される。
また、本発明の第の発明によれば、第の発明において、前記把持機構部において単結晶と接触するように備える弾性体を前記所定の温度に昇温することを含むことを特徴とする単結晶運搬方法が提供される。
また、本発明の第の発明によれば、第の発明において、前記弾性体は、前記昇温機構部により50℃から120℃に昇温されることを特徴とする単結晶運搬方法が提供される。
本発明は、単結晶を育成炉から引き上げ、切り離した後、単結晶を移動する際、単結晶を所定の温度に保温された把持部で把持するので、単結晶が大型であっても保温作業の手間が軽減される。把持部に特定の弾性体を取り付けることで、単結晶の表面及び内面の温度差によるクラックを抑制でき、乾燥炉、アニール炉、ポーリング炉へ設置する際も装置を容易に操作でき、安全かつ能率的に作業することができる。
本発明の単結晶運搬装置の斜視図である。 図1の単結晶運搬装置の把持機構部を示す側面図である。 本発明の単結晶運搬装置の昇温機構部を示す斜視図である。 図3に示した把持機構部を昇温させる時の斜視図である。 昇温機構部で昇温された把持機構部で単結晶を把持した時のハンド部の正面一部を示す断面図である。 単結晶インゴットの引き上げ中(A)、引き上げ完了(B)、育成炉から上昇させ切断後(C)の一連の工程を示す説明図である。 本発明の単結晶運搬装置で単結晶を把持した時の側面図(A)とリフターで単結晶を上昇した状態を示す側面図(B)である。 本発明の単結晶運搬装置を用いて、単結晶を運搬しアニーリング炉へ装入する作業を示す説明図である。 単結晶運搬装置がアニーリング炉から離れ、単結晶が炉内へ入る工程(A)、単結晶が炉内へ設置された状態(B)を示す説明図である。 把持機構部で単結晶を保温しながら把持しているハンド部の正面一部を示す断面図(A)と昇温機構の構成を示す斜視図(B)である。
以下、本発明に係る単結晶運搬装置、及び単結晶運搬方法について図面を参照しながら説明する。ただし、本発明はこれに限定されるものではない。また、図面においては実施形態を説明するため、一部分を大きく又は強調して記載するなど適宜縮尺を変更して表現している。
1.単結晶運搬装置
本発明の単結晶運搬装置は、単結晶を保持する把持機構部と、把持機構部の一部を昇温する昇温機構部とを有する単結晶運搬装置であって、昇温機構部は、把持機構のうち単結晶に当接する部分に対して昇温することを特徴とする。
[第1実施形態]
第1実施形態に係る単結晶運搬装置100(以下、単に「運搬装置100」とも称す。)について説明する。
図1は、第1実施形態に係る単結晶運搬装置100の斜視図であり、図2は単結晶把持機構部10を示す側面図である。また、図3は、昇温機構部30を示す斜視図、図4は、昇温機構部30で単結晶把持機構部10の把持部13を昇温している時の斜視図であり、図5は、昇温機構部30で昇温された単結晶把持機構部10で単結晶Cを把持した時のハンド部の正面一部を示す断面図である。
本発明の単結晶運搬装置100は、把持台11が単結晶Cを保持する単結晶把持機構部10と、単結晶把持機構部10の一部を昇温する昇温機構部30とを有しており、昇温機構部30は、単結晶把持機構10のうち単結晶Cに当接する部分に対して昇温するよう構成されるが、図1には昇温機構部30を省略して示している。
単結晶把持機構部10は、リフター20の二本の支柱21を横断するリフト板17に取り付けられ、支柱21の溝に嵌合しレールにそって上下移動する。リフター20の下部には前輪23と後輪24が2個ずつ付いており、単結晶運搬装置100は、単結晶Cを保持しながら前進、後退可能にしている。前輪を1つにして方向転換を容易にすることもできる。
作業者は、ハンドルを回転操作することで単結晶把持機構部10で単結晶Cを把持し、支柱21の下部に固定したレバー(又はペダル)18を操作して油圧あるいは電動等でリフト板17を上下駆動させ、また支柱21の取っ手25を握り、操縦することができる。このようなリフター20(台車ともいう)は、同様な機能を有する市販品があれば利用することができる。
前記の通り、特許文献1には、シリコン単結晶の取り出し運搬装置が提案され、引き上げたシリコン単結晶を架台で反転させ、水平状態で運搬するリフト付き台車が記載されている。また、特許文献2には、引き上げたシリコン単結晶を傾動でき、水平状態で載せて運搬する運搬台車が提案され、この運搬台車は、単結晶の下端を受ける受台において、長手方向に移動位置を決められるよう構成されている。しかし、いずれもシリコン単結晶の運搬に使用されるもので、荷台の単結晶との接触部分に弾性体などを介在させるなどの記載はなく、水平状態で運搬するため、振動による作用でキズがつく恐れがある。しかも、このような運搬台車には、半導体単結晶を保温する機構がないので、LTやLNの単結晶インゴットを運搬しようとすると、運送中に冷却されてクラックが入る恐れがある。
本発明は、単結晶Cを単結晶把持機構部10により懸垂状態で運搬するようにし、単結晶Cと接触するハンド部33に弾性体Rを取り付けることで、単結晶Cを保温しながら搬送中に受ける衝撃が軽減される。
<単結晶>
まず、本発明において単結晶把持機構10で把持される単結晶Cについて説明する。単結晶Cは、育成炉200から引き上げられたインゴットであり、その種類は、保温が必要とされるものであれば、特に限定されない。例えば、ニオブ酸リチウムLiNbO(LN)、タンタル酸リチウムLiTaO(LT)、イットリウムアルミニウムガーネットYAl12(YAG)などの酸化物単結晶が挙げられる。このうちタンタル酸リチウム(LT)単結晶は、融点が約1650℃であり、ニオブ酸リチウム(LN)単結晶は、融点が約1250℃であって、いずれも結晶取り出し後は50~60℃程度に保温することが必要とされている。
LNやLT単結晶にはチョクラルスキー法が用いられる。チョクラルスキー法は、図6(A)に示すように、原料粉末を融点以上の高温に加熱し坩堝202内で溶融させた後、種結晶204を引き上げ軸203の先端に付け、坩堝202内で溶融した同一組成の融液Lに浸潤し、回転しながら徐々に引上げる方法である。この方法によって、種結晶204の性質を伝播しながら大口径化した単結晶Cを製造することができる。種結晶204としては、ある結晶方位に従って切り出された種と呼ばれる、通常は断面の一辺が数mm程度の直方体が使用される。
なお、単結晶Cを育成する育成炉200は、通常、高周波加熱式結晶炉であり、外側がステンレススチール(SUS)製のチャンバーで水冷ジャケット二重構造の真空炉になっている。そして、チャンバー内は、耐火物で加熱室が形成され、加熱室内部の下部中央には、貴金属製の坩堝202と耐火物坩堝が設けられ、坩堝の底部及び外周部にはジルコニアバブル、ファイバーフラックス等が充填されている。貴金属製の坩堝202には、一般にイリジウム製の坩堝が使用され、ステンレススチール製の台座の上に設けられたアルミナ製等の耐火物で形成された円筒状の支持台により支持されている。チャンバー内は真空引き後、チャンバー内に不活性ガスを流して不活性雰囲気にされる。
単結晶育成の際には、放射温度計などを用いて単結晶と原料融液との界面近傍における融液表面の温度を測定することが好ましい。結晶形状の調節は、育成中の結晶重量を測定し、直径や育成速度などを計算によって導き出し、回転速度や引き上げ速度が調整される。また、結晶重量の変化を高周波誘導コイル投入電力にフィードバックすれば融液温度をコントロールできる。
この方法で育成された結晶は、図6(B)に示すように、肩部sと直胴部m及び結晶下端部bから構成される。肩部sは、種結晶204を原料融液Lに接触させて徐々に温度を降下させ、同時に引き上げ軸203を徐々に引き上げることにより種結晶204の下部側において原料融液Lを順次結晶化させることにより形成され、種結晶204を頂点に円錐状の形状になった部分である。直胴部mは、肩部sが形成された後、引上げ速度と回転数等を調整することで、円柱状の結晶に成長した部分である。直胴部mが引き上げ後に、最終的にウエハとなる部分である。結晶下端部bは、育成が終了し融液L面より結晶を切り離されて形成される部分であって、上端肩部sより低い円錐状の単結晶になる。
育成された単結晶Cは、その後、図6(C)に示すように、切り離されて結晶取り出しが行われる。取り出された単結晶Cは、LTやLNの場合、表面温度が50℃より低くなると、外気による温度変化により結晶内外の温度勾配によりクラックが生じやすい。単結晶Cは冷却中に湿度の影響を受け水分が表面につくので、乾燥炉で60℃にて1日単結晶の温度をなじませ、クラックの発生を抑制するようにしている。
前記した育成中の炉内の温度条件が常に最適に保たれれば、高品質で大口径の単結晶Cを育成することが期待される。しかしながら、通常は、熱歪を十分に抑制できないので、育成後の単結晶Cは、アニール工程によって熱歪を除去するようにしている。アニール工程では、電気炉を用いて、融点直下で結晶全体が均熱となる温度環境下に一定時間結晶を保持し、更に均熱状態を保持したまま50℃付近まで徐冷する。
また、LT、LNのような自発分極が発生する強誘電体結晶では、結晶全体のドメイン方向を揃えるために、アニール後にポーリング工程が実施される。すなわち、冷却されたLT単結晶をキュリー温度以上の所定温度まで昇温し、LT単結晶に電圧を印加し、その後、電圧を印加したままキュリー温度以下の所定温度まで降温した後、電圧印加を停止して冷却する一連の処理が行われる。
育成された単結晶Cは、図6(C)に示すように、冷却後に切り離されて結晶取り出しが行われるが、温度変化に伴いクラックが生じやすいので保温状態にして次の熱処理炉まで運搬される。すなわち、アニール炉で単結晶Cの歪を除去し、ポーリング炉で単結晶Cの分極の向きをそろえるが、アニール炉、ポーリング炉から結晶を取り出す際にも温度変化に伴いクラックが生じやすいので同様な対策が実施される。
このように本発明の運搬装置100は、育成炉から引き上げられた単結晶インゴットを切り離した後、単結晶Cを把持し、主としてアニール炉、ポーリング炉などの熱処理炉へ運搬するのに使用される。しかし育成炉200から乾燥炉までの運搬にも使用できることから、以下、乾燥炉を含めたアニール炉、ポーリング炉を総称して、熱処理炉300という。
本発明の単結晶運搬装置100は、単結晶Cを保持する単結晶把持機構部10と、把持機構の一部を昇温する昇温機構部30とを有している。また、本発明では、単結晶把持機構部10と昇温機構部30を有するが、この両方を運搬装置100に搭載する必要はなく、昇温機構部30は、運搬装置100とは別に設置してもよい。
まず第1実施形態として、運搬装置100に単結晶把持機構部10を搭載し、昇温機構部30は、運搬装置100とは別に設置した態様を説明する。図2は、本発明の運搬装置100が具備する単結晶把持機構部10の側面を示しており、リフターのテーブル(把持台)11に垂下された把持部13に、単結晶把持機構が組み込まれ、先端の係止部(爪)Nで単結晶Cを把持した状態を示している。
<把持機構部>
本発明において単結晶把持機構部10は、単結晶Cの直胴側面mを把持する複数の把持部13と、把持部13を開閉させるハンドル14を含む操作部とを備えている。なお、把持部13は、単結晶Cを把持し保持する部分を総称することとし、ハンド部33はその下方で単結晶Cの側面直胴部mに接し把持する。なお、ハンド部には単結晶Cの側面直胴部mに接する部分には後述する弾性体33と断熱するための断熱材Rを備える。
図2の単結晶把持機構は、開き角度が120°に配置された2個のハンド部33を有している。なお、ハンド部33は特に限定されず、3方向より3個設置しても良いし、5個以上を設置してもよい。本発明では、単結晶Cに対向して開き角度120°に配置した2個のハンド部33を用いるのが好ましい。これにより左右方向より保持する計4個のハンドを設置する構造となり、開閉機構が比較的簡単な構造となる。
また、本発明では、複数のハンド部33のそれぞれは、単結晶Cの側面に接触する弾性体Rを備えている。当該ハンド部33は、把持部13の単結晶Cと接触する面側に弾性体Rを有することで単結晶Cを保護する機能をもつようになる。すなわちゴムや合成樹脂等の弾性体Rを設けることで、弾性体Rが単結晶Cに接触してもキズ等が発生しにくくなる。ゴムの種類には、アクリルゴム、ニトリルゴム、イソプレンゴム、ウレタンゴム、エチレンプロピレンゴム(EPDM)、クロロプレンゴム、エピクロロヒドリンゴム、シリコンゴム、スチレン-ブタジエンゴム、ブタジエンゴム、フッ素ゴム及びポリイソブチレンゴム(ブチルゴム)などがある。エチレンプロピレンゴム又はフッ素ゴムは把持力が強く、耐久性や寸法安定性も優れている。
弾性体Rは、昇温機構部30により昇温された熱を保持する蓄熱部ともなるため耐熱性も要求される。単結晶Cは、ハンド部33により50℃以上の温度で保持されるので、弾性体Rとしては、50℃~120℃の温度に耐えられるゴム、特に耐熱性のシリコンゴムや、ウレタンゴムの使用がより好ましい。
また、ゴムの硬度はショアA硬度40~60が好ましく、45~55がより好ましい。例えば、ショアA硬度50のシリコンゴムは、200℃まで耐熱性を有しており、かつショアA硬度が50であると単結晶Cに接触して適度に弾性変形しながら単結晶Cの直胴部mの表面にそって高い保持力をもつ。なお、カーボンを配合して強度を高めたり、ナイロン糸などで補強された糸入りゴムや、摩擦係数の大きいゴムシートを弾性体Rの当接面に接着することで滑り防止効果を高めることもできる。また一部を中空にしたり、その内部に空気を供給して膨らませることもできる。
ハンド部33の大きさは、弾性体Rが単結晶Cの直胴部mの表面を70%以上保持するように設定するのが好ましい。直胴部mを80%以上保持できるのがより好ましく、90%以上保持できることがさらに好ましい。直胴部mの表面を70%未満しか保持できないと、保温性能が低下する、把持力が低下するなどの問題が生じることがある。必要があれば、単結晶Cの上部肩部sにカバーをかぶせて放熱を抑制するようにしてもよい。
弾性体Rは、厚さによって限定されないが、10mm以上が好ましい。弾性体Rの種類や配置場所などにもよるが、例えばシリコンゴムを単結晶Cの直胴部mの表面と接触する場所に配置するのであれば、10mm~20mmが好ましい。単結晶Cに接触して適度に弾性変形し単結晶Cを保持するためである。弾性変形量は、弾性体Rの種類や配置場所などにもよるが、シリコンゴムを単結晶Cの直胴部mの表面と接触する場所に配置するのであれば、10~20%程度で良く、単結晶Cの底部bと接触する場所であれば、20%を超えることもある。
前記複数のハンド部33のそれぞれは、単結晶Cの下面bの一部を係止可能な係止部(爪)Nを備えている。育成が終了し融液面より引き離された単結晶Cは、底部bが下方に向かって凸形状の低い円錐状を形成している。係止部(爪)Nは、この低い円錐状を形成した単結晶底部bの外周に接触して、落下防止機構となる。そのため係止部(爪)Nはハンド部の単結晶Cとの接触面よりも先に突き出ている必要があり、例えば突出部分の長さが、10~30mmが好ましい。
また、金属製であるハンド部33と弾性体Rとの間には断熱材Gが設置される。この断熱材Gは、温められた弾性体Rからの熱をハンド部33から逃がさないように設置する。種類は、断熱性能を有するものであれば制限されないが、例えば無機系のガラス繊維やセラミックファイバー等を使用するのが望ましい。有機系の発泡ウレタンなどは軽量であるが耐熱性が低いので適用できないことがある。
ハンド部33を含む単結晶把持機構部10の上下方向の寸法(H2)は、図7、図8、図9に示すように単結晶Cの運搬先である熱処理炉300の本体部と、本体部から下方に移動している炉床(単結晶載置テーブル)301との間の寸法(H1)よりも小さくなるようにする。ハンド部33を含む把持機構10の上下方向の寸法(H2)が、単結晶Cの運搬先である熱処理炉300の本体部と、炉床(単結晶載置テーブル)301との間の寸法よりも大きいと、単結晶Cを熱処理炉300まで運搬しても、炉床(単結晶載置テーブル)301へと搬入しにくい場合がある。
本発明の単結晶把持機構部10を構成する把持部13の開閉機構は、特に限定されず、公知の技術を適用することができる。複数のハンド部33は、平面視において屈曲部を有する一対のハンド部33であり、一対のハンド部33は、屈曲部を互いに対向させた状態で配置され、操作部によって互いに近づく方向又は離れる方向に移動するのが好ましい。
例えば、図2においては、把持部13は、直線運動部を「回転体(ころ)」を用いてガイドするLMガイド19及び台形ねじ12により開閉動作が行われる。ハンドル14を回すことで、ハンドル14に連結されたユニバーサルジョイント15、シャフト16の運動が、かさ歯歯車に伝達され開閉機構が起動する。この単結晶把持機構部10は、同様な機能を有する装置であれば、市販品を利用することができる。ハンドル14の位置や把持部13の角度は、大型の単結晶Cを把持しやすく、所定の熱処理炉300内に装入、設置が出来る形状として適宜設計し製作すればよい。
<昇温機構部>
本発明の単結晶運搬装置100は、単結晶把持機構部10の一部を昇温する昇温機構部30を有するものであり、昇温機構部30は、単結晶把持機構部10のうち単結晶Cに当接する部分に対して昇温する機能を有し、この実施形態では昇温機構部30は、単結晶把持機構部10とは分離して設置される。
次に、図3により、昇温機構部30について詳細に説明する。昇温機構部30は、運搬装置100全体がコンパクトで軽量、かつ操作性が良好になるよう、単結晶把持機構部10と別に配置するのが好ましい。昇温機構部30は、上面に断熱材32を配置した台座31の上にヒーターブロック34を設置する。ヒーターブロック34は、ヒーター(電熱線)35及び熱電対37を備えており、外側に単結晶把持機構部10が配置できるようにする。ヒーター35、熱電対37は、種類や形態などによって特に限定されない。また、ヒーターブロック34の下方には落下防止機構36の係止部(N)が挿入されるため、互いに干渉しないような形状、例えば切り欠き36にするのが好ましい。
図4は昇温機構部30に単結晶把持機構部10を合体させ、単結晶把持機構部10を昇温している状態を示している。断熱材G、ヒーターブロック34からなる昇温機構部30の外側を弾性体R、断熱材Gを備えたハンド部33を有する単結晶把持機構部10が囲んでいる。ヒーターブロック34がハンド部33の弾性体Rと平面で接触し、ハンド部33の弾性体Rが加熱され、同時に下方で落下防止機構を構成する係止部(爪)Nに設けられた弾性体Rも加熱される。
ヒーターブロック34は、ヒーターを金属板で形成した直方体の容器に内蔵しカートリッジ型にしたものである。ヒーターは、加熱温度範囲や昇温機構部30での使用形態によってタイプを選定する。市販品にラバーヒーター、プレートヒーター、セラミックヒーターなどがある。図示しないが、昇温機構部30には、電池などの電力供給設備、電力制御装置が付属しており、ヒーターや熱電対と接続される。ヒーターの熱量は、弾性体Rの表面がゆるやかに所定の温度となるような条件に設定すればよい。熱量が大きすぎるとゴムが急速に加熱されて変質してしまう場合がある。
この第1実施形態に係る単結晶運搬装置100は、単結晶Cを保持する単結晶把持機構部10が図1,2に示すように単結晶Cを保持する構成となる。昇温機構部30によって予めハンド部33の弾性体Rを昇温して、単結晶を保持することで、単結晶運搬装置100を軽量でコンパクトな構造にしている。ハンド部33の弾性体Rは蓄熱機能をもつので、一定時間、単結晶Cを保温できるが、ハンド部33の温度は徐々に低下していく。単結晶Cが50℃を下回った状態で長時間放置されるとクラックが生じやすいので、もう一度昇温機構部30によってハンド部33の弾性体Rを昇温して、単結晶を保持することがある。
[第2実施形態]
次に、第2実施形態に係る単結晶運搬装置100について説明する。第2実施形態に係る単結晶運搬装置100は、単結晶Cを保持する単結晶把持機構部10と、単結晶把持機構部10の一部を昇温する昇温機構部30とを有する単結晶運搬装置100であって、昇温機構部30が単結晶把持機構部10を兼ねており、単結晶Cに当接する部分に対して昇温するように構成されている。
図10(A)は、運搬装置100に搭載される単結晶Cを保持する単結晶把持機構部10の斜視図である。単結晶把持機構部10が昇温機能を備えており、昇温された把持部13のハンド部33によって単結晶Cを保持している状態が示されている。昇温機構部30は、図10(B)のように、ハンド部33の弾性体Rをヒーターブロック34により直接昇温する。単結晶Cを把持するため、最内側にハンド部33の弾性体Rを設置し、その外側に、ヒーターブロック34、断熱材Gの順に設置する。ヒーターブロック34は、把持部13の作動を干渉しないように配置している。ハンド部33の弾性体Rを加熱すると、落下防止機構を有する係止部(爪)Nにある弾性体Rも昇温される。ヒーターの選定や使用は、第1実施形態と同様である。図10(B)では、ハンド部33の断熱材Rをヒーターブロック34と同じ大きさにしている。ハンド部33の弾性体Rを大きくすることで保温効果を高めるのが好ましい。
この第2実施形態に係る単結晶運搬装置100は、図10(A)に示すように、単結晶把持機構部10が単結晶Cを保持する構成となる。昇温機構部30が単結晶Cを保持する単結晶把持機構部10の中に組み込まれて運搬装置100に搭載されているので、ハンド部33を第1実施形態よりも長時間、所定の温度に保つことが可能となり、単結晶Cを保温しながら効率よく運搬作業をすることができる。
2.単結晶運搬方法
本発明で単結晶を運搬する運搬方法は、単結晶を保持する把持部と、把持部の一部を昇温する昇温機構部を有する単結晶運搬装置を用いて、単結晶を保持する前に、単結晶を保持する把持部の一部を昇温機構部により所定の温度に昇温し、その後、昇温された把持部の一部で単結晶を保持し、運搬することを特徴としている。
次に、本実施形態の単結晶運搬方法を図7~9により説明する。本発明の単結晶運搬方法では、前記実施形態1、2のいずれかに示した、単結晶を保持する単結晶把持機構部10と、単結晶把持機構部10の一部を昇温する昇温機構部30とを有する単結晶運搬装置100を用いて単結晶Cを運搬する。
チョクラルスキー法で種結晶204を上昇させ、原料融液Lから引き上げられた単結晶Cは、育成炉200から取り出され、冷却されながら乾燥炉に収容されている。その後、単結晶Cは、一定温度になった後、乾燥炉より取り出し、結晶内の応力を取り除く為、単結晶運搬装置100に単結晶Cを載せて熱処理炉300まで運搬し、熱処理(アニール)を行う。
図7(A)では、リフター20が、昇温された把持部13により単結晶Cを保持して運搬する様子を示している。単結晶Cは大型で重いのでリフター20の低い位置で保持して運搬される。
これに先立ち、前記実施形態1では、単結晶把持機構部10のハンド部33で単結晶Cが保温できるように、別置きされた昇温機構部30により所定の温度に昇温しておく。単結晶把持機構部10による加熱温度は、育成炉200や熱処理炉300からの結晶取り出し温度を考慮して決める。単結晶Cと接触する弾性体Rは、外気温にもよるが、昇温機構部30により50℃~120℃に昇温するのが好ましい。外気温が低ければ弾性体Rの加熱設定温度を50℃~120℃の範囲で高めにし、外気温が高ければ、この範囲でやや低めにしてもよい。また、育成炉200からの結晶取り出し温度は高いので、弾性体Rの加熱設定温度は、120℃にすることがあり、ポーリング炉300からの結晶取り出し温度は比較的低いので弾性体Rの加熱設定温度は、50℃にすることがある。いずれの場合でも、弾性体Rの加熱設定温度は、結晶取り出し温度よりも5~20℃高くするのが保温状態を維持して運搬するうえで好ましい。
図4は、単結晶把持機構部10のハンド部33が、昇温機構部30に設置され昇温されるところを示している。ハンド部33の弾性体Rに例えば、ショアA硬度50のシリコンゴムを取り付け固定して、把持部13を開いた状態で昇温機構部30に設置して、把持部13を閉じることでハンド部33のシリコンゴムにヒーターブロック34が平面で接触する。この状態で昇温し、ハンド部33のシリコンゴムが所定の温度になるまでこの状態を保持する。ヒーターブロックとして、図4のようにハンド部33と同一の開き角度120°の角度を有するものを用いていれば、リフターのハンドル14を回転させることにより、ハンド部33に固定されたショア硬度A50のシリコンゴムが密着し、ヒーター電源投入から20分程度でシリコンゴム表面が60℃程度になる。その後、把持部13を開きハンド部33を昇温機構部30より外す。
一方、前記実施形態2では、昇温機構部30が単結晶把持機構部10を兼ねているので、弾性体Rを昇温後、単結晶Cを保持しながら長時間保温することができる。
図7(B)では、単結晶運搬装置100に単結晶Cを載せて熱処理炉300まで運搬し、リフター20の把持部13が、単結晶把持機構部10により保持された単結晶Cを持ち上げて熱処理炉300に搬入する様子を示している。それを詳細に示したのが図8である。単結晶運搬装置100は、単結晶Cを載せて熱処理炉300まで運搬すると、熱処理炉300は、単結晶載置テーブルとなる炉床301が下降して、単結晶Cを受け入れる態勢をとる。ここで、単結晶運搬装置100が前進し、リフター20の把持部13が炉床301に接近して停止する。
その後、作業者がハンドル14を回転させ、単結晶把持機構部10の把持部13を開き保持された単結晶Cを炉床301に置く。単結晶運搬装置100は、単結晶把持機構部10の上下方向の寸法(H2)が、単結晶Cの運搬先である熱処理炉300の本体部と、本体部から下方に移動している炉床(単結晶載置テーブル)301との間の寸法(H1)よりも小さいことから、単結晶運搬装置100は、熱処理炉300内で円滑に作業することができる。本発明によれば、昇温された把持部13にて単結晶Cを保持し運搬するが、ハンド部33は昇温されており、ほぼ単結晶Cの温度と同等であるため、運搬中のクラックの発生を防止できる。
図9(A)では、単結晶Cを熱処理炉300の炉床301に搬入した単結晶運搬装置100が、熱処理炉300から離れ、図9(B)では、熱処理炉300の炉床301が上昇して一体化する様子を示している。その後、結晶内の応力を取り除く為、熱処理炉300を用いて熱処理(アニール)が行われる。アニール工程では、電気炉を用いて、融点直下で結晶全体が均熱となる温度環境下に一定時間結晶を保持し、更に均熱状態を保持したまま50℃付近まで徐冷する。本発明では、熱処理(アニール)が行われた単結晶Cを熱処理炉300から取り出し、上記と同様にして運搬される。
前記の通りLT、LNのような自発分極が発生する強誘電体結晶では、結晶全体のドメイン方向を揃えるために、アニール後にポーリングが行われる。すなわち、冷却された結晶をキュリー温度以上の所定温度まで昇温し、結晶に電圧を印加し、その後、電圧を印加したままキュリー温度以下の所定温度まで降温した後、電圧印加を停止して50℃付近まで冷却する処理が行われる。本発明では、さらに分極(ポーリング)が行われた単結晶Cを熱処理炉300から取り出して、上記と同様な方法で運搬される。
以上のように、熱処理炉300の搬入口等の大きさや単結晶Cを搬入する方向等で単結晶把持機構部10の大きさに制限があり、昇温機構部30を同時に搭載できない場合は、運搬装置100から分離してハンド部33を昇温して単結晶Cを運搬すればよく、この間、ハンド部33が所定の温度範囲より下がった場合は、再度昇温してから作業を行なえばよい。また、前記実施形態2に示される、図10のような昇温機構部30を搭載した運搬装置100を用いれば、ハンド部33を長時間、所定の温度に保つことが可能となり、効率よく運搬作業を行うことができる。
以下、実施例及び比較例により本発明の具体的な実施内容を説明するが、本発明はこれらの実施形態に限定されるものではない。
(実施例1)
図1のような大型の単結晶Cを保持できるハンド部を有する把持機構部(高さ400mm)と、図3のようなヒーターブロックを有する昇温機構部とを備える単結晶運搬装置を用意した。ハンド部には厚さ20mmのシリコンゴム(ショアA硬度50)が取り付けられている。
次に、この運搬装置を使用し、ハンド部のシリコンゴムを20分間加熱し、60℃に昇温後、乾燥炉から取り出した表面温度60℃のLN単結晶のインゴット(口径200mm)直胴部を把持し、乾燥炉からアニール炉まで3分間かけて移動した。アニール炉の本体部と、本体部から下方に移動しうる炉床(単結晶載置テーブル)との間の寸法は、500mmなので搬入するのに支障はなかった。
運搬後、アニール炉の炉床に置いた際、結晶の外観を観察した。割れ、クラック等の発生がなくかつ安全に作業することができた。
(実施例2)
実施例1と同じ運搬装置を使用し、ハンド部のシリコンゴムを30分間加熱し、70℃に昇温した。その後、実施例1で熱処理(アニール)が行われた表面温度60℃のLN単結晶のインゴット(口径200mm)直胴部を把持し、アニール炉からポーリング炉まで、5分間かけて移動した。ポーリング炉の本体部と、本体部から下方に移動しうる炉床(単結晶載置テーブル)との間の寸法は、500mmなので搬入するのに支障はなかった。
運搬後、ポーリング炉の炉床に置いた際、結晶の外観を観察した。割れ、クラック等の発生がなくかつ安全に作業することができた。
100 単結晶運搬装置
200 育成炉
202 坩堝
203 引き上げ軸
204 種結晶
300 熱処理炉
301 炉床
10 単結晶把持機構部
11 把持台
12 台形ねじ
13 把持部
14 ハンドル
15 ユニバーサルジョイント
16 シャフト
17 リフト板
18 リフトレバー
19 LMガイド
20 リフター
21 支柱
23,24 車輪
25 取っ手
30 昇温機構部
31 台座(基盤)
32 台座(断熱材)
33 ハンド部
34 ヒーターブロック
35 ヒーター(電線)
37 熱電対
C 単結晶
s 結晶肩部
m 結晶直胴部
b 結晶下端部
L 融液
R 弾性体
G 断熱材
N 係止部(爪)

Claims (9)

  1. 単結晶を保持する把持機構部と、前記把持機構部の一部を昇温する昇温機構部とを有する単結晶運搬装置であって、
    前記把持機構部は、単結晶の側面を把持する複数のハンド部を備え、
    前記複数のハンド部のそれぞれは、単結晶の下面の一部を係止可能な係止部を備え、
    前記昇温機構部は、前記把持機構部のうち単結晶の側面と下面に当接する部分に対して昇温することを特徴とする単結晶運搬装置。
  2. 前記昇温機構部は、前記把持機構部と分離して設置されることを特徴とする請求項1に記載の単結晶運搬装置。
  3. 前記把持機構部は、前記複数のハンド部を開閉させる操作部を備え、
    前記複数のハンド部のそれぞれは、単結晶の側面に接触する弾性体を備えることを特徴とする請求項1又は請求項2に記載の単結晶運搬装置。
  4. 前記弾性体は、耐熱性のゴムが用いられ、前記昇温機構部により昇温された熱を保持する蓄熱部であることを特徴とする請求項3に記載の単結晶運搬装置。
  5. 前記複数のハンド部は、平面視において屈曲部を有する一対のハンド部であり、
    前記一対のハンド部は、前記屈曲部を互いに対向させた状態で配置され、前記操作部による操作によって互いに近づく方向又は離れる方向に移動することを特徴とする請求項3又は請求項4に記載の単結晶運搬装置。
  6. 前記ハンド部の上下方向の寸法は、単結晶の運搬先である熱処理炉の本体部と、前記本体部から下方に移動している単結晶載置テーブルとの間の寸法よりも小さいことを特徴とする請求項1から請求項5のいずれか一項に記載の単結晶運搬装置。
  7. 請求項1に記載の単結晶運搬装置を用いて単結晶を運搬する方法であって、
    単結晶を保持する前に前記把持機構部の一部を前記昇温機構部により所定の温度に昇温することと、
    昇温された前記把持機構部により単結晶を保持して運搬することと、を含むことを特徴とする単結晶運搬方法。
  8. 前記把持機構部において単結晶と接触するように備える弾性体を前記所定の温度に昇温することを含むことを特徴とする請求項7に記載の単結晶運搬方法。
  9. 前記弾性体は、前記昇温機構部により50℃から120℃に昇温されることを特徴とする請求項8に記載の単結晶運搬方法。
JP2018048542A 2018-03-15 2018-03-15 単結晶運搬装置および単結晶運搬方法 Active JP7069886B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018048542A JP7069886B2 (ja) 2018-03-15 2018-03-15 単結晶運搬装置および単結晶運搬方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018048542A JP7069886B2 (ja) 2018-03-15 2018-03-15 単結晶運搬装置および単結晶運搬方法

Publications (2)

Publication Number Publication Date
JP2019156696A JP2019156696A (ja) 2019-09-19
JP7069886B2 true JP7069886B2 (ja) 2022-05-18

Family

ID=67993068

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018048542A Active JP7069886B2 (ja) 2018-03-15 2018-03-15 単結晶運搬装置および単結晶運搬方法

Country Status (1)

Country Link
JP (1) JP7069886B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112026870A (zh) * 2020-09-16 2020-12-04 新田县三知重工机械有限公司 一种挖机生产用配件移动装置及其使用方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57118087A (en) * 1981-01-06 1982-07-22 Toshiba Corp Manufacture of single crystal
JPS5933559B2 (ja) * 1981-11-30 1984-08-16 株式会社東芝 単結晶の製造方法
JPH09165289A (ja) * 1995-12-13 1997-06-24 Komatsu Electron Metals Co Ltd 単結晶インゴット把持装置および把持方法
JPH09169593A (ja) * 1995-12-19 1997-06-30 Komatsu Electron Metals Co Ltd 単結晶インゴット取り出し装置

Also Published As

Publication number Publication date
JP2019156696A (ja) 2019-09-19

Similar Documents

Publication Publication Date Title
EP2857562B1 (en) Sic single-crystal ingot and production method for same
US20150013590A1 (en) Seed crystal holding shaft for use in single crystal production device, and method for producing single crystal
US20180057957A1 (en) Advanced crucible support and thermal distribution management
JP7069886B2 (ja) 単結晶運搬装置および単結晶運搬方法
CN110484965B (zh) 一种氧化镓晶体及其生长方法和生长装置
JP6015397B2 (ja) 炭化珪素単結晶の製造方法及びその製造装置
WO2005075714A1 (ja) 単結晶半導体の製造装置および製造方法
JP2019147698A (ja) 結晶育成装置及び結晶育成方法
JP2019127411A (ja) ニオブ酸リチウム単結晶の単一分域化方法
KR101842487B1 (ko) 도가니 및 단결정 육성 장치 및 단결정 육성 방법
JP4957731B2 (ja) ルツボハンドリング装置
JP2002226299A (ja) 単結晶製造装置及び単結晶製造方法
JP6834493B2 (ja) 酸化物単結晶の育成装置及び育成方法
JP7115252B2 (ja) 酸化物単結晶の製造方法及び結晶育成装置
US20150093231A1 (en) Advanced crucible support and thermal distribution management
JP4703486B2 (ja) 坩堝および薄板製造装置
JP7294063B2 (ja) 酸化物単結晶の育成方法
JP7310339B2 (ja) ニオブ酸リチウム単結晶の育成方法
JP2018135228A (ja) LiTaO3単結晶の育成方法とLiTaO3単結晶の処理方法
WO2005075715A1 (ja) 単結晶半導体の製造方法
JP7275674B2 (ja) ニオブ酸リチウム単結晶の育成方法
JP2018100202A (ja) LiNbO3単結晶の育成方法
JP2021155280A (ja) アニール処理方法および単結晶の製造方法
JP7396183B2 (ja) 酸化物単結晶の単一分域化処理に用いる耐熱容器、及び、酸化物単結晶の単一分域化処理方法
JP3785674B2 (ja) 結晶の熱処理方法及びその装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210120

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210922

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20211012

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220125

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220315

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220405

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220418

R150 Certificate of patent or registration of utility model

Ref document number: 7069886

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150