JP7059289B2 - 核水添反応用触媒 - Google Patents

核水添反応用触媒 Download PDF

Info

Publication number
JP7059289B2
JP7059289B2 JP2019539390A JP2019539390A JP7059289B2 JP 7059289 B2 JP7059289 B2 JP 7059289B2 JP 2019539390 A JP2019539390 A JP 2019539390A JP 2019539390 A JP2019539390 A JP 2019539390A JP 7059289 B2 JP7059289 B2 JP 7059289B2
Authority
JP
Japan
Prior art keywords
catalyst
hydrogenation reaction
nuclear hydrogenation
carrier
component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019539390A
Other languages
English (en)
Other versions
JPWO2019044585A5 (ja
JPWO2019044585A1 (ja
Inventor
智照 水崎
弘康 鈴鹿
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NE Chemcat Corp
Original Assignee
NE Chemcat Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NE Chemcat Corp filed Critical NE Chemcat Corp
Publication of JPWO2019044585A1 publication Critical patent/JPWO2019044585A1/ja
Publication of JPWO2019044585A5 publication Critical patent/JPWO2019044585A5/ja
Application granted granted Critical
Publication of JP7059289B2 publication Critical patent/JP7059289B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/46Ruthenium, rhodium, osmium or iridium
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C209/00Preparation of compounds containing amino groups bound to a carbon skeleton
    • C07C209/68Preparation of compounds containing amino groups bound to a carbon skeleton from amines, by reactions not involving amino groups, e.g. reduction of unsaturated amines, aromatisation, or substitution of the carbon skeleton
    • C07C209/70Preparation of compounds containing amino groups bound to a carbon skeleton from amines, by reactions not involving amino groups, e.g. reduction of unsaturated amines, aromatisation, or substitution of the carbon skeleton by reduction of unsaturated amines
    • C07C209/72Preparation of compounds containing amino groups bound to a carbon skeleton from amines, by reactions not involving amino groups, e.g. reduction of unsaturated amines, aromatisation, or substitution of the carbon skeleton by reduction of unsaturated amines by reduction of six-membered aromatic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C211/00Compounds containing amino groups bound to a carbon skeleton
    • C07C211/33Compounds containing amino groups bound to a carbon skeleton having amino groups bound to carbon atoms of rings other than six-membered aromatic rings
    • C07C211/34Compounds containing amino groups bound to a carbon skeleton having amino groups bound to carbon atoms of rings other than six-membered aromatic rings of a saturated carbon skeleton
    • C07C211/35Compounds containing amino groups bound to a carbon skeleton having amino groups bound to carbon atoms of rings other than six-membered aromatic rings of a saturated carbon skeleton containing only non-condensed rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B61/00Other general methods

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Catalysts (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Description

本発明は、芳香環に1以上のアミノ基が結合した芳香族化合物の核水添反応に使用される触媒に関する。
従来から、芳香族化合物の核水添反応は、高機能プラスチック製品の原料となるポリアミドイミド樹脂等を合成するために利用されている。そして、芳香族化合物の核水添反応に使用される触媒としてはルテニウム触媒が知られている。
例えば、特許文献1(特開2009-286747号公報)には、ポリウレタンフォーム製造用触媒、エポキシ硬化剤、レジスト剥離剤、鋼用腐食防止剤として有用なN,N-ジメチルシクロヘキシルアミン類を効率的に経済性良く製造する方法を提供することを目的とし、芳香族化合物をルテニウム触媒等及び水素の存在下で核水添反応させ、得られたシクロヘキシル化合物を、前記貴金属触媒、ホルムアルデヒド誘導体及び水素の存在下で還元メチル化反応させるN,N-ジメチルシクロへキシルアミン類の製造法が開示されている(特許文献1、[要約])。
より具体的には、アルミナ(担体)にルテニウムが5%担持されたルテニウム触媒が開示されている(特許文献1、[0032]実施例1及び[0034]実施例2等)。
特開2009-286747号公報
しかしながら、上記のような従来のルテニウム触媒では、芳香族化合物の核水添反応において反応物の転化率をより向上させるという観点からは、未だ改善の余地があることを本発明者らは見出した。
そこで、本発明は、かかる技術的事情に鑑みてなされたものであって、芳香族化合物の核水添反応において、従来のルテニウム触媒よりも優れた触媒活性を有する核水添反応用触媒を提供することを目的とする。
本件発明者らは、核水添反応に用いられるルテニウム触媒において、担体上に担持される触媒粒子に含まれるRu成分とそれ以外の第2成分の添加効果に着目し、触媒活性の更なる向上を実現する構成について鋭意検討を行った。
その結果、第2成分としてRh成分を所定量添加することが触媒活性の向上に有効であることを見出し、本発明を完成するに至った。
より具体的には、本発明は、以下の技術的事項により構成される。
すなわち、本発明は、 芳香環に1以上のアミノ基が結合した芳香族化合物の前記芳香環のπ結合の少なくとも1つを水素化する核水添反応に使用される核水添反応用触媒であって、
担体と、前記担体上に担持される触媒粒子と、を含んでおり、
前記触媒粒子には、Ru成分とRh成分とが含まれており、
高周波誘導結合プラズマ(ICP)発光分光分析法により求められるRuの含有量MRu(質量%)とRhの含有量MRh(質量%)とが下記式(1)の条件を満たしている、
核水添反応用触媒を提供する。
Ru>MRh ・・・(1)
このように、触媒粒子の構成を上記式(1)の条件を満たすように触媒活性の高いRh成分を添加したものとすることにより、本発明の核水添反応用触媒は、芳香環に1以上のアミノ基が結合した芳香族化合物の核水添反応において、従来のルテニウム触媒よりも優れた触媒活性を発揮することができる。
また、式(1)を満たすようにRh成分を添加するため、本発明の核水添反応用触媒は従来の核水添反応用触媒に比較した場合の製造コストの上昇を比較的容易に低減できる。
ここで、本発明において、Ruの含有量MRu(質量%)とRhの含有量MRh(質量%)とは、核水添反応用触媒の粉末(担体に触媒粒子を担持した状態の粉体)の質量を100%とした場合にICP分析で求められる分析値である。
また、上述の本発明の効果をより確実に得る観点から、本発明の核水添反応用触媒は、前記Ruの含有量MRu(質量%)と前記Rhの含有量MRh(質量%)との比(MRh/MRu)が下記式(2)の条件を更に満たしていることが好ましい。
0.02≦(MRh/MRu)≦0.10 ・・・式(2)
ここで、本発明において、上記式(2)に示される(MRh/MRu)の値を0.10以下とすることにより、より少ないRh成分の添加量で十分な触媒活性を有しかつ従来の核水添反応用触媒に比較した場合の製造コストの上昇をより容易に低減できる核水添反応用触媒を提供できる。また、上記式(2)に示される(MRh/MRu)の値を0.02以上とすることにより、十分な触媒活性を有する核水添反応用触媒をより確実に提供することができる。
更に、上述の本発明の効果をより確実に得る観点から、本発明の核水添反応用触媒は、前記Rhの含有量MRh(質量%)が下記式(3)の条件を更に満たしていることが好ましい。
0.10≦MRh≦0.50 ・・・式(3)
本発明において、上記式(3)に示されるようにMRhを0.50質量%以下とすることにより更に少ないRh成分の添加量で十分な触媒活性を有しかつ従来の核水添反応用触媒に比較した場合の製造コストの上昇をより容易に低減できる核水添反応用触媒を提供できる。また、上記式(3)に示されるようにMRhを0.10質量%以上とすることにより、十分な触媒活性を有する核水添反応用触媒をより確実に提供することができる。
また、上述の本発明の効果をより確実に得る観点から、本発明の核水添反応用触媒は、
前記Ruの含有量MRu(質量%)が下記式(4)の条件を更に満たしていることが好ましい。
0<MRu≦5.00 ・・・式(4)
本発明において、上記式(3)に示されるようにMRhを0.50質量%以下とすることにより、更に少ないRh成分の添加量で十分な触媒活性を有しかつ従来の核水添反応用触媒に比較した場合の製造コストの上昇をより容易に低減できる核水添反応用触媒を提供できる。
更に、上述の本発明の効果をより確実に得る観点から、本発明の核水添反応用触媒は、前記触媒粒子に含まれる前記Ru成分としてRu(0価)とRu酸化物とが含まれており、 X線光電子分光分析法(XPS)により測定される表面近傍の分析領域における、Ru(0価)の割合RRu(atom%)と、Ru酸化物の割合RRuOx(atom%)とが、下記式(5)の条件を更に満たしていることが好ましい。
0.60≦{RRuOx/(RRuOx+RRu)}≦1.00 ・・・式(5)
本発明において、XPSで観察される核水添反応用触媒の表面近傍の分析領域におけるRu(0価)の割合RRu(atom%)と、Ru酸化物の割合RRuOx(atom%)とは、これら2つの成分の合計が100%となる条件で算出される数値としている。
本発明において、上記式(5)に示されるRRuOx/(RRuOx+RRu)の値が0.60以上で1.00以下となる構成とすることにより、本発明の核水添反応用触媒は、芳香環に1以上のアミノ基が結合した芳香族化合物の核水添反応において、従来のルテニウム触媒よりも優れた触媒活性をより確実に発揮することができる。
本発明の核水添反応用触媒が優れた触媒活性を有することについて詳細な理由は十分に解明されていないが、本発明者らは、以下のように考えている。
即ち、式(5)を満たす構造の核水添反応用触媒は、Ru(0価)に対するRu酸化物)の割合が従来の核水添反応用触媒よりも高いので、芳香族化合物の核水添反応に対する活性が向上していると推察している。
また、優れた触媒活性を更に確実に得る観点から、式(5)に示した{RRuOx/(RRuOx+RRu)}の値は0.85以上であることがより好ましく0.89以上であることがより好ましい。
また、本発明の核水添反応用触媒においては、前記触媒粒子に含まれる前記Rh成分がRh(0価)であることが好ましい。これにより、触媒活性をより容易に向上させることができる場合がある。
また、本発明の核水添反応用触媒において、前記触媒粒子に含まれる前記Ru酸化物はその一部に水酸基が結合した状態であってもよい。
更に、本発明の核水添反応用触媒においては、前記担体が、金属酸化物からなる第1担体と、非金属からなる第2担体と、からなり、
前記第1担体に担持される前記触媒粒子には前記Ru成分が主成分として含まれており、
前記第2担体に担持される前記触媒粒子には前記Rh成分が主成分として含まれていることが好ましい。
この構成とすることにより、本発明の核水添反応用触媒をより容易に製造することができるようになる。第1担体にRu成分を主成分として含む触媒粒子(以下、必要に応じて「第1触媒粒子」という)が担持された触媒と、第2担体にRh成分を主成分として含む触媒粒子(以下、必要に応じて「第2触媒粒子」という)が担持された触媒とを、各々単独で合成した後、両者を混合することにより本発明の核水添反応用触媒を容易に製造することができるからである。
また、第1触媒粒子の構成を採用することにより、式(5)の条件を満たす核水添反応用触媒をより容易に製造することができる。第1担体(金属酸化物)はRu酸化物の製造に必要な酸化雰囲気下で安定であるからである。
更に、第2担体は還元性を有する非金属からなっていてもよい。この構成を採用することにより、Rh成分のうちの少なくとも一部を活性の高いRh(0価)とした状態で核水添反応用触媒をより容易に製造することができる。
また、本発明の核水添反応用触媒をより容易に製造する観点から、第1触媒粒子にはRh成分が含まれていないことが好ましい。更に、同様の観点から、第2触媒粒子にはRu成分が含まれていないことが好ましい。ただし、本発明の効果が得られる範囲において、第1触媒粒子を含む触媒と、第2触媒粒子を含む触媒とを、各々単独で合成した後、両者を混合する際に、第1触媒粒子を含む触媒にRh成分が付着した状態となる場合や第2触媒粒子を含む触媒にRu成分が付着した状態となる場合があってもよい。
ここで、第1触媒粒子について、「Ru成分が主成分として含まれる」とは第1触媒粒子に含まれるRu成分の割合が60質量%以上であることをいう。第1触媒粒子に含まれるRu成分の割合は70質量%以上であることが好ましく、80質量%以上であることがより好ましく、90質量%以上%以上であることが更に好ましい。 第1触媒粒子(第1担体に担持される触媒粒子)がRu成分のみからなることが更にいっそう好ましい。
また、ここで、第2触媒粒子について、「Rh成分が主成分として含まれる」とは第2触媒粒子に含まれるRh成分の割合が60質量%以上であることをいう。第2触媒粒子に含まれるRh成分の割合は70質量%以上であることが好ましく、80質量%以上であることがより好ましく、90質量%以上%以上であることが更に好ましい。
第1触媒粒子(第2担体に担持される触媒粒子)がRh成分のみからなることがさらにいっそう好ましい。
また、第1担体がアルミナからなること好ましい。アルミナはRu酸化物の製造に必要な酸化雰囲気下で安定であるからである。
更に、第2担体がカーボンからなること好ましい。カーボンは還元力を有するからである。
本発明によれば、芳香環に1以上のアミノ基が結合した芳香族化合物の核水添反応において、従来のルテニウム触媒よりも優れた触媒活性を有する核水添反応用触媒が提供される。
本発明におけるX線光電子分光分析法(XPS)の分析条件を説明するためのXPS装置の概略構成を示す模式図である。
<核水添反応用触媒>
以下、本発明の核水添反応用触媒の好適な実施形態について詳細に説明する。
本発明の水添反応用触媒は、芳香環に1以上のアミノ基が結合した芳香族化合物の当該芳香環のπ結合の少なくとも1つを水素化する核水添反応に使用されるものである。
例えば、下記の化学反応式(1)で示される、芳香族化合物である「4-ターシャリーブチルアニリン[4-tert-Butylaniline、下記反応式(1)中の反応物(1)]」の芳香環のπ結合を水素化して、「4-ターシャリーブチルシクロヘキシルアミン[(4-tert-Butylcyclohexylamine、下記反応式(1)中の生成物(2)]」に転化する核水添反応に使用することができる。
Figure 0007059289000001
本発明の核水添反応用触媒は、担体と、前記担体上に担持される触媒粒子と、を含んでいればよく、触媒粒子の担持の形態については特に制限はなく、種々の構造を採り得る。
(担体)
担体としては、触媒粒子を担持することができ、かつ表面積が比較的大きいものであれば特に制限されないが、触媒粒子を含んだ溶液中で良好な分散性を有し、不活性であることが好ましい。
不活性担体としては、例えば、炭素系材料(カーボン)、シリカ、アルミナ、シリアカルミナ、マグネシア等が好ましい。
また、後述する第1担体としてはアルミナが特に好ましい。アルミナはRu酸化物の製造に必要な酸化雰囲気下で安定であるからである。
更に、後述する第2担体としては、炭素系材料(カーボン)が特に好ましい。カーボンは還元力を有するからである。
また、上記アルミナ担体については、BJH法により求められる細孔径PSが8.00nm~12.00nmであり、BJH法により求められる細孔容積PVが0.250cm/g~0.400cm/gであるのが好ましい。
ここで、本発明において、細孔径PSはBJH(Barrett, Joyner, Hallender)法により吸着質(気体分子)が固体表面から脱離するときの相対圧と吸着量の関係である脱着等温線から求められる値(BJH Desorption average pore diameter)である。また、本発明において、細孔容積PVも、BJH法により求められる値(BJH Desorption cumulative volume of pores between 1.7000 nm and 300.0000 nm diameter)である。
炭素系材料としては、例えば、グラッシーカーボン(GC)、ファインカーボン、カーボンブラック、黒鉛、炭素繊維、活性炭、活性炭の粉砕物、カーボンナノファイバー、カーボンナノチューブ等が挙げられる。
なお、炭素系材料としては、導電性カーボンが好ましく、特に、導電性カーボンとしては、導電性カーボンブラックが好ましい。また、導電性カーボンブラックとしては、商品名「ケッチェンブラックEC300J」、「ケッチェンブラックEC600」、「カーボンEPC」等(ライオン化学株式会社製)を例示することができる。
(触媒粒子)
次に、本発明において上記担体に担持される触媒粒子は、Ru成分とRh成分とが含まれている。更に、この触媒粒子は、高周波誘導結合プラズマ(ICP)発光分光分析法により求められるRuの含有量MRu(質量%)とRhの含有量MRh(質量%)とが下記式(1)の条件を満たしている、
Ru>MRh ・・・(1)
このように、触媒粒子の構成を上記式(1)の条件を満たすように触媒活性の高いRh成分を添加したものとすることにより、本発明の核水添反応用触媒は、芳香環に1以上のアミノ基が結合した芳香族化合物の核水添反応において、従来のルテニウム触媒よりも優れた触媒活性を発揮することができる。
また、この触媒粒子は式(1)を満たすようにRh成分が添加されているので従来の核水添反応用触媒に比較した場合の製造コストの上昇を比較的容易に低減できる。
ここで、Ruの含有量MRu(質量%)とRhの含有量MRh(質量%)は、核水添反応用触媒の粉末(担体に触媒粒子を担持した状態の粉体)の質量を100%とした場合にICP分析で求められる分析値である。
また、上述の本発明の効果をより確実に得る観点から、MRu(質量%)とMRh(質量%)との比(MRh/MRu)が下記式(2)の条件を更に満たしていることが好ましい。
0.02≦(MRh/MRu)≦0.10 ・・・式(2)
ここで、上記式(2)に示される(MRh/MRu)の値を0.10以下とすることにより、より少ないRh成分の添加量で十分な触媒活性を有しかつ従来の核水添反応用触媒に比較した場合の製造コストの上昇をより容易に低減できる核水添反応用触媒を提供できる。
また、上記式(2)に示される(MRh/MRu)の値を0.02以上とすることにより、十分な触媒活性を有する核水添反応用触媒をより確実に提供することができる。
更に、上述の本発明の効果をより確実に得る観点から、MRh(質量%)が下記式(3)の条件を更に満たしていることが好ましい。
0.10≦MRh≦0.50 ・・・式(3)
上記式(3)に示されるようにMRhを0.50質量%以下とすることにより更に少ないRh成分の添加量で十分な触媒活性を有しかつ従来の核水添反応用触媒に比較した場合の製造コストの上昇をより容易に低減できる核水添反応用触媒を提供できる。
また、上記式(3)に示されるようにMRhを0.10質量%以上とすることにより、十分な触媒活性を有する核水添反応用触媒をより確実に提供することができる。
更に、上述の本発明の効果をより確実に得る観点から、MRu(質量%)が下記式(4)の条件を更に満たしていることが好ましい。
0<MRu≦5.00 ・・・式(4)
上記式(3)に示されるようにMRhを0.50質量%以下とすることにより、更に少ないRh成分の添加量で十分な触媒活性を有しかつ従来の核水添反応用触媒に比較した場合の製造コストの上昇をより容易に低減できる核水添反応用触媒を提供できる。
更に、上述の本発明の効果をより確実に得る観点から、触媒粒子に含まれるRu成分としてRu(0価)とRu酸化物とが含まれており、X線光電子分光分析法(XPS)により測定される表面近傍の分析領域における、Ru(0価)の割合RRu(atom%)と、Ru酸化物の割合RRuOx(atom%)とが、下記式(5)の条件を更に満たしていることが好ましい。
0.60≦{RRuOx/(RRuOx+RRu)}≦1.00 ・・・式(5)
XPSで観察される核水添反応用触媒の表面近傍の分析領域におけるRu(0価)の割合RRu(atom%)と、Ru酸化物の割合RRuOx(atom%)とは、これら2つの成分の合計が100%となる条件で算出される数値としている。
上記式(5)に示されるRRuOx/(RRuOx+RRu)の値が0.60以上で1.00以下となる構成とすることにより、本発明の核水添反応用触媒は、芳香環に1以上のアミノ基が結合した芳香族化合物の核水添反応において、従来のルテニウム触媒よりも優れた触媒活性をより確実に発揮することができる。
本発明の核水添反応用触媒が優れた触媒活性を有することについて詳細な理由は十分に解明されていないが、本発明者らは、以下のように考えている。
即ち、式(5)を満たす構造の核水添反応用触媒は、Ru(0価)に対するRu酸化物)の割合が従来の核水添反応用触媒よりも高いので、芳香族化合物の核水添反応に対する活性が向上していると推察している。
また、優れた触媒活性を更に確実に得る観点から、式(5)に示した{RRuOx/(RRuOx+RRu)}の値は0.85以上であることがより好ましく0.89以上であることがより好ましい。
また、本発明の核水添反応用触媒においては、前記触媒粒子に含まれる前記Rh成分がRh(0価)であることが好ましい。これにより、触媒活性をより容易に向上させることができる場合がある。
また、本発明の核水添反応用触媒において、前記触媒粒子に含まれる前記Ru酸化物はその一部に水酸基が結合した状態であってもよい
なお、本発明において、触媒粒子に含まれるRu酸化物はその一部に水酸基が結合した状態であってもよい。
更に、本発明の核水添反応用触媒においては、担体が、金属酸化物からなる第1担体と、非金属からなる第2担体と、からなっていてもよい。
第1担体に担持される第1触媒粒子にはRu成分が主成分として含まれていることが好ましい。
第2担体に担持される第2触媒粒子にはRh成分が主成分として含まれていることが好ましい。
この構成とすることにより、本発明の核水添反応用触媒をより容易に製造することができるようになる。第1触媒粒子が担持された触媒と、第2触媒粒子が担持された触媒とを、各々単独で合成した後、両者を混合することにより本発明の核水添反応用触媒を容易に製造することができるからである。
また、第1触媒粒子の構成を採用することにより、式(5)の条件を満たす核水添反応用触媒をより容易に製造することができる。第1担体(金属酸化物)はRu酸化物の製造に必要な酸化雰囲気下で安定であるからである。
更に、第2担体は還元性を有する非金属からなっていてもよい。この構成を採用することにより、Rh成分のうちの少なくとも一部を活性の高いRh(0価)とした状態で核水添反応用触媒をより容易に製造することができる。
また、本発明の核水添反応用触媒をより容易に製造する観点から、第1触媒粒子にはRh成分が含まれていないことが好ましい。更に、同様の観点から、第2触媒粒子にはRu成分が含まれていないことが好ましい。ただし、本発明の効果が得られる範囲において、第1触媒粒子を含む触媒と、第2触媒粒子を含む触媒とを、各々単独で合成した後、両者を混合する際に、第1触媒粒子を含む触媒にRh成分が付着した状態となる場合や第2触媒粒子を含む触媒にRu成分が付着した状態となる場合があってもよい。
ここで、第1触媒粒子について、「Ru成分が主成分として含まれる」とは第1触媒粒子に含まれるRu成分の割合が60質量%以上であることをいう。第1触媒粒子に含まれるRu成分の割合は70質量%以上であることが好ましく、80質量%以上であることがより好ましく、90質量%以上%以上であることが更に好ましい。第1触媒粒子(第1担体に担持される触媒粒子)がRu成分のみからなることが更にいっそう好ましい。
また、ここで、第2触媒粒子について、「Rh成分が主成分として含まれる」とは第2触媒粒子に含まれるRh成分の割合が60質量%以上であることをいう。第2触媒粒子に含まれるRh成分の割合は70質量%以上であることが好ましく、80質量%以上であることがより好ましく、90質量%以上%以上であることが更に好ましい。
第1触媒粒子(第2担体に担持される触媒粒子)がRh成分のみからなることがさらにいっそう好ましい。
なお、本発明において、X線光電子分光分析法(XPS)は、以下の分析条件(A1)~(A5)で実施しされるものとする。
(A1)X線源:単色化AlKα
(A2)光電子取出確度:θ=75℃
(A3)帯電補正:C1sピークエネルギーを284.8eVとして補正
(A4)分析領域:200μm、
(A5)分析時チャンバ圧力:約1×10-6Pa
ここで、(A2)の光電子取出確度θは、図1に示すように、エックス線源32から放射されたX線が、試料ステージ34上にセットされた試料へ照射され、当該試料から放射される光電子を分光器36で受光するときの角度θである。すなわち、光電子取出確度θは、分光器36の受光軸と試料ステージ34の試料の層の面との角度に該当する。
<核水添反応用触媒の製造方法>
本発明の核水添反応用触媒の製造方法は、担体に上記触媒粒子を担持させることができる方法であれば、特に制限されるものではない。
例えば、担体にRu化合物を含有する溶液を接触させ、担体に触媒成分を含浸させる含浸法、触媒成分を含有する溶液に還元剤を投入して行う液相還元法、電気化学的析出法、化学還元法、吸着水素による還元析出法等を採用した製造方法を例示することができる。
ただし、核水添反応用触媒の製造における製造条件は、高周波誘導結合プラズマ(ICP)発光分光分析法により求められるRuの含有量MRu(質量%)とRhの含有量MRh(質量%)とがとが、先に述べた式(1)の条件を満たすように製造工程における合成反応条件を調節することが必要である。
また、Rhを添加する際には触媒粒子のRh(0価)の含有量が先に述べた式(1)の条件、式(1)の条件よりも好ましくは更に式(2)を組合わせた条件、式(1)及び式(2)を組合わせた条件よりも好ましくは更に式(3)を組合わせた条件、式(1)~式(3)を組み合わせた条件よりも好ましくは更に式(4)を組合わせた条件を満たすように製造工程における合成反応条件を調節することがより好ましい。
更に好ましくは、X線光電子分光分析法(XPS)により測定される表面近傍の分析領域における、Ru(0価)の割合RRu(atom%)と、Ru酸化物の割合RRuOx(atom%)とが、先に述べた式(5)の条件を満たすように製造工程における合成反応条件を調節することが必要である。
なお、本発明の核水添反応用触媒を、上述した式(1)で示した必須の条件、式(2)で示した好ましい条件を満たすように製造する方法としては、例えば、各製造工程において得られる触媒前駆体、最終的に得られる核水添反応用触媒の化学組成や構造を各種の公知の分析手法を用いて分析し、得られる分析結果を各製造工程にフィードバックし、選択する原料、その原料の配合比、選択する合成反応、その合成反応の反応条件(温度、ガス成分の圧力、溶媒)などを調製・変更する方法等が挙げられる。
また、本発明の核水添反応用触媒において、第1担体にRu成分を主成分として含む触媒粒子(第1触媒粒子)が担持された触媒と、第2担体にRh成分を主成分として含む触媒粒子(第2触媒粒子))が担持された触媒とを、各々単独で合成した後、両者を混合することにより、式(1)で示した必須の条件、式(2)~式(5)で示した好ましい条件を満たすように合成してもよい。これにより、本発明の核水添反応用触媒をより容易に製造することができる。
以下、実施例により本発明を更に具体的に説明するが、本発明は、以下の実施例に限定されるものではない。
≪実施例1≫
本発明の核水添反応用触媒(以下、「核水添反応用触媒1」という)として、商品名「NECC-RARC」、N.E.CHEMCAT社製)を製造した。
核水添反応用触媒1は、Ru(0価)とRu酸化物とを含む第1触媒粒子が第1担体であるアルミナ(Al)粒子に担持された触媒と、Rh(0価)を含む第2触媒粒子が第2担体であるカーボンブラックに担持された触媒との混合物として製造した。
Ru(0価)とRu酸化物とを含む第1触媒粒子が第1担体であるアルミナ(Al)粒子に担持された触媒は、アルミナと水溶性のRu塩を水に溶解してRu水酸化物がアルミナに担持された触媒前駆体を合成する第1工程と、この第1工程で得られる触媒前駆体を空気中で加熱・乾燥処理(処理温度:80℃)する第2工程と、第2工程を得て得られた核水添反応用触媒を前駆体として更に還元剤を用いて還元する第3工程とを経て合成した。第3工程では窒素90%、水素10%のガス雰囲気中、100℃で還元処理を実施した。
Rh(0価)を含む第2触媒粒子が第2担体であるカーボンブラックに担持された触媒は、カーボンブラックと水溶性のRh塩とを水に溶解し、所定の還元剤を添加することにより合成した。
核水添反応用触媒1の(MRh/MRu)の値、MRuの値、MRhの値を表1に示した。また、{RRuOx/(RRuOx+RRu)}の値を表2に示した。
≪実施例2≫
実施例1の核水添反応用触媒に対し、触媒粒子における(MRu>MRh)の値、MRuの値、MRhの値、{RRuOx/(RRuOx+RRu)}の値を表1及び表2に示すものに変更した以外は、実施例1と同様にして、本発明の核水添反応用触媒2(商品名「NECC-RARC2」、N.E.CHEMCAT社製))を製造した。
≪実施例3≫
実施例1の核水添反応用触媒に対し、触媒粒子における(MRu>MRh)の値、MRuの値、MRhの値、{RRuOx/(RRuOx+RRu)}の値を表1及び表2に示すものに変更した以外は、実施例1と同様にして、本発明の核水添反応用触媒3(商品名「NECC-RARC3」、N.E.CHEMCAT社製))を製造した。
≪実施例4≫
実施例1の核水添反応用触媒に対し、触媒粒子における(MRu>MRh)の値、MRuの値、MRhの値、{RRuOx/(RRuOx+RRu)}の値を表1及び表2に示すものに変更した以外は、実施例1と同様にして、本発明の核水添反応用触媒4(商品名「NECC-RARC4」、N.E.CHEMCAT社製))を製造した。
≪比較例1≫
実施例1の核水添反応用触媒に対し、第2触媒粒子を含まない構成としたことと、{RRuOx/(RRuOx+RRu)}の値を表2に示すものに変更した以外は、実施例1と同様にして、核水添反応用触媒C1(商品名「NECC-5E、N.E.CHEMCAT社製)を製造した。
[評価試験]
上記の実施例1~4及び比較例1で得た核水添反応用触媒を用い、下記の反応式(1)にしたがって、芳香族化合物である「4-ターシャリーブチルアニリン[4-tert-Butylaniline、下記反応式(1)中の反応物1]」の芳香環のπ結合を水素化して、「4-ターシャリーブチルシクロヘキシルアミン[(4-tert-Butylcyclohexylamine、下記反応式(1)中の生成物2]」に転化する核水添反応を行った。
反応は以下の反応条件で実施した。溶媒:イソプロピルアルコール、反応物(1)の濃度:1.6mol%、水素ガス:0.6MPa、反応温度:60℃、反応時間:6時間。
Figure 0007059289000002
(1)MRuの値、MRhの値の測定(ICP分析)
実施例1~4及び比較例1の核水添反応用触媒について、触媒粒子のMRuの値、MRhの値を以下の方法で測定した。即ち、核水添反応用触媒を王水に浸し、金属を溶解させた。次に、王水から不溶成分のアルミナを除去した。次に、アルミナを除いた王水をICP分析した。
(2)X線光電子分光分析(XPS:X-ray photoelectron spectroscopy)による核水添反応用触媒の表面分析
実施例1~4及び比較例1の核水添反応用触媒についてXPSによる表面分析を実施し、Ru(0価)の割合RRu(atom%)と、Ru酸化物の割合RRuOx(atom%)とを測定し、{RRuOx/(RRuOx+RRu)}の値を算出した。
具体的には、XPS装置として「Quantera SXM」(アルバック・ファイ社製)を使用し、以下の分析条件で実施した。
(A1)X線源:単色化AlKα
(A2)光電子取出確度:θ=75℃(図1参照)
(A3)帯電補正:C1sピークエネルギーを284.8eVとして補正
(A4)分析領域:200μm
(A5)分析時のチャンバ圧力:約1×10-6Pa
(A6)測定深さ(脱出深さ):約5nm以下
分析結果を表2に示した。なお、Ru(0価)の割合RRu(atom%)とRu酸化物の割合RRuOx(atom%)については、これらの2成分で100%となるように算出した。
(3)転化率、収率の算出
反応後に得られた混合組成物における反応物(1)、生成物(2)の含有量、含有比を測定することによって、反応物(1)の転化率(%)、生成物(2)の収率を算出し、結果を表1に示した。
Figure 0007059289000003
Figure 0007059289000004
表1に示した結果から、MRuの値、MRhの値が先に述べた式(1)の条件を満たす本発明に係る実施例1~4の触媒は、比較例1~2の触媒(従来のルテニウム触媒)に比べて、反応物(1)の転化率、生成物(2)の収率が高いことが明らかとなった。
また、表1及び表2に示した結果から、先に述べた式(2)~(5)の条件をそれぞれ満たす本発明に係る触媒が、従来のルテニウム触媒に比べて、反応物(1)の転化率、生成物(2)の収率が高いことが明らかとなった。
すなわち、本発明の核水添反応用触媒は、芳香環に1以上のアミノ基が結合した芳香族化合物の核水添反応において、従来のルテニウム触媒よりも優れた触媒活性を有することが明らかとなった。
本発明の核水添反応用触媒は、芳香環に1以上のアミノ基が結合した芳香族化合物の核水添反応において優れた触媒活性を有し、優れた生成物の収率を得ることができる。従って、本発明は、高機能プラスチック製品の原料となるポリアミドイミド樹脂等の合成に適用することができる核水添反応用触媒であり、各種産業の発達に寄与する。

Claims (9)

  1. 芳香環に1以上のアミノ基が結合した芳香族化合物の前記芳香環のπ結合の少なくとも1つを水素化する核水添反応に使用される核水添反応用触媒であって、
    担体と、前記担体上に担持される触媒粒子と、を含んでおり、
    前記触媒粒子には、Ru成分とRh成分とが含まれており、
    高周波誘導結合プラズマ(ICP)発光分光分析法により求められるRuの含有量MRu(質量%)とRhの含有量MRh(質量%)とが下記式(1)の条件を満たしており、
    前記触媒粒子に含まれる前記Ru成分としてRu(0価)とRu酸化物とが含まれており、
    X線光電子分光分析法(XPS)により測定される表面近傍の分析領域における、Ru(0価)の割合R Ru (atom%)と、Ru酸化物の割合R RuOx (atom%)とが、下記式(5)の条件を更に満たしている、
    核水添反応用触媒。
    Ru>MRh ・・・(1)
    0.60≦{R RuOx /(R RuOx +R Ru )}≦1.00 ・・・式(5)
  2. 前記Ruの含有量MRu(質量%)と前記Rhの含有量MRh(質量%)との比(MRh/MRu)が下記式(2)の条件を更に満たしている、
    請求項1に記載の核水添反応用触媒。
    0.02≦(MRh/MRu)≦0.10 ・・・式(2)
  3. 前記Rhの含有量MRh(質量%)が下記式(3)の条件を更に満たしている、
    請求項1又は2に記載の核水添反応用触媒。
    0.10≦MRh≦0.50 ・・・式(3)
  4. 前記Ruの含有量MRu(質量%)が下記式(4)の条件を更に満たしている、
    請求項1又は2に記載の核水添反応用触媒。
    0<MRu≦5.00 ・・・式(4)
  5. 前記担体がアルミナからなる、
    請求項1~4のうちのいずれかに記載の核水添反応用触媒。
  6. 前記触媒粒子に含まれる前記Rh成分がRh(0価)である、
    請求項1又は2に記載の核水添反応用触媒。
  7. 前記担体が、金属酸化物からなる第1担体と、非金属からなる第2担体と、からなり、
    前記第1担体に担持される前記触媒粒子には前記Ru成分が主成分として含まれており、
    前記第2担体に担持される前記触媒粒子には前記Rh成分が主成分として含まれている、
    請求項1又は2に記載の核水添反応用触媒。
  8. 前記第1担体に担持される前記触媒粒子が前記Ru成分のみからなり、
    前記第2担体に担持される前記触媒粒子が前記Rh成分のみからなり、
    請求項7に記載の核水添反応用触媒。
  9. 前記第1担体がアルミナからなり、
    前記第2担体がカーボンからなり、
    請求項7又は8に記載の核水添反応用触媒。
JP2019539390A 2017-09-01 2018-08-21 核水添反応用触媒 Active JP7059289B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2017168767 2017-09-01
JP2017168767 2017-09-01
PCT/JP2018/030781 WO2019044585A1 (ja) 2017-09-01 2018-08-21 核水添反応用触媒

Publications (3)

Publication Number Publication Date
JPWO2019044585A1 JPWO2019044585A1 (ja) 2020-10-15
JPWO2019044585A5 JPWO2019044585A5 (ja) 2022-03-24
JP7059289B2 true JP7059289B2 (ja) 2022-04-25

Family

ID=65525354

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2019539390A Active JP7059289B2 (ja) 2017-09-01 2018-08-21 核水添反応用触媒
JP2019539389A Active JP7089527B2 (ja) 2017-09-01 2018-08-21 核水添反応用触媒

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2019539389A Active JP7089527B2 (ja) 2017-09-01 2018-08-21 核水添反応用触媒

Country Status (4)

Country Link
JP (2) JP7059289B2 (ja)
CN (1) CN111032214B (ja)
TW (2) TWI805608B (ja)
WO (2) WO2019044585A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4847231A (en) 1988-06-08 1989-07-11 Gas Research Institute Mixed ruthenium catalyst
CN102627569A (zh) 2012-03-01 2012-08-08 江苏清泉化学有限公司 一种合成3,3′-二甲基-4,4′-二氨基二环己基甲烷的方法
US20150218082A1 (en) 2014-02-05 2015-08-06 Bayer Materialscience Ag Process for hydrogenating aromatic di- and polyamines

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2606925A (en) * 1949-12-15 1952-08-12 Du Pont Ruthenium catalyzed hydrogenation process for obtaining aminocyclohexyl compounds
US5026914A (en) * 1989-04-11 1991-06-25 Air Products And Chemicals, Inc. Hydrogenation of aromatic amines using rhodium on titania or zirconia support
JPH06279368A (ja) * 1991-10-23 1994-10-04 Mitsubishi Gas Chem Co Inc ビスアミノメチルシクロヘキサンの製造法
JP3608354B2 (ja) * 1997-10-24 2005-01-12 宇部興産株式会社 ジシクロヘキシル−2,3,3’,4’−テトラカルボン酸化合物
ES2322033T3 (es) * 2002-05-31 2009-06-16 Evonik Degussa Gmbh Catalizador de rutenio soportado y procedimiento para la hidrogenacion de una amina aromatica en presencia de este catalizador.
WO2006136569A1 (de) * 2005-06-22 2006-12-28 Basf Aktiengesellschaft Ruthenium-heterogenkatalysator und verfahren zur hydrierung einer carbocyclischen aromatischen gruppe, insbesondere zur herstellung von kernhydrierten bisglycidylethern der bisphenole a und f
DE102005060176A1 (de) * 2005-12-14 2007-06-21 Degussa Gmbh Verfahren zur Herstellung von Ethylcyclohexan durch selektive Hydrierung von 4-Vinylcyclohexen
DE102009034773A1 (de) * 2009-07-25 2011-01-27 Bayer Materialscience Ag Verfahren zur Herstellung von Chlor durch Gasphasenoxidation an nanostrukturierten Rutheniumträgerkatalysatoren
EP2883864A1 (de) * 2013-12-11 2015-06-17 Basf Se Verfahren zur hydrierung aromatischer verbindungen
CN106552618A (zh) * 2015-09-25 2017-04-05 上海华谊能源化工有限公司 一种芳香族羧酸酯类苯环选择性加氢的催化剂及其制备方法和应用

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4847231A (en) 1988-06-08 1989-07-11 Gas Research Institute Mixed ruthenium catalyst
CN102627569A (zh) 2012-03-01 2012-08-08 江苏清泉化学有限公司 一种合成3,3′-二甲基-4,4′-二氨基二环己基甲烷的方法
US20150218082A1 (en) 2014-02-05 2015-08-06 Bayer Materialscience Ag Process for hydrogenating aromatic di- and polyamines

Also Published As

Publication number Publication date
WO2019044584A1 (ja) 2019-03-07
WO2019044585A1 (ja) 2019-03-07
TWI805608B (zh) 2023-06-21
JPWO2019044584A1 (ja) 2020-10-15
JP7089527B2 (ja) 2022-06-22
CN111032214A (zh) 2020-04-17
CN111032214B (zh) 2024-02-06
TW201919761A (zh) 2019-06-01
TW201919762A (zh) 2019-06-01
JPWO2019044585A1 (ja) 2020-10-15
TWI782080B (zh) 2022-11-01

Similar Documents

Publication Publication Date Title
Chen et al. Solvent-driven selectivity control to either anilines or dicyclohexylamines in hydrogenation of nitroarenes over a bifunctional Pd/MIL-101 catalyst
JP5715726B2 (ja) 実質的に面心立方構造を有するルテニウム微粒子およびその製造方法
Zhang et al. Suppressing the Pd-C interaction through B-doping for highly efficient oxygen reduction
Liu et al. Easy synthesis of bimetal PtFe-containing ordered mesoporous carbons and their use as catalysts for selective cinnamaldehyde hydrogenation
Hu et al. Efficient and Selective Ni/Al 2 O 3–C Catalyst Derived from Metal–Organic Frameworks for the Hydrogenation of Furfural to Furfuryl Alcohol
JP5928894B2 (ja) 多価アルコールの水素化分解用触媒、及び該触媒を使用する1,3−プロパンジオールの製造方法
Cattaneo et al. Ru supported on micro and mesoporous carbons as catalysts for biomass-derived molecules hydrogenation
Diercks et al. CO2 Electroreduction on Unsupported PdPt Aerogels: Effects of Alloying and Surface Composition on Product Selectivity
Zahid et al. Improving selective hydrogenation of carbonyls bond in α, β-unsaturated aldehydes over Pt nanoparticles encaged within the amines-functionalized MIL-101-NH2
CN108654635B (zh) 一种负载型三金属催化剂及其制备方法和催化甘油氢解反应方法
JP7059289B2 (ja) 核水添反応用触媒
Ma et al. Palladium supported on calcium decorated carbon nanotube hybrids for chemoselective hydrogenation of cinnamaldehyde
Amirsardari et al. Controlled attachment of ultrafine iridium nanoparticles on mesoporous aluminosilicate granules with carbon nanotubes and acetyl acetone
JP7008686B2 (ja) 核水添反応用触媒
Szewczyk et al. Effect of the type of siliceous template and carbon precursor on physicochemical and catalytic properties of mesoporous nanostructured carbon-palladium systems
CN111036204A (zh) 一种甘油氢解方法
Liu et al. Pd Clusters on Schiff Base–Imidazole-Functionalized MOFs for Highly Efficient Catalytic Suzuki Coupling Reactions
Jameel et al. Novel Gallium Polyoxometalate/Nano‐Gold Hybrid Material Supported on Nano‐sized Silica for Mild Cyclohexene Oxidation Using Molecular Oxygen
WO2023100626A1 (ja) 水素製造用触媒及び水素製造方法
KR101577432B1 (ko) 함산소 탄화수소로부터 수상개질 반응에 의한 수소제조를 위한 메조다공성 탄소 담체에 백금계 복합금속을 함침한 촉매 및 이의 제조 방법
CN111036205B (zh) 一种甘油氢解方法
Tu et al. Multi-functional hydrogen-and oxygen-capturing FeCo-NC catalyst with improved hydrogenation of nitroarenes and ORR activity
Liu et al. Rationally constructing hollow N-doped carbon supported Ru catalysts for enhanced hydrogenation catalysis
WO2019163396A1 (ja) 多孔質炭素材料、及びその製造方法、並びに合成反応用触媒
CN111036253A (zh) 加氢催化剂及其制备方法以及甘油加氢方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210802

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220315

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20220315

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220405

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220413

R150 Certificate of patent or registration of utility model

Ref document number: 7059289

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150