JP7055712B2 - 渦電流探傷の信号処理装置、方法及びプログラム - Google Patents

渦電流探傷の信号処理装置、方法及びプログラム Download PDF

Info

Publication number
JP7055712B2
JP7055712B2 JP2018129279A JP2018129279A JP7055712B2 JP 7055712 B2 JP7055712 B2 JP 7055712B2 JP 2018129279 A JP2018129279 A JP 2018129279A JP 2018129279 A JP2018129279 A JP 2018129279A JP 7055712 B2 JP7055712 B2 JP 7055712B2
Authority
JP
Japan
Prior art keywords
data
flaw detection
phase angle
eddy current
signal processing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018129279A
Other languages
English (en)
Other versions
JP2020008411A (ja
Inventor
徳康 小林
摂 山本
あずさ 菅原
大輔 辻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Toshiba Energy Systems and Solutions Corp
Original Assignee
Toshiba Corp
Toshiba Energy Systems and Solutions Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Toshiba Energy Systems and Solutions Corp filed Critical Toshiba Corp
Priority to JP2018129279A priority Critical patent/JP7055712B2/ja
Publication of JP2020008411A publication Critical patent/JP2020008411A/ja
Application granted granted Critical
Publication of JP7055712B2 publication Critical patent/JP7055712B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)

Description

本発明の実施形態は、被検査体に存在する欠陥を非破壊で検出する渦電流探傷の信号処理技術に関する。
渦電流探傷試験では、交流電源から交流電流を励磁コイルに供給して被検査体の表面近傍に渦電流を誘起し、この渦電流が作る反作用磁場を検出コイルで検出している。この検出コイルが検出する探傷信号は、次の二種類の信号を参照信号として同期検波される。
参照信号の一つは交流電源から出力される電圧と同位相の信号であり、もう一方の参照信号は、前述の参照信号と位相が90°異なる信号である。このように同期検波された二種類の出力信号は、複素数表示における実部信号と虚部信号に相当する。このためリサージュ波形上で両信号の合成信号を表示することができ、合成信号の振幅と位相角が定義される。
一般に渦電流探傷試験では、欠陥信号とノイズ信号とを識別するため、リサージュ波形上で欠陥信号が表示される位相角を予め特定する。そして、探傷試験開始前の校正時に、校正用試験片を用いて、リサージュ波形を見ながら、ノイズ信号の影響が小さく欠陥信号が高感度で表示される基準位相角を決定する。
特開2010-266215号公報 特開2012-173121号公報
しかし、ノイズ源が不明であったりノイズ信号が表示される位相角が不明であったりして、欠陥信号を高感度検出するための基準位相角が、不明である場合がある。もしくは、温度等の環境影響により探傷試験中に基準位相角が変化して、欠陥信号の検出感度が低下する場合がある。
本発明の実施形態はこのような事情を考慮してなされたもので、探傷器で初期設定した基準位相角が不適切であったり探傷試験の途中で基準位相角が変化したりしても、欠陥信号を高感度検出することができる渦電流探傷の信号処理技術を提供することを目的とする。
渦電流探傷の信号処理装置において、被検査体を渦電流探傷して取得された探傷信号を位相解析した複素データを受信して蓄積するデータ蓄積部と、前記複素データの位相角を調整するための調整量を入力する入力部と、前記調整量を反映させる前記複素データのデータ範囲を選択する選択部と、前記選択されたデータ範囲に含まれる前記複素データの前記位相角を、前記調整量に基づいて調整する調整部と、前記調整された位相角に基づいて前記複素データの実部データ及び虚部データの少なくとも一方を修正した修正データを演算する演算部と、を備え、前記調整部は、共通する前記データ範囲の前記位相角を別々の前記調整量により調整し、前記別々の調整量により調整された複数の前記位相角の各々に基づいて演算された複数の前記修正データを互いに合成する合成部と、前記合成された合成データに基づいてマップ情報を生成する第2生成部と、をさらに備えることを特徴とする。
本発明の実施形態により、欠陥信号を高感度検出することができる渦電流探傷の信号処理技術が提供される。
本発明の第1実施形態に係る渦電流探傷の信号処理装置のブロック図。 探傷試験においてコイルが走査される被検査体の上面図。 (A)欠陥部分をコイルが走査したときに探傷器が出力する複素データ(実部データ,虚部データ)をリサージュ表示したグラフ、(B)コイルの走査軌道を横軸に虚部データを縦軸に座標表示したグラフ。 (A)図3(A)のOA方向の欠陥信号に対応し基準位相角の設定が不適切であった場合の欠陥を表すマップ情報、(B)図3(A)のOB方向の欠陥信号に対応し基準位相角の設定が不適切であった場合の欠陥を表すマップ情報、(C)図3(A)のOC方向の欠陥信号に対応し基準位相角の設定が適切であった場合の欠陥を表すマップ情報。 探傷試験の途中で基準位相角が変化した場合の欠陥を表すマップ情報。 初期設定した基準位相角が探傷試験中に変化してこれにつられて位相角が変化する複素データのグラフ。 調整量に基づいて複素データの位相角を調整し、虚部データを修正した修正データの演算に関する説明図。 第2実施形態に係る渦電流探傷の信号処理装置のブロック図。 (A)初期設定した基準位相角における複素データを示すグラフ、(B)位相角を第1調整量により調整した複素データを示すグラフ、(C)位相角を第2調整量により調整した複素データを示すグラフ。 第3実施形態に係る渦電流探傷の信号処理装置のブロック図。 第4実施形態に係る渦電流探傷の信号処理装置のブロック図。 第5実施形態に係る渦電流探傷の信号処理装置のブロック図。 実施形態に係る渦電流探傷の信号処理方法及びその信号処理プログラムのフローチャート。
(第1実施形態)
以下、本発明の実施形態を添付図面に基づいて説明する。図1は本発明の第1実施形態に係る渦電流探傷の信号処理装置10のブロック図である。図1に示されるように実施形態に係る信号処理装置10は、被検査体50の渦電流探傷試験を実行する探傷器30が出力する探傷信号f(t)の複素データPt(xt,yt)を取得する。
この信号処理装置10は、被検査体50を渦電流探傷して取得された探傷信号f(t) を位相解析した複素データPt(実部データxt及び虚部データyt)を受信して蓄積するデータ蓄積部12と、複素データPtの位相角θtを調整するための調整量Δθを入力する入力部16と、この調整量Δθを反映させる複素データPtのデータ範囲[a≦t≦b]を選択する選択部15と、選択されたデータ範囲[a≦t≦b]に含まれる複素データPtの位相角θtを調整量Δθに基づいて調整する調整部17と、この調整された位相角(θt+Δθ)に基づいて複素データPtの実部データxt及び虚部データytの少なくとも一方を修正した修正データyt´を演算する演算部18と、を備えている。
さらに信号処理装置10は、実部データxt及び前記虚部データytの少なくとも一方(説明は虚部データyt)に基づいてマップ情報56(図5)を生成する第1生成部22A(22)と、このマップ情報56のうち選択されたデータ範囲59については修正データyt´に置換する置換部21と、をさらに備えている。
探傷器30は、発振器31と、ブリッジ回路32と、可変移相器35と、90°移相器36と、同期検波回路37(37R,37I)とから構成されている。なお、図示される探傷器30は、一つのコイル51で励磁と検出の役割を担う自己誘導方式が例示されているが、励磁と検出の役割を別々のコイルで担う相互誘導方式である場合も含まれる。
発振器31は渦電流探傷の試験周波数ωを作り出すものである。ブリッジ回路32は、周波数ωの励磁電流をコイル51に出力するとともに被検査体50からの反作用磁場を検出したコイル51の応答電圧を入力するものである。このコイル51の応答電圧は、試験周波数ωの搬送波を欠陥信号により変調した形となって現れる。
ブリッジ回路32は、欠陥55が存在しない被検査体50を走行するコイル51からの応答電圧を入力して出力がゼロとなるようにバランスされている。そして走行中のコイル51の直下に欠陥55が存在することによるコイル51のインピーダンスの変化分が探傷信号f(t)として出力される。この探傷信号f(t)も試験周波数ωの搬送波を欠陥信号により変調した形となって現れる。
可変移相器35は、発振器31の出力の位相を任意に調整した第1参照信号33を出力するものである。90°移相器36は、入力した第1参照信号33の位相を90°異ならせた第2参照信号34を出力する。なお可変移相器35の調整量Δφは、探傷器30の基準位相角を決定するものであるが、具体的にはノイズ信号に対して欠陥信号が高感度で検出されるように本試験前の予備試験で決定される。
同期検波回路37は、R同期検波回路37RとI同期検波回路37Iとから構成されている。R同期検波回路37Rは、ブリッジ回路32から出力される探傷信号f(t)に第1参照信号33を乗算して一周期積分した実部データxtを出力する。そして、I同期検波回路37Iは、ブリッジ回路32から出力される探傷信号f(t)に第2参照信号34を乗算して一周期積分した実部データytを出力する。
このように探傷器30から出力される複素データPt(xt,yt)は、電気的な信号線で接続することにより信号処理装置10に受信される場合の他に、記憶媒体に保存し、この記憶媒体を介して信号処理装置10に受信されても良い。
図2は探傷試験においてコイル51が走査される被検査体50の上面図である。この被検査体50の表面には円形状の開口欠陥55が存在している。この欠陥55を検出するため、矢印線で示す走査軌道Kに沿ってコイル51を被検査体50の表面全体に走査させる。
図3(A)は欠陥55をコイル51が走査したときに探傷器が出力する複素データPt(xt,yt)をリサージュ表示したグラフである。図3(B)はコイルの走査軌道を横軸に虚部データを縦軸に座標表示したグラフである。図3(A)においてOAは、可変移相器35の設定を行わなかった場合の欠陥信号に相当するとする。この場合、欠陥信号とは位相が異なるONA方向にノイズ信号が現れる。図3(B)に示すように、このOA方向の欠陥信号を虚部データytで観察すると、欠陥信号の強度sAに対するノイズレベルnAが高いため、欠陥信号の検出感度が悪いことが判る。
このため、図3(A)において探傷器30の可変移相器35の設定を適切に行って欠陥信号をOC方向にΔφだけ移相すれば、これに伴ってノイズ信号もONC方向に移相する。図3(B)に示すように、このOC方向の欠陥信号を虚部データytで観察すると、欠陥信号の強度sCに対しノイズレベルがnc(実質的にゼロ)となり、欠陥信号の検出感度が高くなることが判る。なお、OA方向の欠陥信号の観察を行った探傷試験の終了後に信号処理装置10の入力部16に調整量Δθ(=Δφ)を入力することによっても、OC方向の欠陥信号の観察を行った場合と同様の結果が得られる。
図4(A)は図3(A)のOA方向の欠陥信号に対応し、基準位相角の設定が不適切であった場合の欠陥55Aを表すマップ情報56A(Cスコープ表示)である。図4(B)は図3(A)のOB方向の欠陥信号に対応し、基準位相角の設定が不適切であった場合の欠陥55Bを表すマップ情報56B(Cスコープ表示)である。図4(C)は図3(A)のOC方向の欠陥信号に対応し、基準位相角の設定が適切であった場合の欠陥55Cを表すマップ情報56C(Cスコープ表示)である。
一般的に欠陥55は、割れ、孔食、剥離などのように有限な長さ、面積、体積を有するものである。そして、A→B→Cのように、基準位相角が適切になっていくにつれ、欠陥55と健全部57とのコントラストが高くなり、欠陥55の寸法精度及び識別性が向上し高感度で検出されることが判る。
図5は、探傷試験の途中で基準位相角が変化した場合の欠陥を表すマップ情報である。探傷器30は、温度等の環境影響により探傷試験中に基準位相角が変化してしまうことがある。この場合、欠陥とノイズとの識別が困難となってしまう。図5のデータ範囲58では適切に調整された基準位相角で複素データPt(実部データxt及び虚部データyt)が出力された結果である。しかし、データ範囲59においては、基準位相角が不適切に変化してしまい、その後再び回復している。
図6は初期設定した基準位相角が探傷試験中に変化してこれにつられて位相角が変化する複素データのグラフである。探傷試験の開始前の可変移相器35により基準位相角の設定が適切に行なわれたとしても、その後、欠陥信号の位相角がOC方向からOD方向に変化して、欠陥信号の検出感度が低下してしまうことがある。このような場合は、信号処理装置10で、該当するデータ範囲において位相角θtを調整するための調整量Δθをマイナス方向に入力することにより、欠陥信号の検出感度を回復させることが可能となる。
図7は調整量Δθに基づいて複素データPtの位相角θtを調整し、虚部データytを修正した修正データyt´の演算に関する説明図である。このように、調整前の複素データ複素データPt(xt,yt)及び調整量Δθを演算式に代入することにより、修正データyt´を得ることができる。なお、位相角θtの属する座標象限は、xt及びytの極性の組み合わせ情報に基づいて決定される。図7は、xtが負でありytが正の場合の例を示している。
なお、図5に示されるように、一連の探傷試験において基準位相角の変化が、断続的に発生し、しかもその変化の度合いが毎回変化する場合もある。そこで、信号処理装置10(図1)において、選択部15は、[a≦t≦b]以外にも複数のデータ範囲を選択できるようにする。そして、調整部17は、複数のデータ範囲の各々に対応させた別々の調整量Δθ1,Δθ2,Δθ3により位相角θtを調整する。これにより、基準位相角の変化が断続的に発生する場合であっても、検査面に対し一様に欠陥信号の検出感度を回復させることが可能となる。
(第2実施形態)
図8は第2実施形態に係る渦電流探傷の信号処理装置10のブロック図である。なお、図8において図1と共通の構成又は機能を有する部分は、同一符号で示し、重複する説明を省略する。
第2実施形態の信号処理装置10においては、入力部16において別々の調整量Δθ(Δθ1,Δθ2…)を入力する。そして調整部17は、共通するデータ範囲[a≦t≦b]の位相角θtを別々の調整量Δθ(Δθ1,Δθ2…)により調整し、これら別々の調整量Δθ(Δθ1,Δθ2…)により調整された複数の位相角(θt+Δθ1,θt+Δθ2…)の各々に基づいて演算された複数の修正データyt',yt"…を互いに合成する合成部23と、合成された合成データYt(=yt'+yt"+…)に基づいてマップ情報56を生成する第2生成部22B(22)と、をさらに備えている。
図9(A)は、初期設定した基準位相角における複素データを示すグラフである。ここでは、位相角θtのOA方向の欠陥信号とは異なるONα方向及びONβ方向の二つの異なるノイズ信号が現れている。このOA方向の欠陥信号を虚部データytで観察すると、欠陥信号の強度s0に対し、相対的に高レベルの二つのノイズnα0,nβ0が重畳して観測されるため、欠陥信号の検出感度が悪いといえる。
図9(B)は、位相角θtを第1調整量Δθ1により調整した複素データを示すグラフである。これにより、ONβ方向のノイズnβ1を実質的に含まず、欠陥信号の強度s1に対しノイズnα1のみが重畳して観測されるため、欠陥信号の検出感度が改善された虚部データ(修正データyt')が得られる。
次に図9(C)は、位相角θtを第2調整量Δθ2により調整した複素データを示すグラフである。これにより、ONα方向のノイズnα2を実質的に含まず、欠陥信号の強度s2に対しノイズnβ2のみが重畳して観測されるため、欠陥信号の検出感度が改善された虚部データ(修正データyt")が得られる。さらに、これら修正データyt',yt"を互いに合成した合成データYt(=yt'+yt")は、ノイズに対して欠陥信号が高感度で検出されている。なお説明においてノイズ信号として方向が異なる二つのものを例示したが、三つ以上のものである場合もある。
渦電流探傷におけるノイズ源としては、コイル51と被検査体50との間の距離(リフトオフ)、被検査体50の表面うねり、被検査体50の形状(曲面、端部)、被検査体50の透磁率や導電率の不均一さなどが想定される。また、これらを発生源とするノイズは異なる位相角を有することも想定される。虚部データytに基づいてマップ情報56(Cスコープ表示)二次元画像を表示部25に表示させながら、位相角の異なる複数のノイズに対し、各々のノイズの振幅が最小になるように調整量Δθ(Δθ1,Δθ2)を複数設定する。これら複数の調整量Δθ(Δθ1,Δθ2)により演算された複数の修正データyt',yt"を合成して合成信号Ytを生成することにより、欠陥信号が強調されるので、高感度な欠陥検出が実現される。
(第3実施形態)
図10は第3実施形態に係る渦電流探傷の信号処理装置のブロック図である。なお、図10において図1と共通の構成又は機能を有する部分は、同一符号で示し、重複する説明を省略する。第3実施形態の信号処理装置10は、第1実施形態の構成に加え、マップ情報56に含まれる第1位置データ及び第2位置データを指定する指定部26をさらに備えている。そして、入力部16は、第1位置データに紐付けられる複素データPt1の位相角θt1と第2位置データに紐付けられる複素データPt2の位相角θt2との差分(θt1-θt2)を調整量Δθとして入力する。
これによれば、作業者の感覚に基づきマップ情報56上の二点を指定し、調整量Δθの入力を実行できるので作業性が向上する。
(第4実施形態)
図11は第4実施形態に係る渦電流探傷の信号処理装置のブロック図である。なお、図11において図1と共通の構成又は機能を有する部分は、同一符号で示し、重複する説明を省略する。第4実施形態の信号処理装置10は、第1実施形態の構成に加え、被検査体50の透磁率及び導電率並びに探傷信号に含まれる搬送波の周波数ωを含む条件を取得する取得部27と、位相角θtが調整された複素データPt´及び入力した条件に基づいて被検査体50に含まれる欠陥55の深さ量を計算する欠陥深さ計算部28と、をさらに備えている。
なお導体中の渦電流の位相θは近似的に図11の欠陥深さ計算部28に示される式で表され、導体表面からの深さに比例して位相θが遅れる。ここで、ωは渦電流の角周波数、μは導体の透磁率、σは導体の導電率、zは渦電流が流れる導体表面からの深さである。
渦電流探傷を行う際、被検査体50と同じ材質の試験片に、例えば既知の深さを有する人工開口割れや、既知の深さを有する人工内在欠陥などの基準欠陥を付与した基準試験体を準備する。そしてこの基準試験体を用いて、虚部データytが最大となるように調整量Δθを入力して基準位相角を決定する。
その後、被検査体50を探傷して、検出された欠陥55に由来する虚部データytが最大となるように調整量Δθを入力して基準位相角を決定する。欠陥深さ計算部28に渦電流の周波数(あるいは角周波数)、被検査体50の透磁率と導電率、基準試験体で決定した基準位相角、被検査体で決定した基準位相角を入力すると、開口割れの深さや、内在欠陥が存在する内在深さの結果がアウトプットされる。また、表示部25で、例えば画像表示をすると、開口割れの深さや、内在欠陥が存在する内在深さと、その二次元分布を評価することが可能となる。
(第5実施形態)
図12は第5実施形態に係る渦電流探傷の信号処理装置10のブロック図である。なお、図12において図1と共通の構成又は機能を有する部分は、同一符号で示し、重複する説明を省略する。第5実施形態の信号処理装置10は、第1実施形態の構成に加え、データ蓄積部12は、被検査体50の表面を隣接して走査される複数のコイル51(511,512,…51M)に由来する複数の複素データP(P1, P2,…PM)を受信して蓄積する。
このように第5実施形態が構成されることにより、プローブに設けられた複数のコイル51により、探傷試験を行うことができる。これら複数のコイル51は、基本的に同仕様であるが、性能のばらつきにより基準位相角が異なる場合が想定される。そこで、各々のコイル毎に別々の調整量Δθを設定することにより、基準位相角を別々に調整することができ、全領域において欠陥の検出感度を向上させることができる。
図11のフローチャートを参照して実施形態に係る渦電流探傷の信号処理方法及びその信号処理プログラムを説明する(適宜、図1参照)。
被検査体50を渦電流探傷して取得された探傷信号f(t)を位相解析した複素データPt(xt,yt)を探傷器30から受信して蓄積する(S11)。次に、この複素データPt(xt,yt)の位相角θtを調整するための調整量Δθを入力する(S12)。
この調整量Δθを反映させる複素データPt(xt,yt)のデータ範囲[a≦t≦b]を選択する(S13)。そしてこの選択されたデータ範囲[a≦t≦b]の複素データPt(xt,yt)については、その位相角θtを調整量Δθに基づいて調整する(S13 YES,S14)。さらに、この調整された位相角(θt+Δθ)に基づいて複素データの虚部データyt(及び/又は実部データxt)を修正した修正データyt´(及び/又は修正データxt´)を演算する(S15)。
そして選択されたデータ範囲[a≦t≦b]については修正データyt´(及び/又は修正データxt´)に基づいて、その他の選択されていないデータ範囲については虚部データyt(及び/又は実部データxt)に基づいて(S13 NO)、マップ情報56を作成する(S16)。
以上述べた少なくともひとつの実施形態の渦電流探傷の信号処理装置によれば、探傷器の基準位相角の設定が不適切であっても、探傷器から出力された複素データの位相角を探傷試験後に調整することにより欠陥信号を高感度検出することができる。
本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更、組み合わせを行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれると同様に、特許請求の範囲に記載された発明とその均等の範囲に含まれるものである。また、渦電流探傷の信号処理装置の構成要素は、コンピュータのプロセッサで実現することも可能であり、渦電流探傷の信号処理プログラムにより動作させることが可能である。
また渦電流探傷の信号処理装置で実行されるプログラムは、ROM等に予め組み込んで提供される。もしくは、このプログラムは、インストール可能な形式又は実行可能な形式のファイルでCD-ROM、CD-R、メモリカード、DVD、フレキシブルディスク(FD)等のコンピュータで読み取り可能な記憶媒体に記憶されて提供するようにしてもよい。また、本実施形態に係る渦電流探傷の信号処理装置で実行されるプログラムは、インターネット等のネットワークに接続されたコンピュータ上に格納し、ネットワーク経由でダウンロードさせて提供するようにしてもよい。
10…信号処理装置、12…データ蓄積部、15…データ範囲選択部(選択部)、16…調整量入力部(入力部)、17…位相角調整部(調整部)、18…修正データ演算部(演算部)、21…データ範囲置換部(置換部)、22…マップ情報生成部(生成部)、23…合成部、25…マップ表示部(表示部)、26…位置データ指定部(指定部)、27…条件取得部(取得部)、28…欠陥深さ計算部(計算部)、30…探傷器、31…発振器、32…ブリッジ回路、33…第1参照信号、34…第2参照信号、35…可変移相器、36…90°移相器、37…同期検波回路、37R…R同期検波回路、37I…I同期検波回路、50…被検査体、51…コイル、55…欠陥、56…マップ情報、57…健全部、Pt(xt,yt)…複素データ、xt…実部データ、yt…虚部データ、θt…位相角、Δθ…調整量、yt´…修正データyt´、f(t)…探傷信号。

Claims (6)

  1. 被検査体を渦電流探傷して取得された探傷信号を位相解析した複素データを受信して蓄積するデータ蓄積部と、
    前記複素データの位相角を調整するための調整量を入力する入力部と、
    前記調整量を反映させる前記複素データのデータ範囲を選択する選択部と、
    前記選択されたデータ範囲に含まれる前記複素データの前記位相角を、前記調整量に基づいて調整する調整部と、
    前記調整された位相角に基づいて前記複素データの実部データ及び虚部データの少なくとも一方を修正した修正データを演算する演算部と、を備え、
    前記調整部は、共通する前記データ範囲の前記位相角を別々の前記調整量により調整し、
    前記別々の調整量により調整された複数の前記位相角の各々に基づいて演算された複数の前記修正データを互いに合成する合成部と、
    前記合成された合成データに基づいてマップ情報を生成する第2生成部と、をさらに備える渦電流探傷の信号処理装置。
  2. 請求項1に記載の渦電流探傷の信号処理装置において、
    前記マップ情報に含まれる第1位置データ及び第2位置データを指定する指定部をさらに備え、
    前記入力部は、前記第1位置データに紐付けられる前記複素データの位相角と前記第2位置データに紐付けられる前記複素データの位相角との差分を前記調整量として入力する渦電流探傷の信号処理装置。
  3. 請求項1又は請求項2に記載の渦電流探傷の信号処理装置において、
    前記被検査体の透磁率及び導電率並びに前記探傷信号に含まれる搬送波の周波数を含む条件を取得する取得部と、
    前記位相角が調整された複素データ及び入力した前記条件に基づいて前記被検査体に含まれる欠陥の深さ量を計算する計算部と、をさらに備える渦電流探傷の信号処理装置。
  4. 請求項1から請求項3のいずれか1項に記載の渦電流探傷の信号処理装置において、
    前記データ蓄積部は、前記被検査体の表面を隣接して走査される複数のコイルに由来する複数の複素データを受信して蓄積する渦電流探傷の信号処理装置。
  5. 被検査体を渦電流探傷して取得された探傷信号を位相解析した複素データを受信して蓄積するステップと、
    前記複素データの位相角を調整するための調整量を入力するステップと、
    前記調整量を反映させる前記複素データのデータ範囲を選択するステップと、
    前記選択されたデータ範囲に含まれる前記複素データの前記位相角を、前記調整量に基づいて調整するステップと、
    前記調整された位相角に基づいて前記複素データの実部データ及び虚部データの少なくとも一方を修正した修正データを演算するステップと、を含み、
    前記調整するステップは、共通する前記データ範囲の前記位相角を別々の前記調整量により調整し、
    前記別々の調整量により調整された複数の前記位相角の各々に基づいて演算された複数の前記修正データを互いに合成するステップと、
    前記合成された合成データに基づいてマップ情報を生成するステップと、をさらに含むことを特徴とする渦電流探傷の信号処理方法。
  6. コンピュータに、
    被検査体を渦電流探傷して取得された探傷信号を位相解析した複素データを受信して蓄積するステップ、
    前記複素データの位相角を調整するための調整量を入力するステップ、
    前記調整量を反映させる前記複素データのデータ範囲を選択するステップ、
    前記選択されたデータ範囲に含まれる前記複素データの前記位相角を、前記調整量に基づいて調整するステップ、
    前記調整された位相角に基づいて前記複素データの実部データ及び虚部データの少なくとも一方を修正した修正データを演算するステップ、を実行させ、
    前記調整するステップは、共通する前記データ範囲の前記位相角を別々の前記調整量により調整し、
    前記別々の調整量により調整された複数の前記位相角の各々に基づいて演算された複数の前記修正データを互いに合成するステップ、
    前記合成された合成データに基づいてマップ情報を生成するステップ、をさらに実行させることを特徴とする渦電流探傷の信号処理プログラム。
JP2018129279A 2018-07-06 2018-07-06 渦電流探傷の信号処理装置、方法及びプログラム Active JP7055712B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018129279A JP7055712B2 (ja) 2018-07-06 2018-07-06 渦電流探傷の信号処理装置、方法及びプログラム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018129279A JP7055712B2 (ja) 2018-07-06 2018-07-06 渦電流探傷の信号処理装置、方法及びプログラム

Publications (2)

Publication Number Publication Date
JP2020008411A JP2020008411A (ja) 2020-01-16
JP7055712B2 true JP7055712B2 (ja) 2022-04-18

Family

ID=69151436

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018129279A Active JP7055712B2 (ja) 2018-07-06 2018-07-06 渦電流探傷の信号処理装置、方法及びプログラム

Country Status (1)

Country Link
JP (1) JP7055712B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7501839B2 (ja) 2020-08-07 2024-06-18 株式会社Ihiエアロスペース 剥離寸法評価システムと方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007225564A (ja) 2006-02-27 2007-09-06 Mitsubishi Heavy Ind Ltd 渦流探傷信号の評価方法及び装置
JP2009078302A (ja) 2003-03-31 2009-04-16 Showa Denko Kk アルミニウム合金連続鋳造棒の製造方法、およびアルミニウム合金連続鋳造棒の製造設備
JP2010271177A (ja) 2009-05-21 2010-12-02 Honda Motor Co Ltd 表面検査装置
JP2012173121A (ja) 2011-02-21 2012-09-10 Toshiba Corp 渦電流探傷試験装置およびその試験方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3817574A1 (de) * 1988-05-24 1989-11-30 Fraunhofer Ges Forschung Wirbelstromsensor
JP3422661B2 (ja) * 1997-08-12 2003-06-30 三菱重工業株式会社 渦電流検査信号の自動位相・感度調整装置および基準対象検査信号の自動位相・感度調整装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009078302A (ja) 2003-03-31 2009-04-16 Showa Denko Kk アルミニウム合金連続鋳造棒の製造方法、およびアルミニウム合金連続鋳造棒の製造設備
JP2007225564A (ja) 2006-02-27 2007-09-06 Mitsubishi Heavy Ind Ltd 渦流探傷信号の評価方法及び装置
JP2010271177A (ja) 2009-05-21 2010-12-02 Honda Motor Co Ltd 表面検査装置
JP2012173121A (ja) 2011-02-21 2012-09-10 Toshiba Corp 渦電流探傷試験装置およびその試験方法

Also Published As

Publication number Publication date
JP2020008411A (ja) 2020-01-16

Similar Documents

Publication Publication Date Title
JP5406468B2 (ja) パルス式うず電流検査のための自動リフトオフ補償
JP4487082B1 (ja) 漏洩磁束探傷方法及び装置
JP4863127B2 (ja) 磁気探傷方法及び磁気探傷装置
JP5155566B2 (ja) 位相分析による多周波渦電流を使用した非平面状部品の検査
JP6342479B2 (ja) 検査プローブ、検査システム、及び検査方法
EP1701157A1 (en) Eddy current inspection method and system using multifrequency excitation and multifrequency phase analysis
JP5607868B2 (ja) 検査システム及び動作方法
JP5562629B2 (ja) 探傷装置及び探傷方法
JP5946086B2 (ja) 渦電流検査装置、渦電流検査プローブ、及び渦電流検査方法
JP5383597B2 (ja) 渦電流検査装置および検査方法
JP7055712B2 (ja) 渦電流探傷の信号処理装置、方法及びプログラム
JP4766472B1 (ja) 非破壊検査装置及び非破壊検査方法
US8712716B2 (en) Circuitry for measuring and compensating phase and amplitude differences in NDT/NDI operation
JP4835995B2 (ja) 漏洩磁束探傷法及び漏洩磁束探傷装置
JP2011069623A (ja) 渦電流探傷方法
JP6551885B2 (ja) 非破壊検査装置及び非破壊検査方法
JP2007240256A (ja) 渦電流探傷による残存肉厚の評価方法及び評価装置
US10775347B2 (en) Material inspection using eddy currents
Watson et al. Surface-breaking flaw detection in mild steel welds using quantum well hall effect sensor devices
JP6000158B2 (ja) 探傷装置及び探傷方法
JP2004354218A (ja) デジタル式渦流探傷試験装置
JP2021001814A (ja) 非破壊検査方法及び非破壊検査装置
JP2010156617A (ja) 渦電流探傷方法と渦電流探傷装置
JP2013224864A (ja) 渦電流探傷試験装置、及び方法
Yakimov et al. Computational transformation of signals of a measuring information system for eddy-current flaw detection

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210215

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220111

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220221

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20220308

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220406

R150 Certificate of patent or registration of utility model

Ref document number: 7055712

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150