JP7003475B2 - 小便器 - Google Patents

小便器 Download PDF

Info

Publication number
JP7003475B2
JP7003475B2 JP2017148913A JP2017148913A JP7003475B2 JP 7003475 B2 JP7003475 B2 JP 7003475B2 JP 2017148913 A JP2017148913 A JP 2017148913A JP 2017148913 A JP2017148913 A JP 2017148913A JP 7003475 B2 JP7003475 B2 JP 7003475B2
Authority
JP
Japan
Prior art keywords
water discharge
water
urinal
discharge mode
organic matter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017148913A
Other languages
English (en)
Other versions
JP2019027192A (ja
Inventor
祐介 荒木
晃貴 永野
洋明 津野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toto Ltd
Original Assignee
Toto Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toto Ltd filed Critical Toto Ltd
Priority to JP2017148913A priority Critical patent/JP7003475B2/ja
Publication of JP2019027192A publication Critical patent/JP2019027192A/ja
Application granted granted Critical
Publication of JP7003475B2 publication Critical patent/JP7003475B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Sanitary Device For Flush Toilet (AREA)

Description

本発明は、小便器に係り、特に、排尿を受けて排出する小便器に関する。
従来から、特許文献1に記載されているように、小便器の制御部が、排水トラップに溜まっている尿を洗浄水によって置換する第一洗浄モードと、この第一洗浄モードの実行後に実行される第二洗浄モードと、を備え、制御部が第二洗浄モードを実行することにより、第一洗浄モードの排水を洗い流して、横引配管における尿石の発生を抑制するものが知られている。
特許第5455064号 特開2001-303639号公報
これまで、小便器の排水トラップ及び排水トラップの下流側の横引配管に形成される尿石は、細菌の活動により約2時間程度の比較的長時間のサイクルで生成されると考えられてきた。
しかしながら、本発明者らは、鋭意研究を重ねた結果、バイオフィルムが形成された環境下においては、数秒程度の非常に短時間であっても尿石が発生するという新たな知見を見出した。
このような知見により、少容積の排水トラップにおいてバイオフィルムが形成されている場合には、排尿中に尿濃度が一時的に高くなる程度であっても、数秒程度で尿石が発生し付着してしまうことが分かった。
また、横引配管においても同様の現象が起きるため、横引配管内に比較的高い尿濃度の洗浄水が流入した場合にも、尿石が発生し付着してしまう。
さらに、近年の洗浄水の節水化の要請に伴い、比較的少ない容積の節水型の排水トラップが提案されている。
このような節水型の排水トラップにおいては、使用者の排尿により排水トラップ内の洗浄水が置換され、排水トラップ内の尿濃度が高くなりやすい。
よって、前述の新たな知見に基づけば、排水トラップ、例えば節水型の排水トラップにおいて、排水トラップ及び横引配管における尿石の発生を早期に抑制することが重要な課題となっている。
そこで、本発明は、前述したような従来技術の問題を解決するものであって、すなわち、本発明の目的は、洗浄水中の尿がバイオフィルムを含む有機物汚れにより比較的短時間で尿石を生じさせることを抑制することができる小便器を提供することである。
請求項1に係る発明は、排水用の横引配管に排水する小便器であって、排尿を受けるボウル面を形成し、その底部に排水口を形成するボウル部と、前記ボウル部の排水口と連通する排水トラップと、前記ボウル部のボウル面に洗浄水を吐水する吐水部と、使用者の小便器の使用を検知する検知センサーと、前記吐水部による洗浄水の吐水を制御する制御部とを備え、前記制御部が、前記検知センサーが使用者の使用を検知しなくなった後に、前記吐水部から吐水を行う本洗浄吐水モードと、設定されたスケジュールに基づいて前記吐水部から洗浄水を吐水して前記排水トラップの下流側に接続される前記横引配管におけるバイオフィルムを含む有機物汚れの形成を抑制する有機物汚れ抑制吐水モードと、前記検知センサーが使用者の使用を検知している間において前記吐水部から吐水を行う尿希釈吐水モードとを有し、前記有機物汚れ抑制吐水モードで吐水される水量が、毎回一定であり、前記尿希釈吐水モードにおける前記吐水部からの吐水の瞬間流量が、前記有機物汚れ抑制吐水モードにおける前記吐水部からの吐水の瞬間流量より小さくすることにより、前述した課題を解決するものである。
このように構成された請求項1に係る発明の小便器によれば、有機物汚れ抑制吐水モードを実行することにより、排水トラップ及び横引配管においてバイオフィルムを発生させる細菌の増殖を抑制し、バイオフィルムを含む有機物汚れの形成を抑制することができる。また、仮に、バイオフィルムを含む有機物汚れが排水トラップ及び横引配管内に形成されたとしても、請求項1に係る発明の小便器によれば、有機物汚れ抑制吐水モードを実行することにより、有機物汚れを設定されたスケジュールに基づいて洗浄することができる。
さらに、仮に、バイオフィルムを含む有機物汚れが排水トラップ及び横引配管内に形成されたとしても、請求項1に係る発明の小便器によれば、尿希釈吐水モードを実行することにより、排尿がされてから本洗浄吐水モードが実行されるまでの排水トラップ及び横引配管内の洗浄水の尿濃度を低下させることができる。よって、洗浄水中の尿が有機物汚れにより比較的短時間で尿石を生じさせることを抑制することができる。
さらに、請求項1に係る発明の小便器によれば、尿希釈吐水モードが実行されることにより、本洗浄吐水モードが実行されるときに排水トラップ内の洗浄水の尿濃度が尿の希釈により低下されている。よって、本洗浄吐水モードの実行により、この実行時点の排水トラップ内の洗浄水中の尿が横引配管の上流側に流れる場合においても、横引配管内に残存する洗浄水の尿濃度が低減され、洗浄水中の尿が尿石を生じさせることを抑制することができる。
従って、請求項1に係る発明の小便器によれば、有機物汚れ抑制吐水モードと尿希釈吐水モードを組合せることにより、洗浄水中の尿が排水トラップ及び横引配管内においてバイオフィルムを含む有機物汚れにより尿石を生じさせることを抑制することができる。
また、有機物汚れ抑制吐水モードで使用する水量が、毎回一定であり、前記尿希釈吐水モードにおける前記吐水部からの吐水の瞬間流量が、前記有機物汚れ抑制吐水モードにおける前記吐水部からの吐水の瞬間流量より小さくすることにより、使用条件に因らず、確実にトラップ及び横引配管内の有機物汚れの堆積を抑制することができる。更に上述した効果に加え、尿希釈吐水モードにおいて、排尿中の排水トラップ内の尿が横引配管に流入するとき、この流入の瞬間流量が比較的小さいことによりこの尿が横引配管の上流側に逆流するように流れてしまうことを抑制することができる。これにより、横引配管の上流側に尿石が生じることを抑制することができる。また、有機物汚れ抑制吐水モードにおける吐水の瞬間流量は尿希釈吐水モードにおける吐水の瞬間流量よりも高くなるので、有機物汚れ抑制吐水モードにおける吐水により横引配管を比較的広範囲に確実に洗浄することができる。
請求項に係る発明は、排水用の横引配管に排水する小便器であって、排尿を受けるボウル面を形成し、その底部に排水口を形成するボウル部と、前記ボウル部の排水口と連通する排水トラップと、前記ボウル部のボウル面に洗浄水を吐水する吐水部と、使用者の小便器の使用を検知する検知センサーと、前記吐水部による洗浄水の吐水を制御する制御部とを備え、前記制御部が、前記検知センサーが使用者の使用を検知しなくなった後に、前記吐水部から吐水を行う本洗浄吐水モードと、設定されたスケジュールに基づいて前記吐水部から洗浄水を吐水して前記排水トラップの下流側に接続される前記横引配管におけるバイオフィルムを含む有機物汚れの形成を抑制する有機物汚れ抑制吐水モードと、前記検知センサーが使用者の使用を検知している間において前記吐水部から吐水を行う尿希釈吐水モードとを有し、前記有機物汚れ抑制吐水モードで吐水される水量が、毎回一定であり、前記本洗浄吐水モードにおける前記吐水部からの吐水の瞬間流量が、前記尿希釈吐水モードにおける前記吐水部からの吐水の瞬間流量より大きいことにより、前述した課題を解決するものである。
本洗浄吐水モードにおける吐水の瞬間流量はボウル面の洗浄性能を確保できる程度の流量が望ましい。一方で、尿希釈吐水モードにおける吐水の瞬間流量を本洗浄吐水モードにおける吐水の瞬間流量よりも大きくしたとしても、尿濃度の低下に寄与しにくくなる。
そこで、このように構成された請求項に係る発明の小便器によれば、請求項に係る発明が奏する効果に加え、本洗浄吐水モードにおけるボウル面の洗浄性能を確保するとともに、尿希釈吐水モードに使用する洗浄水の無駄使いを抑制することができる。
請求項4に係る発明は、請求項1乃至請求項3のいずれか1項に記載された小便器の構成に加えて、前記有機物汚れ抑制吐水モードにおいて前記吐水部から吐水される水量が、前記本洗浄吐水モードにおいて前記吐水部から吐水される水量以上となることにより、前述した課題を解決するものである。
本洗浄吐水モードと有機物汚れ抑制吐水モードと尿希釈吐水モードとを組合せて吐水する場合において、使用者の使用回数によって増加する尿希釈吐水モードで吐水した流量に対し、全ての吐水モードの合計の吐水流量の増大を抑制しようとすると、例えば有機物汚れ抑制吐水モードで吐水する水量の低減によって調整することとなる。このとき、有機物汚れ抑制吐水モードにおいて1回分として吐水部から吐水される吐水される水量を本洗浄吐水モードにおいて1回分として吐水部から吐水される吐水される水量以上とする。
これにより、請求項4に係る発明の小便器によれば、有機物汚れ抑制吐水モードにおいて横引配管内に流入した洗浄水の水位は本洗浄吐水モードにおいて横引配管内に流入した洗浄水の水位より高くなるため、実行頻度が有機物汚れ抑制吐水モードの実行頻度よりも高い本洗浄吐水モードの実行時に横引配管の水位面付近に発生したバイオフィルムを含む有機物汚れを有機物汚れ吐水モードによって洗い流すことができる。従って、横引配管において洗浄水中の尿が有機物汚れにより比較的短時間で尿石を生じさせることをより抑制することができる。
請求項5に係る発明は、請求項1乃至請求項4のいずれか1項に記載された小便器の構成に加えて、前記制御部が、前記本洗浄吐水モードが終了してから有機物汚れ抑制吐水実行時間経過時に前記有機物汚れ抑制吐水モードを実行することにより、前述した課題を解決するものである。
このように構成された請求項5に係る発明の小便器によれば、請求項1乃至請求項4のいずれか1項に係る発明が奏する効果に加え、本洗浄吐水モードが終了してから有機物汚れ抑制吐水実行時間経過時に有機物汚れ抑制吐水モードを実行することにより、本洗浄吐水モードが終了してから有機物汚れ抑制吐水実行時間経過するまでに小便器の使用がなかった場合に排水トラップ内で成長していた有機汚れを洗い流せるため、より排水トラップ内の汚れの成長を抑制できる。
また、長時間小便器を使用しない場合に発生する自然乾燥による封水切れを防ぐことができるため、部屋内への臭気が漏れることを防ぐことができる。
請求項6に係る発明は、請求項5に記載された小便器の構成に加えて、前記有機物汚れ抑制吐水実行時間が、複数の所定時間から選択自在であることにより、前述した課題を解決するものである。
このように構成された請求項6に係る発明の小便器によれば、請求項5に係る発明が奏する効果に加え、有機物汚れ抑制吐水実行時間が、複数の所定時間から選択自在であることにより、設置場所に応じて最適な有機物汚れ抑制吐水実行時間を選択することができるため、汚れの堆積抑制と節水とを両立させることができる。
請求項に係る発明は、排水用の横引配管に排水する小便器であって、排尿を受けるボウル面を形成し、その底部に排水口を形成するボウル部と、前記ボウル部の排水口と連通する排水トラップと、前記ボウル部のボウル面に洗浄水を吐水する吐水部と、使用者の小便器の使用を検知する検知センサーと、前記吐水部による洗浄水の吐水を制御する制御部とを備え、前記制御部が、前記検知センサーが使用者の使用を検知しなくなった後に、前記吐水部から吐水を行う本洗浄吐水モードと、設定されたスケジュールに基づいて前記吐水部から洗浄水を吐水して前記排水トラップの下流側に接続される前記横引配管におけるバイオフィルムを含む有機物汚れの形成を抑制する有機物汚れ抑制吐水モードと、前記検知センサーが使用者の使用を検知している間において前記吐水部から吐水を行う尿希釈吐水モードとを有し、前記有機物汚れ抑制吐水モードで吐水される水量が、毎回一定であり、前記本洗浄吐水モードが終了してから前記有機物汚れ抑制吐水実行時間より短い有機物汚れ抑制吐水判定時間経過時において、前回の前記有機物汚れ抑制吐水モードを実行してからの小便器使用回数が所定回数以上であった場合は、前記有機物汚れ抑制吐水モードを実行し、前回の前記有機物汚れ抑制吐水モードを実行してからの小便器使用回数が所定回数より少なかった場合は、前記有機物汚れ抑制吐水実行時間経過時に前記有機物汚れ抑制吐水モードを実行することにより、前述した課題を解決するものである。
このように構成された請求項に係る発明の小便器によれば、本洗浄吐水モードが終了してから有機物汚れ抑制吐水実行時間より短い有機物汚れ抑制吐水判定時間経過時において、前回の有機物汚れ抑制吐水モードを実行してからの小便器使用回数が所定回数以上であった場合は、有機物汚れ抑制吐水モードを実行し、前回の有機物汚れ抑制吐水モードを実行してからの小便器使用回数が所定回数より少なかった場合は、有機物汚れ抑制吐水実行時間経過時に有機物汚れ抑制吐水モードを実行することにより、使用頻度に見合って有機物汚れ抑制吐水モードが実行されるため、より確実に排水トラップおよび建物配管内の汚れの堆積を抑制できる。
請求項に係る発明は、請求項1乃至請求項4のいずれか1項に記載された小便器の構成に加えて、前記有機物汚れ抑制吐水モードが、一定時間ごとに実行されることにより、前述した課題を解決するものである。
このように構成された構成された請求項8に係る発明の小便器によれば、請求項1乃至請求項4のいずれか1項に係る発明が奏する効果に加え、有機物汚れ抑制吐水モードが、一定時間ごとに実行されることにより、使用頻度によらず確実に排水トラップ内が置換されるため、排水トラップ内の有機汚れの成長が抑制され、より確実に排水トラップおよび建物配管内の汚れの堆積を抑制できる。
請求項に係る発明は、請求項1乃至請求項のいずれか1項に記載された小便器の構成に加えて、前記有機物汚れ抑制吐水モードが、間欠的に実行されることにより、前述した課題を解決するものである。
このように構成された構成された請求項に係る発明の小便器によれば、請求項1乃至請求項のいずれか1項に係る発明が奏する効果に加え、有機物汚れ抑制吐水モードが、間欠的に実行されることにより、有機物汚れ抑制吐水モードを1回だけ行う場合に比べて建物配管内の有機物汚れが残存し難くなるため、より建物配管内の汚れの堆積を抑制することができる。
本発明によれば、洗浄水中の尿がバイオフィルムを含む有機物汚れにより比較的短時間で尿石を生じさせることを抑制することができる小便器を提供することができる。
使用者が排尿する前の状態の小便器の排水トラップ管路の一部を拡大して示し、バイオフィルムを含む有機物汚れが形成されている環境下において、非常に短時間でも尿石が発生する新たな知見を説明する図である。 使用者が排尿した後、小便器の洗浄動作が行われるまで排水トラップ管路内に尿が満たされている状態を示し、バイオフィルムを含む有機物汚れが形成されている環境下において、非常に短時間でも尿石が発生する新たな知見を説明する図である。 小便器の本洗浄動作が行われて排水トラップ管路内の尿が新たな洗浄水で置換された状態を示し、バイオフィルムを含む有機物汚れが形成されている環境下において、非常に短時間でも尿石が発生する新たな知見を説明する図である。 使用者の排尿後、図1Aに示す排水トラップ管路が比較的高い尿濃度の洗浄水でほぼ満たされている状態を示し、バイオフィルムを含む有機物汚れが形成されている環境下において、同程度の期間において、排水トラップ管路及び横引配管内の洗浄水の尿濃度の違いにより、尿石の発生量に差が生じるという新しい知見を説明する図である。 図2Aに示す排水トラップ管路について本洗浄動作が行われた後の状態を示し、バイオフィルムを含む有機物汚れが形成されている環境下において、同程度の期間において、排水トラップ管路及び横引配管内の洗浄水の尿濃度の違いにより、尿石の発生量に差が生じるという新しい知見を説明する図である。 使用者の排尿後、図1Aに示す排水トラップ管路が比較的低い尿濃度の洗浄水でほぼ満たされている状態を示し、バイオフィルムを含む有機物汚れが形成されている環境下において、同程度の期間において、排水トラップ管路及び横引配管内の洗浄水の尿濃度の違いにより、尿石の発生量に差が生じるという新しい知見を説明する図である。 図2Cに示す排水トラップ管路について本洗浄動作が行われた後の状態を示し、バイオフィルムを含む有機物汚れが形成されている環境下において、同程度の期間において、排水トラップ管路及び横引配管内の洗浄水の尿濃度の違いにより、尿石の発生量に差が生じるという新しい知見を説明する図である。 使用回数に対する有機物汚れの厚みを使用者の排尿時における排水トラップ管路内の洗浄水の尿濃度ごとに示す図である。 図1Aに示す排水トラップ管路14におけるバイオフィルムを含む有機物汚れの発生のメカニズムを示す図である。 図4Aに示す排水トラップ管路が比較的高い尿濃度の洗浄水でほぼ満たされている状態を示し、排水トラップ管路及び横引配管内の洗浄水の尿濃度の違いにより、尿石の発生のメカニズムが異なり、有機物汚れの厚みの増加に差が生じるという新しい知見を説明する図である。 図4Bに示すように排水トラップ管路内に高pH環境が生じる場合においては、リン酸マグネシウムアンモニウムを析出させる反応が支配的となることを説明する図である。 図4Cに示すような反応によりリン酸マグネシウムアンモニウムが粒子径の比較的大きな結晶性の尿石を生じさせた状態を説明する図である。 図4Aに示す排水トラップ管路が比較的低い尿濃度の洗浄水でほぼ満たされている状態を示し、排水トラップ管路及び横引配管内の洗浄水の尿濃度の違いにより、尿石の発生のメカニズムが異なり、有機物汚れの厚みの増加に差が生じるという新しい知見を説明する図である。 図4Eに示すように排水トラップ管路内のpH上昇が比較的低く抑制されている環境においては、リン酸カルシウムを析出させる反応が支配的となることを説明する図である。 図4Fに示すような反応によりリン酸カルシウムが粒子径の比較的小さな非結晶性の尿石を生じさせた状態を説明する図である。 本発明の第1実施形態である小便器の設置状況を示す図。 本発明の第1実施形態である小便器の概略斜視図。 本発明の第1実施形態である小便器の側面断面図。 本発明の第1実施形態である小便器の自動洗浄ユニットの構成を示す概略図。 本発明の第1実施形態である小便器において、小便器の動作を示すフローチャート。 本発明の第1実施形態である小便器において、実際の動きを示すタイムチャート。 本発明の第2実施形態である小便器において、小便器を使用する使用回毎の動作を示すフローチャート。 本発明の第2実施形態である小便器において、実際の動きを示すタイムチャート。 本発明の第2実施形態である小便器において、有機物汚れ抑制吐水モードの動作を示すフローチャート。
<1.本発明者により見出された新たな尿石発生メカニズム>
本発明者等は、鋭意研究することにより、バイオフィルムを含む有機物汚れが形成されている環境下において、非常に短時間でも尿石が発生するという以下の新しい知見を見出した。
従来から、以下のように尿石等の無機物汚れに着目した尿石の発生のメカニズムが知られている。
このメカニズムにおいては、使用者の小便器の使用後に排尿が排水トラップ管路及び横引配管に滞留し、この滞留した尿に一般細菌が付着する。
この一般細菌の代謝過程において、ウレアーゼと呼ばれる酵素が排出される。
このウレアーゼ酵素によって尿中の尿素が分解され、アンモニアが発生する。
アンモニアが水溶することで尿を含む液体中のpHが上昇し、アルカリ性となる。
pHが8.0~8.5を超えるような比較的高い環境になると、尿中に含まれるCa及びMgの炭酸塩、リン酸塩などの溶解度が低下するため尿液中にこれらの塩が析出し、尿石として排水トラップ管路及び横引配管に付着する。
このような無機物汚れの尿石の発生は、2時間以上の比較的長時間にわたって比較的緩やかに進行すると考えられてきた。
これに対し、本発明者等は、排水トラップ管路及び横引配管内に発生する汚れのうち無機物汚れと異なる有機物汚れに新たに着目し、バイオフィルムを含む有機物汚れが形成されている環境下において、数秒程度の非常に短時間でも尿石が発生するという知見を得た。
図1A乃至図1Cに示すように、短時間での尿石Uの発生のメカニズムは、バイオフィルムを含む有機物汚れVに着目したものであり、以下のように説明される。
有機物汚れVは、一般細菌等の細菌Xが増殖する過程で放出するEPS(細胞外多糖類:Extracellular Poly Succharide)を中心としたバイオフィルム、尿中に含まれるタンパク質などが複合して形成される。
このような有機物汚れVは配管内のぬめりとして知られ、非常に粘性の高い粘液を形成する。
このような有機物汚れVのバイオフィルムは、排水トラップT及び横引配管HP等に付着した細菌Xが細胞外に多糖類のポリマーを生成し、これに包まれることで細胞の脱離が抑えられるようになり、発達すると考えられている。
図1Aにおいては、使用者が小便器に排尿する前の状態の小便器の排水トラップTの一部を拡大して示している。
図1Aに示す排水トラップTは、使用者が小便器を多数回にわたり使用し続けた後の状態となっている。
排水トラップTは、前回の本洗浄吐水モードにより吐水された洗浄水を貯留している。
以下、図1A乃至図4Gにおいては排水トラップT内の状態及び反応を説明しているが、横引配管HP等の排水トラップTの下流側の設備配管内の状態及び反応についてもほぼ同様であり、横引配管HP等にも適用される。
使用者が小便器を使用した後、排水トラップTに有機物汚れVのバイオフィルムが形成されている場合、細菌Xがこのバイオフィルムを発生且つ発達させている。
バイオフィルムは、スポンジ状の内部構造体を形成しており、内部に細菌Xやアンモニア(又はアンモニウムイオンNH )を保持しやすくなっている。
細菌Xはウレアーゼ酵素を排出し、このウレアーゼ酵素が尿中の尿素を分解し、アンモニア(又はアンモニウムイオンNH )が発生されている。
よって、バイオフィルム近傍領域にはアンモニア(又はアンモニウムイオンNH )が多量に存在している状態となっている。
有機物汚れVの近傍の液中にアンモニアが水溶してアンモニウムイオンNH を生じさせることで有機物汚れVの近傍の領域のpHが比較的高い値まで上昇する。
バイオフィルムを含む有機物汚れVの近傍の高pH環境領域YのpHは、8以上、好ましくは9以上、好ましくは8~10の範囲の値となる。
図1Bにおいては、図1Aに示すような状態の排水トラップTを有する小便器において、使用者が排尿し、小便器の洗浄動作が行われるまでの比較的短時間の間において、排水トラップT内が尿でほぼ満たされている状態を示している。
この尿が、有機物汚れVの近傍の高pH環境領域Yに触れる又は接近することにより、尿中に含まれるCa及びMgの炭酸塩、リン酸塩などが析出し、数秒程度の非常に短時間で尿石Uが発生するというメカニズムが見いだされた。
図1Cにおいては、図1Bに示すような排水トラップT内が尿でほぼ満たされている状態から、小便器の洗浄動作が行われた後、排水トラップT内の尿が新たな洗浄水で置換された状態を示している。
排水トラップT内の尿は新たな洗浄水で置換されるものの、析出した尿石Uは有機物汚れVに吸着された状態のままとなる。
バイオフィルムは、スポンジ状の内部構造体を形成していることから、尿石Uも保持されやすい。
このように尿石Uが付着していると、この尿石U自身にさらに細菌Xが付着しやすくなり、尿石Uの発生がより促進されることも見いだされた。
このようにして、毎回の短時間の洗浄の積み重ねによって、有機物汚れV上に短時間で尿石が析出し、尿石Uが積層されることが見出された。
本発明者等は、このような新たな知見に基づいて、尿を含む洗浄水がバイオフィルムと接することにより比較的短時間で尿石を発生させるメカニズムの作動を抑制し、排水トラップT及び横引配管HPにおける尿石の発生を抑制する技術を発明したものである。
さらに、本発明者等は、鋭意研究することにより、バイオフィルムを含む有機物汚れが形成されている環境下において、同程度の期間において、排水トラップT及び横引配管HP内の洗浄水の尿濃度の違いにより、尿石が発生する量に差がでるという以下の新しい知見を見出した。
図2Aにおいては、図1Aに示すような排水トラップTを有する小便器において、使用者が排尿し、小便器の洗浄動作が行われるまでの比較的短時間の間において、排水トラップT内が比較的高い尿濃度の洗浄水でほぼ満たされている状態を示している。
この比較的高い尿濃度の洗浄水が、有機物汚れVの近傍の高pH環境領域Yに触れる又は接近することにより、数秒程度の非常に短時間で尿石Uが比較的多く発生する。
図2Bに示すように、比較的多く発生した尿石Uは、小便器の洗浄動作が行われて、排水トラップT内の洗浄水が新しい洗浄水に置換された後も、有機物汚れVに吸着された状態のままとなる。
図3に示すように、使用者の排尿時に、比較的高い尿濃度の洗浄水が、排水トラップT内に流入することが、小便器の使用の度に繰り返されることにより、このように発生した尿石Uが排水トラップT上に多く蓄積し、有機物汚れVの厚みを比較的大きくさせる。
一方、図2Cにおいては、図1Aに示すような排水トラップTを有する小便器において、使用者が排尿し、小便器の洗浄動作が行われるまでの比較的短時間の間において、排水トラップT内が比較的低い尿濃度の洗浄水でほぼ満たされている状態を示している。
この比較的低い尿濃度の洗浄水が、有機物汚れVの近傍の高pH環境領域Yに触れる又は接近することにより、数秒程度の非常に短時間で尿石Uが比較的少なく発生する。
このように、使用者が排尿した後、小便器の洗浄動作が行われるまでの毎回の同程度の時間において、尿石Uの発生量は排水トラップT内の洗浄水の尿濃度に依存する知見が見出された。
よって、排水トラップT内の洗浄水の尿濃度を低減できれば尿石Uの析出量を抑制することができる知見も見出された。
図2Dに示すように、比較的少なく発生した尿石Uも、小便器の洗浄動作が行われた後、有機物汚れVに吸着された状態のままとなる。
図3に示すように、使用者の排尿時に、比較的低い尿濃度の洗浄水が、排水トラップT内に流入することが、小便器の使用の度に繰り返される場合には、比較的少ない尿石Uが排水トラップT上に蓄積するので、有機物汚れVの厚みを抑制できる。
毎回の使用者の排尿時における排水トラップT内の洗浄水の尿濃度の差が、使用回数が多くなるごとに、より大きな有機物汚れVの厚みの差となる知見も見出された。
さらに、本発明者等は、鋭意研究することにより、排水トラップT及び横引配管HP内の洗浄水の尿濃度の違いにより、尿石の発生のメカニズムが異なり、有機物汚れVの厚みの増加に差がでるという以下の知見を見出した。
図4Aにおいては、上述の図1Aに示すような、排水トラップT及び横引配管HPにおけるバイオフィルムを含む有機物汚れVの発生のメカニズムを再び示している。
図4Aにおける(a)工程に示すように、使用者の排尿が排水トラップTに付着し、細菌Xが尿に付着して排水トラップT上で増殖する。
時間の経過及び/又は小便器の使用回数の増加に伴い、図4Aにおける(a)工程から(b)工程に進む。
図4Aにおける(b)工程に示すように、排水トラップTには有機物汚れVのバイオフィルムが形成される。
次に、(b)工程から(c)工程に進む。
図4Aにおける(c)工程に示すように、バイオフィルムは、内部に細菌Xやアンモニア(又はアンモニウムイオンNH )を保持しやすくなっている。
バイオフィルム内部の細菌Xはウレアーゼ酵素Zを排出し、このウレアーゼ酵素Zが尿中の尿素を分解し、アンモニア(又はアンモニウムイオンNH )が発生することとなる。
このように、使用者が小便器に排尿する前の状態において、小便器の排水トラップTの一部が、図4A(c)に示すような有機物汚れVが形成されている状態となっている。
図4Bに示すように、図4A(c)に示すような有機物汚れVが形成された排水トラップTに、比較的高い尿濃度の排尿及び/又は洗浄水が流入するとき、尿素が比較的多いため、ウレアーゼ酵素Zが分解する尿中の尿素が比較的多く、アンモニアが比較的多く発生する。
これらのアンモニアが水溶することでアンモニウムイオンNH を生じさせ、有機物汚れVの近傍の領域のpHが比較的高い値まで上昇する。
図4Cに示すように、図4Bに示すような高pH環境下においては、尿を含む液体中の無機物、例えばCa2+、Mg2+、NH 、PO 3-等がアンモニアと反応して、リン酸マグネシウムアンモニウムを析出させる反応が支配的となる。
リン酸マグネシウムアンモニウムはアルカリ性環境下で尿液から生成されやすい尿石成分となる。
図4Dに示すように、リン酸マグネシウムアンモニウムは粒子径の比較的大きな結晶性の尿石を生じさせる。
図4Dは走査型電子顕微鏡(SEM)により得られた画像であり、表示倍率は2000倍である。
この画像は、後述するように、本発明の実施形態における小便器の排水トラップ管路及び横引配管内の有機物汚れの発生を再現するような実験により得られた有機物汚れを撮影したものである。
バイオフィルム中にこのような比較的粒子径の大きな尿石が混在することにより、尿石の厚み及び有機物汚れVの厚みが増大しやすくなる。
このようなリン酸マグネシウムアンモニウムの尿石を主に含む有機物汚れVの厚みは、後述するリン酸カルシウムの尿石を含む有機物汚れVの厚みよりも増大されやすい。
排水トラップT内の洗浄水の尿濃度が高くなるほど、リン酸マグネシウムアンモニウムの析出割合が増大し、有機物汚れVの厚みが増大する。
一方、図4Eに示すように、図4A(c)に示すような有機物汚れVが形成された排水トラップTに、比較的低い尿濃度の排尿及び/又は洗浄水が流入するときを説明する。
このとき、尿素が比較的少ないため、ウレアーゼ酵素Zが分解する尿中の尿素が比較的少なく、アンモニアの発生が比較的少ない。
よって、アンモニアが水溶して生じるアンモニウムイオンNH によるpHの上昇は比較的低く抑制される。
図4Fに示すように、図4Eに示すようなpH上昇が比較的低く抑制されている環境下においては、尿を含む液体中の無機物、例えばCa2+、Mg2+、PO 3-等どうしが反応して、リン酸カルシウムを析出させる反応が支配的となる。
リン酸カルシウムは上述したリン酸マグネシウムアンモニウムが尿液から生成されやすい環境下よりも中性に近い環境下においても尿液から生成されやすい尿石成分となる。
図4Gに示すように、リン酸カルシウムは粒子径の比較的小さな非結晶性の尿石を生じさせる。
図4Gは走査型電子顕微鏡(SEM)により得られた画像であり、表示倍率は2003倍である。
この画像は、後述するように、本発明の実施形態における小便器の排水トラップ管路及び横引配管内の有機物汚れの発生を再現するような実験により得られた有機物汚れを撮影したものである。
リン酸カルシウムの尿石は、リン酸マグネシウムアンモニウムの尿石よりも小さい。
バイオフィルム中にこのような比較的粒子径の小さな尿石が混在することにより、尿石の厚み及び有機物汚れVの厚みは少しずつ増加する。
粒子径の小さな尿石が主成分となる場合には、厚みの増加ペースは比較的遅くなり、厚みが増大されにくくなる。
排水トラップTに流入する洗浄水中の尿濃度が低くなるほど、リン酸カルシウムの析出割合が増大し、有機物汚れVの厚みは増大されにくくなる。
本発明者等は、このような新たな知見に基づいて、排水トラップTに流入する洗浄水の尿濃度を調整し、排水トラップT及び横引配管HPに付着する尿石の厚みを抑制する技術を発明したものである。
<2.第1実施形態>
図5乃至図10に基づいて、本発明の第1実施形態である小便器100について説明する。
<2.1.小便器の設置状況>
まず、本発明の第1実施形態である小便器の設置状況を示す図である図5を用いて、本発明の第1実施形態である小便器100の設置状況を説明する。
図5に示すように、本発明の第1実施形態である小便器100は、建築物の壁面Wの表側に複数個並んで設置されている。
この小便器100の設置された壁面Wの裏側下方には、わずかに下り傾斜しながら横向きに延びる排水用の横引配管HPが接続されている。
この横引配管HPはさらに下流の縦排水管VPに接続されている。
小便器100は、それぞれ、小便器100の下部の壁面側から壁面Wを通って壁面Wの裏側に設置された横引配管HPに排水するようになっている。
<2.2.小便器の構造>
次に、図6乃至図8を用いて、本発明の第1実施形態である小便器100の構造について説明する。
図6は本発明の第1実施形態である小便器の概略斜視図であり、図7は本発明の第1実施形態である小便器の側面断面図であり、図8は本発明の第1実施形態である小便器の自動洗浄ユニットの構成を示す概略図である。
図6乃至図8に示すように、小便器100は、陶器製の便器本体110と、この便器本体110を洗浄するための洗浄水を自動的に便器本体110に吐水する吐水装置である自動洗浄ユニット120とを備えている。
便器本体110の正面側には、排尿を受けるボウル面111aを有するボウル部111が形成されており、このボウル部111よりも壁面W側の便器本体110の上方領域には、自動洗浄ユニット120の一部を収納するための収納室112が形成されている。
また、便器本体110のボウル部111の底部には、排水口111bが形成されている。
便器本体110は、さらに、排水口113の下流側に、その内部に封水を形成する排出部である排水トラップ130を備えている。
排水トラップ130は排水口113と連通している。
この排水トラップ130の下流側には、壁面Wを貫通する流路を形成する排水ソケットS等を介して、横引配管HPが接続されている。
排水トラップ130は、排水トラップ130内に封水を形成するように貯留される洗浄水の容積が、200ml以下となるような節水型トラップとして形成されている。
このような節水型トラップの排水トラップ130は、従来の700ml程度の容積の排水トラップに比べて少ない洗浄水の水量により排水トラップ130内の洗浄水を置換することができる。
節水型の排水トラップ130の容積は、好ましくは、40ml~200mlの範囲内であり、より好ましくは、120ml~200mlの範囲内であり、より好ましくは120mlである。
このような節水型の排水トラップは、使用者の排尿の尿量よりも少ない容積を有していることから、排水トラップ130内の洗浄水の尿濃度が高くなりやすく、この尿を希釈することが排水トラップ130及び横引配管HP内の尿石付着の抑制に効果的となる。
図8に示すように、自動洗浄ユニット120は、水道等の給水源(図示せず)から洗浄水が供給される主給水路121aを形成する主給水管121と、この主給水管121を止水する止水栓122と、主給水管121の下流側端部に接続されて且つ主給水管121を第1の給水管123aと第2の給水管123bに分岐する分岐部である管継手125とを備えている。
また、管継手125によって主給水管121から分岐された一方の第1の給水管123aには、その内部の給水路(第1の給水路124a)内を通過する洗浄水の瞬間流量について第1の所定の瞬間流量Q1[リットル/分]に調整する第1の定流量弁126aが設けられている。
さらに、この第1の定流量弁126aの下流側には、第1の給水路124aを開閉する第1の開閉弁127aが設けられている。
この第1の開閉弁127aの下流側の第1の給水路124aの下流側端部には、ボウル部111内に洗浄水を吐水する吐水装置の一部であるスプレッダ128(吐水部)が設けられており、このスプレッダ128の第1の吐水部128aが第1の給水路124aの下流側端部と接続されている。
なお、本実施形態では、第1の所定の瞬間流量Q1[リットル/分]は、好ましくは8[リットル/分]~17[リットル/分]、より好ましくは8[リットル/分]~12[リットル/分]、さらにより好ましくは9[リットル/分]に設定される。
一方、管継手125によって主給水管121から分岐された他方の第2の給水管123bには、その内部の給水路(第2の給水路124b)内を通過する洗浄水の瞬間流量について、第1の所定の瞬間流量Q1[リットル/分]よりも低い第2の所定の瞬間流量Q2[リットル/分]に調整する第2の定流量弁126bが設けられている。
また、この第2の定流量弁126bの下流側には、第2の給水路124bを開閉する第2の開閉弁127bが設けられている。
この第2の開閉弁127bの下流側の第2の給水路124bの下流側端部には、スプレッダ128の第2の吐水部128bが接続されている。
なお、本実施形態では、第2の所定の瞬間流量Q2[リットル/分]は、好ましくは0.1[リットル/分]~8.0[リットル/分]に設定され、より好ましくは0.1[リットル/分]~0.6[リットル/分]に設定され、さらにより好ましくは0.3[リットル/分]に設定される。
なお、第1の所定の瞬間流量Q1[リットル/分]と第2の所定の瞬間流量Q2[リットル/分]との瞬間流量差は、好ましくは1.0[リットル/分]~8.9[リットル/分]に設定される。
つぎに、第2の開閉弁127bの下流側には、電解除菌水ユニット129が設けられており、この電解除菌水ユニット129は、電解除菌水を生成する電解槽(図示せず)を備えており、第2の吐水部128bに電解除菌水を供給する電解除菌水供給部として機能するようになっている。
また、自動洗浄ユニット120は、スプレッダ128に設けられて便器本体110の正面側に立つ使用者の有無を検知する人体検知センサーとしての検知センサー128cと、この検知センサー128cから送信される検知信号を受信すると共に所定の制御プログラム等に基づいて第1の開閉弁127a及び第2の開閉弁127bのそれぞれの動作を制御する制御部であるコントローラー120Aを備えている。
検知センサー128cは、赤外線式の人体検知センサーである。
検知センサー128cは、使用者の小便器の使用(使用しているという使用状態)を検知する他の検知センサー、例えば、マイクロ波を使用したドップラー式のセンサー、又は使用者の小便器の使用による尿の流れを検知する流量検知センサー等であってもよい。
ドップラー式のセンサーは、使用者の人体の検知だけでなく尿流の検知も可能となるため、ボウル面への排尿の有無をより正確に特定することができる。
コントローラー120Aは、CPU及びメモリ等を内蔵し、所定の制御プログラム等に基づいて他の機器の制御を行うことができる。
コントローラー120Aは、第1の開閉弁127aの開閉動作を制御することにより、第1の吐水部128aからの後述する本洗浄吐水モード又は有機物汚れ抑制吐水モードの吐水の開始及び終了を制御する。
コントローラー120Aは、第2の開閉弁127bの開閉動作を制御することにより、第2の吐水部128bからの後述する尿希釈吐水モード又は電解除菌水の吐水の開始及び終了を制御する。
なお、本実施形態では、自動洗浄ユニット120の第1の給水路124a及び第2の給水路124bのそれぞれの洗浄水の瞬間流量Q1,Q2を調整する流量調整手段として、第1の定流量弁126aと第2の定流量弁126bのそれぞれを採用した形態について説明するが、これらの形態に限られず、例えば、定流量弁以外にも、流量センサー等を使用して洗浄水を適正な流量に調整する他の流量調整手段を採用し、この他の流量調整手段の動作をコントローラー120Aにより制御するようにしてもよい。
また、流路中に開度が調整自在な電動弁を備え、単一の吐水部から複数の瞬間流量を吐水可能にしてもよい。
<2.3.小便器の動作>
続いて、図9および図10を用いて本発明の第1実施形態である小便器100の動作について説明する。
図9は本発明の第1実施形態である小便器において、小便器の動作を示すフローチャートであり、図10は本発明の第1実施形態である小便器において、実際の動きを示すタイムチャートである。
コントローラー120Aは、検知センサー128cが使用者の使用を検知している間のうち所定の期間において第2の吐水部128bから吐水を行う尿希釈吐水モードと、検知センサー128cが使用者の使用を検知しなくなった後に、第1の吐水部128aから吐水を行う本洗浄吐水モードと、設定されたスケジュールに基づいて第1の吐水部128aから洗浄水を吐水して排水トラップ130及び横引配管HPにおけるバイオフィルムを含む有機物汚れの形成を抑制する有機汚れ抑制吐水モードとを備えている。
<2.3.1.使用回毎の動作>
まず、図9および図10を用いて本発明の第1実施形態である小便器100の使用回毎の動作について説明する。
小便器100に通電しているあいだ、小便器100の検知センサー128cは使用を検知している(ステップS100)。
そして、小便器100の検知センサー128cが、使用者がボウル部111の前に立つと、検知センサー128cが使用者の使用を検知してステップS101に進む(このときの時刻t10とする;図10参照)。
<2.3.1.1.尿希釈吐水モード>
時刻t10経過後(すなわち、ステップS101において)、コントローラー120Aは第2の開閉弁127bを開弁する。
これにより、スプレッダ128の第2の吐水部128bからボウル部111のボウル面111aに向かって瞬間流量Q2で吐水が実行される。
そして、ステップS102に進む。
ステップS102では、第2の吐水部128bからの吐水中に検知センサー128cが使用を検知しているか否かを判定する。
使用を検知している場合は、ステップS102を繰り返す。
使用を検知しなくなった場合は、ステップS103へ進む。
検知センサー128cが人体を検知しなくなった場合(すなわち、ステップS103において)、コントローラー120Aは第2の開閉弁127bを閉弁し、第2の吐水部128bからの吐水を終了させる。
その後、ステップS104へと進む(このときの時刻を時刻t11とする;図10参照)。
このようにステップS101、ステップS102、ステップS103は「使用者の使用を検知してから、使用者の使用を検知しなくなるまでの時間」であり、換言すれば「使用者がボウル部111へ排尿している最中に吐水を行うことで、排水トラップ130へ流入する尿を希釈している時間」であり、この3ステップの実行を「尿希釈吐水モード」という。
<2.3.1.2.本洗浄吐水モード>
時刻t11経過後(すなわち、ステップS104において)、コントローラー120Aは第1の開閉弁127aを開弁する。
これにより、スプレッダ128の第1の吐水部128aからボウル部111のボウル面111aに向かって瞬間流量Q1で吐水する。
なお、このときの吐水時間を本洗浄時間Ta(例えば3.3秒)とし、本洗浄時間Ta終了後の時刻を時刻t12とする(図10参照)。
そして、時刻t12経過後、ステップS105に進む。
このステップS104は「使用者の使用を検知しなくなった後に、スプレッダ128の第1の吐水部128aから吐水が行われる」時間であり、換言すれば「ボウル部111を洗浄すると共に排水トラップ130内を洗浄水に置換する時間」であり、ステップS104が実行されている時間を「本洗浄吐水モード」という。
なお、「本洗浄吐水モード」で使用される水量(すなわち、第1の吐水部128aから吐水される水量)は、約0.5リットルである。
ステップS105では、小便器100が1回使用されたため、使用回数カウンターp(変数)に1を加える。
そして、ステップS106へ進む。
<2.3.2.有機物汚れ抑制吐水モード>
ステップS106では、再び小便器100の使用を検知する。
検知センサー128cが小便器100の使用を検知した場合は、ステップS101に戻る。
検知センサー128cが小便器100の使用を検知しない場合は、ステップS107へ進む。
ステップS107では、時刻t12から有機物汚れ抑制吐水判定時間Tb(例えば1時間)を経過したか否かを判定する。
時刻t12から有機物汚れ抑制吐水判定時間Tb経過していない場合はステップS106に戻る。
時刻t12から有機物汚れ抑制吐水判定時間Tb経過した場合(このときの時刻をt13とする;図10参照)はステップS108に進む。
ステップS108では、前回の有機物汚れ抑制吐水モードを実行してから時刻t13に至るまでのあいだの小便器の使用回数カウンターpが所定回数P以上になったか否かを判定する。
前回の有機物汚れ抑制吐水モードを実行してから時刻t13に至るまでのあいだの小便器の使用回数カウンターpが所定回数P以上になった場合は、ステップS109に進む(図10の(a)のパターンになる)。
前回の有機物汚れ抑制吐水モードを実行してから時刻t13に至るまでのあいだの小便器100の使用回数カウンターpが所定回数Pより少ない場合は、ステップS110に進む(図10の(b)のパターンになる)。
ステップS110では、時刻t12から有機物汚れ抑制吐水実行時間Td(例えば2時間)を経過したか否かを判定する。
時刻t12から有機物汚れ抑制吐水実行時間Td経過していない場合はステップS106に戻る。
時刻t12から有機物汚れ抑制吐水実行時間Td経過した場合(このときの時刻をt15とする;図10の(b)参照)はステップS109に進む。
なお、有機物汚れ抑制吐水実行時間Tdは、複数の所定の実行時間から適宜選択自在となっている。
ステップS109において、コントローラー120Aは第1の開閉弁127aを開弁する。
これにより、スプレッダ128の第1の吐水部128aからボウル部111のボウル面111aに向かって瞬間流量Q1で間欠的に吐水する。
ステップS109において、吐水開始から吐水終了までの時間(吐水時間)を有機物汚れ抑制吐水時間Tc(例えば13.2秒)とする。
その後、ステップS111に進む。
ステップS111では、小便器100の使用回数カウンターpをゼロにリセットする。
この一連のステップS106、ステップS107、ステップS108、ステップS109、ステップS110は「排水トラップ130及び横引配管HPにおいてバイオフィルムを発生させる細菌の増殖を抑制するための吐水」であり、この5ステップの実行を「有機物汚れ抑制吐水モード」という。
すなわち、この「有機物汚れ抑制吐水モード」は、「本洗浄吐水モード」が終了してから図10の(a)のパターン(前回の有機物汚れ抑制吐水モードが実行されてからの小便器100の使用回数が所定回数Pより少なかった場合)においては有機物汚れ抑制吐水判定時間Tc後に、図10の(b)のパターン(前回の有機物汚れ抑制吐水モードが実行されてからの小便器100の使用回数が所定回数P以上であった場合)においては有機物汚れ抑制吐水実行時間Td後に実行される。
なお、「有機物汚れ抑制吐水モード」で使用される水量(すなわち、第1の吐水部128aから吐水される水量)は毎回一定であり、その水量は複数の所定流量(例えば、1リットル、2リットル、4リットル)から選択自在である。
<2.4.作用効果>
このようにして得られた本発明の第1実施形態である小便器100は、有機物汚れ抑制吐水モードを実行することにより、排水トラップ130及び横引配管HPにおいてバイオフィルムを発生させる細菌の増殖を抑制し、バイオフィルムを含む有機物汚れの形成を抑制することができる。また、仮に、バイオフィルムを含む有機物汚れが排水トラップ及び横引配管HP内に形成されたとしても、小便器100によれば、有機物汚れ抑制吐水モードを実行することにより、有機物汚れを設定されたスケジュールに基づいて洗浄することができる。
さらに、仮に、バイオフィルムを含む有機物汚れが排水トラップ130及び横引配管HP内に形成されたとしても、小便器100によれば、尿希釈吐水モードを実行することにより、排尿がされてから本洗浄吐水モードが実行されるまでの排水トラップ130及び横引配管HP内の洗浄水の尿濃度を低下させることができる。よって、小便器100によれば、洗浄水中の尿が有機物汚れにより比較的短時間で尿石を生じさせることを抑制することができる。
さらに、小便器100によれば、尿希釈吐水モードが実行されることにより、本洗浄吐水モードが実行されるときに排水トラップ内の洗浄水の尿濃度が尿の希釈により低下されている。よって、本洗浄吐水モードの実行により、この実行時点の排水トラップ130内の洗浄水中の尿が横引配管HPの上流側に流れる場合においても、横引配管HP内に残存する洗浄水の尿濃度が低減され、洗浄水中の尿が尿石を生じさせることを抑制することができる。
従って、小便器100によれば、有機物汚れ抑制吐水モードと尿希釈吐水モードを組合せることにより、洗浄水中の尿が排水トラップ130及び横引配管HP内においてバイオフィルムを含む有機物汚れにより尿石を生じさせることを抑制することができる。
また、有機物汚れ抑制吐水モードで使用する水量が、毎回一定であることにより、使用条件に因らず、確実に排水トラップ130及び横引配管HP内の有機物汚れの堆積を抑制することができる。
さらに、尿希釈吐水モードにおいて、排尿中の排水トラップ130内の尿が横引配管HPに流入するとき、この流入の瞬間流量が比較的小さいことによりこの尿が横引配管HPの上流側に逆流するように流れてしまうことを抑制することができる。これにより、横引配管HPの上流側に尿石が生じることを抑制することができる。また、有機物汚れ抑制吐水モードにおける吐水の瞬間流量は尿希釈吐水モードにおける吐水の瞬間流量よりも高くなるので、有機物汚れ抑制吐水モードにおける吐水により横引配管HPを比較的広範囲に確実に洗浄することができる。よって、有機物汚れ抑制吐水モードと尿希釈吐水モードを組合せることにより、洗浄水中の尿が横引配管HP内においてバイオフィルムを含む有機物汚れにより尿石を生じさせることをより抑制することができる。
さらに、本洗浄吐水モードにおけるボウル面111aの洗浄性能を確保するとともに、尿希釈吐水モードに使用する洗浄水の無駄使いを抑制することができる。
さらに、有機物汚れ抑制吐水モードにおいて横引配管HP内に流入した洗浄水の水位は本洗浄吐水モードにおいて横引配管HP内に流入した洗浄水の水位より高くなるため、実行頻度が有機物汚れ抑制吐水モードの実行頻度よりも高い本洗浄吐水モードの実行時に横引配管HPの水位面付近に発生したバイオフィルムを含む有機物汚れを有機物汚れ吐水モードによって洗い流すことができる。従って、横引配管HPにおいて洗浄水中の尿が有機物汚れにより比較的短時間で尿石を生じさせることをより抑制することができる。
さらに、本洗浄吐水モードが終了してから有機物汚れ抑制吐水実行時間Td経過時に有機物汚れ抑制吐水モードを実行することにより、本洗浄吐水モードが終了してから有機物汚れ抑制吐水実行時間Td経過するまでに小便器100の使用がなかった場合に排水トラップ130内で成長していた有機汚れを洗い流せるため、より排水トラップ130内の汚れの成長を抑制できる。
また、長時間小便器100を使用しない場合に発生する自然乾燥による封水切れを防ぐことができるため、部屋内への臭気が漏れることを防ぐことができる。
さらに、有機物汚れ抑制吐水実行時間Tdが、複数の所定時間から選択自在であることにより、設置場所に応じて最適な有機物汚れ抑制吐水実行時間Tdを選択することができるため、汚れの堆積抑制と節水とを両立させることができる。
さらに、本洗浄吐水モードが終了してから有機物汚れ抑制吐水実行時間Tdより短い有機物汚れ抑制吐水判定時間Tb経過時において、前回の有機物汚れ抑制吐水モードを実行してからの小便器使用回数である小便器使用回数カウンターpが所定回数P以上であった場合は、有機物汚れ抑制吐水モードを実行し、前回の有機物汚れ抑制吐水モードを実行してからの小便器使用回数カウンターpが所定回数Pより少なかった場合は、有機物汚れ抑制吐水実行時間Td経過時に有機物汚れ抑制吐水モードを実行することにより、使用頻度に見合って有機物汚れ抑制吐水モードが実行されるため、より確実に排水トラップ130および建物配管HP内の汚れの堆積を抑制できる。
さらに、有機物汚れ抑制吐水モードが、間欠的に実行されることにより、有機物汚れ抑制吐水モードを1回だけ行う場合に比べて建物配管HP内の有機物汚れが残存し難くなるため、より建物配管HP内の汚れの堆積を抑制することができる。
<3.第2実施形態>
続いて、図11乃至図13に基づいて、本発明の第2実施形態である小便器200について説明する。
図11は本発明の第2実施形態である小便器において、小便器を使用する使用回毎の動作を示すフローチャートであり、図12は本発明の第2実施形態である小便器において、実際の動きを示すタイムチャートであり、図13は本発明の第2実施形態である小便器において、有機物汚れ抑制吐水モードの動作を示すフローチャートである。
本発明の第2実施形態である小便器200は、本発明の第1実施形態である小便器100と吐水動作が異なるものであり、多くの要素について小便器100と共通するので、共通する事項については詳しい説明を省略し、下2桁が共通する200番台の符号を付すのみとする。
<3.1.使用回毎の動作>
まず、図11および図12を用いて本発明の第2実施形態である小便器200の使用回毎の動作について説明する。
小便器200に通電しているあいだ、小便器200の検知センサー228cは使用を検知している(ステップS200)。
そして、小便器200の検知センサー228cが、使用者がボウル部211の前に立つと、検知センサー228cが使用者の使用を検知してステップS201に進む(このときの時刻t20とする;図12参照)。
<3.1.1.尿希釈吐水モード>
時刻t20経過後(すなわち、ステップS201において)、コントローラー220Aは第2の開閉弁227bを開弁する。
これにより、スプレッダ228の第2の吐水部228bからボウル部211のボウル面211aに向かって瞬間流量Q2で吐水が実行される。
そして、ステップS202に進む。
ステップS202では、第2の吐水部228bからの吐水中に検知センサー228cが使用を検知しているか否かを判定する。
使用を検知している場合は、ステップS202を繰り返す。
使用を検知しなくなった場合は、ステップS203へ進む。
検知センサー228cが人体を検知しなくなった場合(すなわち、ステップS203において)、コントローラー220Aは第2の開閉弁227bを閉弁し、第2の吐水部228bからの吐水を終了させる。
その後、ステップS204へと進む(このときの時刻を時刻t21とする;図12参照)。
このようにステップS201、ステップS202、ステップS203は「使用者の使用を検知してから、使用者の使用を検知しなくなるまでの時間」であり、換言すれば「使用者がボウル部211へ排尿している最中に吐水を行うことで、排水トラップ230へ流入する尿を希釈している時間」であり、この3ステップの実行を「尿希釈吐水モード」という。
<3.1.2.本洗浄吐水モード>
時刻t21経過後(すなわち、ステップS204において)、コントローラー220Aは第1の開閉弁227aを開弁する。
これにより、スプレッダ228の第1の吐水部228aからボウル部211のボウル面211aに向かって瞬間流量Q1で吐水する。
なお、このときの吐水時間を本洗浄時間Ta(例えば3.3秒)とし、本洗浄時間Ta終了後の時刻を時刻t22とする(図12参照)。
このステップS204は「使用者の使用を検知しなくなった後に、スプレッダ228から吐水が行われる」時間であり、換言すれば「ボウル部211を洗浄すると共に排水トラップ230内を洗浄水に置換する時間」であり、ステップS204が実行されている時間を「本洗浄吐水モード」という。
なお、「本洗浄吐水モード」で使用される水量(すなわち、第1の吐水部228aから吐水される水量)は、約0.5リットルである。
<3.2.有機物汚れ抑制吐水モード>
続いて図13を用いて、有機物汚れ抑制吐水モードについて説明する。
まず、ステップS210において、コントローラー220Aは、前回の有機物汚れ抑制吐水モードが実行された時点から一定の所定時間Tのカウントを開始する。
ステップS211において、コントローラー220Aは、S210の時点から所定時間Tが経過したか否かを判定する。
コントローラー220Aは、所定時間Tが経過していない場合には、S211に戻る。
コントローラー220Aは、所定時間Tが経過している場合には、排水トラップ230及び横引配管HPにおいてバイオフィルムを発生させる細菌の増殖を抑制するために吐水が有効であると判断して、今回の有機汚れ抑制吐水モードを実行することを決定し、S212に進む。
なお、本実施形態において、所定時間Tについては、好ましくは1時間~3時間に設定され、より好ましくは1.5時間~2.5時間に設定され、さらに好ましくは2時間に設定される。
ステップS212において、コントローラー220Aは第1の開閉弁227aを開弁する。
これにより、スプレッダ228の第1の吐水部228aからボウル部211のボウル面211aに向かって瞬間流量Q1で間欠的に吐水する。
ステップS212において、吐水開始から吐水終了までの時間(吐水時間)を有機物汚れ抑制吐水時間Tc(例えば13.2秒)とする。
この一連のステップS210、ステップS211、ステップS212は「排水トラップ230及び横引配管HPにおいてバイオフィルムを発生させる細菌の増殖を抑制するための吐水」であり、この3ステップの実行を「有機物汚れ抑制吐水モード」という。
なお、「有機物汚れ抑制吐水モード」で使用される水量(すなわち、第1の吐水部228aから吐水される水量)は毎回一定であり、その水量は複数の所定流量(例えば、1リットル、2リットル、4リットル)から選択自在である。
<3.3.作用効果
このようにして得られた本発明の第2実施形態である小便器200は、有機物汚れ抑制吐水モードを実行することにより、排水トラップ230及び横引配管HPにおいてバイオフィルムを発生させる細菌の増殖を抑制し、バイオフィルムを含む有機物汚れの形成を抑制することができる。また、仮に、バイオフィルムを含む有機物汚れが排水トラップ230及び横引配管HP内に形成されたとしても、小便器200によれば、有機物汚れ抑制吐水モードを実行することにより、有機物汚れを設定されたスケジュールに基づいて洗浄することができる。
さらに、仮に、バイオフィルムを含む有機物汚れが排水トラップ230及び横引配管HP内に形成されたとしても、小便器200によれば、尿希釈吐水モードを実行することにより、排尿がされてから本洗浄吐水モードが実行されるまでの排水トラップ230及び横引配管HP内の洗浄水の尿濃度を低下させることができる。よって、小便器200によれば、洗浄水中の尿が有機物汚れにより比較的短時間で尿石を生じさせることを抑制することができる。
さらに、小便器200によれば、尿希釈吐水モードが実行されることにより、本洗浄吐水モードが実行されるときに排水トラップ230内の洗浄水の尿濃度が尿の希釈により低下されている。よって、本洗浄吐水モードの実行により、この実行時点の排水トラップ230内の洗浄水中の尿が横引配管HPの上流側に流れる場合においても、横引配管HP内に残存する洗浄水の尿濃度が低減され、洗浄水中の尿が尿石を生じさせることを抑制することができる。
従って、小便器200によれば、有機物汚れ抑制吐水モードと尿希釈吐水モードを組合せることにより、洗浄水中の尿が排水トラップ230及び横引配管HP内においてバイオフィルムを含む有機物汚れにより尿石を生じさせることを抑制することができる。
また、有機物汚れ抑制吐水モードで使用する水量が、毎回一定であることにより、使用条件に因らず、確実に排水トラップ230及び横引配管HP内の有機物汚れの堆積を抑制することができる。
さらに、尿希釈吐水モードにおいて、排尿中の排水トラップ230内の尿が横引配管HPに流入するとき、この流入の瞬間流量が比較的小さいことによりこの尿が横引配管HPの上流側に逆流するように流れてしまうことを抑制することができる。これにより、横引配管HPの上流側に尿石が生じることを抑制することができる。また、有機物汚れ抑制吐水モードにおける吐水の瞬間流量は尿希釈吐水モードにおける吐水の瞬間流量よりも高くなるので、有機物汚れ抑制吐水モードにおける吐水により横引配管HPを比較的広範囲に確実に洗浄することができる。よって、有機物汚れ抑制吐水モードと尿希釈吐水モードを組合せることにより、洗浄水中の尿が横引配管HP内においてバイオフィルムを含む有機物汚れにより尿石を生じさせることをより抑制することができる。
さらに、本洗浄吐水モードにおけるボウル面211aの洗浄性能を確保するとともに、尿希釈吐水モードに使用する洗浄水の無駄使いを抑制することができる。
さらに、有機物汚れ抑制吐水モードにおいて横引配管HP内に流入した洗浄水の水位は本洗浄吐水モードにおいて横引配管HP内に流入した洗浄水の水位より高くなるため、実行頻度が有機物汚れ抑制吐水モードの実行頻度よりも高い本洗浄吐水モードの実行時に横引配管HPの水位面付近に発生したバイオフィルムを含む有機物汚れを有機物汚れ吐水モードによって洗い流すことができる。従って、横引配管HPにおいて洗浄水中の尿が有機物汚れにより比較的短時間で尿石を生じさせることをより抑制することができる。
さらに、有機物汚れ抑制吐水モードが、一定時間ごとに実行されることにより、使用頻度によらず確実に排水トラップ230内が置換されるため、排水トラップ230内の有機汚れの成長が抑制され、より確実に排水トラップ230および建物配管HP内の汚れの堆積を抑制できる。
さらに、有機物汚れ抑制吐水モードが、間欠的に実行されることにより、有機物汚れ抑制吐水モードを1回だけ行う場合に比べて建物配管HP内の有機物汚れが残存し難くなるため、より建物配管HP内の汚れの堆積を抑制することができる。
<4.変形例>
以上、本発明を実施するための形態について説明したが、本発明は前記に限定されるものではない。以下、一例を示す。
例えば、小便器については、便器本体の最下部が床面から所定距離上方に位置し且つ便器本体の背面がその背後の壁面に沿って取付けられる壁掛け式の小便器について説明するが、便器本体が床面上に直接配置される床置き式の小便器であってもよい。
例えば、使用水量削減のため、小便器が使用を検知してから尿希釈吐水モードを開始するまでのあいだに所定の待機時間を設けても良い。
この待機時間は、コントローラーに記録されたプログラム等により目的達成のため意図的に実現される待機時間であり、信号の伝送の遅れや弁体の動作等の遅れによりわずかに生じる吐水動作の遅れ時間とは区別される。
100、 200 ・・・ 小便器
110 ・・・ 便器本体
111、 211 ・・・ ボウル部
111a、211a ・・・ ボウル面
111b ・・・ 排水口
112 ・・・ 収納室

120 ・・・ 自動洗浄ユニット
121 ・・・ 主給水管
121a ・・・ 主給水路
122 ・・・ 止水栓
123a ・・・ 第1の給水管
123b ・・・ 第2の給水管
124a ・・・ 第1の給水路
124b ・・・ 第2の給水路
125 ・・・ 管継手
126a ・・・ 第1の定流量弁
126b ・・・ 第2の定流量弁
127a、227a ・・・ 第1の開閉弁
127b、227b ・・・ 第2の開閉弁
128、 228 ・・・ スプレッダ(吐水部)
128a、228a ・・・ 第1の吐水部
128b、228b ・・・ 第2の吐水部
128c、228c ・・・ 尿検知センサー
129 ・・・ 電解除菌水ユニット
120A、220A ・・・ コントローラー(制御部)

130、 T ・・・ 排水トラップ

U ・・・ 尿石
V ・・・ 有機物汚れ
X ・・・ 細菌
Y ・・・ 高pH環境領域
Z ・・・ ウレアーゼ酵素

W ・・・ 壁面
F ・・・ 床面
S ・・・ 排水ソケット
HP ・・・ 横引配管
VP ・・・ 縦排水管

Ta ・・・ 本洗浄時間
Tb ・・・ 有機物汚れ抑制吐水判定時間
Tc ・・・ 有機物汚れ抑制吐水時間
Td ・・・ 有機物汚れ抑制吐水実行時間
T ・・・ 所定時間
P ・・・ 所定回数
p ・・・ 使用回数カウンター

Claims (8)

  1. 排水用の横引配管に排水する小便器であって、
    排尿を受けるボウル面を形成し、その底部に排水口を形成するボウル部と、
    前記ボウル部の排水口と連通する排水トラップと、
    前記ボウル部のボウル面に洗浄水を吐水する吐水部と、
    使用者の小便器の使用を検知する検知センサーと、
    前記吐水部による洗浄水の吐水を制御する制御部とを備え、
    前記制御部が、
    前記検知センサーが使用者の使用を検知しなくなった後に、前記吐水部から吐水を行う本洗浄吐水モードと、
    設定されたスケジュールに基づいて前記吐水部から洗浄水を吐水して前記排水トラップの下流側に接続される前記横引配管におけるバイオフィルムを含む有機物汚れの形成を抑制する有機物汚れ抑制吐水モードと、
    前記検知センサーが使用者の使用を検知している間において前記吐水部から吐水を行う尿希釈吐水モードとを有し、
    前記有機物汚れ抑制吐水モードで吐水される水量が、毎回一定であり、
    前記尿希釈吐水モードにおける前記吐水部からの吐水の瞬間流量が、前記有機物汚れ抑制吐水モードにおける前記吐水部からの吐水の瞬間流量より小さいことを特徴とする小便器。
  2. 排水用の横引配管に排水する小便器であって、
    排尿を受けるボウル面を形成し、その底部に排水口を形成するボウル部と、
    前記ボウル部の排水口と連通する排水トラップと、
    前記ボウル部のボウル面に洗浄水を吐水する吐水部と、
    使用者の小便器の使用を検知する検知センサーと、
    前記吐水部による洗浄水の吐水を制御する制御部とを備え、
    前記制御部が、
    前記検知センサーが使用者の使用を検知しなくなった後に、前記吐水部から吐水を行う本洗浄吐水モードと、
    設定されたスケジュールに基づいて前記吐水部から洗浄水を吐水して前記排水トラップの下流側に接続される前記横引配管におけるバイオフィルムを含む有機物汚れの形成を抑制する有機物汚れ抑制吐水モードと、
    前記検知センサーが使用者の使用を検知している間において前記吐水部から吐水を行う尿希釈吐水モードとを有し、
    前記有機物汚れ抑制吐水モードで吐水される水量が、毎回一定であり、
    前記本洗浄吐水モードにおける前記吐水部からの吐水の瞬間流量が、前記尿希釈吐水モードにおける前記吐水部からの吐水の瞬間流量より大きいことを特徴とする小便器。
  3. 排水用の横引配管に排水する小便器であって、
    排尿を受けるボウル面を形成し、その底部に排水口を形成するボウル部と、
    前記ボウル部の排水口と連通する排水トラップと、
    前記ボウル部のボウル面に洗浄水を吐水する吐水部と、
    使用者の小便器の使用を検知する検知センサーと、
    前記吐水部による洗浄水の吐水を制御する制御部とを備え、
    前記制御部が、
    前記検知センサーが使用者の使用を検知しなくなった後に、前記吐水部から吐水を行う本洗浄吐水モードと、
    設定されたスケジュールに基づいて前記吐水部から洗浄水を吐水して前記排水トラップの下流側に接続される前記横引配管におけるバイオフィルムを含む有機物汚れの形成を抑制する有機物汚れ抑制吐水モードと、
    前記検知センサーが使用者の使用を検知している間において前記吐水部から吐水を行う尿希釈吐水モードとを有し、
    前記有機物汚れ抑制吐水モードで吐水される水量が、毎回一定であり、
    前記本洗浄吐水モードが終了してから前記有機物汚れ抑制吐水実行時間より短い有機物汚れ抑制吐水判定時間経過時において、
    前回の前記有機物汚れ抑制吐水モードを実行してからの小便器使用回数が所定回数以上であった場合は、前記有機物汚れ抑制吐水モードを実行し、
    前回の前記有機物汚れ抑制吐水モードを実行してからの小便器使用回数が所定回数より少なかった場合は、前記有機物汚れ抑制吐水実行時間経過時に前記有機物汚れ抑制吐水モードを実行することを特徴とする小便器。
  4. 前記有機物汚れ抑制吐水モードにおいて前記吐水部から吐水される水量が、前記本洗浄吐水モードにおいて前記吐水部から吐水される水量以上となることを特徴とする請求項1乃至請求項3の何れか1項に記載の小便器。
  5. 前記制御部が、前記本洗浄吐水モードが終了してから有機物汚れ抑制吐水実行時間経過時に前記有機物汚れ抑制吐水モードを実行することを特徴とする請求項1乃至請求項4のいずれか1項に記載の小便器。
  6. 前記有機物汚れ抑制吐水実行時間が、複数の所定時間から選択自在であることを特徴とする請求項5に記載の小便器。
  7. 前記有機物汚れ抑制吐水モードが、一定時間ごとに実行されることを特徴とする請求項1乃至請求項4のいずれか1項に記載の小便器。
  8. 前記有機物汚れ抑制吐水モードが、間欠的に実行されることを特徴とする請求項1乃至請求項の何れか1項に記載の小便器。
JP2017148913A 2017-08-01 2017-08-01 小便器 Active JP7003475B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017148913A JP7003475B2 (ja) 2017-08-01 2017-08-01 小便器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017148913A JP7003475B2 (ja) 2017-08-01 2017-08-01 小便器

Publications (2)

Publication Number Publication Date
JP2019027192A JP2019027192A (ja) 2019-02-21
JP7003475B2 true JP7003475B2 (ja) 2022-01-20

Family

ID=65475893

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017148913A Active JP7003475B2 (ja) 2017-08-01 2017-08-01 小便器

Country Status (1)

Country Link
JP (1) JP7003475B2 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002106050A (ja) 2000-09-29 2002-04-10 Toto Ltd 小便器洗浄システム
JP2003049473A (ja) 2001-08-06 2003-02-21 Takeshiba Seiko Kk 水洗式小便器用薬剤溶液注入装置
JP2011252344A (ja) 2010-06-03 2011-12-15 Toto Ltd 小便器
JP2016061070A (ja) 2014-09-18 2016-04-25 Toto株式会社 小便器
JP2016069872A (ja) 2014-09-29 2016-05-09 Toto株式会社 小便器

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR950003005B1 (ko) * 1992-04-09 1995-03-29 주식회사 진흥전자 자동소변세척기
JPH06248677A (ja) * 1993-02-25 1994-09-06 Energy Support Corp 便器の自動洗浄装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002106050A (ja) 2000-09-29 2002-04-10 Toto Ltd 小便器洗浄システム
JP2003049473A (ja) 2001-08-06 2003-02-21 Takeshiba Seiko Kk 水洗式小便器用薬剤溶液注入装置
JP2011252344A (ja) 2010-06-03 2011-12-15 Toto Ltd 小便器
JP2016061070A (ja) 2014-09-18 2016-04-25 Toto株式会社 小便器
JP2016069872A (ja) 2014-09-29 2016-05-09 Toto株式会社 小便器

Also Published As

Publication number Publication date
JP2019027192A (ja) 2019-02-21

Similar Documents

Publication Publication Date Title
JP6540937B2 (ja) 小便器
JP2005299092A (ja) 便器洗浄装置
JP7003475B2 (ja) 小便器
JP5455064B2 (ja) 小便器
JP2014111878A (ja) 横引排水配管洗浄ユニットおよび便器システム
JP6049197B2 (ja) 小便器
JP7104367B2 (ja) 小便器
JP7011217B2 (ja) 小便器
JP6993609B2 (ja) 小便器
JP2005180064A (ja) 小便器洗浄装置
JP7011218B2 (ja) 小便器
JP6937994B2 (ja) 小便器
JP7004136B2 (ja) 小便器
JP6932332B2 (ja) 小便器
JP7004137B2 (ja) 小便器
JP6049196B2 (ja) 小便器
JP5692422B2 (ja) 小便器
JP7435030B2 (ja) 小便器
JP2019027188A (ja) 小便器
JP2016011576A (ja) 小便器
JP7306126B2 (ja) 小便器および小便器システム
JP2019060186A (ja) 小便器
JP7013949B2 (ja) 小便器
JP2013104281A (ja) 水洗式便器
JP2010121277A (ja) 小便器システム

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200616

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210427

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210510

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210630

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211130

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211213

R150 Certificate of patent or registration of utility model

Ref document number: 7003475

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150