JP6995315B2 - ジホスホメバロン酸デカルボキシラーゼ変異体、及びそれを用いたオレフィン化合物の製造方法 - Google Patents

ジホスホメバロン酸デカルボキシラーゼ変異体、及びそれを用いたオレフィン化合物の製造方法 Download PDF

Info

Publication number
JP6995315B2
JP6995315B2 JP2018542596A JP2018542596A JP6995315B2 JP 6995315 B2 JP6995315 B2 JP 6995315B2 JP 2018542596 A JP2018542596 A JP 2018542596A JP 2018542596 A JP2018542596 A JP 2018542596A JP 6995315 B2 JP6995315 B2 JP 6995315B2
Authority
JP
Japan
Prior art keywords
amino acid
acid sequence
seq
set forth
sequence set
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018542596A
Other languages
English (en)
Other versions
JPWO2018062178A1 (ja
Inventor
涼子 折下
智量 白井
和弘 高橋
操 日座
祐介 田邊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zeon Corp
Yokohama Rubber Co Ltd
RIKEN Institute of Physical and Chemical Research
Original Assignee
Zeon Corp
Yokohama Rubber Co Ltd
RIKEN Institute of Physical and Chemical Research
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zeon Corp, Yokohama Rubber Co Ltd, RIKEN Institute of Physical and Chemical Research filed Critical Zeon Corp
Publication of JPWO2018062178A1 publication Critical patent/JPWO2018062178A1/ja
Application granted granted Critical
Publication of JP6995315B2 publication Critical patent/JP6995315B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/88Lyases (4.)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/52Genes encoding for enzymes or proenzymes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/70Vectors or expression systems specially adapted for E. coli
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/74Vectors or expression systems specially adapted for prokaryotic hosts other than E. coli, e.g. Lactobacillus, Micromonospora
    • C12N15/743Vectors or expression systems specially adapted for prokaryotic hosts other than E. coli, e.g. Lactobacillus, Micromonospora for Agrobacterium; Rhizobium; Bradyrhizobium
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8201Methods for introducing genetic material into plant cells, e.g. DNA, RNA, stable or transient incorporation, tissue culture methods adapted for transformation
    • C12N15/8202Methods for introducing genetic material into plant cells, e.g. DNA, RNA, stable or transient incorporation, tissue culture methods adapted for transformation by biological means, e.g. cell mediated or natural vector
    • C12N15/8205Agrobacterium mediated transformation
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8242Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits
    • C12N15/8257Phenotypically and genetically modified plants via recombinant DNA technology with non-agronomic quality (output) traits, e.g. for industrial processing; Value added, non-agronomic traits for the production of primary gene products, e.g. pharmaceutical products, interferon
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/10Cells modified by introduction of foreign genetic material
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P21/00Preparation of peptides or proteins
    • C12P21/02Preparation of peptides or proteins having a known sequence of two or more amino acids, e.g. glutathione
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P5/00Preparation of hydrocarbons or halogenated hydrocarbons
    • C12P5/007Preparation of hydrocarbons or halogenated hydrocarbons containing one or more isoprene units, i.e. terpenes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P5/00Preparation of hydrocarbons or halogenated hydrocarbons
    • C12P5/02Preparation of hydrocarbons or halogenated hydrocarbons acyclic
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P5/00Preparation of hydrocarbons or halogenated hydrocarbons
    • C12P5/02Preparation of hydrocarbons or halogenated hydrocarbons acyclic
    • C12P5/026Unsaturated compounds, i.e. alkenes, alkynes or allenes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y401/00Carbon-carbon lyases (4.1)
    • C12Y401/01Carboxy-lyases (4.1.1)
    • C12Y401/01033Diphosphomevalonate decarboxylase (4.1.1.33), i.e. mevalonate-pyrophosphate decarboxylase

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Microbiology (AREA)
  • Molecular Biology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Plant Pathology (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Cell Biology (AREA)
  • Medicinal Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Enzymes And Modification Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Description

特許法第30条第2項適用 日本農芸化学会2016年度大会で発表(平成28年3月28日開催)
特許法第30条第2項適用 日本農芸化学会2016年度大会講演要旨集(平成28年3月5日発行)
本発明は、ジホスホメバロン酸デカルボキシラーゼ変異体を用いたオレフィン化合物の製造方法に関する。また本発明は、前記変異体、及びその製造方法に関し、さらに、前記変異体をコードするDNA、及び該DNAが挿入されているベクターにも関する。また本発明は、前記DNA又は前記ベクターが導入された宿主細胞を用いたオレフィン化合物の製造方法に関し、さらにまた、前記変異体、前記DNA又は前記ベクターを含む、オレフィン化合物の生成を促進するための剤にも関する。
イソプレン、イソブテン等のオレフィン化合物は、合成ゴム等の様々な合成ポリマーの原料として極めて有用であり、これら化合物は、石油の分留といった化学的方法によって得ることができる。
しかしながら、このような化学的方法においても、その収率は低く、製造コストがかかり、また時間を要する。さらに、昨今の環境問題を考慮するに、化学的方法に代わって、限られた資源を無駄にすることなく環境に優しい持続可能なオレフィン化合物の製造方法の開発が求められている。
かかる状況を鑑み、微生物等の代謝経路を利用又は改変して、オレフィン化合物を製造することが試みられている。例えば、メバロン酸経路に関与するジホスホメバロン酸デカルボキシラーゼ等に変異を導入し、当該変異酵素を利用したイソプレン、イソブテン等の製造方法が開示されている(特許文献1~3)。
国際公開第2013/092567号 国際公開第2015/004211号 国際公開第2015/021045号
本発明は、前記従来技術の有する課題に鑑みてなされたものであり、オレフィン化合物を高い生産性にて製造することを可能とする酵素を提供することを目的とする。
本発明者らは、前記目的を達成すべく、5-ジホスホメバロン酸を基質とし、ジホスホメバロン酸デカルボキシラーゼが関与する、イソペンテニル二リン酸の生成(下記式 参照)を、イソプレン等のオレフィン化合物の製造に応用することを着想した。
Figure 0006995315000001
すなわち、ジホスホメバロン酸デカルボキシラーゼのアミノ酸に1又は複数の変異を導入し、当該酵素(ジホスホメバロン酸デカルボキシラーゼ変異体)の基質特異性を、元来の5-ジホスホメバロン酸から3-ヒドロキシ-3-メチルペント-4-エノテート等に対するものに変更することで、下記式に示すような反応を経て、イソプレン等を製造することを着想した。
Figure 0006995315000002
そこで従前、本発明者らは、ジホスホメバロン酸デカルボキシラーゼの様々な部位に、アミノ酸置換を伴う変異を導入し、約200のジホスホメバロン酸デカルボキシラーゼの変異体を調製した。そして、それら変異体について、3-ヒドロキシ-3-メチルペント-4-エノテートを基質とするイソプレンの生成に関する触媒活性を評価した。
その結果、74位のアルギニンがヒスチジンに置換され、かつ209位のスレオニンがアルギニンに置換されたジホスホメバロン酸デカルボキシラーゼ(R74HT209R)は、約200もの変異体の中で群を抜いてイソプレンの生成に関する極めて高い触媒活性を示すことを見出している。
今回、本発明者らは、イソプレンの生成において高い触媒活性を示すジホスホメバロン酸デカルボキシラーゼの変異体を更に得るべく、鋭意研究を重ねた結果、ジホスホメバロン酸デカルボキシラーゼの152位のグリシンが他のアミノ酸に置換されたジホスホメバロン酸デカルボキシラーゼ(G152X)は、イソプレンを生成する高い触媒活性を有していることを明らかにした。驚くべきことに、約200もの変異体において、特定の2つの部位を各々特定のアミノ酸に置換することによって唯一得られたR74HT209Rと、同等の極めて高い触媒活性を、たった1の部位(152位)のアミノ酸を他のアミノ酸(システイン、ロイシン又はメチオニン)に置換することによって達成することができた。
次に、本発明者らは、前述の高い触媒活性を示す2種の変異 R74HT209RとG152Xとを組み合わせたジホスホメバロン酸デカルボキシラーゼの3重アミノ酸変異体を調製し、イソプレンの生成に関する触媒活性を評価した。その結果、これら変異体についても高い触媒活性が認められた。中でも、74位のアルギニンがヒスチジンに置換され、152位のグリシンがシステインに置換され、かつ209位のスレオニンがアルギニンに置換されたジホスホメバロン酸デカルボキシラーゼ(R74HG152CT209R)に関しては、野生型と比して約100倍、対応する単独アミノ酸変異体及び二重アミノ酸変異体(G152C、R74HT209R)と比しても3~4倍、イソプレンの生成に関する触媒活性が向上することが明らかになった。
また、前述の単独アミノ酸変異体及び三重アミノ酸変異体(G152X及びR74HG152XT209R)に関し、他のオレフィン化合物(イソブテン)の生成に関する触媒活性についても評価した。その結果、イソプレン生成の際同様に、野生型と比して高いイソブテンの生成に関する触媒活性が認められ、本発明を完成するに至った。すなわち、本発明は、以下を提供するものである。
<1> 配列番号:2に記載のアミノ酸配列の152位又は該部位に対応するグリシンが他のアミノ酸に変異しているジホスホメバロン酸デカルボキシラーゼの存在下、下記式(1)で表される化合物とATPとを反応させる工程を含む、オレフィン化合物の製造方法
Figure 0006995315000003
[式(1)中、R及びRは、各々独立に、水素原子、炭素数1~10のアルキル基、炭素数2~15のアルケニル基、炭素数6~20のアリール基又はハロゲン原子を示す(前記アルキル基及びアルケニル基は、各々独立に、ヒドロキシ基及び/又はカルボキシ基によって任意に置換されていてもよい)]。
<2> 配列番号:2に記載のアミノ酸配列の152位又は該部位に対応するグリシンが他のアミノ酸に変異しているジホスホメバロン酸デカルボキシラーゼをコードするDNA又は該DNAを含むベクターが導入された宿主細胞を、培養し、該宿主細胞及び/又はその培養物において生成されたオレフィン化合物を採取する工程を含む、オレフィン化合物の製造方法。
<3> 前記ジホスホメバロン酸デカルボキシラーゼにおいて、配列番号:2に記載のアミノ酸配列の152位又は該部位に対応するグリシンが変異してなる他のアミノ酸が、システイン、ロイシン又はメチオニンである、<1>又は<2>に記載の製造方法。
<4> 前記ジホスホメバロン酸デカルボキシラーゼが、更に配列番号:2に記載のアミノ酸配列の74位又は該部位に対応するアルギニンが他のアミノ酸に変異しており、かつ配列番号:2に記載のアミノ酸配列の209位又は該部位に対応するスレオニンが他のアミノ酸に変異しているジホスホメバロン酸デカルボキシラーゼである、<1>~<3>のうちのいずれか一に記載の製造方法。
<5> 前記ジホスホメバロン酸デカルボキシラーゼが、更に配列番号:2に記載のアミノ酸配列の74位又は該部位に対応するアルギニンがヒスチジンに変異しており、かつ配列番号:2に記載のアミノ酸配列の209位又は該部位に対応するスレオニンがアルギニンに変異しているジホスホメバロン酸デカルボキシラーゼである、<1>~<3>のうちのいずれか一に記載の製造方法。
<6> 前記オレフィン化合物がイソプレンである<1>~<5>のうちのいずれか一に記載の製造方法。
<7> 前記オレフィン化合物がイソブテンである<1>~<5>のうちのいずれか一に記載の製造方法。
<8> オレフィン化合物を生成する触媒活性が高められたジホスホメバロン酸デカルボキシラーゼの製造方法であって、ジホスホメバロン酸デカルボキシラーゼにおいて、配列番号:2に記載のアミノ酸配列の152位又は該部位に対応するグリシンを他のアミノ酸に変異させる工程を含む、製造方法。
<9> 前記ジホスホメバロン酸デカルボキシラーゼにおいて、配列番号:2に記載のアミノ酸配列の152位又は該部位に対応するグリシンが変異してなる他のアミノ酸が、システイン、ロイシン又はメチオニンである、<8>に記載の製造方法。
<10> 前記ジホスホメバロン酸デカルボキシラーゼにおいて、配列番号:2に記載のアミノ酸配列の74位又は該部位に対応するアルギニンを他のアミノ酸に変異させ、かつ配列番号:2に記載のアミノ酸配列の209位又は該部位に対応するスレオニンを他のアミノ酸に変異させる工程を更に含む、<8>又は<9>に記載の製造方法。
<11> 前記ジホスホメバロン酸デカルボキシラーゼにおいて、配列番号:2に記載のアミノ酸配列の74位又は該部位に対応するアルギニンをヒスチジンに変異させ、かつ配列番号:2に記載のアミノ酸配列の209位又は該部位に対応するスレオニンをアルギニンに変異させる工程を更に含む、<8>又は<9>に記載の製造方法。
<12> 前記オレフィン化合物がイソプレンである<8>~<11>のうちのいずれか一に記載の製造方法。
<13> 前記オレフィン化合物がイソブテンである<8>~<11>のうちのいずれか一に記載の製造方法。
<14> 配列番号:2に記載のアミノ酸配列の152位又は該部位に対応するグリシンが他のアミノ酸に変異している、ジホスホメバロン酸デカルボキシラーゼ。
<15> 配列番号:2に記載のアミノ酸配列の152位又は該部位に対応するグリシンが変異してなる他のアミノ酸が、システイン、ロイシン又はメチオニンである、<14>に記載のジホスホメバロン酸デカルボキシラーゼ。
<16> 更に、配列番号:2に記載のアミノ酸配列の74位又は該部位に対応するアルギニンが他のアミノ酸に変異しており、かつ配列番号:2に記載のアミノ酸配列の209位又は該部位に対応するスレオニンが他のアミノ酸に変異している、<14>又は<15>に記載のジホスホメバロン酸デカルボキシラーゼ。
<17> 更に、配列番号:2に記載のアミノ酸配列の74位又は該部位に対応するアルギニンがヒスチジンに変異しており、かつ配列番号:2に記載のアミノ酸配列の209位又は該部位に対応するスレオニンがアルギニンに変異している、<14>又は<15>に記載のジホスホメバロン酸デカルボキシラーゼ。
<18> <14>~<17>のうちのいずれか一に記載のジホスホメバロン酸デカルボキシラーゼをコードするDNA。
<19> <18>に記載のDNAを含むベクター。
<20> <18>に記載のDNA又は<19>に記載のベクターが導入された宿主細胞。
<21> <20>に記載の宿主細胞を培養し、該宿主細胞に発現したタンパク質を採取する工程を含む、ジホスホメバロン酸デカルボキシラーゼ変異体の製造方法。
<22> <14>~<17>のうちのいずれか一に記載のジホスホメバロン酸デカルボキシラーゼ、該ジホスホメバロン酸デカルボキシラーゼをコードするDNA又は該DNAが挿入されているベクターを含む、下記式(1)で表される化合物とATPとを反応させ、オレフィン化合物の生成を促進するための剤
Figure 0006995315000004
[式(1)中、R及びRは、各々独立に、水素原子、炭素数1~10のアルキル基、炭素数2~15のアルケニル基、炭素数6~20のアリール基又はハロゲン原子を示す(前記アルキル基及びアルケニル基は、各々独立に、ヒドロキシ基及び/又はカルボキシ基によって任意に置換されていてもよい)]。
<23> 前記オレフィン化合物がイソプレンである<22>に記載の剤。
<24> 前記オレフィン化合物がイソブテンである<22>に記載の剤。
本発明によれば、オレフィン化合物を高い生産性にて製造することを可能とする酵素、並びに当該酵素を用いたオレフィン化合物の製造方法を提供することが可能となる。
ジホスホメバロン酸デカルボキシラーゼの152位のグリシンを他のアミノ酸に置換した変異体(G152X)について、3-ヒドロキシ-3-メチルペント-4-エノテートを基質とするイソプレンの生成に関する酵素活性を解析した結果を示すグラフである。なお、対照として、74位のアルギニン及び209位のスレオニンを各々ヒスチジン及びアルギニンに置換したジホスホメバロン酸デカルボキシラーゼの変異体(R74HT209R)の解析結果も併せて示す。また、縦軸及び各バーに付してある数値は、各アミノ酸変異体によって生成されたイソプレン量を、ジホスホメバロン酸デカルボキシラーゼ(野生型)におけるそれを基準(1)として算出した相対値を示す。また、図中「G152N」等は、ジホスホメバロン酸デカルボキシラーゼの各変異体を示し、数字は当該酵素においてアミノ酸置換を伴う変異が導入された部位(152位等)を表し、数字の左側のアルファベットは置換される前のアミノ酸(G/グリシン等)を表し、数字の右側のアルファベットは置換された後のアミノ酸(N/アスパラギン等)を表す(図中の表記については、図2及び3においても同様)。 ジホスホメバロン酸デカルボキシラーゼの152位のグリシンを他のアミノ酸に置換し、更に74位のアルギニン及び209位のスレオニンを各々ヒスチジン及びアルギニンに置換した変異体(R74HG152XT209R)について、3-ヒドロキシ-3-メチルペント-4-エノテートを基質とするイソプレンの生成に関する酵素活性を解析した結果を示すグラフである。なお、対照として、R74HT209Rの解析結果も併せて示す。 G152XとR74HG152XT209Rとについて、β-ヒドロキシイソ吉草酸を基質とするイソブテンの生成に関する酵素活性を解析した結果を示すグラフである。
<オレフィン化合物の製造方法 1>
後述の実施例において示すように、ジホスホメバロン酸デカルボキシラーゼの152位のグリシンを他のアミノ酸に置換することによって、オレフィン化合物を生成する下記反応を促進する触媒活性(「オレフィン化合物を生成する触媒活性」とも称する)が向上することを見出した。
Figure 0006995315000005
したがって、本発明は、配列番号:2に記載のアミノ酸配列の152位又は該部位に対応するグリシン(以下、単に「152位のグリシン」とも称する)が他のアミノ酸に変異している、ジホスホメバロン酸デカルボキシラーゼ(以下、「ジホスホメバロン酸デカルボキシラーゼ変異体」とも称する)の存在下、前記式(1)で表される化合物とATP(アデノシン三リン酸)とを反応させる工程を含む、オレフィン化合物の製造方法を提供する。
本発明において「オレフィン化合物」は、炭素間二重結合を少なくとも1つ有する炭化水素化合物を意味し、またヒドロキシ基及び/又はカルボキシ基等の置換基、ハロゲン原子等の原子が導入されているものであってもよい。このような化合物としては、例えば、イソブテン、エテン、プロペン、2-メチル-1-ブテン、イソプレノール、3-ヒドロキシ-3-メチル-4-ペンテン酸等のモノオレフィン化合物、イソプレン、ブタジエン(1,3-ブタジエン)、ピペリレン、2,3-ジメチルブタジエン、1,3-ヘキサジエン、2-メチル-1,3-ペンタジエン、クロロプレン、3-メチル-2,4-ペンタジエン酸といった共役ジエン化合物等のジオレフィン化合物が挙げられる。
本発明においてオレフィン化合物を製造するための原料となる下記式(1)で表される化合物において、R及びRについては特に制限はなく、各々独立に、水素原子、炭素数1~10のアルキル基、炭素数2~15のアルケニル基、炭素数6~20のアリール基又はハロゲン原子を示す(前記アルキル基及びアルケニル基は、各々独立に、ヒドロキシ基及び/又はカルボキシ基によって任意に置換されていてもよい)。
Figure 0006995315000006
また、本発明において、共役ジエン化合物を製造する場合には、以下の反応式に示すように、上記式(1)で表される化合物のより具体的な態様として、下記式(4)で表される化合物が好適に用いられる。
Figure 0006995315000007
前記式(4)で表される化合物において、R、R及びRについては特に制限はなく、各々独立に、水素原子、炭素数1~10のアルキル基、ハロゲン原子、炭素数2~15のアルケニル基及び炭素数6~20のアリール基からなる群より選択される置換基を示す。
また本発明において、炭素数1~10のアルキル基としては、例えば、メチル基、エチル基、n-プロピル基、i-プロピル基、n-ブチル基、i-ブチル基、s-ブチル基、t-ブチル基、n-ペンチル基、n-ヘキシル基、シクロプロピル基、シクロペンチル基、シクロヘキシル基、n-ヘプチル基、n-オクチル基、n-デシル基、(シクロヘキシル)メチル基、(1-メチルシクロヘキシル)メチル基、(1-メチルシクロペンチル)メチル基、(1-エチルシクロヘキシル)メチル基が挙げられる。また、炭素数2~15のアルケニル基としては、例えば、ビニル基、1-プロペニル基、2-プロペニル基、2-メチル-2-プロペニル基、3-ブテニル基、5-ヘキセニル基、7-オクテニル基が挙げられ、炭素数6~20のアリール基としては、例えば、フェニル基、1-ナフチル基、2-ナフチル基、アセナフチル基、フェナントリル基、アントリル基が挙げられる。また、ハロゲン原子は、塩素原子、フッ素原子、臭素原子、ヨウ素原子を示す。
このような前記式(1)で表される化合物は、後述の実施例において示すように、市販の製品として購入することができる。また、当業者であれば、公知の合成方法(例えば、Tetrahedron Letters、1988年、20巻、15号、1763~1766ページに記載の方法)を適宜参酌しながら、合成することもできる。
後述のジホスホメバロン酸デカルボキシラーゼ変異体の存在下、前記式(1)で表される化合物とATPとの反応の条件については、当該反応が促進され、オレフィン化合物が生成される条件であればよく、当業者であれば、反応液の組成、反応液のpH、反応温度、反応時間等を適宜調整し、設定することができる。
例えば、ジホスホメバロン酸デカルボキシラーゼ変異体と、その基質である前記式(1)で表される化合物及びATPとが添加される反応液においては、ジホスホメバロン酸デカルボキシラーゼの補因子であるマグネシウムイオンが、通常1~50mM、好ましくは5~20mM含まれていればよく、その他の組成、pHについては前述の通り、前記反応を妨げない限り、特に制限はないが、好ましくはpH7~8の緩衝液であり、より好ましくはpH7~8のトリス塩酸緩衝液である。
また、反応温度としても、前記反応を妨げない限り、特に制限はないが、通常20~40℃であり、好ましくは25~37℃である。さらに、反応時間としては、オレフィン化合物が生成し得る時間であればよく、特に制限はないが、通常30分~7日であり、好ましくは12時間~2日である。
また、このような条件にて生成されるオレフィン化合物は、大概気化し易いため、揮発性ガスの公知の回収、精製方法により採取することができる。かかる採取方法としては、ガスストリッピング、分留、吸着、脱着、パーベーパレーション、固相に吸着させたイソプレンの熱若しくは真空による固相からの脱着、溶媒による抽出、又はクロマトグラフィー(例えば、ガスクロマトグラフィー)等が挙げられる。また、生成されるオレフィン化合物が液体である場合にも、公知の回収、精製方法(蒸留、クロマトグラフィー等)を適宜利用し、採取することができる。さらに、これらの方法は単独にて行ってもよく、また適宜組み合わせて多段階的に実施し得る。
<オレフィン化合物の製造方法 2>
また、配列番号:2に記載のアミノ酸配列の152位又は該部位に対応するグリシンが他のアミノ酸に変異している、ジホスホメバロン酸デカルボキシラーゼを発現するように形質転換された宿主細胞を、培養することにより、オレフィン化合物を生産性高く製造することができる。したがって、本発明においては、後述のジホスホメバロン酸デカルボキシラーゼ変異体をコードするDNA又はベクターが導入された宿主細胞を培養し、該宿主細胞及び/又はその培養物において生成されたオレフィン化合物を採取する工程を含む、オレフィン化合物の製造方法も提供される。
宿主細胞の培養条件については、後述の通りであるが、培地には、ジホスホメバロン酸デカルボキシラーゼの基質である前記(1)式にて表される化合物、補因子であるマグネシウムイオンが添加されていることが好ましく、これら化合物全てが添加されていることがより好ましい。また、培養温度は、用いる宿主細胞の種類に合わせて適宜設計変更し得るが、通常20~40℃であり、好ましくは25~37℃である。
また、本発明において、「培養物」とは、宿主細胞を培地で培養することによって得られる、増殖した宿主細胞、該宿主細胞の分泌産物及び該宿主細胞の代謝産物等を含有する培地のことであり、それらの希釈物、濃縮物を含む。
このような宿主細胞及び/又は培養物からのオレフィン化合物の採取についても、特に制限はなく、上述の公知の回収、精製方法を用いて行うことができる。また、採取の時期としては、用いる宿主細胞の種類に合わせて適宜調整され、オレフィン化合物が生成し得る時間であればよいが、通常30分~7日であり、好ましくは12時間~2日である。
<ジホスホメバロン酸デカルボキシラーゼ変異体>
次に、上述の本発明のオレフィン化合物の製造方法において用いられる、ジホスホメバロン酸デカルボキシラーゼ変異体について説明する。本発明において「ジホスホメバロン酸デカルボキシラーゼ」とは、MVD(Diphosphomevalonate decarboxylase)とも称され、またEC番号:4.1.1.33として登録されている酵素であり、5-ジホスホメバロン酸及びATPからイソペンテニル二リン酸、ADP、リン酸及び二酸化炭素を生成する、下記反応を触媒とするカルボキシリアーゼの一種である。
Figure 0006995315000008
本発明において、後述の変異が導入されるジホスホメバロン酸デカルボキシラーゼとしては、特に制限はなく、様々な生物由来のものを用いることができる。このような酵素としては、例えば、出芽酵母(Saccharomyces cerevisiae)由来のMVD(配列番号:2に記載のアミノ酸配列からなるタンパク質)、出芽酵母(YJM7株)由来のMVD(UniProtアクセッション番号:A6ZSB7にて特定されるタンパク質)、出芽酵母(RM11-1a株)由来のMVD(UniProtアクセッション番号:B3LPK0にて特定されるタンパク質)、カンジダ酵母(Candida dubliniensis)由来のMVD(UniProtアクセッション番号:B9W6G7にて特定されるタンパク質)、ピキア酵母(Pichia pastoris)由来のMVD(UniProtアクセッション番号:C4QX63にて特定されるタンパク質)、分裂酵母(Schizosaccharomyces pombe)由来のMVD(UniProtアクセッション番号:O139363にて特定されるタンパク質)、アシュビア(Ashbya gossypii)由来のMVD(UniProtアクセッション番号:Q751D8にて特定されるタンパク質)、デバリオマイセス ハンセニ(Debaryomyces hanseni)由来のMVD(UniProtアクセッション番号:Q6BY07にて特定されるタンパク質)、キイロタマホコリカビ(Dictyostelium discoideum)由来のMVD(UniProtアクセッション番号:Q54YQ9にて特定されるタンパク質)、コウジカビ(Aspergillus oryzae)由来のMVD(UniProtアクセッション番号:Q2UGF4にて特定されるタンパク質)、エンセファリトゾーン・クニクリ(Encephalitozoon cuniculi)由来のMVD(UniProtアクセッション番号:Q8SRR7にて特定されるタンパク質)、フェオダクチラム(Phaeodactylum tricornutum)由来のMVD(UniProtアクセッション番号:B7S422にて特定されるタンパク質)、パラゴムノキ(Hevea brasiliensis)由来のMVD(UniProtアクセッション番号:A9ZN03にて特定されるタンパク質)、タバコ(Nicotiana langsdorffii x Nicotiana sanderae)由来のMVD(UniProtアクセッション番号:B3F8H5にて特定されるタンパク質)、ムラサキ(Arnebia euchroma)由来のMVD(UniProtアクセッション番号:Q09RL4にて特定されるタンパク質)、ジャポニカ米(Oryza sativa subsp.japonica)由来のMVD(UniProtアクセッション番号:Q6ETS8にて特定されるタンパク質)、シロイヌナズナ(Arabidopsis thaliana)由来のMVD(UniProtアクセッション番号:Q8LB37にて特定されるタンパク質)、トマト(Solanum lycopersicum)由来のMVD(UniProtアクセッション番号:A8WBX7にて特定されるタンパク質)、カイコ(Bombyx mori)由来のMVD(UniProtアクセッション番号:A5A7A2にて特定されるタンパク質)、ゼブラフィッシュ(Danio rerio)由来のMVD(UniProtアクセッション番号:Q5U403にて特定されるタンパク質)、マウス(Mus musculus)由来のMVD(UniProtアクセッション番号:Q99JF5又はQ3UYC1にて特定されるタンパク質)、ドブネズミ(Rattus norvegicus)由来のMVD(UniProtアクセッション番号:Q62967にて特定されるタンパク質)、ウシ(Bos taurus)由来のMVD(UniProtアクセッション番号:Q0P570にて特定されるタンパク質)、ヒト(Homo sapiens)由来のMVD(UniProtアクセッション番号:P53602にて特定されるタンパク質)が挙げられる。これらの中では、出芽酵母由来のMVDが好ましく、配列番号:2に記載のアミノ酸配列からなるタンパク質がより好ましい。また、自然界においてヌクレオチド配列が変異することにより、タンパク質のアミノ酸配列の変化が生じ得ることは理解されたい。
さらに、本発明の「ジホスホメバロン酸デカルボキシラーゼ」は、配列番号:2に記載のアミノ酸配列の152位のグリシン以外に、人工的に変異が導入されているものであってもよい。すなわち、本発明の「ジホスホメバロン酸デカルボキシラーゼ」には、「ジホスホメバロン酸デカルボキシラーゼのアミノ酸配列(配列番号:2に記載のアミノ酸配列等)の152位以外において1又は複数のアミノ酸が置換、欠失、付加、及び/又は挿入されたアミノ酸配列からなるタンパク質」も含まれる。ここで「複数」とは、特に制限はないが、通常2~80個、好ましくは2~40個、より好ましくは2~20個、さらに好ましくは2~10個(例えば、2~8個、2~4個、2個)である。
また、本発明の「ジホスホメバロン酸デカルボキシラーゼ」において、配列番号:2に記載のアミノ酸配列の152位又は該部位に対応するグリシン以外の、他の部位におけるアミノ酸変異としては、オレフィン化合物を生成する触媒活性を有する限り特に制限はないが、後述の実施例に示す通り、当該活性がより高くなる傾向にあるという観点から、配列番号:2に記載のアミノ酸配列の74位又は該部位に対応するアルギニン(以下、単に「74位のアルギニン」とも称する)が他のアミノ酸に変異しており、かつ配列番号:2に記載のアミノ酸配列の209位又は該部位に対応するスレオニンが他のアミノ酸に変異していることが好ましい。
本発明において、配列番号:2に記載のアミノ酸配列の152位又は該部位に対応するグリシンが変異してなる「他のアミノ酸」とは、特に制限はないが、後述の実施例に示す通り、オレフィン化合物の生成において高い触媒活性を発揮し易いという観点から、好ましくは、システイン、ロイシン、メチオニン、プロリン、グルタミン、スレオニン、バリン、アルギニン、リシン、チロシン、イソロイシン、トリプトファン、グルタミン酸、フェニルアラニン、アラニン、ヒスチジン、セリン又はアスパラギンである。
さらに、後述の実施例に示す通り、ジホスホメバロン酸デカルボキシラーゼにおいて、変異が導入される部位が、配列番号:2に記載のアミノ酸配列の152位又は該部位に対応するグリシンのみである場合には、同観点から、当該グリシンが変異してなる「他のアミノ酸」として、システイン、ロイシン、メチオニン、プロリン、グルタミン、スレオニン、バリン、アルギニン、リシン、チロシン、イソロイシン又はトリプトファンがより好ましく、システイン、ロイシン、メチオニン、プロリン、グルタミン又はスレオニンがさらに好ましく、メチオニン、システイン又はロイシンがより好ましく、システインが特に好ましい。
さらにまた、後述の実施例に示す通り、ジホスホメバロン酸デカルボキシラーゼにおけるアミノ酸変異が、配列番号:2に記載のアミノ酸配列の152位又は該部位に対応するグリシンにおけるアミノ酸変異に加え、少なくとも配列番号:2に記載のアミノ酸配列の74位又は該部位に対応するアルギニンが他のアミノ酸に変異しており、かつ配列番号:2に記載のアミノ酸配列の209位又は該部位に対応するスレオニンが他のアミノ酸に変異している場合には、同観点から、152位のグリシンが変異してなる他のアミノ酸は、より好ましくは、システイン、ロイシン、メチオニン、フェニルアラニン、リシン、イソロイシン、バリン、グルタミン、アラニン、アルギニン、スレオニン、グルタミン酸、トリプトファン、ヒスチジン、チロシン又はプロリンであり、さらに好ましくは、システイン、ロイシン、メチオニン、フェニルアラニン、リシン、イソロイシン、バリン、グルタミン、アラニン、アルギニン又はスレオニンであり、より好ましくは、システイン、ロイシン又はメチオニンであり、特に好ましくは、システインである。また、かかる場合、配列番号:2に記載のアミノ酸配列の74位又は該部位に対応するアルギニンが変異してなる他のアミノ酸は、同観点から、好ましくは、メチオニン、ヒスチジン、グルタミン、リシンであり、より好ましくは、メチオニン又はヒスチジンであり、さらに好ましくは、ヒスチジンである。さらに、かかる場合、配列番号:2に記載のアミノ酸配列の209位又は該部位に対応するスレオニンが変異してなる他のアミノ酸は、同観点から、好ましくは、アルギニン、アスパラギン酸、グルタミン酸、グリシン、アラニンであり、より好ましくはアルギニンである。
なお、本発明において、「対応する部位」とは、ヌクレオチド及びアミノ酸配列解析ソフトウェア(GENETYX-MAC、Sequencher等)やBLAST(http://blast.ncbi.nlm.nih.gov/Blast.cgi)を利用し、配列番号:2に記載のアミノ酸配列と、他品種に由来するMVD等のアミノ酸配列とを整列させた際に、配列番号:2に記載のアミノ酸配列における152位、74位又は209位と同列になる部位のことである。
また「野生型のジホスホメバロン酸デカルボキシラーゼ」は、配列番号:2に記載のアミノ酸配列の152位のグリシンにおける変異、さらには前述の人工的な変異が導入される前のジホスホメバロン酸デカルボキシラーゼであり、例えば、前記出芽酵母等の様々な生物由来のジホスホメバロン酸デカルボキシラーゼ及びその天然の変異体が挙げられる。
また、ジホスホメバロン酸デカルボキシラーゼ変異体が、オレフィン化合物を生成する触媒活性を有するか否かは、例えば、後述の実施例に示す通り、ガスクロマトグラフィー質量分析(GC-MS)にて、直接オレフィン化合物の量を測定することにより判定することができ、さらに野生型のジホスホメバロン酸デカルボキシラーゼにおける量と比較することで、野生型のジホスホメバロン酸デカルボキシラーゼよりもオレフィン化合物を生成する触媒活性が高いか否かも判定することができる。
本発明において、ジホスホメバロン酸デカルボキシラーゼ変異体は、オレフィン化合物を生成する触媒活性において、野生型のジホスホメバロン酸デカルボキシラーゼに対し、2倍以上(例えば、3倍以上、4倍以上)であることが好ましく、5倍以上(例えば、6倍以上、7倍以上、8倍以上、9倍以上)であることがより好ましく、10倍以上(例えば、11倍以上、12倍以上、13倍以上、14倍以上、15倍以上、16倍以上、17倍以上、18倍以上、19倍以上)であることがさらに好ましく、20倍以上(例えば、、30倍以上、40倍以上、50倍以上、60倍以上、70倍以上、80倍以上、90倍以上)であることがより好ましく、100倍以上であることが特に好ましい。
また、ジホスホメバロン酸デカルボキシラーゼ変異体は、他の化合物が直接又は間接的に付加されていてもよい。かかる付加としては特に制限はなく、遺伝子レベルでの付加であってもよく、化学的な付加であってもよい。また付加される部位についても特に制限はなく、ジホスホメバロン酸デカルボキシラーゼ変異体のアミノ末端(以下「N末端」とも称する)及びカルボキシル末端(以下「C末端」とも称する)のいずれかであってもよく、その両方であってもよい。遺伝子レベルでの付加は、ジホスホメバロン酸デカルボキシラーゼ変異体をコードするDNAに、他のタンパク質をコードするDNAを読み枠を合わせて付加させたものを用いることにより達成される。このようにして付加される「他のタンパク質」としては特に制限はなく、ジホスホメバロン酸デカルボキシラーゼ変異体の精製を容易にする目的の場合には、ポリヒスチジン(His-)タグ(tag)タンパク質、FLAG-タグタンパク質(登録商標、Sigma-Aldrich社)、グルタチオン-S-トランスフェラーゼ(GST)等の精製用タグタンパク質が好適に用いられ、またジホスホメバロン酸デカルボキシラーゼ変異体の検出を容易にする目的の場合には、GFP等の蛍光タンパク質、ルシフェラーゼ等の化学発光タンパク質等の検出用タグタンパク質が好適に用いられる。化学的な付加は、共有結合であってもよく、非共有結合であってもよい。「共有結合」としては特に制限はなく、例えば、アミノ基とカルボキシル基とのアミド結合、アミノ基とアルキルハライド基とのアルキルアミン結合、チオールどうし間のジスルフィド結合、チオール基とマレイミド基又はアルキルハライド基とのチオエーテル結合が挙げられる。「非共有結合」としては、例えば、ビオチン-アビジン間結合が挙げられる。また、このようにして化学的に付加される「他の化合物」としては、ジホスホメバロン酸デカルボキシラーゼ変異体の検出を容易にする目的の場合には、例えば、Cy3、ローダミン等の蛍光色素が好適に用いられる。
また、本発明のジホスホメバロン酸デカルボキシラーゼ変異体は、他の成分と混合して用いてもよい。他の成分としては特に制限はなく、例えば、滅菌水、生理食塩水、植物油、界面活性剤、脂質、溶解補助剤、緩衝剤、プロテアーゼ阻害剤、保存剤が挙げられる。
<ジホスホメバロン酸デカルボキシラーゼの変異体をコードするDNA、及び該DNAを有するベクター>
次に、ジホスホメバロン酸デカルボキシラーゼ変異体をコードするDNA等について説明する。かかるDNAを導入することによって、宿主細胞の形質を転換し、ジホスホメバロン酸デカルボキシラーゼ変異体を当該細胞において製造させること、ひいてはオレフィン化合物を製造させることが可能となる。
本発明のDNAは、天然のDNAに人為的に変異が導入されたDNAであってもよく、人工的に設計されたヌクレオチド配列からなるDNAであってもよい。さらに、その形態について特に制限はなく、cDNAの他、ゲノムDNA、及び化学合成DNAが含まれる。これらDNAの調製は、当業者にとって常套手段を利用して行うことが可能である。ゲノムDNAは、例えば、出芽酵母等からゲノムDNAを抽出し、ゲノミックライブラリー(ベクターとしては、プラスミド、ファージ、コスミド、BAC、PACなどが利用できる)を作製し、これを展開して、ジホスホメバロン酸デカルボキシラーゼ遺伝子のヌクレオチド配列(例えば、配列番号:1に記載のヌクレオチド配列)を基に調製したプローブを用いてコロニーハイブリダイゼーションあるいはプラークハイブリダイゼーションを行うことにより調製することが可能である。また、ジホスホメバロン酸デカルボキシラーゼ遺伝子に特異的なプライマーを作製し、これを利用したPCRを行うことによって調製することも可能である。また、cDNAは、例えば、出芽酵母から抽出したmRNAを基にcDNAを合成し、これをλZAP等のベクターに挿入してcDNAライブラリーを作製し、これを展開して、上記と同様にコロニーハイブリダイゼーションあるいはプラークハイブリダイゼーションを行うことにより、また、PCRを行うことにより調製することが可能である。
そして、このように調製したDNAに、ジホスホメバロン酸デカルボキシラーゼの、配列番号:2に記載のアミノ酸配列の152位のグリシンを他のアミノ酸に置換する変異を導入することは、当業者であれば、公知の部異特異的変異導入法を利用することで行うことができる。部異特異的変異導入法としては、例えば、Kunkel法(Kunkel,T.A.、Proc Natl Acad Sci USA、1985年、82巻、2号、488~492ページ)、SOE(splicing-by-overlap-extention)-PCR法(Ho,S.N.,Hunt,H.D.,Horton,R.M.,Pullen,J.K.,and Pease,L.R.、Gene、1989年、77巻、51~59ページ)が挙げられる。
また、当業者であれば、ジホスホメバロン酸デカルボキシラーゼの152位のグリシンを他のアミノ酸に置換してあるタンパク質をコードするヌクレオチド配列を人工的に設計し、該配列情報に基づき、自動核酸合成機を用いて、本発明のDNAを化学的に合成することもできる。
無論、これらの方法によれば、ジホスホメバロン酸デカルボキシラーゼにおいて、152位のグリシン以外の他の部位の(例えば、配列番号:2に記載のアミノ酸配列の74位及び209位)アミノ酸も、人工的に他のアミノ酸に置換することができる。
さらに、本発明のDNAは、コードするジホスホメバロン酸デカルボキシラーゼ変異体の発現効率を後述の宿主細胞においてより向上させるという観点から、当該宿主細胞の種類に合わせて、コドンを最適化したジホスホメバロン酸デカルボキシラーゼ変異体をコードするDNAの態様もとり得る。
また、本発明においては、前述のDNAを宿主細胞内において複製することができるよう、当該DNAが挿入されているベクターも提供される。
本発明において「ベクター」は、自己複製ベクター、すなわち、染色体外の独立体として存在し、その複製が染色体の複製に依存しない、例えば、プラスミドを基本に構築することができる。また、ベクターは、宿主細胞に導入されたとき、その宿主細胞のゲノム中に組み込まれ、それが組み込まれた染色体と一緒に複製されるものであってもよい。
このようなベクターとしては、例えば、プラスミド、ファージDNAが挙げられる。また、プラスミドとしては、大腸菌由来のプラスミド(pBR322、pBR325、pUC118、pUC119、pUC18、pUC19等)、酵母由来のプラスミド(YEp13、YEp24、YCp50等)、枯草菌由来のプラスミド(pUB110、pTP5等)が挙げられる。ファージDNAとしてはλファージ(Charon4A、Charon21A、EMBL3、EMBL4、λgt10、λgt11、λZAP等)が挙げられる。さらに、宿主細胞が昆虫由来であれば、バキュロウイルス等の昆虫ウイルスベクターを、植物由来であればT-DNA等、動物由来であればレトロウイルス、アデノウイルスベクター等の動物ウイルスベクターも、本発明のベクターとして用いることもできる。また、本発明のベクター構築の手順及び方法は、遺伝子工学の分野で慣用されているものを用いることができる。例えば、本発明のDNAをベクターに挿入するには、まず、精製されたDNAを適当な制限酵素で切断し、適当なベクターの制限酵素部位又はマルチクローニングサイトに挿入してベクターに連結する方法等が採用される。
また、本発明のベクターは、前記DNAがコードするジホスホメバロン酸デカルボキシラーゼ変異体を宿主細胞内にて発現可能な状態で含んでなる発現ベクターの形態であってもよい。本発明にかかる「発現ベクター」は、これを宿主細胞に導入してジホスホメバロン酸デカルボキシラーゼ変異体を発現させるために、前記DNAの他に、その発現を制御するDNA配列や形質転換された宿主細胞を選択するための遺伝子マーカー等を含んでいるのが望ましい。発現を制御するDNA配列としては、プロモーター、エンハンサー、スプライシングシグナル、ポリA付加シグナル、リボソーム結合配列(SD配列)及びターミネーター等がこれに含まれる。プロモーターは宿主細胞において転写活性を示すものであれば特に限定されず、宿主細胞と同種若しくは異種のいずれかのタンパク質をコードする遺伝子の発現を制御するDNA配列として得ることができる。また、前記発現を制御するDNA配列以外に発現を誘導するDNA配列を含んでいても良い。かかる発現を誘導するDNA配列としては、宿主細胞が細菌である場合には、イソプロピル-β-D-チオガラクトピラノシド(IPTG)の添加により、下流に配置された遺伝子の発現を誘導することのできるラクトースオペロンが挙げられる。本発明における遺伝子マーカーは、形質転換された宿主細胞の選択の方法に応じて適宜選択されてよいが、例えば薬剤耐性をコードする遺伝子、栄養要求性を相補する遺伝子を利用することができる。
また、本発明のDNA又はベクターは、他の成分と混合して用いてもよい。他の成分としては特に制限はなく、例えば、滅菌水、生理食塩水、植物油、界面活性剤、脂質、溶解補助剤、緩衝剤、DNase阻害剤、保存剤が挙げられる。
<オレフィン化合物の生成を促進するための剤>
上述の通り、ジホスホメバロン酸デカルボキシラーゼ変異体、該変異体をコードするDNA又は該DNAが挿入されているベクターを用いることにより、下記式(1)で表される化合物とATPとを反応させ、オレフィン化合物の生成を促進することが可能となる。したがって、本発明は、少なくとも配列番号:2に記載のアミノ酸配列の152位又は該部位に対応するグリシンが他のアミノ酸に変異しているジホスホメバロン酸デカルボキシラーゼ、該ジホスホメバロン酸デカルボキシラーゼをコードするDNA又は該DNAが挿入されているベクターを含む、下記式(1)で表される化合物とATPとを反応させ、オレフィン化合物の生成を促進するための剤も提供する。
Figure 0006995315000009
[式(1)中、R及びRは、各々独立に、水素原子、炭素数1~10のアルキル基、炭素数2~15のアルケニル基、炭素数6~20のアリール基又はハロゲン原子を示す(前記アルキル基及びアルケニル基は、各々独立に、ヒドロキシ基及び/又はカルボキシ基によって任意に置換されていてもよい)]。
このような剤としては、上述のジホスホメバロン酸デカルボキシラーゼ変異体等を含むものであれば良いが、他の成分と混合していても用いてもよい。かかる他の成分としては特に制限はなく、例えば、滅菌水、生理食塩水、植物油、界面活性剤、脂質、溶解補助剤、緩衝剤、プロテアーゼ阻害剤、DNase阻害剤、保存剤が挙げられる。
また、本発明は、このような剤を含むキットをも提供することができる。本発明のキットにおいて、上記剤は、本発明のDNA等が導入され、形質転換された、後述の宿主細胞の態様にて含まれていてもよい。さらに、このような剤の他、前記式(1)で表される化合物、本発明のDNA等を導入するための宿主細胞、該宿主細胞を培養するための培地、及びそれらの使用説明書等が、本発明のキットに含まれていてもよい。また、このような使用説明書は、本発明の剤等を上述のオレフィン化合物の製造方法に利用するための説明書である。説明書は、例えば、本発明の製造方法の実験手法や実験条件、及び本発明の剤等に関する情報(例えば、ベクターのヌクレオチド配列等が示されているベクターマップ等の情報、ジホスホメバロン酸デカルボキシラーゼ変異体の配列情報、宿主細胞の由来、性質、当該宿主細胞の培養条件等の情報)を含むことができる。
<ジホスホメバロン酸デカルボキシラーゼ変異体をコードするDNA等が導入された宿主細胞>
次に、本発明のDNA又はベクターが導入された宿主細胞について説明する。前述のDNA又はベクターの導入によって形質転換された宿主細胞を用いれば、ジホスホメバロン酸デカルボキシラーゼ変異体を製造することが可能となり、ひいてはオレフィン化合物を製造させることも可能となる。
本発明のDNA又はベクターが導入される宿主細胞は特に限定されず、例えば、微生物(大腸菌、出芽酵母、分裂酵母、枯草菌、放線菌、糸状菌等)、植物細胞、昆虫細胞、動物細胞が挙げられるが、比較的安価な培地にて、短時間にて高い増殖性を示し、ひいては生産性高いオレフィン化合物の製造に寄与し得るという観点から、微生物を宿主細胞として利用することが好ましく、大腸菌を利用することがより好ましい。
また、本発明のDNA又はベクターの導入も、この分野で慣用されている方法に従い実施することができる。例えば、大腸菌等の微生物への導入方法としては、ヒートショック法、エレクトロポレーション法、スフェロプラスト法、酢酸リチウム法が挙げられ、植物細胞への導入方法としては、アグロバクテリウムを用いる方法やパーティクルガン法が挙げられ、昆虫細胞への導入方法としては、バキュロウィルスを用いる方法やエレクトロポレーション法が挙げられ、動物細胞への導入方法としては、リン酸カルシウム法、リポフェクション法、エレクトロポレーション法が挙げられる。
このようにして宿主細胞内に導入されたDNA等は、宿主細胞内において、そのゲノムDNAにランダムに挿入されることによって保持されてもよく、相同組み換えによって保持されてもよく、またベクターであれば、そのゲノムDNA外の独立体として複製され保持し得る。
<ジホスホメバロン酸デカルボキシラーゼ変異体の製造方法>
後述の実施例に示す通り、本発明のDNA等が導入された宿主細胞を培養することにより、該宿主細胞内にてジホスホメバロン酸デカルボキシラーゼ変異体を製造することができる。したがって、本発明は、前述の宿主細胞を培養し、該宿主細胞に発現したタンパク質を採取する工程を含む、ジホスホメバロン酸デカルボキシラーゼ変異体の製造方法をも提供することができる。
本発明において、「宿主細胞を培養する」条件は、前記宿主細胞がジホスホメバロン酸デカルボキシラーゼ変異体を製造できる条件であればよく、当業者であれば、宿主細胞の種類、用いる培地等に合わせて、温度、空気の添加の有無、酸素の濃度、二酸化炭素の濃度、培地のpH、培養温度、培養時間、湿度等を適宜調整し、設定することができる。
かかる培地としては、宿主細胞が資化し得るものが含有されていればよく、炭素源、窒素源、硫黄源、無機塩類、金属、ペプトン、酵母エキス、肉エキス、カゼイン加水分解物、血清等が含有物として挙げられる。また、かかる培地には、例えば、ジホスホメバロン酸デカルボキシラーゼ変異体をコードするDNAの発現を誘導するためのIPTGや、本発明にかかるベクターがコードし得る薬剤耐性遺伝子に対応する抗生物質(例えば、アンピシリン)や、本発明にかかるベクターがコードし得る栄養要求性を相補する遺伝子に対応する栄養物(例えば、アルギニン、ヒスチジン)を添加してもよい。
そして、このようにして培養した宿主細胞から、「該細胞に発現したタンパク質を採取する」方法としては、例えば、宿主細胞を濾過、遠心分離等により培地から回収し、回収した宿主細胞を、細胞溶解、磨砕処理又は加圧破砕等によって処理し、さらに、限外濾過処理、塩析、硫安沈殿等の溶媒沈殿、クロマトグラフィー(例えば、ゲルクロマトグラフィー、イオン交換クロマトグラフィー、アフィニティークロマトグラフィー)等によって、宿主細胞において発現したタンパク質を精製、濃縮する方法が挙げられる。また、ジホスホメバロン酸デカルボキシラーゼ変異体に、前述の精製タグタンパク質が付加されている場合には、該タグタンパク質が吸着する基質を用いて精製し、採取することもできる。さらに、これらの精製、濃縮方法は単独にて行ってもよく、また適宜組み合わせて多段階的に実施し得る。
また、ジホスホメバロン酸デカルボキシラーゼ変異体は、上記生物学的合成に限定されることなく、本発明のDNA等及び無細胞タンパク質合成系を用いても製造することができる。かかる無細胞タンパク質合成系としては特に制限はないが、例えば、コムギ胚芽由来、大腸菌由来、ウサギ網状赤血球由来、昆虫細胞由来の合成系が挙げられる。さらに、当業者であれば、市販のペプチド合成機等を用い、ジホスホメバロン酸デカルボキシラーゼ変異体を化学的に合成することもできる。
また、本発明は、ジホスホメバロン酸デカルボキシラーゼにおいて、少なくとも配列番号:2に記載のアミノ酸配列の152位又は該部位に対応するグリシンを他のアミノ酸に変異させる工程を含む、オレフィン化合物を生成する触媒活性が高められたジホスホメバロン酸デカルボキシラーゼの製造方法をも提供することができる。
「オレフィン化合物を生成する触媒活性が高められたジホスホメバロン酸デカルボキシラーゼ」とは、152位のグリシン等に変異が導入されることにより、その導入前と比較してオレフィン化合物を生成する触媒活性が高いジホスホメバロン酸デカルボキシラーゼを意味し、その比較対象は通常、上記出芽酵母等の様々な生物由来のジホスホメバロン酸デカルボキシラーゼ及びその天然の変異体である。
ジホスホメバロン酸デカルボキシラーゼにおける「他のアミノ酸の変異」導入は、コードするDNAの改変によって行うことができる。「DNAの改変」は、このようなDNAの改変は、上記の通り、当業者においては公知の方法、例えば、部位特異的変異誘発法、改変された配列情報に基づくDNAの化学的合成法を用いて、適宜実施することが可能である。また、「他のアミノ酸の変異」導入は、上記の通り、ペプチドの化学的合成法を用いても行うことができる。
また、このような変異導入によって、オレフィン化合物を生成する触媒活性が高められたかどうかは、上記の通り、GC-MS分析等により評価することができる。
<ジホスホメバロン酸デカルボキシラーゼ変異体の作製及び評価1>
本発明者らは、オレフィン化合物を高い生産性にて製造することを可能とすべく、ジホスホメバロン酸デカルボキシラーゼ(以下「MVD」とも称する)のアミノ酸に変異を導入し、当該酵素(ジホスホメバロン酸デカルボキシラーゼ変異体)の基質特異性を、元来の5-ジホスホメバロン酸から3-ヒドロキシ-3-メチルペント-4-エノテート等に対するものに変更することで、下記式に示すような反応を経て、イソプレン等を製造することを着想した。
Figure 0006995315000010
そこで、本発明者らは、以下に示す方法等にて、ジホスホメバロン酸デカルボキシラーゼの様々な部位に、アミノ酸置換を伴う変異を導入し、多数のジホスホメバロン酸デカルボキシラーゼの変異体を調製した。そして、それら変異体について、5-ジホスホメバロン酸を基質とするイソペンテニル二リン酸の生成に関する触媒活性と、3-ヒドロキシ-3-メチルペント-4-エノテートを基質とするイソプレンの生成に関する触媒活性とを評価した。
なお、本発明者らは従前にも、約200のジホスホメバロン酸デカルボキシラーゼのアミノ酸変異体を調製し、3-ヒドロキシ-3-メチルペント-4-エノテートを基質とするイソプレンの生成に関する触媒活性の評価を行っている。そして、その結果、74位のアルギニンがヒスチジンに置換され、かつ209位のスレオニンがアルギニンに置換されたジホスホメバロン酸デカルボキシラーゼ(R74HT209R)は、約200もの変異体の中で群を抜いてイソプレンの生成に関する極めて高い触媒活性を示すことを見出している。
<プラスミドベクターの調製>
先ず、出芽酵母由来のMVD(scMVD、配列番号:2に記載のアミノ酸配列からなるタンパク質)を大腸菌にて効率良く発現させるために、それをコードする野生型ヌクレオチド配列(配列番号:1に記載のヌクレオチド配列)を、大腸菌におけるコドンの使用頻度を考慮して改変した。次いで、かかる改変ヌクレオチド配列(配列番号:3に記載のヌクレオチド配列)からなるDNAを常法に沿って化学合成した。そして、このようにして調製したDNAを、pET-22b(+)ベクター(Novagen社製)のマルチクローニングサイト(NdeI認識サイトとBamHI認識サイトとの間)に挿入することにより、当該野生型のscMVDを、ポリヒスチジンタグをそのN末端に融合させた形態にて、大腸菌において発現可能なプラスミドベクター(scMVDベクター)を調製した。
次に、各部位におけるアミノ酸置換を伴う変異をscMVDに導入すべく、各変異が導入されたアミノ酸配列をコードするプライマーを設計し、合成した。そして、前記scMVDベクターを鋳型として、このようなプライマーと部位特異的突然変異誘発キット(製品名:site-Direct Mutagenesis Kit、Agilent社製)とを用い、そのキット添付のプロトコルに従って、各変異が導入されたscMVDを、ポリヒスチジンタグをそのN末端に融合させた形態にて、大腸菌において発現可能なプラスミドベクターを調製した。
<酵素溶液の調製>
前記の通り調製したプラスミドベクターを各々、大腸菌(BL21)に、ヒートショック法により導入し、野生型のscMVD又は各scMVD変異体を発現する形質転換体を調製した。次いで、これら形質転換体を各々、0.4mMのIPTGとアンピシリンとを添加したLB培地にて一晩培養した。当該培養後の形質転換体を遠心分離により集菌し、DNaseIを添加したタンパク質抽出試薬(製品名:B-PER、Thermo Fisher Scientific社製)を加え、溶菌した。このようにして得られた各溶菌液に遠心分離を施し、得られた各上清をポリヒスチジン精製用カラム(製品名:TALON(登録商標)カラム、Clontech社製)に添加した。次いで、各カラムに溶出液(20mM Tris-HCl(pH7.4)、300mM NaCl、150mM イミダゾール)を添加し、各ポリヒスチジンタグが融合しているscMVDを溶出させた。そして、各溶出液を緩衝液(20mM Tris-HCl(pH7.4)、100mM NaCl)にて透析した後、限外ろ過スピンカラム(製品名:アミコンウルトラ、ミリポア社製)によって濃縮し、酵素溶液を調製した。また、このようにして調製した溶液中の酵素(ポリヒスチジンタグが融合している、scMVD又はその変異体)の濃度を、タンパク質定量キット(製品名:BCAアッセイキット、TaKaRa社製)を用い、添付のプロトコールに沿って測定した。
<酵素活性の測定1>
3-ヒドロキシ-3-メチルペント-4-エノテートを基質とするイソプレンの合成における、各酵素活性を測定した。
先ず、緩衝液(50mM Tris-HCl(pH7.5)、10mM MgCl、100mM KCl)に、0.5mM 3-ヒドロキシ-3-メチルペント-4-エノテートと、5mM ATPとを添加した。次いで、ガスクロマトグラフィー質量分析(GC-MS)用の10mlバイアルに、この反応液2.5mlと、0.5mgの前記酵素とを添加し、その直後にバイアルのキャップを閉め、酵素反応を開始した。当該酵素反応は37℃にて行い、反応を開始してから72時間後にバイアルのヘッドスペース中に生成されたイソプレン量を、サンプル平衡化のために50℃にて30分間加熱した後、GC-MS(製品名:GCMS-QP2010 Ultra、島津製作所社製)によって測定した。そして、得られた各変異体における測定値を、野生型におけるそれを基準(1)として、相対値を算出した。得られた結果の一部を図1及び2に示す。
図1に示す通り、ジホスホメバロン酸デカルボキシラーゼの152位のグリシンが他のアミノ酸に置換されたジホスホメバロン酸デカルボキシラーゼ(G152X)は、イソプレンを生成する高い触媒活性を有していることを明らかになった。
特に、従前約200もの変異体の中から、特定の2つの部位を各々特定のアミノ酸に置換することによって唯一得られたR74HT209Rと、同等の極めて高い触媒活性を、たった1の部位(152位)のアミノ酸を他のアミノ酸(システイン、ロイシン又はメチオニン)に置換することによって達成することができた。
さらに、前述の高い触媒活性を示す2種の変異 R74HT209RとG152Xとを組み合わせたジホスホメバロン酸デカルボキシラーゼの3重アミノ酸変異体を調製し、イソプレンの生成に関する触媒活性を評価した。その結果、図2に示した結果から明らかなように、これら変異体についても高い触媒活性が認められた。中でも、74位のアルギニンがヒスチジンに置換され、152位のグリシンがシステインに置換され、かつ209位のスレオニンがアルギニンに置換されたジホスホメバロン酸デカルボキシラーゼ(R74HG152CT209R)に関し、野生型と比して約100倍、対応する単独アミノ酸変異体及び二重アミノ酸変異体(G152C、R74HT209R)と比しても3~4倍、イソプレンの生成に関する触媒活性が向上することが明らかになった。
<酵素活性の測定2>
次に、本発明者らは、イソプレン生成において極めて高い触媒活性を示した前述の単独アミノ酸変異体及び三重アミノ酸変異体(G152X及びR74HG152XT209R)に関し、他のオレフィン化合物の生成でも利用できることを確認した。すなわち、β-ヒドロキシイソ吉草酸を基質とするイソブテンの合成(下記式に示す反応)における、各酵素活性を以下のようにして評価した。
Figure 0006995315000011
先ず、緩衝液(50mM Tris-HCl(pH7.5)、10mM MgCl、100mM KCl)に、0.5mM β-ヒドロキシイソ吉草酸(東京化成工業株式会社製、製品コード:H0701、β-Hydroxyisovaleric Acid)と、5mM ATPとを添加した。
そして、GC-MS用の10mlバイアルに、この反応液2.5mlと、10mgの前記酵素とを添加し、その直後にバイアルのキャップを閉め、酵素反応を開始した。当該酵素反応は37℃にて行い、反応を開始してから数日後(約2日後)にバイアルのヘッドスペース中に生成されたイソブテン量を、サンプル平衡化のために50℃にて30分間加熱した後、GC-MS(製品名:GCMS-QP2010 Ultra、島津製作所社製)によって測定した。次いで、得られた各変異体における測定値を、野生型におけるそれを基準(1)として、相対値を算出した。得られた結果の一部を図3に示す。
図3に示した結果から明らかなように、上記単独アミノ酸変異体及び三重アミノ酸変異体は、イソプレン生成の際同様に、野生型と比して高いイソブテンの生成に関する触媒活性も有していることが確認された。
以上説明したように、本発明によれば、オレフィン化合物を高い生産性にて製造することを可能とする酵素、並びに当該酵素を用いたオレフィン化合物の製造方法を提供することが可能となる。また、本発明によれば、化学合成によらず、生合成によってオレフィン化合物を製造できるため、環境への負荷が少ない。したがって、本発明は、イソプレンやイソブテンといった、合成ゴム等の様々な合成ポリマーの原料の製造において極めて有用である。
配列番号:3
<223> 大腸菌における発現のためにコドンが最適化された配列

Claims (21)

  1. 配列番号:2に記載のアミノ酸配列において152位グリシンがシステイン、ロイシン若しくはメチオニンに変異しているアミノ酸配列、又は、配列番号:2に記載のアミノ酸配列において152位のグリシンが、システイン、ロイシン若しくはメチオニンに変異しており、かつ152位以外の1~40個のアミノ酸が置換、欠失、付加、及び/又は挿入されたアミノ酸配列を含むタンパク質であるジホスホメバロン酸デカルボキシラーゼの存在下、下記式(1)で表される化合物とATPとを反応させる工程を含む、オレフィン化合物の製造方法
    Figure 0006995315000012
    [式(1)中、R及びRは、各々独立に、水素原子、炭素数1~10のアルキル基、炭素数2~15のアルケニル基、炭素数6~20のアリール基又はハロゲン原子を示す(前記アルキル基及びアルケニル基は、各々独立に、ヒドロキシ基及び/又はカルボキシ基によって任意に置換されていてもよい)]。
  2. 配列番号:2に記載のアミノ酸配列において152位グリシンがシステイン、ロイシン若しくはメチオニンに変異しているアミノ酸配列、又は、配列番号:2に記載のアミノ酸配列において152位のグリシンが、システイン、ロイシン若しくはメチオニンに変異しており、かつ152位以外の1~40個のアミノ酸が置換、欠失、付加、及び/又は挿入されたアミノ酸配列を含むタンパク質であるジホスホメバロン酸デカルボキシラーゼを、コードするDNA又は該DNAを含むベクターが導入された宿主細胞を、培養し、該宿主細胞及び/又はその培養物において生成されたオレフィン化合物を採取する工程を含む、オレフィン化合物の製造方法。
  3. 前記ジホスホメバロン酸デカルボキシラーゼにおいて、配列番号:2に記載のアミノ酸配列の74位アルギニンが他のアミノ酸に変異しており、かつ配列番号:2に記載のアミノ酸配列の209位スレオニンが他のアミノ酸に変異している、請求項1又は2に記載の製造方法。
  4. 前記ジホスホメバロン酸デカルボキシラーゼにおいて、配列番号:2に記載のアミノ酸配列の74位アルギニンがヒスチジンに変異しており、かつ配列番号:2に記載のアミノ酸配列の209スレオニンがアルギニンに変異している、請求項1又は2に記載の製造方法。
  5. 前記オレフィン化合物がイソプレンである請求項1~のうちのいずれか一項に記載の製造方法。
  6. 前記オレフィン化合物がイソブテンである請求項1~のうちのいずれか一項に記載の製造方法。
  7. オレフィン化合物を生成する触媒活性が高められたジホスホメバロン酸デカルボキシラーゼの製造方法であって、ジホスホメバロン酸デカルボキシラーゼにおいて、配列番号:2に記載のアミノ酸配列の152位グリシンをシステイン、ロイシン又はメチオニンに変異させる工程を含む、製造方法。
  8. 前記ジホスホメバロン酸デカルボキシラーゼにおいて、配列番号:2に記載のアミノ酸配列の74位アルギニンを他のアミノ酸に変異させ、かつ配列番号:2に記載のアミノ酸配列の209位スレオニンを他のアミノ酸に変異させる工程を更に含む、請求項に記載の製造方法。
  9. 前記ジホスホメバロン酸デカルボキシラーゼにおいて、配列番号:2に記載のアミノ酸配列の74位アルギニンをヒスチジンに変異させ、かつ配列番号:2に記載のアミノ酸配列の209位スレオニンをアルギニンに変異させる工程を更に含む、請求項に記載の製造方法。
  10. 前記オレフィン化合物がイソプレンである請求項7~9のうちのいずれか一項に記載の製造方法。
  11. 前記オレフィン化合物がイソブテンである請求項7~9のうちのいずれか一項に記載の製造方法。
  12. 配列番号:2に記載のアミノ酸配列において152位グリシンがシステイン、ロイシン若しくはメチオニンに変異しているアミノ酸配列、又は、配列番号:2に記載のアミノ酸配列において152位のグリシンが、システイン、ロイシン若しくはメチオニンに変異しており、かつ152位以外の1~40個のアミノ酸が置換、欠失、付加、及び/又は挿入されたアミノ酸配列を含む、ジホスホメバロン酸デカルボキシラーゼ。
  13. 配列番号:2に記載のアミノ酸配列の74位アルギニンが他のアミノ酸に変異しており、かつ配列番号:2に記載のアミノ酸配列の209位スレオニンが他のアミノ酸に変異している、請求項12に記載のジホスホメバロン酸デカルボキシラーゼ。
  14. 配列番号:2に記載のアミノ酸配列の74位アルギニンがヒスチジンに変異しており、かつ配列番号:2に記載のアミノ酸配列の209位スレオニンがアルギニンに変異している、請求項12に記載のジホスホメバロン酸デカルボキシラーゼ。
  15. 請求項12~14のうちのいずれか一項に記載のジホスホメバロン酸デカルボキシラーゼをコードするDNA。
  16. 請求項15に記載のDNAを含むベクター。
  17. 請求項15に記載のDNA又は請求項16に記載のベクターが導入された宿主細胞。
  18. 請求項17に記載の宿主細胞を培養し、該宿主細胞に発現したタンパク質を採取する工程を含む、請求項12~14のうちのいずれか一項に記載のジホスホメバロン酸デカルボキシラーゼの製造方法。
  19. 請求項12~14のうちのいずれか一項に記載のジホスホメバロン酸デカルボキシラーゼ、該ジホスホメバロン酸デカルボキシラーゼをコードするDNA、又は該DNAが挿入されているベクターを含む、下記式(1)で表される化合物とATPとを反応させ、オレフィン化合物の生成を促進するための剤
    Figure 0006995315000013
    [式(1)中、R及びRは、各々独立に、水素原子、炭素数1~10のアルキル基、炭素A数2~15のアルケニル基、炭素数6~20のアリール基又はハロゲン原子を示す(前記アルキル基及びアルケニル基は、各々独立に、ヒドロキシ基及び/又はカルボキシ基によって任意に置換されていてもよい)]。
  20. 前記オレフィン化合物がイソプレンである請求項19に記載の剤。
  21. 前記オレフィン化合物がイソブテンである請求項19に記載の剤。
JP2018542596A 2016-09-28 2017-09-26 ジホスホメバロン酸デカルボキシラーゼ変異体、及びそれを用いたオレフィン化合物の製造方法 Active JP6995315B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2016189269 2016-09-28
JP2016189269 2016-09-28
PCT/JP2017/034739 WO2018062178A1 (ja) 2016-09-28 2017-09-26 ジホスホメバロン酸デカルボキシラーゼ変異体、及びそれを用いたオレフィン化合物の製造方法

Publications (2)

Publication Number Publication Date
JPWO2018062178A1 JPWO2018062178A1 (ja) 2019-09-05
JP6995315B2 true JP6995315B2 (ja) 2022-01-14

Family

ID=61759729

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018542596A Active JP6995315B2 (ja) 2016-09-28 2017-09-26 ジホスホメバロン酸デカルボキシラーゼ変異体、及びそれを用いたオレフィン化合物の製造方法

Country Status (5)

Country Link
US (1) US10961548B2 (ja)
EP (1) EP3521438A4 (ja)
JP (1) JP6995315B2 (ja)
CN (1) CN109715815B (ja)
WO (1) WO2018062178A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10781460B2 (en) * 2015-08-03 2020-09-22 Riken Diphosphomevalonate decarboxylase variant, and method for producing olefin compound by using the same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140186913A1 (en) 2012-11-28 2014-07-03 INVISTA North America S.á r.l. Methods for Biosynthesis of Isobutene
US20150037860A1 (en) 2013-08-05 2015-02-05 INVISTA North America S.á r.l. Methods for biosynthesis of isoprene
WO2017022804A1 (ja) 2015-08-03 2017-02-09 国立研究開発法人理化学研究所 ジホスホメバロン酸デカルボキシラーゼ変異体、及びそれを用いたオレフィン化合物の製造方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BR122013014156A2 (pt) * 2008-11-11 2015-07-14 Danisco Us Inc Composição de limpeza compreendendo variantes de subtilisina, bem como processo de limpeza
US9102952B2 (en) * 2009-12-22 2015-08-11 Global Bioenergies Sa Process for the production of isoprenol from mevalonate employing a diphospho-mevolonate decarboxylase
EP2794891A2 (en) * 2011-12-20 2014-10-29 Scientist of Fortune S.A. Production of 1,3-dienes by enzymatic conversion of 3-hydroxyalk-4-enoates and/or 3-phosphonoxyalk-4-enoates
AU2013336690B2 (en) * 2012-10-25 2015-09-24 Global Bioenergies Production of alkenes from 3-hydroxy-1-carboxylic acids via 3-sulfonyloxy-1-carboxylic acids
DK3019604T3 (da) 2013-07-09 2020-10-26 Global Bioenergies Mevalonat-diphosphat-dicarboxylase-varianter

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140186913A1 (en) 2012-11-28 2014-07-03 INVISTA North America S.á r.l. Methods for Biosynthesis of Isobutene
US20150037860A1 (en) 2013-08-05 2015-02-05 INVISTA North America S.á r.l. Methods for biosynthesis of isoprene
WO2017022804A1 (ja) 2015-08-03 2017-02-09 国立研究開発法人理化学研究所 ジホスホメバロン酸デカルボキシラーゼ変異体、及びそれを用いたオレフィン化合物の製造方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
GOGERTY DS et al.,Applied and Environmental Microbiology,Vol. 76, No. 24,2010年12月,p. 8004-8010
KANG A et al.,Metabolic Engineering,Vol. 34,2016年,p. 25-35
合成ゴムの材料イソプレンを生物につくらせる,理研ニュース,2016年07月05日,No.421,p.10-13
折下涼子他,有用酵素の基質特異性改変とバイオイソプレン生産への応用,日本農芸化学会2016年度大会プログラム集,2016年02月25日,2J003

Also Published As

Publication number Publication date
WO2018062178A1 (ja) 2018-04-05
JPWO2018062178A1 (ja) 2019-09-05
EP3521438A1 (en) 2019-08-07
EP3521438A4 (en) 2020-04-29
CN109715815B (zh) 2022-11-29
CN109715815A (zh) 2019-05-03
US20190264237A1 (en) 2019-08-29
US10961548B2 (en) 2021-03-30

Similar Documents

Publication Publication Date Title
JP7242058B2 (ja) デカルボキシラーゼ、及びそれを用いた不飽和炭化水素化合物の製造方法
WO2013054447A1 (ja) γ‐Glu‐X‐Glyまたはその塩の製造方法、および変異型グルタチオン合成酵素
JP6803047B2 (ja) ジホスホメバロン酸デカルボキシラーゼ変異体、及びそれを用いたオレフィン化合物の製造方法
JP6995315B2 (ja) ジホスホメバロン酸デカルボキシラーゼ変異体、及びそれを用いたオレフィン化合物の製造方法
JP7054092B2 (ja) ジホスホメバロン酸デカルボキシラーゼ変異体、及びそれを用いたオレフィン化合物の製造方法
WO2023190564A1 (ja) メタクリル酸の製造方法
JP5540367B2 (ja) シャペロニン変異体およびこれをコードするdna
Gabriel et al. Homoisocitrate dehydrogenase from Candida albicans: properties, inhibition, and targeting by an antifungal pro-drug
WO2021054441A1 (ja) サッカロミケス由来フェルラ酸デカルボキシラーゼ変異体、及びそれを用いた不飽和炭化水素化合物の製造方法
WO2022145178A1 (ja) フェニルアラニンアンモニアリアーゼを用いた鎖状の不飽和カルボン酸化合物の製造方法
WO2024090440A1 (ja) フェルラ酸デカルボキシラーゼ、及びそれを用いた不飽和炭化水素化合物の製造方法
JP2023512130A (ja) 熱安定性が向上したトランスグルタミナーゼ変異体
JP2020195375A (ja) 5−アミノレブリン酸シンテターゼ変異体およびその宿主細胞と応用
JP2024014569A (ja) 4-アミノ安息香酸水酸化活性を有するポリペプチド及びその利用
JP2015109830A (ja) γ−グルタミルシクロトランスフェラーゼ、γ−グルタミルシクロトランスフェラーゼ遺伝子、γ−グルタミルシクロトランスフェラーゼの製造方法およびその用途
JP2002262887A (ja) グルタミナーゼおよびグルタミナーゼ遺伝子
JP2003116555A (ja) 高度好熱菌由来セリンアセチルトランスフェラーゼ及びそれをコードする遺伝子、並びにl−システインの酵素合成法
WO2006088110A1 (ja) 新規な炭酸固定促進タンパク質、及び該タンパク質を用いた炭酸固定方法

Legal Events

Date Code Title Description
A80 Written request to apply exceptions to lack of novelty of invention

Free format text: JAPANESE INTERMEDIATE CODE: A801

Effective date: 20190111

A80 Written request to apply exceptions to lack of novelty of invention

Free format text: JAPANESE INTERMEDIATE CODE: A80

Effective date: 20190130

AA64 Notification of invalidation of claim of internal priority (with term)

Free format text: JAPANESE INTERMEDIATE CODE: A241764

Effective date: 20190607

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190614

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200727

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210714

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20210830

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211109

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211130

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211207

R150 Certificate of patent or registration of utility model

Ref document number: 6995315

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350