WO2006088110A1 - 新規な炭酸固定促進タンパク質、及び該タンパク質を用いた炭酸固定方法 - Google Patents

新規な炭酸固定促進タンパク質、及び該タンパク質を用いた炭酸固定方法 Download PDF

Info

Publication number
WO2006088110A1
WO2006088110A1 PCT/JP2006/302773 JP2006302773W WO2006088110A1 WO 2006088110 A1 WO2006088110 A1 WO 2006088110A1 JP 2006302773 W JP2006302773 W JP 2006302773W WO 2006088110 A1 WO2006088110 A1 WO 2006088110A1
Authority
WO
WIPO (PCT)
Prior art keywords
protein
carbonic acid
fixation
reaction
polypeptide
Prior art date
Application number
PCT/JP2006/302773
Other languages
English (en)
French (fr)
Inventor
Miho Aoshima
Hideki Tohda
Yuko Hama
Original Assignee
Asahi Glass Company, Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Company, Limited filed Critical Asahi Glass Company, Limited
Priority to JP2007503716A priority Critical patent/JPWO2006088110A1/ja
Priority to EP06713914A priority patent/EP1852509A4/en
Publication of WO2006088110A1 publication Critical patent/WO2006088110A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/40Preparation of oxygen-containing organic compounds containing a carboxyl group including Peroxycarboxylic acids
    • C12P7/44Polycarboxylic acids

Definitions

  • the present invention relates to a novel protein that promotes the progress of a reductive carbonic acid fixation reaction by isokenate dehydrogenase, a method for producing the protein, or a carbonic acid fixation method using the protein. Furthermore, the present invention relates to a peptide or polypeptide having the whole or part of the amino acid sequence of the protein, a polynucleotide encoding the peptide or polypeptide, a recombinant vector containing the polynucleotide, and a recombinant vector. The present invention relates to a transformed transformant and a method for producing a peptide or polypeptide using the transformant.
  • Isocitrate dehydrogenase is an enzyme that catalyzes the oxidative decarboxylation reaction of isocitrate to 2-oxoglutarate, and is widely distributed in the biological world. Since carbon dioxide, one of the reaction products of this enzyme, is released from the reaction system immediately after the reaction, the reverse reaction (reductive carbonic acid fixation reaction) hardly proceeds. 2-oxodaltalic acid power Reduction to isochenic acid is also very disadvantageous in terms of energy. There are reports that this enzyme catalyzes the reverse reaction (reductive carbonic acid fixation reaction), but in either case, the efficiency is very low (Non-Patent Documents 1-3).
  • Non-patent document 1 Hathaway, JA, and Atkinson, DE (1963) The effect of ade nylic acid on yeast nicotinamide adenine dinucleotide isocitrate dehydrogenas e, a possible metabolic control mechanism.J. Biol. Chem. 238, 2875—2881.
  • Patent Document 2 Sanwal, B. D "Zink, M. W” and Stachow, CS (1964) Nico tinamide adenine dinucleotide—specific isocitric dehydrogenase. J. Biol. Chem.
  • An object of the present invention is to provide a novel protein that efficiently proceeds with a reductive carbonic acid fixation reaction by isocitrate dehydrogenase, and a method for efficiently producing the protein, and to promote the carbonic acid fixation reaction efficiently using the protein. It is to provide a method of making it happen.
  • the subject of the present invention is a peptide or polypeptide having all or part of the amino acid sequence of the protein, a polynucleotide encoding the peptide or polypeptide, a recombinant vector containing the polynucleotide, and the recombination It is an object of the present invention to provide a transformant transformed with a vector and a method for producing a peptide or polypeptide using the transformant.
  • the gist of the present invention is as follows.
  • Carbonic acid fixation-promoting protein which has the effect of promoting the reductive carbonic acid fixation reaction of 2-oxyglutaric acid from isoxenic acid dehydrogenase to 2-hydroxyglutaric acid, and contains two subunits with a molecular weight of about 72kDa and a molecular weight of about 49kDa.
  • a polypeptide comprising an amino acid sequence in which one or more amino acids are substituted, deleted, inserted, and Z or added in the amino acid sequence set forth in SEQ ID NO: 1.
  • a polypeptide comprising an amino acid sequence having 70% or more homology with the amino acid sequence set forth in SEQ ID NO: 1.
  • An approximately 49 kDa subunit of a protein having a carbonic acid fixation-promoting activity comprising the sequence described in any one of (1) to (4) below.
  • a polypeptide comprising an amino acid sequence in which one or more amino acids are substituted, deleted, inserted, and Z or added in the amino acid sequence of SEQ ID NO: 3.
  • a polypeptide comprising an amino acid sequence having 70% or more homology with the amino acid sequence set forth in SEQ ID NO: 3
  • a method for producing a carbonic acid fixation promoting protein comprising a step of culturing the transformed cell according to item 7 and recovering the expressed protein.
  • a carbonic acid fixation-promoting protein comprising the carbonic acid fixation-promoting protein subunit of item 2 and the carbonic acid fixation-promoting protein subunit of item 4.
  • a carbonic acid immobilization method characterized by accelerating a reductive carbonic acid immobilization reaction of isocitrate dehydrogenase using the carbonic acid immobilization promoting protein according to item 1 or item 9. The invention's effect
  • novel protein that promotes the progress of the reductive carbon fixation reaction of isokenate dehydrogenase, and the novel protein promotes the enzyme reaction by isotaenoic acid dehydrogenase in the direction of carbon fixation.
  • FIG. 1 shows a restriction enzyme map around the carbon fixation reaction promoting protein gene (cfiAB) derived from Hydrogenobacter thermophilus TK-6. There is another open reading (orfl) upstream of the gene. (Example 2)
  • FIG. 2 A figure showing that 1.5 g (lane 1) of a recombinant carbonic acid fixation-promoting protein purified from E. coli was subjected to 10% SDS-PAGE and stained with Kumashi. Lane M is a size marker. (Example 4)
  • a size marker (lane M), recombinant carbonate fixation reaction promoting protein 1.
  • (lane 1) recombinant carbonate fixation reaction promoting protein 0. 3 i ug
  • (lane 2) 10% SDS-PAGE It was used for.
  • the lane M and lane 1 of the gel after electrophoresis were stained with Kumashi.
  • the lane 2 portion of the gel after electrophoresis was plotted on a PVDF membrane, and the color of the pyotiny polypeptide was developed using a streptavidin-HRP conjugate.
  • the figure shows a combination of the electrophoretic positions of the area where Kumasi-staining was performed (lane M and lane 1) and the area where western blotting was performed (lane 2).
  • Example 6 Example 6
  • FIG. 6 shows the results of molecular weight measurement using a Superose 6 column.
  • the black circles in the figure indicate the elution positions of the five proteins contained in the Bio-Rad gel filtration standard.
  • the arrow in the figure indicates the elution position of the carbonic acid fixation reaction promoting protein. (Example 7)
  • FIG. 8 shows the pH dependence of a carbon fixation reaction using a carbon fixation promoting protein.
  • FIG. 9 shows the temperature dependence of carbonic acid fixation reaction using a carbonic acid fixation reaction promoting protein.
  • the carbonic acid fixation reaction rate was measured by changing the reaction temperature to 40 ° C, 50 ° C, 60 ° C, 70 ° C, 80 ° C, 90 ° C. (Example 10)
  • FIG. 10 shows the heat resistance of the carbonic acid fixation reaction promoting protein. 50 carbon fixation-promoting proteins. C, 60. C, 70. C, 72. C, 76. C, 78. C, 80. C, 90. C, 95. The residual activity after heat treatment at C for 10 minutes was measured at 70 ° C. (Example 11)
  • FIG. 11 Shows S-V curves obtained by varying the 2-oxodaltalic acid concentration from 0.2 mM to 5 mM. (Example 12)
  • FIG. 13 Shows S–V curves obtained by changing NaATP concentration to 10 mM and varying magnesium sulfate concentration from 2 mM to lOO mM.
  • Example 12 [Fig.14] Shows the SV curve obtained when the magnesium sulfate concentration was fixed at 10 mM and the NaATP concentration was varied from 0.2 mM to 20 mM.
  • the novel protein of the present invention has an activity of causing an enzymatic reaction by isocitrate dehydrogenase to proceed in the direction of carbonic acid fixation (hereinafter also referred to as carbonic acid fixation promoting protein).
  • carbonic acid fixation promoting protein has the activity of promoting the reductive carbonic acid fixation reaction from 2-oxoglutaric acid to isocitrate by isokenate dehydrogenase.
  • This carbonic acid fixation promoting protein can be purified by Hydrogeno bacter thermophilus TK-6 strain.
  • the origin is not particularly limited as long as it is a protein having the activity.
  • This carbonic acid fixation promoting protein is a protein consisting of subunit structures of about 72 kDa and about 49 kDa by SDS-PAGE analysis, and is a protein containing these subunits in a ratio of 1: 1.
  • the carbonic acid fixation-promoting protein derived from Hydrogenobacter thermophilus TK-6 strain of the present invention is composed of the amino acid sequences shown in SEQ ID NO: 1 and SEQ ID NO: 3.
  • the amino acid sequence of the carbonic acid fixation promoting protein of the present invention is about 72 kDa subunit of the protein having carbonic acid fixation promoting activity described in SEQ ID NO: 1 in the sequence listing and about 49 kDa of the protein having carbonic acid fixation promoting activity described in SEQ ID NO: 3.
  • the polypeptide of the present invention is selected from polypeptides containing at least a part of the polypeptide set forth in SEQ ID NO: 1 or 3 in the sequence listing.
  • the selected polypeptide is about 40% or more, preferably about 70% or more, more preferably about 80% or more on the amino acid sequence of the polypeptide shown in SEQ ID NO: 1 or 3 in the sequence listing.
  • polypeptides having this homology can be selected using as an index whether each subunit of the protein having carbonic acid fixation promoting activity can be selected. This activity can be measured by the method described in Example 5.
  • Techniques for determining amino acid sequence homology are known per se, such as a method for directly determining the amino acid sequence, a method for determining the amino acid sequence encoded after determining the nucleotide sequence of cDNA, and the like.
  • the polypeptide of the present invention includes a polypeptide having a partial sequence of the polypeptide set forth in SEQ ID NO: 1 or 3 in the sequence listing, and these can be used as, for example, a reagent, a standard substance, or an immunogen.
  • the minimum unit is an amino acid sequence composed of 8 or more amino acids, preferably 10 or more amino acids, more preferably 12 or more, and even more preferably 15 or more consecutive amino acids, preferably immune.
  • Polypeptides that can be identified scientifically are the subject of the present invention.
  • peptides can be combined with a reagent or standard substance, or an antigen for producing an antibody specific for the carbonic acid fixation promoting protein of the present invention alone or with a carrier (for example, keyhole limpet hemocyanin or ovalbumin).
  • a carrier for example, keyhole limpet hemocyanin or ovalbumin.
  • the presence of an activity that causes the enzymatic reaction by isocitrate dehydrogenase to proceed in the direction of carbonic acid fixation is used as an index, so that 1 or more, for example 1 to: LOO, preferably It also has an amino acid sequence ability having mutations such as deletion, substitution, addition or insertion of 1 to 30, more preferably 1 to 20, more preferably 1 to 10, particularly preferably 1 to several amino acids.
  • Polypeptides are also provided. Deletion, substitution, addition or insertion means are known per se, for example, site-directed mutagenesis, gene homologous recombination, primer extension, or polymerase chain amplification (PCR) alone or in appropriate combination.
  • the activity of causing the enzyme reaction by isocitrate dehydrogenase to proceed in the direction of carbonic acid fixation similar to the protein composed of the polypeptide represented by the amino acid sequences of SEQ ID NO: 1 and SEQ ID NO: 3 in the sequence listing.
  • a polypeptide having a minimal activity unit (region or domain) is also provided, but in addition, a polypeptide with altered activity intensity is provided. These are useful, for example, for screening a substance having an activity of causing an enzymatic reaction by isocitrate dehydrogenase to proceed in the direction of carbonic acid fixation.
  • another protein such as alkaline phosphatase, ⁇ -galactosidase, IgG, etc. on the N-terminal side or C-terminal side.
  • another protein such as alkaline phosphatase, ⁇ -galactosidase, IgG, etc. on the N-terminal side or C-terminal side.
  • the immunoglobulin Fc fragment or FLAG-t ag like peptide directly or via a linker one peptide or added by using an indirect genetic engineering technique or the like is easy to those skilled in the art, these other Polypeptides to which substances are bound are also encompassed within the scope of the present invention.
  • the polynucleotide of the present invention and its complementary strand comprise the polynucleotide encoding the amino acid sequence of the polypeptide of the present invention, for example, the amino acid sequence set forth in SEQ ID NO: 1 or SEQ ID NO: 3 in the sequence listing, and It means the complementary strand to the polynucleotide.
  • the sequence representing the polynucleotide means SEQ ID NO: 2 or SEQ ID NO: 4 or the complementary strand to these polynucleotides.
  • the present invention provides an amino acid sequence of the polypeptide of the present invention, for example, a nucleotide encoding the amino acid sequence of SEQ ID NO: 1 or SEQ ID NO: 3 in the sequence listing, preferably the base of SEQ ID NO: 2 or SEQ ID NO: 4 of the sequence listing.
  • a polynucleotide that is hybridized under stringent conditions to the corresponding region of the polynucleotide indicated by the sequence or its complementary strand is provided.
  • the conditions for the hybridization can be found in Sambrook et al. Lal Cloning, Laboratory Manual 2nd edition] Cold Spring November Laboratory, (1989).
  • polynucleotides do not necessarily have a complementary sequence as long as they hybridize to the target polynucleotide, particularly the polynucleotide shown by the nucleotide sequence of SEQ ID NO: 2 or SEQ ID NO: 4 in the sequence listing or a complementary strand thereof. .
  • at least about 40% for example, about 70% or more, preferably about 80% or more in terms of homology to the polynucleotide represented by the nucleotide sequence of SEQ ID NO: 2 or SEQ ID NO: 4 in the sequence listing or a complementary sequence thereof. More preferably, it is about 90% or more, more preferably about 95% or more.
  • polynucleotide of the present invention is a polynucleotide having a sequence capacity of 10 or more nucleotides corresponding to a designated nucleotide sequence region, preferably 15 or more, more preferably 20 or more, and most preferably 30 or more. Includes nucleotides, oligonucleotides and their complementary strands.
  • polynucleotides are used as a probe or primer for detecting a nucleic acid encoding a carbon fixation promoting protein, for example, its gene, or mRNA, or for regulating gene expression in the production of the polypeptide of the present invention. It is useful as an antisense oligonucleotide.
  • the determination of the base sequence encoding the carbonic acid fixation promoting protein or the polypeptide having the same activity is carried out by, for example, confirming the expressed protein using a known protein expression system, and its physiological activity, particularly isocitrate dehydrogenase. This can be done by further selective U using the activity of the enzymatic reaction in the direction of carbon dioxide fixation as an index.
  • the carbonic acid fixation promoting protein may be constructed by expressing it separately from the polynucleotide sequence encoding the two subunits, but more preferably by binding the polynucleotide sequence encoding the two subunits. It may be constructed by co-expression.
  • the present invention relates to prokaryotic cells such as Escherichia coli, Bacillus subtilis, eukaryotic cells such as budding yeast, fission yeast, and filamentous fungi, and known hosts such as insect cells 'animal cells' plant cells or insect 'animal' plants.
  • prokaryotic cells such as Escherichia coli, Bacillus subtilis, eukaryotic cells such as budding yeast, fission yeast, and filamentous fungi
  • known hosts such as insect cells 'animal cells' plant cells or insect 'animal' plants.
  • the carbon fixation-promoting protein of the present invention and a polypeptide having a derived property can be provided.
  • the E. coli system was used, but it is needless to say that the present invention is not limited thereto. Transformation For the conversion, a means known per se is applied.
  • a host is transformed using a plasmid, a chromosome, a virus or the like as a levicon.
  • a more preferable system is the use of an autonomous replication system using an extra-nuclear gene for the force of integration into the chromosome, taking into account the stability of the gene.
  • the vector is selected according to the type of host selected, and comprises a gene sequence for expression and a gene sequence carrying information on replication and control.
  • the combinations are classified by prokaryotic cells and eukaryotic cells, and promoters, ribosome binding sites, terminators, signal sequences, enhancers and the like can be used in combination by methods known per se.
  • the transformant is cultivated by selecting conditions optimal for the culture conditions of each known host. Cultivation may be performed using as an index the activity of advancing the enzymatic reaction of isophosphonate dehydrogenase in the carbonate fixation-promoting protein expressed and produced and the polypeptide derived from it in the direction of carbonic acid fixation. It may be produced by subculture or batch using the body weight as an index.
  • the carbon fixation-promoting protein of the present invention can be directly purified from the cell force of the species producing the protein, but can also be obtained as a recombinant by expressing a gene encoding the protein in a heterologous host.
  • a gene encoding the amino acid sequence of the carbonic acid fixation promoting protein derived from the Hydrogenobacter thermophilus TK-6 strain shown in SEQ ID NO: 1 and SEQ ID NO: 3 and part of the amino acid sequence shown in SEQ ID NO: 1 and SEQ ID NO: 3 are missing.
  • the gene encoding the substituted or added amino acid sequence may be expressed in a heterologous host, and the carbonic acid fixation promoting protein may be recovered from the recombinant body.
  • the carbon fixation-promoting protein of the present invention can be purified from a culture by culturing cells that produce the protein, or by culturing host cells that have expressed a gene encoding the protein.
  • Carbonic acid fixation-promoting protein derived from Hydrogenobacter thermophilus TK-6 should be applied to the cell extract of the bacterium by hydrophobic chromatography, affinity chromatography, anion exchange column chromatography, and Genore filtration column chromatography.
  • this protein is expressed using E. coli as a host, the cell extract is heat-treated and then subjected to hydrophobic chromatography and anion. Purification can be done by exchange column chromatography.
  • the purification method of the protein is not limited to this, and any method can be used.
  • a carbonic acid fixation promoting protein obtained by the method described above is added to a reaction solution containing 2-oxodaltalic acid, sodium bicarbonate, NADH, MgATP, and isocitrate dehydrogenase, and incubated. Carry out the carbon fixation reaction.
  • the screening method for a novel carbon fixation-promoting protein of the present invention can be carried out by using a reductive carbon fixation reaction from 2-oxodaltaric acid to isosuccinic acid of isocitrate dehydrogenase as a marker.
  • the elution fraction was dialyzed against a 20m MTris-HCl (pH 8.0) solution, ammonium sulfate was added to 30% saturation and applied to a Butyl Toyopearl (Tosohichi) column. After thoroughly washing the column with 2OmM Tris-HCl (pH 8.0) solution containing 30% saturated ammonium sulfate, 30% And eluted with ammonium sulfate gradient. The obtained active fraction was dialyzed against a 20 mM Tris-HCl (pH 8.0) solution, then applied to an AF Brute Yopal (Tosohichi) column, and the flow-through fraction was applied to a MonoQ (Pharmacia) column. .
  • the column was thoroughly washed with 20 mM Tris-HCl (pH 8.0) solution and then eluted with a NaCl gradient from 0 M to 0.5 M.
  • the obtained active fraction was applied to a Superose 6 (Pharmacia) column equilibrated with a 20 mM Tris-HCl (pH 8.0) solution containing 200 mM NaCl.
  • the obtained active fraction was dialyzed against 10 mM potassium phosphate buffer (PH7.5) to obtain 3 mg of purified protein.
  • PH7.5 potassium phosphate buffer
  • this protein consists of two types of subunits. Subunits separated by SDS-PAGE were blotted onto PVDF membrane (Bio-Rad, Sequi-Blot) and subjected to amino acid sequencer (Applied Biosystems model 491). From the large subunit, MQAVEIMEEIREKFKEFEKGGFRKKILITD (SEQ ID NO: 5 ), And from the small subunit, MFKKVLVANRGEIA (C) RVIRA (C) KELGIQ TVA (SEQ ID NO: 6 in the sequence listing) was obtained.
  • Example 2 Isolation and structure determination of a gene encoding a carbon fixation-promoting protein
  • 5'-ATG TTYAARAARGTNYTNGTNGCNA SEQ ID NO: 7 in the sequence listing
  • a sequence primer was synthesized, and based on the N-terminal amino acid sequence of the large carbonate-fixing reaction-promoting protein, 5 CYTTYTCRAAYTCYTTRAAYTTYTC (SEQ ID NO: 8 in the sequence listing) -3' and V, A reverse primer having a sequence was synthesized.
  • PCR was performed using genomic DNA derived from Hydrogenobacter thermophilus TK-6 as a saddle.
  • genomic DNA derived from Hydrogenobacter thermophilus TK-6
  • the nucleotide sequence of the obtained PCR fragment was confirmed, it was revealed that it contained a small subunit gene for a carbon fixation reaction promoting protein.
  • this PCR fragment was used as a probe and the genomic library of Hydrogenobacter thermophilus TK-6 was screened, a fosmid clone that hybridized with the probe was obtained.
  • the nucleotide sequence of the 4184 bp region containing both subunit genes of the carbonic acid fixation reaction promoting protein was determined from both directions.
  • Fig. 1 shows the restriction enzyme map of the region where the nucleotide sequence was determined. Carbonic acid fixation reaction The gene sequences of both subunits of the promoter protein are shown in SEQ ID NO: 2 and SEQ ID NO: 4, and the amino acid sequences obtained by translating them are shown in SEQ ID NO: 1 and SEQ ID NO: 3.
  • PCR includes 5′-TTGATAAAAACTCTAGAGGTGTAGTACAT (SEQ ID NO: 11 in the Sequence Listing)-3 ′ Howard Plummer, 5 -GGTAAGGCTTCTCGA GATGGTTCAG (SEQ ID NO: 12 in the Sequence Listing) -3 ′ and! /
  • the Xbal site was introduced upstream of the gene start codon and the Xhol site was introduced downstream of the gene stop codon.
  • the amplified PCR fragments are ligated to a plasmid vector (pBluescript, Stratagene) to confirm the nucleotide sequence, and one clone without a PCR error (one plasmid clone containing a carbonic acid fixation reaction promoting protein small subunit gene) Then, one plasmid clone containing the large subunit gene of the carbon fixation reaction promoting protein was selected. From the obtained plasmid clone, the small subunit gene of the carbon fixation reaction promoting protein was isolated as an Ndel-Xbal fragment and the large subunit gene of the carbon fixation reaction promoting protein was isolated as an Xbal-Xhol fragment, and the expression vector pET21c (Novagen) was isolated. Nd el—Linked between Xhol sites. The resulting expression vector was named pET21-CFI.
  • PET21-CFI was introduced into E. coli BL21 (DE3), and the resulting transformant was inoculated into 50 ml of 2XYT medium containing ampicillin. Culture at 37 ° C with shaking and use this as the pre-culture solution . Add ampicillin to 1.5 liters of 2 XYT medium with 50 ml of the preculture and incubate for 3 hours at 37 ° C. Then, add IPTG to a final concentration of 0.5 mM and continue for 3 hours. Shake culture was performed at 37 ° C.
  • the obtained cells were suspended in 30 ml of a 20 mM Tris-HCl (pH 8.0) solution containing ImM magnesium chloride (hereinafter referred to as “magnesium chloride-containing buffer”) and subjected to ultrasonic crushing.
  • the obtained suspension was covered with ATP to a final concentration of ImM and heat-treated at 75 ° C. for 20 minutes.
  • the supernatant obtained by removing insolubles by centrifugation (15,000 g, 20 minutes) was diluted 6-fold with a buffer containing magnesium chloride and then applied to a DE52 (Whatman) column. The column was washed with a salt-magnesium-containing buffer and then eluted with a salt-magnesium-containing buffer containing 1 M NaCl.
  • Ammonium sulfate was added to the eluted fraction so as to be 30% saturated, and applied to a Butyl Toyopearl (Tosohichi) column.
  • the column was thoroughly washed with a buffer containing magnesium chloride containing 30% saturated ammonium sulfate and then eluted with an ammonium sulfate gradient from 30% to 0% saturation.
  • the obtained active fraction was dialyzed against a buffer solution containing magnesium chloride and then applied to a DEAE Toyopearl (Tosohichi) column.
  • the ram was thoroughly washed with a buffer containing magnesium chloride and then eluted with a NaCl gradient from 0M to 0.5M.
  • the obtained active fraction was dialyzed against a buffer solution containing magnesium chloride and applied to a MonoQ (Pharmacia) column. The column was thoroughly washed with a buffer solution containing magnesium chloride, and then eluted with a NaCl gradient from 0M to 0.5M. The obtained active fraction was dialyzed against 10 mM Tris-HCl (pH 8.0) solution to obtain 1.7 mg of purified protein.
  • the purified recombinant carbonic acid fixation reaction-promoting protein was subjected to SDS-PAGE, two bands of about 72 kDa and about 49 kDa were detected, and the molar ratio was 1: 1 (FIG. 2).
  • the activity of carbon fixation reaction-promoting protein is 100mMBicine-KOH (pH8.5) buffer solution, 5OmM sodium bicarbonate, 5mM2-oxoglutaric acid, 5mMMgATP, 4mMNADH, succinate dehydrogenase (from Hydrogenobacter thermophilus TK-6 strain, E. coli) (Using purified recombinant enzyme)
  • the reaction solution containing 14 ⁇ g was measured at 200 ⁇ ⁇ 70 ° C.
  • the reaction solution excluding MgATP was placed in a small glass test tube, preincubated at 70 ° C for 2 minutes, and MgATP was added to start the reaction.
  • reaction solution was placed in a molecular weight 5000 cut cartridge (Ultra Free MC, Millipore).
  • the resulting low molecular weight fraction was appropriately diluted with MilliQ water (Millipore) and ion chromatograph (Dionex DX500, column IonpacASll, suppressor ASRS Ultra
  • Fig. 4 shows the chromatogram obtained by allowing the reaction to proceed for 6 minutes, then diluting the low molecular weight fraction of the reaction solution 3 times and subjecting it to chromatography.
  • the production of isochenoic acid was dependent on the reaction time, and was dependent on the amount of the carbon fixation-promoting protein added. As the reaction progressed, ATP hydrolysis was observed. When the carbonic acid fixation reaction-promoting protein was not added, the formation of isocitrate was not observed.
  • the carbon fixation reaction-promoting action of the carbon fixation reaction-promoting protein was completely inhibited by 1U avidin (Sigma) -added powder. Therefore, it was suggested that the carbonic acid fixation reaction-promoting protein is piotin protein. Accordingly, after being subjected to 0. 3 i ug recombinant carbonate fixation reaction promoting protein purified to 10% SDS-PAGE, PVDF membrane (Bio-Rad, Sequi- Blot) blotted to streptavidin one HRP conjugate (Pharmacia) Attempted to detect biotinylated polypeptide using, a single band was detected (Fig. 5, lane 2).
  • the carbonic acid fixation reaction-promoting protein elutes faster than Thyloglobulin (670 kDa), which has the highest molecular weight among gel filtration standards.
  • the elution position of the carbonic acid fixation reaction promoting protein is shown by the arrow in FIG.
  • the carbonation-fixing reaction-promoting protein purified from Hydrogenobacter thermophilus TK-6 and the recombinant carbon-fixing reaction-promoting protein purified from E. coli were the same, and the elution position force was calculated from 900 to 1000 kDa. there were. This value is not accurate because it exceeds the calibration curve range of the gel filtration standard. However, it was suggested that this carbon fixation reaction-promoting protein has a huge complex structure.
  • Isoelectric focusing was performed to estimate the isoelectric point of the carbonic acid fixation reaction promoting protein.
  • the gel used for swimming was 4. 85% acrylamide, 0.15% N, N, -methylenebisacrylamide, 16.9% glycerin, 2. 67% Ampholine (Pharmacia, pH 4.0-6.5 blended) This was prepared by polymerizing a liquid consisting of As the electrophoresis apparatus, Resormax IEF (Atoichi, AE-3230) was used. A 0.5M phosphoric acid solution containing 0.1M glutamic acid was used for the anode electrode solution, and a 0.1 ⁇
  • the carbon fixation reaction was allowed to proceed under various pH conditions.
  • the reaction solution was prepared.
  • the reaction was lOOmMBicine-KOH buffer, 50 mM sodium bicarbonate, 5 mM 2-oxoglutaric acid, 5 mM MgATP, 4 mM NADH, isocitrate dehydrogenase (derived from Hydrogenobacter thermophilus TK-6, using recombinant enzyme purified from Escherichia coli), carbonate
  • the reaction was carried out at 70 ° C in 200 ⁇ l of the reaction solution containing 2.3 ⁇ g of the immobilized reaction promoting protein.
  • the reaction solution was placed in a small glass test tube and incubated at 70 ° C for 4 minutes, and then the small test tube was ice-cooled to stop the reaction.
  • the amount of isocitrate formed in the reaction solution was quantified by ion chromatography, and the carbonic acid fixing activity was measured.
  • the stock strength at pH 6.5 and the reaction strength were adjusted to PH 7.25 and pH 7.0.
  • PH 7.38, pH 7.5 stock strength When preparing a reaction solution pH 7.45, pH 8.0 stock reaction solution prepared PH 7.67, pH 8.5 stock strength
  • the stock strength of pH 8.07 and pH 9.0 was also pH 8.42 when the reaction solution was prepared, and the stock strength of pH 9.5 was PH 8.85 when the reaction solution was prepared. . Fig.
  • the reaction was lOOmMBicine-KO H (pH 8.5) buffer solution, 50 mM sodium bicarbonate, 10 mM 2-oxoglutaric acid, 10 mM MMgATP, isochenoic acid dehydrogenase (using recombinant enzyme purified from Hydrogenobacter thermophilus TK-6, also purified from E. coli) 18 / ⁇ , 0.2 mM NADH
  • the reaction was performed in a reaction solution 250 1 containing a recombinant carbonic acid fixation reaction promoting protein (2.3 to 5.7 / zg).
  • the carbon fixation reaction-promoting protein was heat-treated at various temperatures for 10 minutes and then the carbon fixation reaction proceeded.
  • 50 mM HEPES-KOH buffer solution (pH 7.5) containing 250 g / ml recombinant carbon fixation reaction promoting protein was prepared, and 50 1 each was dispensed into 1.5 ml tubes (manufactured by Treff). 50 of these tubes.
  • the carbonate fixation reaction was carried out using lOOmMBicine-KOH (pH 8.5) buffer solution, 50 mM sodium bicarbonate, 10 mM 2-oxoglutaric acid, 10 mM MGATP, isocitrate dehydrogenase (derived from Hydrogenobacter thermophilus TK-6, purified from Escherichia coli (Using enzyme) Reaction solution containing 18 ⁇ g was performed at 250 to 70 ° C.
  • FIG. 10 shows the results of plotting the relationship between the heat treatment temperature and the residual activity, with the activity before heat treatment being 100%. This protein remained approximately 90% active even after heat treatment at 70 ° C for 10 minutes. Therefore, the thermal stability of this protein was shown. In addition, the profile power obtained was estimated to be about 78.3 ° C when the temperature at which 50% of the protein was inactivated was estimated. (Example 12: Measurement of kinetic parameters)
  • the carbon fixation reaction proceeded with varying concentrations of 2-oxodaltalic acid and MgATP.
  • the reaction was 100 mM Bicine-KOH (pH 8.5) buffer, 50 mM sodium bicarbonate, 2-oxoglutarate, MgATP, isocitrate dehydrogenase (derived from Hydrogenobacter thermophilus TK-6, using recombinant enzyme purified from E. coli) 18 / ⁇ , 0.2 ⁇ M NADH, and a reaction solution containing 3.7 ⁇ g of carbonic acid fixation reaction promoting protein was performed at 250 ⁇ ⁇ 70 ° C.
  • the reaction solution excluding NADH and carbonate fixation promoting protein was preincubated for 5 minutes, then NADH and carbonate fixation promoting protein were added to start the reaction, and the decrease in absorption at 340 nm (first minute) was measured.
  • the activity of oxidizing L mol NADH was defined as 1 unit.
  • the present invention is the first discovery of a protein for allowing the catalytic reaction of the present enzyme to proceed in the direction of carbonic acid fixation.
  • the enzyme reaction by isocitrate dehydrogenase can be promoted in the direction of carbonic acid fixation according to the present invention, it can be applied to a technology for producing biomass using diacid-carbon, which is useful for solving the carbon dioxide problem. It should be noted that the entire contents of the description, claims, drawings and abstract of Japanese Patent Application 2005-042671 filed on February 18, 2005 are cited here as disclosure of the specification of the present invention. Incorporate.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Microbiology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Enzymes And Modification Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Peptides Or Proteins (AREA)

Abstract

 イソクエン酸デヒドロゲナーゼによる還元的炭酸固定反応を効率よく進行させる新規なタンパク質、及び該タンパク質を効率よく製造する方法を提供するとともに、該タンパク質を用いて効率よく炭酸固定反応を進行させる方法を提供する。  Hydrogenobacter thermophilus TK-6株からイソクエン酸デヒドロゲナーゼによる還元的炭酸固定反応を効率よく進行させる新規なタンパク質を見出し、該タンパク質をコードする遺伝子の構造を明らかにし、該タンパク質のアミノ酸配列を明らかにした。さらに、該タンパク質をコードする遺伝子を大腸菌内で大量発現させることにより、該タンパク質を組換え体として効率的に得る方法を明らかにした。さらに、該タンパク質を用いることにより、イソクエン酸デヒドロゲナーゼによる酵素反応を炭酸固定方向に効率的に進行させることができることを明らかにした。

Description

明 細 書
新規な炭酸固定促進タンパク質、及び該タンパク質を用いた炭酸固定方 法
技術分野
[0001] 本発明は、イソクェン酸デヒドロゲナーゼによる還元的炭酸固定反応の進行を促進 させる新規なタンパク質、該タンパク質の製造方法、若しくは該タンパク質を利用した 炭酸固定方法に関する。さらに本発明は、該タンパク質のアミノ酸配列の全部又は一 部を有するペプチド又はポリペプチド、該ペプチド又はポリペプチドをコードするポリ ヌクレオチド、該ポリヌクレオチドを含有する組換えベクター、該組換えベクターで形 質転換された形質転換体、該形質転換体を使ったペプチド又はポリペプチドの製造 方法に関する。
背景技術
[0002] イソクェン酸デヒドロゲナーゼは、イソクェン酸から 2-ォキソグルタル酸への酸化的 脱炭酸反応を触媒する酵素であり、生物界に広く分布する。本酵素の反応産物の一 つである二酸化炭素は、反応後すぐに反応系外に放出されるため、逆反応 (還元的 炭酸固定反応)はほとんど進行しない。 2-ォキソダルタル酸力 イソクェン酸への還 元的炭酸固定反応は、エネルギー的にも非常に不利である。本酵素が逆反応 (還元 的炭酸固定反応)を触媒したという報告例はあるが、いずれの場合も非常に効率が 悪い (非特許文献 1-3)。
このように、本酵素の可逆性を利用して炭酸固定反応を進行させることは困難であ り、効率が悪い。
非特許文献 1 : Hathaway, J. A., and Atkinson, D.E. (1963) The effect of ade nylic acid on yeast nicotinamide adenine dinucleotide isocitrate dehydrogenas e, a possible metabolic control mechanism. J. Biol. Chem. 238, 2875—2881. 非特許文献 2 : Sanwal, B. D" Zink, M. W" and Stachow, C. S. (1964) Nico tinamide adenine dinucleotide— specific isocitric dehydrogenase. J. Biol. Chem.
239, 1597-1603. 特言午文献 3 : Kanao, Τ·, Kawamura, M., Fukui, Τ·, Atomi, Η·, and Imanaka , T (2002) Characterization of isocitrate dehydrogenase from the green sulf ur bacterium Chlorobium limicola. Eur. J. Biochem. 269, 192b— 1931.
発明の開示
発明が解決しょうとする課題
[0003] イソクェン酸デヒドロゲナーゼの還元的炭酸固定反応の進行を促進させるタンパク 質は、これまでに報告がない。本発明の課題は、イソクェン酸デヒドロゲナーゼによる 還元的炭酸固定反応を効率よく進行させる新規なタンパク質、及び該タンパク質を 効率よく製造する方法を提供するとともに、該タンパク質を用いて効率よく炭酸固定 反応を進行させる方法を提供することにある。さらに本発明の課題は、該タンパク質 のアミノ酸配列の全部又は一部を有するペプチド又はポリペプチド、該ペプチド又は ポリペプチドをコードするポリヌクレオチド、該ポリヌクレオチドを含有する組換えべク ター、該組換えベクターで形質転換された形質転換体、該形質転換体を使ったぺプ チド又はポリペプチドの製造方法を提供することにある。
課題を解決するための手段
[0004] 上記課題を解決するために、本発明では、 Hydrogenobacter thermophilus TK- 6 株からイソクェン酸デヒドロゲナーゼによる還元的炭酸固定反応の進行を促進させる 新規なタンパク質を見出し、本タンパク質をコードする遺伝子の構造を明らかにした。 そして、得られた遺伝子を異種宿主内で大量発現させることにより、本タンパク質を 効率よく製造する方法を見出した。さらに、本タンパク質を用いることにより、イソタエ ン酸デヒドロゲナーゼによる還元的炭酸固定反応を効率よく進行させることができるこ とを見出し、本発明を完成するに至った。
[0005] すなわち、本発明は、下記を要旨とする。
1.イソクェン酸デヒドロゲナーゼの 2—ォキソグルタル酸からイソクェン酸への還元的 炭酸固定反応を促進させる作用を有し、分子量約 72kDaと分子量約 49kDaの 2つ のサブユニットを含む、炭酸固定促進タンパク質。
2.下記の(1)から (4)の ヽずれかに記載の配列からなる炭酸固定促進活性を有す るタンパク質の約 72kDaサブユニット。 (1)配列番号 1に記載のアミノ酸配列からなるポリペプチド
(2)前記(1)のポリペプチドを含有するポリペプチド
(3)配列番号 1に記載のアミノ酸配列において 1若しくは複数のアミノ酸が置換、欠失 、挿入、及び Z又は付加したアミノ酸配列からなるポリペプチド
(4)配列番号 1に記載のアミノ酸配列と 70%以上の相同性を有するアミノ酸配列から なるポリペプチド
3.下記の(1)から(3)の!、ずれかに記載の配列からなる DNA。
(1)前項 2に記載のポリペプチドをコードするポリヌクレオチド又はその相補鎖
(2)配列番号 2に記載の塩基配列からなる DNA又はその相補鎖
(3)上記(1)又は(2)に記載の DNAとストリンジェントな条件下でハイブリダィズする D NA
4.下記の(1)から (4)の ヽずれかに記載の配列からなる炭酸固定促進活性を有す るタンパク質の約 49kDaサブユニット。
(1)配列番号 3に記載のアミノ酸配列からなるポリペプチド
(2)前記(1)のポリペプチドを含有するポリペプチド
(3)配列番号 3に記載のアミノ酸配列において 1若しくは複数のアミノ酸が置換、欠失 、挿入、及び Z又は付加したアミノ酸配列からなるポリペプチド
(4)配列番号 3に記載のアミノ酸配列と 70%以上の相同性を有するアミノ酸配列から なるポリペプチド
5.下記の(1)から(3)の!、ずれかに記載の配列からなる DNA。
(1)前項 4に記載のポリペプチドをコードするポリヌクレオチド又はその相補鎖
(2)配列番号 4に記載の塩基配列からなる DNA又はその相補鎖
(3)上記(1)又は(2)に記載の DNAとストリンジェントな条件下でハイブリダィズする D NA
6.前項 3に記載の DNA、前項 5に記載の DNA、又は、前項 3に記載の DNAと前項 5 に記載の DNAの両者、を担持するベクター。
7.前項 3に記載の DNA、前項 5に記載の DNA、前項 3に記載の DNAと前項 5に記載 の DNAの両者、又は前項 6に記載のベクターを担持する形質転換細胞。 8.前項 7に記載の形質転換細胞を培養し、発現させたタンパク質を回収する工程を 含む炭酸固定促進タンパク質の製造方法。
9.前項 2に記載の炭酸固定促進タンパク質のサブユニットと前項 4に記載の炭酸固 定促進タンパク質のサブユニットを含む炭酸固定促進タンパク質。
10.前項 1又は前項 9に記載の炭酸固定促進タンパク質を用いてイソクェン酸デヒド ロゲナーゼの還元的炭酸固定反応を促進させることを特徴とする炭酸固定方法。 発明の効果
[0006] 本発明によって、イソクェン酸デヒドロゲナーゼの還元的炭酸固定反応の進行を促 進させる新規タンパク質が提供され、そして、この新規タンパク質は、イソタエン酸デ ヒドロゲナーゼによる酵素反応を炭酸固定方向に進行させることができる。 図面の簡単な説明
[0007] [図 l]Hydrogenobacter thermophilus TK- 6由来炭酸固定反応促進タンパク質遺伝 子 (cfiAB)周辺の制限酵素地図を示す。遺伝子上流には別にもう 1つのオープンリ一 デイング (orfl)が存在する。 (実施例 2)
[図 2]大腸菌力も精製した組換え炭酸固定反応促進タンパク質 1. 5 g (レーン 1)を 10%SDS- PAGEに供し、クマシ一染色した図を示す。レーン Mはサイズマーカー である。 (実施例 4)
[図 3]精製した組換え炭酸固定反応促進タンパク質 2. 3 μ gを 200 μ 1の反応液に加 え、 2、 4、 6、 10、 20分間反応を進行させた後の、反応液中のイソクェン酸濃度を示 す。 (実施例 5)
[図 4] (a)精製した組換え炭酸固定反応促進タンパク質 2. 3 μ gを 200 μ 1の反応液に 加え、反応を 6分間進行させた後、反応液の低分子量画分を 3倍希釈し、クロマトダラ フィ一に供して得られたクロマトグラムを示す。矢印 1は重炭酸イオン、矢印 2は 2-ォ キソダルタル酸、矢印 3はリン酸、矢印 4は NADH、矢印 5はイソクェン酸、矢印 6は AD P、矢印 7は ATPの溶出位置を示す。(b) 0. ImMイソクェン酸と 0. ImMADPを含む 標準溶液のクロマトグラムを示す。(実施例 5)
[図 5]サイズマーカー(レーン M)、組み換え炭酸固定反応促進蛋白質 1. (レー ン 1)、組み換え炭酸固定反応促進蛋白質 0. 3 iu g (レーン2)を10%SDS— PAGE に供した。泳動後のゲルのレーン Mとレーン 1の部分はクマシ一染色を行った。泳動 後のゲルのレーン 2の部分は、 PVDF膜にプロットし、ストレプトアビジン一 HRPコン ジュゲートを用いてピオチンィ匕ポリペプチドを発色させた。クマシ一染色を行った領 域(レーン Mとレーン 1)とウェスタンブロットを行った領域(レーン 2)の泳動位置を合 わせた図を示す。(実施例 6)
[図 6]Superose6カラムを用いた分子量測定の結果を示す。図中の黒丸は、 Bio-Rad 社製ゲル濾過スタンダード中に含まれる 5種類の蛋白質の溶出位置を示す。図中の 矢印は、炭酸固定反応促進蛋白質の溶出位置を示す。(実施例 7)
圆 7]大腸菌力 精製した組み換え炭酸固定反応促進蛋白質 4. 5 μ g (レーン 1)と H ydrogenobacter thermophilus TK- 6株から精製した炭酸固定反応促進蛋白質 4. 5 g (レーン 2)を等電点電気泳動に供して得られた泳動図を示す。レーン Mは等電 点マーカーである。(実施例 8)
[図 8]炭酸固定反応促進蛋白質を用いた炭酸固定反応の pH依存性を示す。室温条 件下で pH6. 5、 7. 0、 7. 5、 8. 0、 8. 5、 9. 0、 9. 5に調整した IMBicine- K0H緩 衝液ストックを用いて反応液を調製し、炭酸固定活性を測定した。すべての基質を加 えた反応液を 70°Cに加温した状態で pHを測定し、補正を行った。(実施例 9)
[図 9]炭酸固定反応促進蛋白質を用いた炭酸固定反応の温度依存性を示す。反応 温度を 40°C、 50°C、 60°C、 70°C、 80°C、 90°Cと変化させて炭酸固定反応速度を測 定した。(実施例 10)
[図 10]炭酸固定反応促進蛋白質の耐熱性を示す。炭酸固定反応促進蛋白質を 50 。C、 60。C、 70。C、 72。C、 76。C、 78。C、 80。C、 90。C、 95。Cで 10分間熱処理した後 の残存活性を 70°Cで測定した。(実施例 11)
[図 11]2—ォキソダルタル酸濃度を 0. 2mMから 5mMまでさまざまに変化させて得ら れた S—V曲線を示す。(実施例 12)
[図 12]MgATP濃度を 0. 2mMから 5mMまでさまざまに変化させて得られた S— V 曲線を示す。(実施例 12)
[図 13]NaATP濃度を 10mMに固定し、硫酸マグネシウム濃度を 2mMから lOOmM までさまざまに変化させて得られた S—V曲線を示す。(実施例 12) [図 14]硫酸マグネシウム濃度を 10mMに固定し、 NaATP濃度を 0. 2mMから 20m Mまでさまざまに変化させて得られた S— V曲線を示す。(実施例 12)
発明を実施するための最良の形態
[0008] (新規タンパク質)
本発明の新規タンパク質は、イソクェン酸デヒドロゲナーゼによる酵素反応を炭酸 固定方向に進行させる活性を有する(以下、炭酸固定促進タンパク質とも呼ぶ)。つ まりイソクェン酸デヒドロゲナーゼの 2-ォキソグルタル酸からイソクェン酸への還元的 炭酸固定反応を促進させる活性を有する。本炭酸固定促進タンパク質は Hydrogeno bacter thermophilus TK- 6株力 精製することができる。し力し、該活性を有するタ ンパク質であれば、由来は特に制限されるものではない。本炭酸固定促進タンパク 質は、 SDS-PAGE分析で約 72kDa及び約 49kDaのサブユニット構造からなるタンパク 質であり、これらサブユニットを 1対 1の比で含むタンパク質である。
[0009] (ポリペプチド)
本発明の Hydrogenobacter thermophilus TK-6株由来の炭酸固定促進タンパク質 は配列番号 1及び配列番号 3に示すアミノ酸配列からなるものである力 イソクェン酸 デヒドロゲナーゼによる酵素反応を炭酸固定方向に進行させる活性を有するタンパク 質であれば、このアミノ酸配列に限定されるものではな!/、。
本発明の炭酸固定促進タンパク質のアミノ酸配列は、配列表の配列番号 1に記載 の炭酸固定促進活性を有するタンパク質の約 72kDaサブユニット及び配列番号 3に 記載の炭酸固定促進活性を有するタンパク質の約 49kDaサブユニットからなるポリべ プチドである。さらに本発明のポリペプチドは、該配列表の配列番号 1又は配列番号 3に記載のポリペプチドの少なくとも一部分を含有するポリペプチドから選択される。 その選択されるポリペプチドは、配列表の配列番号 1又は配列番号 3に記載のポリべ プチドと、アミノ酸配列上で約 40%以上、好ましくは約 70%以上、より好ましくは約 8 0%以上、さらに好ましくは約 90%以上、特に好ましくは約 95%以上の相同性を有 する。この相同性をもつポリペプチドの選択は、炭酸固定促進活性を有するタンパク 質の各サブユニットでありうるかどうかを指標にして選択可能である。この活性は実施 例 5に記載の方法で測定できる。 アミノ酸配列の相同性を決定する技術は、自体公知であり、例えばアミノ酸配列を 直接決定する方法、 cDNAの塩基配列を決定後これにコードされるアミノ酸配列を推 定する方法等が挙げられる。
本発明のポリペプチドは、配列表の配列番号 1又は配列番号 3に記載のポリべプチ ドの部分配列を有するポリペプチドを包含し、これらは例えば試薬、標準物質、又は 免疫原として利用できる。その最小単位としては 8個以上のアミノ酸、好ましくは 10個 以上のアミノ酸、より好ましくは 12個以上、さらに好ましくは 15個以上の連続するアミ ノ酸で構成されるアミノ酸配列力 なり、好ましくは免疫学的に同定し得るポリべプチ ドを本発明の対象とする。これらのペプチドは、試薬もしくは標準物質、又は本発明 の炭酸固定促進タンパク質に特異的な抗体を作製するための抗原として単独又はキ ャリア(例えば、キーホールリンペットへモシァニン又は卵白アルブミン等)と結合して 使用できる力 これらのように別種のタンパク質又は物質を結合したものも本発明の 範囲に包含される。
さらに、このように特定されたポリペプチドを基にして、イソクェン酸デヒドロゲナーゼ による酵素反応を炭酸固定方向に進行させる活性の存在を指標とすることにより、 1 以上、例えば 1〜: LOO個、好ましくは 1〜30個、より好ましくは 1〜20個、さらに好まし くは 1〜10個、特に好ましくは 1ないし数個のアミノ酸の欠失、置換、付加あるいは挿 入といった変異を有するアミノ酸配列力もなるポリペプチドも提供される。欠失、置換 、付加あるいは挿入の手段は自体公知であり、例えば、部位特異的変異導入法、遺 伝子相同組換え法、プライマー伸長法又はポリメラーゼ連鎖増幅法 (PCR)を単独又 は適宜組み合わせて、例えばサムブルック等編 [モレキュラークローユング,ァ ラボ ラトリーマ-ユアル 第 2版]コールドスプリングノヽーバーラボラトリー, 1989、村松正 實編 [ラボマニュアル遺伝子工学]丸善株式会社, 1988、エールリツヒ, HE.編 [PC Rテクノロジー, DNA増幅の原理と応用]ストックトンプレス, 1989等の成書に記載の 方法に準じて、あるいはそれらの方法を改変して実施することができ、例えば Ulmer の技術(Science, 219, 666, 1983)を禾 lj用すること力 Sできる。
上記のような変異の導入において、当該タンパク質の基本的な性質 (物性、活性、 又は免疫学的活性等)を変化させないという観点力もは、例えば、同族アミノ酸 (極性 アミノ酸、非極性アミノ酸、疎水性アミノ酸、親水性アミノ酸、陽性荷電アミノ酸、陰性 荷電アミノ酸、芳香族アミノ酸等)の間での相互置換は容易に想定される。
本発明にお 、ては、配列表の配列番号 1及び配列番号 3のアミノ酸配列で示される ポリペプチドで構成されるタンパク質と同様のイソクェン酸デヒドロゲナーゼによる酵 素反応を炭酸固定方向に進行させる活性を有するポリペプチド又はその最小活性 単位 (領域もしくはドメイン)も提供されるが、それら以外にも、活性の強度を変更した ポリペプチドが提供される。これらは、例えばイソクェン酸デヒドロゲナーゼによる酵素 反応を炭酸固定方向に進行させる活性を有する物質のスクリーニング等にぉ ヽて有 用である。
さらに、本発明のポリペプチド等の検出もしくは精製を容易にするために、又は別 の機能を付加するために、 N末端側や C末端側に別のタンパク質、例えばアルカリホ スファターゼ、 β ガラクトシダーゼ、 IgG等の免疫グロブリン Fc断片又は FLAG— t ag等のペプチドを直接又はリンカ一ペプチド等を介して間接的に遺伝子工学的手法 等を用いて付加することは当業者には容易であり、これらの別の物質を結合したポリ ペプチド等も本発明の範囲に包含される。
(ポリヌクレオチド)
一つの態様において、本発明のポリヌクレオチドおよびその相補鎖は、本発明のポ リペプチドのアミノ酸配列、例えば配列表の配列番号 1又は配列番号 3に記載のアミ ノ酸配列をコードするポリヌクレオチドおよび該ポリヌクレオチドに対する相補鎖を意 味する。これらは例えば上記炭酸固定促進タンパク質の製造に有用な遺伝子情報を 提供するものであり、あるいは核酸に関する試薬または標準品としても利用できる。 好ま 、ポリヌクレオチドを示す配列は配列番号 2若しくは配列番号 4又はこれらポリ ヌクレオチドに対する相補鎖を意味する。
別の態様において本発明は、本発明のポリペプチドのアミノ酸配列、例えば配列表 の配列番号 1又は配列番号 3のアミノ酸配列をコードするヌクレオチド、好ましくは配 列表の配列番号 2又は配列番号 4の塩基配列で示されるポリヌクレオチドまたはその 相補鎖の対応する領域にストリンジェントな条件下でノヽイブリダィズするポリヌクレオ チドを提供する。ノ、イブリダィゼーシヨンの条件は、例えばサムブルック等編 [モレキュ ラークローニング,ァ ラボラトリーマニュアル 第 2版]コールドスプリングノヽーバーラ ボラトリー, (1989)等に従うことができる。これらのポリヌクレオチドは目的のポリヌク レオチド、特に配列表の配列番号 2若しくは配列番号 4の塩基配列で示されるポリヌ クレオチド又はそれらの相補鎖にハイブリダィズするものであれば必ずしも相補的配 列でなくともよい。例えば、配列表の配列番号 2若しくは配列番号 4の塩基配列で示 されるポリヌクレオチド又はそれらの相補配列に対する相同性において、少なくとも約 40%、例えば、約 70%以上、好ましくは約 80%以上、より好ましくは約 90%以上、さ らに好ましくは約 95%以上である。また本発明のポリヌクレオチドは、指定された塩基 配列の領域に対応する連続する 10個以上のヌクレオチド、好ましくは 15個以上、より 好ましくは 20個以上、最も好ましくは 30個以上の配列力もなるポリヌクレオチド、オリ ゴヌクレオチドおよびそれらの相補鎖を包含する。
これらのポリヌクレオチドは、本発明のポリペプチド等の製造において、炭酸固定促 進タンパク質をコードする核酸、例えば、その遺伝子、もしくは mRNA検出のための プローブもしくはプライマーとして、または遺伝子発現を調節するためのアンチセンス オリゴヌクレオチド等として有用である。ここで、炭酸固定促進タンパク質または同様 の活性を有するポリペプチドをコードする塩基配列の決定は、例えば公知のタンパク 質発現系を利用して発現タンパク質の確認を行 ヽ、その生理活性特にイソクェン酸 デヒドロゲナーゼによる酵素反応を炭酸固定方向に進行させる活性を指標にして選 另 Uすること〖こより行うことができる。
なお、炭酸固定促進タンパク質は、 2つのサブユニットをコードするポリヌクレオチド 配列から別々に発現させて構築してもよいが、より好ましくは 2つのサブユニットをコ ードするポリヌクレオチド配列を結合させて共発現させて構築してもよい。
(形質転換体)
本発明は、大腸菌 ·枯草菌などの原核生物細胞、出芽酵母 ·分裂酵母 ·糸状菌など の真核生物細胞、昆虫細胞'動物細胞'植物細胞あるいは昆虫 '動物'植物などの自 体公知の宿主を利用した遺伝子組換え技術によって、本発明からなる炭酸固定促進 タンパク質およびその由来物力もなるポリペプチドは提供可能である。本発明の具体 例においては、大腸菌系を利用したが、無論これに限定されるものではない。形質転 換は、自体公知の手段が応用され、例えばレブリコンとして、プラスミド、染色体、ウイ ルス等を利用して宿主の形質転換が行われる。より好ましい系としては、遺伝子の安 定性を考慮するならば、染色体内へのインテグレート法である力 簡便には核外遺伝 子を利用した自律複製系の利用である。ベクターは、選択した宿主の種類により選別 され、発現目的の遺伝子配列と複製そして制御に関する情報を担持した遺伝子配列 とを構成要素とする。組合せは原核細胞、真核細胞によって分別され、プロモーター 、リボソーム結合部位、ターミネータ一、シグナル配列、ェンハンサ一等を自体公知 の方法によって組合せて利用できる。
形質転換体は、自体公知の各宿主の培養条件に最適な条件を選択して培養され る。培養は、発現産生される炭酸固定促進タンパク質およびその由来物力もなるポリ ペプチドのイソクェン酸デヒドロゲナーゼによる酵素反応を炭酸固定方向に進行させ る活性を指標にして行ってもよいが、培地中の形質転換体量を指標にして継代培養 またはバッチにより生産してもよい。
[0012] (精製)
本発明の炭酸固定促進タンパク質は、該タンパク質を生産する種の細胞力も直接 精製することもできるが、該タンパク質をコードする遺伝子を異種宿主中で発現させ て組換え体として得ることもできる。例えば配列番号 1及び配列番号 3に示す Hydrog enobacter thermophilus TK- 6株由来の炭酸固定促進タンパク質のアミノ酸配列を コードする遺伝子や、配列番号 1及び配列番号 3に示されるアミノ酸配列の一部が欠 失、置換、若しくは付加されたアミノ酸配列をコードする遺伝子を異種宿主中で発現 させ、炭酸固定促進タンパク質を組換え体力ゝら回収してもよ ヽ。
[0013] 本発明の炭酸固定促進タンパク質は、本タンパク質を生産する細胞を培養し、ある いは本タンパク質をコードする遺伝子を発現させた宿主細胞を培養し、その培養物 から精製することができる。 Hydrogenobacter thermophilus TK- 6株由来の炭酸固 定促進タンパク質は、本菌の細胞抽出液を疎水クロマトグラフィー、ァフィ-ティーク 口マトグラフィー、陰イオン交換カラムクロマトグラフィー、ゲノレ濾過カラムクロマトグラ フィ一にかけることにより、精製することができる。大腸菌を宿主として本タンパク質を 発現させた場合は、細胞抽出液を熱処理した後、疎水クロマトグラフィーと陰イオン 交換カラムクロマトグラフィーにかけることにより、精製することができる。しかし、本タ ンパク質の精製法は、これに限定されるものではなぐどのような方法を用いてもよい
。他に硫酸アンモ-ゥム沈殿、エタノール沈殿、陽イオン交換クロマトグラフィー、ハイ ドロキシアパタイトクロマトグラフィーなどの方法を挙げることができる。
[0014] 本発明の炭酸固定法は、 2-ォキソダルタル酸、重炭酸ナトリウム、 NADH、 MgATP、 イソクェン酸デヒドロゲナーゼを含む反応溶液に上記記載の方法により得られた炭酸 固定促進タンパク質を加えてインキュベートし、炭酸固定反応を進行させることにより 行う。
[0015] 本発明の新規炭酸固定促進タンパク質のスクリーニング法は、イソクェン酸デヒドロ ゲナーゼの 2—ォキソダルタル酸からイソクェン酸への還元的炭酸固定反応をマー カーにして行うことができる。
具体的には、以下の工程を含む。
(1)候補タンパク質、 2—ォキソダルタル酸、重炭素ナトリウム、 NADH、 MgATP、イソ クェン酸デヒドロゲナーゼを含む反応溶液をインキュベートする。
(2)イソクェン酸デヒドロゲナーゼの 2—ォキソグルタル酸からイソクェン酸への還元 的炭酸固定反応を測定する。
実施例
[0016] 以下に記載する実施例は、本発明をさらに詳細に説明するのであるが、本発明の 技術的範囲はこの実施例に限定されるものではない。
[0017] (実施例 1:炭酸固定反応促進タンパク質の精製)
Hydrogenobacter thermophilus TK- 6株の湿菌体 8グラムを 30mlの 20mMTris- HCl(pH8.0)溶液に懸濁し、超音波破砕した。遠心分離(15,000g、 20分間)により不 溶物を除去して得た上清を、 2OmMTris-HCl(pH8.0)溶液に対して透析して脱塩し た後、 DE52 (Whatman)カラムにかけた。カラムを 2OmMTris-HCl(pH8.0)溶液で洗浄 した後、 1M NaClを含む 2OmMTris-HCl(pH8.0)溶液で溶出した。溶出分画を 20m MTris-HCl(pH8.0)溶液に対して透析した後、硫酸アンモ-ゥムを 30%飽和となるよ うに加え、ブチルトヨパール (東ソ一)カラムにかけた。カラムを 30%飽和硫酸アンモ -ゥムを含む 2OmMTris-HCl(pH8.0)溶液で充分洗浄した後、 30%力 0%飽和ま での硫酸アンモ-ゥムグラジェントで溶出した。得られた活性画分を、 20mMTris-H Cl(pH8.0)溶液に対して透析した後、 AFブルートヨパール (東ソ一)カラムにかけ、そ の素通り画分を MonoQ (Pharmacia)カラムにかけた。カラムを 20mMTris- HCl(pH8.0 )溶液で充分洗浄した後、 0Mカゝら 0.5Mまでの NaClグラジェントで溶出した。得られた 活性画分を、 200mMNaClを含む 20mMTris- HCl(pH8.0)溶液で平衡化した Supero se6 (Pharmacia)カラムにかけた。得られた活性画分を、 10mMリン酸カリウム緩衝液( PH7.5)に対して透析し、精製タンパク質 3mgを得た。精製したタンパク質を SDS-PA GEに供したところ、約 72kDaと約 49kDaの 2本のバンドが検出され、そのモル比は 1 : 1であった。したがって、本タンパク質は 2種類のサブユニットから成ることが明らかに なった。 SDS- PAGEにより分離したサブユニットを PVDF膜(Bio- Rad, Sequi- Blot)に ブロットし、アミノ酸シーケンサー(Applied Biosystems model 491)にかけたところ、 大サブユニットからは MQAVEIMEEIREKFKEFEKGGFRKKILITD (配列表の配列番 号 5)という配列が、小サブユニットからは MFKKVLVANRGEIA(C)RVIRA(C)KELGIQ TVA (配列表の配列番号 6) t 、う配列が得られた。
(実施例 2 :炭酸固定反応促進タンパク質をコードする遺伝子の単離と構造決定) 炭酸固定反応促進タンパク質小サブユニットの N末アミノ酸配列に基づき、 5'-ATG TTYAARAARGTNYTNGTNGCNA(配列表の配列番号7) -3'とぃぅ配列をもっホヮー ドプライマ一を合成し、炭酸固定反応促進タンパク質大サブユニットの N末アミノ酸配 列に基づき、 5し CYTTYTCRAAYTCYTTRAAYTTYTC (配列表の配列番号 8) -3'と V、う配列をもつリバースプライマーを合成した。これら 2種類の合成プライマーを用い て、 Hydrogenobacter thermophilus TK- 6株由来のゲノム DNAを铸型とした PCRを 行った。得られた PCR断片の塩基配列を確認したところ、炭酸固定反応促進タンパ ク質小サブユニット遺伝子を含むことが明らかになった。そこで、この PCR断片をプロ ーブとして、 Hydrogenobacter thermophilus TK- 6株ゲノムライブラリをスクリーニン グしたところ、プローブとハイブリダィズするフォスミドクローンが得られた。得られたフ ォスミドクローンのインサート配列(おおよそ 30kbp)のうち、炭酸固定反応促進タンパ ク質の両サブユニット遺伝子を含む 4184bpの領域について、塩基配列を両方向か ら決定した。塩基配列を決定した領域の制限酵素地図を図 1に示す。炭酸固定反応 促進タンパク質の両サブユニットの遺伝子配列を配列番号 2、配列番号 4に、それを 翻訳して得たアミノ酸配列を配列番号 1、配列番号 3に示す。
[0019] (実施例 3 :発現用プラスミドの構築)
Hydrogenobacter thermophilus TK- 6株由来炭酸固定反応促進タンパク質を大腸 菌を宿主として発現させるため、 Τ7プロモーターを利用した発現ベクターを構築した 。まず、炭酸固定反応促進タンパク質の両サブユニット遺伝子を含むフォスミドクロー ンを铸型として、炭酸固定反応促進タンパク質小サブユニット遺伝子を PCR増幅した 。 PCRには、 5'-丁丁丁00 00じ じ 丁 丁0丁丁丁 0 00 (配列表の配列番号9) -3 'と 、う配列をもつホワードプラーマ一と、 5'— ATGTACTACACCTCTAGAGTTTTTA TCAA (配列表の配列番号 10) -3'という配列をもつリバースプライマーを用い、遺伝 子の開始コドンに Ndelサイトを導入し、遺伝子の終止コドンの下流には Xbalサイトを 導入した。また、炭酸固定反応促進タンパク質の両サブユニット遺伝子を含むフォス ミドクローンを铸型として、炭酸固定反応促進タンパク質大サブユニット遺伝子を PC R増幅した。 PCRには、 5'- TTGATAAAAACTCTAGAGGTGTAGTACAT (配列表の 配列番号 11) - 3'という配列をもつホワードプラーマ一と、 5 -GGTAAGGCTTCTCGA GATGGTTCAG (配列表の配列番号 12) -3 'と!/、う配列をもつリバースプライマーを用 い、遺伝子の開始コドンの上流に Xbalサイトを導入し、遺伝子の終止コドンの下流に は Xholサイトを導入した。増幅させた PCR断片をプラスミドベクター(pBluescript、 Str atagene)に連結して塩基配列の確認を行い、 PCRエラーのないクローンを 1つずつ( 炭酸固定反応促進タンパク質小サブユニット遺伝子を含むプラスミドクローンを 1つと 、炭酸固定反応促進タンパク質大サブユニット遺伝子を含むプラスミドクローンを 1つ )選択した。得られたプラスミドクローンから、炭酸固定反応促進タンパク質の小サブ ユニット遺伝子を Ndel-Xbal断片として、炭酸固定反応促進タンパク質の大サブュ ニット遺伝子を Xbal-Xhol断片として単離し、発現ベクター pET21c (Novagen)の Nd el— Xholサイト間に連結した。得られた発現ベクターを pET21-CFIと命名した。
[0020] (実施例 4 :組換え炭酸固定反応促進タンパク質の精製)
PET21- CFIを大腸菌 BL21 (DE3)に導入し、得られた形質転換体をアンピシリンを 含む 2 XYT培地 50mlに植菌した。 37°Cでー晚振とう培養し、これを前培養液とした 。アンピシリンを含む 1. 5リットルの 2 XYT培地に前培養液 50mlをカ卩えて 37°Cで 3 時間振とう培養した後、 IPTGを終濃度 0. 5mMとなるようにカ卩え、さらに 3時間 37°C で振とう培養を行った。得られた菌体を ImM塩化マグネシウムを含む 20mMTris-H Cl(pH8.0)溶液 (以後「塩化マグネシウム含有緩衝液」と呼ぶ) 30mlに懸濁し、超音波 破砕を行った。得られた懸濁液に ATPを終濃度 ImMとなるようにカ卩え、 75°Cで 20分 間熱処理を行った。遠心分離 (15,000g、 20分間)により不溶物を除去して得た上清 を、塩ィ匕マグネシウム含有緩衝液で 6倍に希釈した後、 DE52 (Whatman)カラムにか けた。カラムを塩ィ匕マグネシウム含有緩衝液で洗浄した後、 1M NaClを含む塩ィ匕マ グネシゥム含有緩衝液で溶出した。溶出分画に硫酸アンモ-ゥムを 30%飽和となる ように加え、ブチルトヨパール (東ソ一)カラムにかけた。カラムを 30%飽和硫酸アン モ-ゥムを含む塩ィ匕マグネシウム含有緩衝液で充分洗浄した後、 30%から 0%飽和 までの硫酸アンモ-ゥムグラジェントで溶出した。得られた活性画分を、塩化マグネ シゥム含有緩衝液に対して透析した後、 DEAEトヨパール (東ソ一)カラムにかけた。力 ラムを塩ィ匕マグネシウム含有緩衝液で充分洗浄した後、 0Mから 0. 5Mまでの NaClグ ラジェントで溶出した。得られた活性画分を、塩ィ匕マグネシウム含有緩衝液に対して 透析した後、 MonoQ (Pharmacia)カラムにかけた。カラムを塩化マグネシウム含有緩 衝液で充分洗浄した後、 0Mから 0. 5Mまでの NaClグラジェントで溶出した。得られ た活性画分を 10mMTris-HCl(pH8.0)溶液に対して透析し、精製タンパク質 1. 7mg を得た。精製した組換え炭酸固定反応促進タンパク質を SDS-PAGEに供したところ、 約 72kDaと約 49kDaの 2本のバンドが検出され、そのモル比は 1: 1であった(図 2)。
(実施例 5 :炭酸固定反応促進タンパク質による炭酸固定反応の進行)
炭酸固定反応促進タンパク質の活性は、 100mMBicine-KOH (pH8.5)緩衝液、 5 OmM重炭酸ナトリウム、 5mM2-ォキソグルタル酸、 5mMMgATP、 4mMNADH、ィ ソクェン酸デヒドロゲナーゼ(Hydrogenobacter thermophilus TK- 6株由来、大腸菌 から精製した組換え酵素を使用) 14 μ gを含む反応液 200 μ冲 70°Cで測定した。 M gATPを除く反応液をガラス製小試験管に入れ、 70°Cで 2分間プレインキュペートした 後、 MgATPを加えて反応を開始した。一定時間ごとに小試験管を氷冷して反応を停 止させた後、反応液を分子量 5000カットカートリッジ (ウルトラフリー MC、ミリポア)に 供し、得られた低分子量画分を適宜 MilliQ水(ミリポア)で希釈してイオンクロマトクロ マトグラフィー(ダイォネックス DX500、カラム IonpacASll、サプレッサー ASRS Ultra
II、流速 2ml/min)〖こ力けた。カラムを 0. 5mMNaOHで平衡化した後、 0分から 2分 までは 0. 5mMNaOHのイソクラティック溶出、 2分から 5分までは 0. 5mMから 5mM NaOHへのグラジェント溶出、 5分力、ら 15分までは 5mM力ら 38. 25mMNaOHへの グラジェント溶出、 15分力、ら 16分までは 38. 25mMから lOOmMNaOHへのグラジ ェント溶出を行った。炭酸固定物 (イソクェン酸)量は、既知濃度のイソクェン酸のクロ マトグラムのピーク面積カゝら計算した。精製した組換え炭酸固定反応促進タンパク質 2. 3 gを反応液に加え、 2、 4、 6、 10、 20分間反応を進行させた後、反応液に含ま れるイソクェン酸濃度を定量した結果を図 3に示す。反応を 6分間進行させた後、反 応液の低分子量画分を 3倍希釈し、クロマトグラフィーに供して得られたクロマトグラム を図 4に示す。イソクェン酸の生成は反応時間依存的であり、添加した炭酸固定反応 促進タンパク質の量に依存的であった。反応の進行に伴い、 ATPの加水分解が観察 された。炭酸固定反応促進タンパク質を加えないと、イソクェン酸の生成は見られな かった。炭酸固定反応促進タンパク質の他、イソクェン酸デヒドロゲナーゼ、 NADH、 MgATPのいずれもが炭酸固定反応の進行に必須であった。しがたつて、本タンパク 質は、イソクェン酸デヒドロゲナーゼによる還元的炭酸固定反応を MgATP依存的に 進行させる活性をもつことが明らかになった。
(実施例 6:ピオチン化サブユニットの検出)
炭酸固定反応促進蛋白質による炭酸固定反応の進行促進作用は、 1Uのアビジン (Sigma)添カ卩により完全に阻害された。したがって、本炭酸固定反応促進蛋白質は、 ピオチン蛋白であることが示唆された。そこで、精製した組み換え炭酸固定反応促進 蛋白質 0. 3 iu gを10%SDS— PAGEに供した後、PVDF膜(Bio-Rad, Sequi- Blot) にブロットし、ストレプトアビジン一 HRPコンジュゲート(Pharmacia)を用いてビォチン 化ポリペプチドの検出を試みたところ、 1本のバンドが検出された(図 5、レーン 2)。同 一のゲルに分子量マーカー(レーン M)と精製した組み換え炭酸固定反応促進蛋白 質 1. 5 g (レーン 1)を泳動して CBB染色したものと泳動位置の比較を行ったところ 、このバンドは大サブユニットに相当することがわ力つた。つまり、本蛋白質を構成す る 2つのサブユニットのうち、大サブユニットだけがピオチン化されていることが明らか になった。同様な実験により、 Hydrogenobacter thermophilus TK- 6株から精製した 炭酸固定反応促進蛋白質についても、大サブユニットがピオチン化されていることが 明らかになった。
[0023] (実施例 7:ゲル濾過法による分子量測定)
炭酸固定反応促進蛋白質の分子量を見積るため、ゲル濾過を行った。カラムは Sup erose6 (Pharmacia)を用い、溶出液は 200mMNaClを含む 20mMTris- HCl(pH8.0) 緩衝液を用いた。溶出液でカラムを平衡ィ匕した後、 100 1のサンプルをインジェクト し、 280nmの吸収をモニターすることにより蛋白質の溶出位置 (Ve)を測定した。分 子量マーカーには、 Bio-Rad社製ゲル濾過スタンダードを用いた。その結果、炭酸固 定反応促進蛋白質は、ゲル濾過スタンダード中で最も分子量の大きい Thyloglobulin (670kDa)よりも早く溶出することがわ力つた。炭酸固定反応促進蛋白質の溶出位置 を、図 6の矢印に示す。 Hydrogenobacter thermophilus TK- 6株から精製した炭酸 固定反応促進蛋白質も、大腸菌カゝら精製した組み換え炭酸固定反応促進蛋白質も 、溶出位置は同一であり、この溶出位置力も算出される分子量は 900〜1000kDaで あった。この値は、ゲル濾過スタンダードによる検量線の範囲を越えているため、正 確なものではない。しかし、本炭酸固定反応促進蛋白質は、巨大な複合体構造をと つていることが示唆された。
[0024] (実施例 8 :等電点の測定)
炭酸固定反応促進蛋白質の等電点を見積もるため、等電点電気泳動を行った。泳 動に用いたゲルは、 4. 85%アクリルアミド、 0. 15%N,N,-メチレンビスアクリルアミド 、 16. 9%グリセリン、 2. 67%Ampholine (Pharmacia, pH4. 0— 6. 5ブレンド済)から 成る液を重合させて作成した。泳動装置は、レゾルマックス IEF (アト一、 AE— 3230) を用いた。陽極用電極液には 0. 1Mグルタミン酸を含む 0. 5Mリン酸溶液を、陰極 用電極液には 0. 1Μ |8—ァラニン溶液を用いた。 1000Vで 1時間泳動を行った後、 1500Vでさらに 1時間、続いて 2000Vでさらに 1時間半泳動を行った。泳動は、 4°C の冷却水を循環させながら行った。泳動後のゲルの pHを実測し、直線的なグラジェ ントとなって!/ヽることを確認した。泳動後のゲルを 5%スルホサリチル酸を含む 10%ト リクロロ酢酸で固定した後、 CBB染色を行った。得られた泳動像を図 7に示す。大腸 菌から精製した組み換え炭酸固定反応促進蛋白質 (レーン 1)も、 Hydrogenobacter thermophilus TK-6株から精製した炭酸固定反応促進蛋白質 (レーン 2)も、泳動位 置は同一であった。ゲルの実測 ρΗと等電点マーカー(Bio-Rad)により等電点を見積 もったところ、 4. 9という値を得た。
[0025] (実施例 9 :至適 pH)
炭酸固定反応促進蛋白質の至適 pHを見積もるため、さまざまな pH条件下で炭酸 固定反応を進行させた。室温下で pH6. 5、 7. 0、 7. 5、 8. 0、 8. 5、 9. 0、 9. 5に調 整した IMBicine-KOH緩衝液ストックを作製し、これらを lZlO量カ卩え、反応液を調 製した。反応は、 lOOmMBicine- KOH緩衝液、 50mM重炭酸ナトリウム、 5mM2— ォキソグルタル酸、 5mMMgATP、 4mMNADH、イソクェン酸デヒドロゲナーゼ(H ydrogenobacter thermophilus TK- 6株由来、大腸菌から精製した組み換え酵素を 使用) 14 μ g、炭酸固定反応促進蛋白質 2. 3 μ gを含む反応液 200 μ 1中 70°Cで行つ た。反応液をガラス製小試験管に入れて、 70°Cで 4分間インキュベートした後、小試 験管を氷冷し、反応を停止させた。反応液中に生成したイソクェン酸量をイオンクロ マトクロマトグラフィーにより定量し、炭酸固定活性を測定した。すべての基質を加え た後の反応液を 70°Cに加温して pHを実測したところ、 pH6. 5のストック力も反応液 を調製した場合は PH7. 25、 pH7. 0のストック力も反応液を調製した場合は pH7. 3 8、 pH7. 5のストック力 反応液を調製した場合は pH7. 45、 pH8. 0のストックから 反応液を調製した場合は PH7. 67、 pH8. 5のストック力 反応液を調製した場合は pH8. 07、 pH9. 0のストック力も反応液を調製した場合は pH8. 42、 pH9. 5のスト ック力 反応液を調製した場合は PH8. 85となっていた。これらの反応液中で炭酸固 定活性を測定し、その相対値 (最大活性 100%)をプロットした結果を図 8に示す。本 反応の至適 pHは 8付近にあり、 pH8. 5の Bicine-KOH緩衝液ストックストックから反 応液を調製した場合に最大の活性が得られることが明らかになった。
[0026] (実施例 10 :至適温度)
炭酸固定反応促進蛋白質が促進する炭酸固定反応の至適反応温度を見積もるた め、さまざまな反応温度で炭酸固定反応を進行させた。反応は、 lOOmMBicine-KO H (pH8. 5)緩衝液、 50mM重炭酸ナトリウム、 10mM2—ォキソグルタル酸、 10m MMgATP、イソクェン酸デヒドロゲナーゼ(Hydrogenobacter thermophilus TK- 6 株由来、大腸菌力も精製した組み換え酵素を使用) 18 /^、 0. 2mMNADH、組み 換え炭酸固定反応促進蛋白質(2. 3〜5. 7 /z g)を含む反応液 250 1中で行った。 NADHと炭酸固定反応促進蛋白質を除く溶液を 5分間プレインキュペートした後、 N ADHと炭酸固定反応促進蛋白質を加えて反応を開始させ、 340nmにおける吸収 減少(最初の 1分間)を測定した。反応温度 40°C、 50°C、 60°C、 70°C、 80°C、 90°C における炭酸固定反応速度を測定した結果を図 9に示す。 90°Cで反応を行うと、 30 秒間以内で反応の進行が停止した。炭酸固定反応促進蛋白質が促進する炭酸固定 反応の至適温度は 70〜80°C付近にあることが明らかになった。
(実施例 11 :耐熱性)
炭酸固定反応促進蛋白質の耐熱性を見積もるため、炭酸固定反応促進蛋白質を さまざまな温度で 10分間熱処理した後、炭酸固定反応を進行させた。 250 g/mlの 組み換え炭酸固定反応促進蛋白質を含む 50mMHEPES—KOH緩衝液 (pH7. 5 )を調製し、これを 50 1ずつ 1. 5mlチューブ(トレフ製)に分注した。これらのチュー ブを、 50。C、 60。C、 70。C、 72。C、 76。C、 78。C、 80。C、 90。C、 95。Cで 10分間インキ ュペートした後、氷水に移し、急冷した。不溶物を遠心除去した後、上清 10 1 (炭酸 固定反応促進蛋白質 2. 5 gに相当)について、炭酸固定反応速度を測定した。炭 酸固定反応は、 lOOmMBicine-KOH (pH8. 5)緩衝液、 50mM重炭酸ナトリウム、 1 0mM2—ォキソグルタル酸、 10mMMgATP、イソクェン酸デヒドロゲナーゼ(Hydro genobacter thermophilus TK-6株由来、大腸菌カゝら精製した組み換え酵素を使用) 18 μ gを含む反応液 250 冲 70°Cで行った。反応液を 5分間プレインキュペートした 後、 0. 2mMNADHと熱処理後の炭酸固定反応促進蛋白質溶液を加えて反応を開 始させ、 340nmにおける吸収減少(最初の 1分間)を測定した。熱処理前の活性を 1 00%とし、熱処理温度と残存活性の関係をプロットした結果を図 10に示す。本蛋白 質は、 70°Cで 10分間の熱処理を行っても、 90%程度の活性が残存した。したがって 、本蛋白質の熱安定性が示された。また、得られたプロファイル力も本蛋白質 50%が 失活する温度を見積もったところ、おおよそ 78. 3°Cという値を得た。 (実施例 12 :速度論パラメータの測定)
炭酸固定反応促進蛋白質の速度論パラメータを測定するため、 2—ォキソダルタル 酸と MgATPの濃度をさまざまに変えて、炭酸固定反応を進行させた。反応は、 100 mMBicine-KOH (pH8. 5)緩衝液、 50mM重炭酸ナトリウム、 2—ォキソグルタル酸 、 MgATP、イソクェン酸デヒドロゲナーゼ(Hydrogenobacter thermophilus TK- 6株 由来、大腸菌力も精製した組み換え酵素を使用) 18 /^、 0. 2mMNADH、炭酸固 定反応促進蛋白質 3. 7 μ gを含む反応液 250 μ冲 70°Cで行った。 NADHと炭酸固 定反応促進蛋白質を除く反応液を 5分間プレインキュペートした後、 NADHと炭酸 固定反応促進蛋白質を加えて反応を開始させ、 340nmにおける吸収減少(最初の 1分間)を測定した。 1分間に: L molの NADHを酸ィ匕させる活性を、 1ユニットと定義 した。
MgATP濃度を lOmMに固定し、 2—ォキソグルタル酸濃度を 0. 2mMから 5mM までさまざまに変化させて活性を測定したところ、図 11に示すミカエリスメンテン型の 曲線を得た。得られた曲線力 速度論パラメータを算出したところ、 Km値 1. 03mM 、Vmax値 5. 92U/mgと!ヽぅ値を得た。
2—ォキソグルタル酸濃度を lOmMに固定し、 MgATP濃度を 0. 2mMから 5mM までさまざまに変化させて活性を測定したところ、図 12に示すミカエリスメンテン型の 曲線を得た。得られた曲線力も速度論パラメータを算出したところ、 Km値 0. 789m M、Vmax値 6. 13U/mgという値を得た。
Mgイオンと ATPを MgATPとして同時に加えるのではなぐ硫酸マグネシウムと Na ATPという形で別々に反応にカ卩えた場合の測定も行った。 NaATP濃度を lOmMに 固定し、硫酸マグネシウム濃度を 2mMから lOOmMまでさまざまに変化させて活性 を測定したところ、図 13に示す曲線を得た。得られた曲線はミカエリスメンテン型では なかった。至適 Mgイオン濃度は lOmMであった。高い活性を示す Mgイオン濃度の 範囲は狭ぐ lOmMより低濃度でも高濃度でも活性が著しく低下した。また、硫酸マ グネシゥム濃度を lOmMに固定し、 NaATP濃度を 0. 2mMから 20mMまでさまざま に変化させて活性を測定したところ、図 14に示す曲線を得た。得られた曲線はミカェ リスメンテン型ではなかった。至適 NaATP濃度は lOmMであり、 lOmMより低濃度 でも高濃度でも活性が低下した。
大腸菌カゝら精製した組み換え炭酸固定反応促進蛋白質を用いても、 Hydrogenoba cter thermophilus TK_6株カゝら精製した炭酸固定反応促進蛋白質を用いても、同 一の速度論パラメータが得られ、同一プロファイルの Mg、 ATP依存性を示した。 産業上の利用可能性
近年の二酸ィ匕炭素排出量の増大による地球温暖化は、深刻な地球環境問題を引 き起こしている。このような状況の中、二酸化炭素を物質生産の出発材料に利用しよ うという試みは、資源エネルギー問題や環境問題との関連においても重要である。 イソクェン酸デヒドロゲナーゼは広く生物界に分布する脱炭酸酵素である。本酵素 は、その由来によっては多少の可逆性を示すことが報告されているが、逆反応 (炭酸 固定反応)はエネルギー的に不利で、ほとんど進行しない。本発明は、本酵素による 触媒反応を炭酸固定方向に進行させるためのタンパク質を初めて見出したものであ る。本発明により、イソクェン酸デヒドロゲナーゼによる酵素反応を炭酸固定方向に進 行させることができるようになれば、二酸ィ匕炭素を利用したノィォマス生産技術に応 用でき、二酸化炭素問題の解決に役立つ。 なお、 2005年 2月 18日に出願された日本特許出願 2005— 042671号の明細書 、特許請求の範囲、図面及び要約書の全内容をここに引用し、本発明の明細書の開 示として、取り入れるものである。

Claims

請求の範囲 [1] イソクェン酸デヒドロゲナーゼの 2—ォキソグルタル酸からイソクェン酸への還元的 炭酸固定反応を促進させる作用を有し、分子量約 72kDaと分子量約 49kDaの 2つ のサブユニットを含む、炭酸固定促進タンパク質。 [2] 下記の(1)から (4)の 、ずれか 1に記載の配列からなる炭酸固定促進活性を有す るタンパク質の約 72kDaサブユニット。 (1)配列番号 1に記載のアミノ酸配列からなるポリペプチド (2)前記(1)のポリペプチドを含有するポリペプチド (3)配列番号 1に記載のアミノ酸配列において 1若しくは複数のアミノ酸が置換、欠失 、挿入、及び Z又は付加したアミノ酸配列からなるポリペプチド (4)配列番号 1に記載のアミノ酸配列と 70%以上の相同性を有するアミノ酸配列から なるポリペプチド [3] 下記の(1)から(3)の 、ずれか 1に記載の配列からなる DNA。 (1)請求項 2に記載のポリペプチドをコードするポリヌクレオチド又はその相補鎖(2)配列番号 2に記載の塩基配列からなる DNA又はその相補鎖 (3)上記(1)又は(2)に記載の DNAとストリンジェントな条件下でハイブリダィズする D NA [4] 下記の(1)から (4)の 、ずれか 1に記載の配列からなる炭酸固定促進活性を有す るタンパク質の約 49kDaサブユニット。
(1)配列番号 3に記載のアミノ酸配列からなるポリペプチド
(2)前記(1)のポリペプチドを含有するポリペプチド
(3)配列番号 3に記載のアミノ酸配列において 1若しくは複数のアミノ酸が置換、欠失 、挿入、及び Z又は付加したアミノ酸配列からなるポリペプチド
(4)配列番号 3に記載のアミノ酸配列と 70%以上の相同性を有するアミノ酸配列から なるポリペプチド
[5] 下記の(1)から(3)の 、ずれか 1に記載の配列からなる DNA。
(1)請求項 4に記載のポリペプチドをコードするポリヌクレオチド又はその相補鎖
(2)配列番号 4に記載の塩基配列からなる DNA又はその相補鎖 (3)上記(1)又は(2)に記載の DNAとストリンジェントな条件下でハイブリダィズする D NA
[6] 請求項 3に記載の DNA、請求項 5に記載の DNA、又は、請求項 3に記載の DNAと請 求項 5に記載の DNAの両者、を担持するベクター。
[7] 請求項 3に記載の DNA、請求項 5に記載の DNA、請求項 3に記載の DNAと請求項 5 に記載の DNAの両者、又は請求項 6に記載のベクターを担持する形質転換細胞。
[8] 請求項 7に記載の形質転換細胞を培養し、発現させたタンパク質を回収する工程 を含む炭酸固定促進タンパク質の製造方法。
[9] 請求項 2に記載の炭酸固定促進タンパク質のサブユニットと請求項 4に記載の炭酸 固定促進タンパク質のサブユニットを含む炭酸固定促進タンパク質。
[10] 請求項 1又は請求項 9に記載の炭酸固定促進タンパク質を用いてイソクェン酸デヒ ドロゲナーゼの還元的炭酸固定反応を促進させることを特徴とする炭酸固定方法。
PCT/JP2006/302773 2005-02-18 2006-02-16 新規な炭酸固定促進タンパク質、及び該タンパク質を用いた炭酸固定方法 WO2006088110A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2007503716A JPWO2006088110A1 (ja) 2005-02-18 2006-02-16 新規な炭酸固定促進タンパク質、及び該タンパク質を用いた炭酸固定方法
EP06713914A EP1852509A4 (en) 2005-02-18 2006-02-16 NEW, THE CARBONIC ACID FIXATION PROMOTING PROTEIN AND METHOD FOR CARBONIC ACID FIXATION USING THE PROTEIN

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005042671 2005-02-18
JP2005-042671 2005-02-18

Publications (1)

Publication Number Publication Date
WO2006088110A1 true WO2006088110A1 (ja) 2006-08-24

Family

ID=36916511

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2006/302773 WO2006088110A1 (ja) 2005-02-18 2006-02-16 新規な炭酸固定促進タンパク質、及び該タンパク質を用いた炭酸固定方法

Country Status (3)

Country Link
EP (1) EP1852509A4 (ja)
JP (1) JPWO2006088110A1 (ja)
WO (1) WO2006088110A1 (ja)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030233675A1 (en) * 2002-02-21 2003-12-18 Yongwei Cao Expression of microbial proteins in plants for production of plants with improved properties

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030233675A1 (en) * 2002-02-21 2003-12-18 Yongwei Cao Expression of microbial proteins in plants for production of plants with improved properties

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
AOSHIMA M. ET AL.: "A novel biotin protein required for reductive carboxylation of 2-oxoglutarate by isocitrate dehydrogenase in Hydrogenobacter thermophilus TK-6", MOL. MICROBIOL., vol. 51, no. 3, 2004, pages 791 - 798, XP002999643 *
DATABASE GENPEPT [online] DECKERT G. ET AL.: "The complete genome of the hyperthermophilic bacterium Aquifex aeolicus", XP002999644, accession no. NCBI Database accession no. (B70432) *
DATABASE GENPEPT [online] DECKERT G. ET AL.: "The complete genome of the hyperthermophilic bacterium Aquifex aeolicus", XP002999645, accession no. NCBI Database accession no. (A70432) *
DECKERT G. ET AL.: "The complete genome of the hyperthermophilic bacterium Aquifex aeolicus", NATURE, vol. 392, 26 March 1998 (1998-03-26), pages 353 - 358, XP000867134 *
NATURE, vol. 392, no. 6674, 1998, pages 353 - 358 *
See also references of EP1852509A4 *

Also Published As

Publication number Publication date
JPWO2006088110A1 (ja) 2008-07-03
EP1852509A1 (en) 2007-11-07
EP1852509A4 (en) 2009-05-13

Similar Documents

Publication Publication Date Title
US11319531B2 (en) Transglutaminase variants
WO2015099256A1 (en) Polynucleotide encoding psicose epimerase and method of producing psicose using the same
JP6755886B2 (ja) ペニシリンgアシラーゼ
US9896705B2 (en) L-arabinose isomerase variants with improved conversion activity and method for production of D-tagatose using them
US20140296571A1 (en) Microorganisms And Methods For Producing Propionic Acid
US20140099676A1 (en) Microorganisms and methods for producing acrylate and other products from homoserine
WO2013052717A2 (en) Microorganisms and methods for producing acrylate and other products from homoserine
WO2006088110A1 (ja) 新規な炭酸固定促進タンパク質、及び該タンパク質を用いた炭酸固定方法
JP7054092B2 (ja) ジホスホメバロン酸デカルボキシラーゼ変異体、及びそれを用いたオレフィン化合物の製造方法
KR20180137025A (ko) 페니실린 g 아실라제
WO2021050348A1 (en) Peroxidase activity towards 10-acetyl-3,7-dihydroxyphenoxazine
CN113302299A (zh) 阿洛酮糖差向异构酶变体、其生产方法以及使用其生产阿洛酮糖的方法
JP6514849B2 (ja) 低温における酵素活性を向上させた好熱菌由来酵素の改変体の取得方法、及び低温における酵素活性が向上しているサーマス・サーモフィラス由来3−イソプロピルリンゴ酸脱水素酵素の改変体
CN111051506A (zh) 青霉素g酰化酶
CN113151213B (zh) 一种高忠实性dna聚合酶及其制备方法和pcr应用
WO2023157936A1 (ja) 改変型d-アルロース-3-エピメラーゼ
KR101219716B1 (ko) 제한효소의 생산방법
US20020119506A1 (en) Genes encoding UMP kinase, methods for purifying UMP kinase and methods of characterizing UMP kinase
JP2009148205A (ja) 高反応性耐熱性dnaリガーゼ
JP6804467B2 (ja) 組換え型ヌクレオシド特異的リボヌクレアーゼ及びその生成法と使用法
WO2024010785A1 (en) Ketoreductase enzymes for the synthesis of 1,3-diol substituted indanes
JP6120066B2 (ja) 新規ヌクレアーゼ及びその遺伝子
JP2023553990A (ja) S-メチルチオリボースキナーゼポリペプチドならびにs-メチルチオリボースキナーゼポリペプチドの製造方法および使用方法
CN114539428A (zh) 一种融合蛋白及其应用
JP2009207441A (ja) グルコース脱水素酵素及びそれをコードする遺伝子

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
WWE Wipo information: entry into national phase

Ref document number: 2007503716

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2006713914

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 2006713914

Country of ref document: EP