JP6984166B2 - 記憶回路及び記憶回路の制御方法 - Google Patents

記憶回路及び記憶回路の制御方法 Download PDF

Info

Publication number
JP6984166B2
JP6984166B2 JP2017097316A JP2017097316A JP6984166B2 JP 6984166 B2 JP6984166 B2 JP 6984166B2 JP 2017097316 A JP2017097316 A JP 2017097316A JP 2017097316 A JP2017097316 A JP 2017097316A JP 6984166 B2 JP6984166 B2 JP 6984166B2
Authority
JP
Japan
Prior art keywords
node
circuit
transistor
command
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017097316A
Other languages
English (en)
Other versions
JP2018195942A (ja
Inventor
智浩 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2017097316A priority Critical patent/JP6984166B2/ja
Priority to US15/972,510 priority patent/US10425066B2/en
Publication of JP2018195942A publication Critical patent/JP2018195942A/ja
Application granted granted Critical
Publication of JP6984166B2 publication Critical patent/JP6984166B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K3/00Circuits for generating electric pulses; Monostable, bistable or multistable circuits
    • H03K3/02Generators characterised by the type of circuit or by the means used for producing pulses
    • H03K3/027Generators characterised by the type of circuit or by the means used for producing pulses by the use of logic circuits, with internal or external positive feedback
    • H03K3/037Bistable circuits

Description

本発明は、記憶回路及び記憶回路の制御方法に関する。
従来、一方のインバータの出力が他方のインバータの入力に接続され、他方のインバータの出力が一方のインバータの入力に接続されるラッチを備えた記憶回路が知られている(例えば、特許文献1,2を参照)。
特開2008−172779号公報 特開2002−050944号公報
図1は、CMOS論理で形成された書き込み部によってデータをラッチに書き込む記憶回路の一例を示す図である。CMOSは、Complementary MOS(Metal Oxide Semiconductor)を意味する。ラッチ103は、インバータ101の出力がインバータ102の入力に接続され、インバータ102の出力がインバータ101の入力に接続される構成を有する。トランスファーゲート104は、pMOSトランジスタ104aとnMOSトランジスタ104bとを含む書き込み部である。pMOSのpは、pチャネル型を表し、nMOSのnは、nチャネル型を表す。図1の記憶回路は、インバータ105に入力されるライトデータWDをラッチ103に書き込む場合、制御信号WP,NWPを伝送する2本の制御線を用いて、pMOSトランジスタ104aとnMOSトランジスタ104bの両方をオンにする。
一方、図2は、nMOS論理で形成された書き込み部によってデータをラッチに書き込む記憶回路の一例を示す図である。書き込み回路120は、3つのnMOSトランジスタ121,122,123を含む書き込み部である。図2の記憶回路は、インバータ130に入力されるライトデータWDをラッチ110に書き込む場合、制御信号WPを伝送する1本の制御線を用いて、nMOSトランジスタ121,122の両方をオンにする。つまり、書き込み部が図2のようにnMOS論理で形成された場合、図1のようにCMOS論理で形成された場合に比べて、制御線の数を1本少なくすることができる。
図3は、図2の記憶回路の書き込み動作の一例を示すタイミングチャートである。
ライトデータWDがローレベルの場合(ケースC1参照)、インバータ130により、トランジスタ121のソースSがハイレベルになる。トランジスタ121のソースSがハイレベルになると、トランジスタ123がオンとなるため、トランジスタ122のソースSがローレベルとなる。この状態において、制御信号WPがタイミングt1でハイレベルになると、トランジスタ121,122がオンとなる。トランジスタ121,122がオンとなると、第1段階として、トランジスタ122経由でラッチノードNPCMがローレベルとなり(タイミングt2)、トランジスタ121経由でラッチノードPCMが中間電位まで引き上げられる(タイミングt2)。トランジスタ121は、nMOSなので、ラッチノードPCMをハイレベルまで引き上げることができない(タイミングt2)。次に、第2段階として、ラッチノードNPCMはローレベルとなることにより、インバータ112がラッチノードPCMを中間電位からハイレベルまで引き上げる。
一方、ライトデータWDがハイレベルの場合(ケースC2参照)、インバータ130により、トランジスタ121のソースSがローレベルになる。トランジスタ121のソースSがローレベルになると、トランジスタ123はオフとなるため、トランジスタ122のソースSがハイインピーダンスとなる。この状態において、制御信号WPがタイミングt1でハイレベルになると、トランジスタ121,122がオンとなるので、第1段階として、トランジスタ121経由でラッチノードPCMはローレベルとなる(タイミングt2)。しかし、トランジスタ122のソースSがハイインピーダンスであるため、ラッチノードNPCMはローレベルのままである(タイミングt2)。次に、第2段階として、ラッチノードPCMがローレベルとなることにより、インバータ111がラッチノードNPCMをローレベルからハイレベルまで引き上げる。
このように、第2段階において、ケースC1では、ラッチノードPCMを中間電位からハイレベルまで引き上げるのに対し、ケースC2では、ラッチノードNPCMをローレベルからハイレベルまで引き上げる。したがって、ハイレベルに引き上げるまでに要する時間が、ケースC1に比べてケースC2の方が長くなる。そのため、制御信号WPがハイレベルからローレベルに切り替わるタイミングt3で、ケースC1では、ラッチノードPCMをハイレベルに確定できるのに対し、ケースC2では、ラッチノードNPCMがハイレベルに確定できないことが生ずるおそれがある。つまり、ライトデータWDがローレベルの場合に比べてハイレベルの場合の方がデータを書き込みにくく、ラッチとしてのバランスが悪い。
ライトデータWDがハイレベルかローレベルかによってラッチの書き込み性能がこのように偏ると(バランスが悪くなると)、例えば、製造ばらつきによって、ケースC3のように書き込みを失敗するケースが発生し、歩留りが低下するおそれがある。ケースC3は、タイミングt3でラッチノードNPCMがハイレベルに未到達であることにより、ラッチノードNPCMがローレベルのままと確定され、ラッチノードPCMがインバータ112によりハイレベルに再び引き上げられてしまうケースを示している。
そこで、本開示では、ラッチの書き込み性能の偏りを抑制可能な記憶回路及び記憶回路の制御方法が提供される。
本開示の一態様では、
第1のノードと、第2のノードと、前記第1のノードに入力が接続され前記第2のノードに出力が接続される第1のインバータと、前記第2のノードに入力が接続され前記第1のノードに出力が接続される第2のインバータとを有するラッチと、
前記第1のノードに接続された第1のトランジスタと、前記第2のノードに接続された第2のトランジスタとを有し、前記第1のトランジスタと前記第2のトランジスタとによって前記ラッチに対する書き込みを行う書き込み回路と、
前記ラッチに対する書き込みが発生することを検知し、前記第2のノードの電位の上昇を前記第1のノードに対するローレベルの書き込み段階が開始する前に開始させ前記書き込み段階が終了する前に終了させる指令信号を出力する指令回路と、
前記指令信号に基づいて前記第2のノードの電位を上昇させる電位調整回路とを備え、
前記書き込み回路は、前記第1のトランジスタのソースにゲートが接続され、前記第2のトランジスタのソースにドレインが接続された第3のトランジスタを有し、
前記第1のトランジスタのドレインは、前記第1のノードに接続され、前記第2のトランジスタのドレインは、前記第2のノードに接続された、記憶回路が提供される。
また、本開示の他の一態様では、
第1のノードと、第2のノードと、前記第1のノードに入力が接続され前記第2のノードに出力が接続される第1のインバータと、前記第2のノードに入力が接続され前記第1のノードに出力が接続される第2のインバータとを有するラッチを備えた記憶回路の制御方法であって、
前記記憶回路が備える指令回路は、前記第1のノードに接続された第1のトランジスタと、前記第2のノードに接続された第2のトランジスタとによって前記ラッチに対する書き込みが発生することを検知し、
前記指令回路は、前記第2のノードの電位の上昇を前記第1のノードに対するローレベルの書き込み段階が開始する前に開始させ前記書き込み段階が終了する前に終了させる指令信号を出力し、
前記記憶回路が備える電位調整回路は、前記指令信号に基づいて前記第2のノードの電位を上昇させ、
前記記憶回路は、前記第1のトランジスタのソースにゲートが接続され、前記第2のトランジスタのソースにドレインが接続された第3のトランジスタを有し、
前記第1のトランジスタのドレインは、前記第1のノードに接続され、前記第2のトランジスタのドレインは、前記第2のノードに接続された、記憶回路の制御方法が提供される。
本開示の一態様によれば、ラッチの書き込み性能の偏りを抑制可能な記憶回路及び記憶回路の制御方法を提供することができる。
書き込み部をCMOS論理で組んだラッチの構成の一例を示す図である。 書き込み部をnMOS論理で組んだラッチの構成の一例を示す図である。 図2の回路の書き込み動作の一例を示すタイミングチャートである。 本開示に係る記憶回路の構成の一例を示す図である。 本開示に係る記憶回路の書き込み動作の一例を示すタイミングチャートである。 本開示に係る記憶回路の構成の第1の実施例を示す図である。 第1の実施例の書き込み動作の一例を示すタイミングチャートである。 本開示に係る記憶回路の構成の第2の実施例を示す図である。 第2の実施例の書き込み動作の一例を示すタイミングチャートである。 本開示に係る記憶回路の構成の第3の実施例を示す図である。
以下、本開示に係る記憶回路の実施形態について説明する。
図4は、本開示に係る記憶回路の構成の一例を示す図である。図4に示される記憶回路1は、ライトイネーブル信号WEがアクティブレベルのとき、クロック信号CKに従って、ライトデータWDをラッチ10のラッチノードPCM,NPCMに取り込むことにより、ラッチ10に対する書き込みを行う。記憶回路1は、例えば、半導体集積回路内に設けられている。記憶回路1は、ラッチ10、書き込み回路20、入力回路30、出力回路40、制御回路50、指令回路60及び電位調整回路70を備える。
ラッチ10は、ラッチノードPCM、ラッチノードNPCM、インバータ11及びインバータ12を有する。ラッチノードPCMは、第1のノードの一例である。ラッチノードNPCMは、第2のノードの一例である。インバータ11は、第1のインバータの一例である。インバータ11は、ラッチノードPCMに入力が接続されラッチノードNPCMに出力が接続される論理否定回路である。インバータ12は、第2のインバータの一例である。インバータ12は、ラッチノードNPCMに入力が接続されラッチノードPCMに出力が接続される論理否定回路である。インバータ11,12の具体例として、CMOSインバータが挙げられる。
書き込み回路20は、トランジスタ21,22,23を有し、トランジスタ21,22,23によって、ラッチ10に対する書き込みを行う書き込み回路の一例である。
トランジスタ21は、第1のノードに接続された第1のnMOSトランジスタの一例である。トランジスタ21は、入力回路30のインバータ31の出力及びトランジスタ23のゲートに接続されたソースSと、ラッチノードPCMに接続されたドレインDと、制御回路50の論理積回路52の出力に接続されたゲートとを有する。トランジスタ21のゲートには、制御信号WPが入力される。
トランジスタ22は、第2のノードに接続された第2のnMOSトランジスタの一例である。トランジスタ22は、トランジスタ23のドレインに接続されたソースSと、ラッチノードNPCM及び電位調整回路70の出力に接続されたドレインDと、制御回路50の論理積回路52の出力に接続されたゲートとを有する。トランジスタ22のゲートには、トランジスタ21と共通の制御信号WPが入力される。
トランジスタ23は、第3のnMOSトランジスタの一例である。トランジスタ23は、トランジスタ21のソースSに接続されたゲートと、トランジスタ22のソースSに接続されたドレインと、グランドに接続されたソースとを有する。
入力回路30は、ライトポートから供給されるライトデータWDを書き込み回路20に供給する。ライトデータWDは、ラッチ10に書き込まれるデータの一例である。入力回路30は、ライトデータWDの論理レベルを反転させたライトデータWDを出力するインバータ31を有する。入力回路30に接続される回路の構成によっては、インバータ31は無くてもよいし、入力回路30はインバータ31とは別の論理回路を有してもよい。
出力回路40は、ラッチノードPCMの論理レベルに応じて、リードデータRDを出力する。リードデータRDは、ラッチ10のラッチノードPCMから読み出されたデータを表す。出力回路40は、ラッチノードPCMの論理レベルを反転させたリードデータRDを出力するインバータ41を有する。出力回路40に接続される回路の構成によっては、インバータ41は無くてもよいし、出力回路40はインバータ41とは別の論理回路を有してもよい。また、出力回路40は、ラッチノードNPCMの論理レベルに応じて、リードデータRDを出力する回路でもよい。
制御回路50は、書き込み回路20がラッチ10に対する書き込みを行うタイミングを制御する制御信号WPを、クロック信号CKを用いて生成する制御回路の一例である。クロック信号CKは、クロックポートから供給される。制御回路50は、例えば、チョッパ回路55及び論理積回路51を有する。
チョッパ回路55は、クロック信号CKに比べてパルス幅の狭いチョッパ出力信号CPをクロック信号CKを用いて生成する。チョッパ回路55は、例えば、デューティ比が50%のクロック信号CKを用いて、チョッパ出力信号CPをクロック信号CKと同周期で出力する。チョッパ回路55は、周知の構成でよい。制御回路50は、制御信号WPをチョッパ出力信号CPを用いて生成する。
本実施形態では、制御回路50は、チョッパ出力信号CPとライトイネーブル信号WEとを用いて、制御信号WPを出力する論理積回路51を有する。ライトイネーブル信号WEは、ラッチ10に対する書き込み動作を可能にする信号を表す。論理積回路51は、チョッパ出力信号CPとライトイネーブル信号WEとの論理積を出力する。ライトイネーブル信号WEの論理レベルが非アクティブ(本実施形態では、ローレベル)である場合、制御回路50は、制御信号WPの出力を停止する(言い換えれば、図5のようにローレベルの制御信号WPを出力する)。一方、ライトイネーブル信号WE及びチョッパ出力信号CPの論理レベルがアクティブ(本実施形態では、ハイレベル)である場合、制御回路50は、制御信号WPを出力する(言い換えれば、図5のようにハイレベルの制御信号WPを出力する)。
ここで、上述の図2に示した構成では、ラッチノードPCMに対するハイレベルの書き込みが発生するケースC1(図3参照)のとき、第1段階でラッチノードPCMは中間電位まで引き上げられる。しかしながら、ラッチノードNPCMに対するハイレベルの書き込みが発生するケースC2(図3参照)のとき、第1段階でラッチノードNPCMを引き上げる動作がない。第1段階でラッチノードNPCMを引き上げる動作がないことが、ラッチの書き込み性能の偏りの原因の一つである。
そこで、図4に示した本実施形態に係る記憶回路1は、指令回路60及び電位調整回路70を備える。指令回路60は、ラッチノードNPCMの電位をラッチノードPCMに対するローレベルの書き込みが終了するタイミングt12前に上昇させる指令信号APを出力する(図5参照)。指令回路60は、例えば、指令信号APをクロック信号CKを用いて生成する。電位調整回路70は、指令信号APに基づいてラッチノードNPCMの電位を上昇させることによって、書き込み回路20によるラッチ10に対する書き込みを補助する書き込み補助回路である。
このような構成によれば、ラッチノードPCMに対するハイレベルの書き込みが発生するケースC1のときも、ラッチノードNPCMに対するハイレベルの書き込みが発生するケースC2のときも、第1段階でラッチノードPCMは中間電位まで引き上げられる。そのため、ケースC1のときもケースC2のときも、書き込み動作の第2段階は中間電位から開始するため、制御信号WPがハイレベルからローレベルに切り替わるタイミングt13で、ラッチノードをハイレベルに確定することができる。したがって、ラッチ10の書き込み性能の偏りを抑制することができるので、例えば、ラッチ10の書き込み性能のばらつきを小さくすることができ、歩留まりの高い製品が製造可能となる。
また、近年の半導体デバイスの特徴として、トランジスタの数を減らすよりも配線の数を減らす回路トポロジを選択した方が、回路面積を効果的に削減できる場合がある。この場合、nMOS論理で形成された書き込み部によってデータをラッチに書き込む図4の記憶回路の方が、CMOS論理で形成された書き込み部によってデータをラッチに書き込む図1の記憶回路に比べて、制御線の数が少ない。そのため、記憶回路の省面積化が可能となる。
また、CMOS論理で形成された回路の場合、pチャネル型のトランジスタエリアとnチャネル型のトランジスタエリアとが物理的に分かれているので、両エリアの境界部分が無駄となる場合がある。一方、nMOS論理で形成された回路の場合、pチャネル型のトランジスタエリアを縮小又は無くすことができるため、無駄となる部分が減り、更なる省面積化が可能となる。
指令回路60は、ラッチノードNPCMの電位を上昇させるタイミングを調整するタイミング調整回路である。指令回路60は、ラッチノードPCMに対するローレベルの書き込みが開始するタイミングt11前に電位調整回路70がラッチノードNPCMの電位を上昇させるように、指令信号APを出力することが好ましい(図5参照)。これにより、ラッチノードNPCMが零よりも高い電位から第1段階がタイミングt11で開始するので、第1段階でラッチノードPCMを所望の中間電位まで引き上げやすくなる。そのため、ラッチ10の書き込み性能の偏りを更に抑制することができる。
また、指令回路60は、ラッチ10に対する書き込みが発生することを検知し、その検知結果に基づいて、指令信号APを出力する。例えば、指令回路60は、クロック信号CKの所定のエッジ(例えば、立下りエッジ)を検出してから所定時間経過時にラッチ10に対する書き込みが発生すること(すなわち、制御信号WPがハイレベルとなる書き込み期間)を事前に検知できる。
なお、電位調整回路70がラッチノードNPCMの電位上昇を開始させるタイミングt10が、ラッチ10のデータ非保証期間が開始するタイミングt9よりも早くならいように、指令信号APが指令回路60から出力されるタイミングは調整される。
また、書き込み回路20による書き込み動作時、ラッチノードPCM,NPCMの論理レベルをトランジスタ21,22の出力により反転させるバスファイトが起こりうる。そのため、インバータ11の出力電流は、トランジスタ22のドレインDからの出力電流よりも小さく、インバータ12の出力電流は、トランジスタ21のドレインDからの出力電流よりも小さいことが好ましい。
<実施例1>
図6は、本開示に係る記憶回路の構成の第1の実施例を示す図である。図7は、図6の記憶回路の動作波形の一例を示す図である。図6に示される記憶回路1Aは、図4の記憶回路1の一例である。
指令回路60Aは、ラッチノードNPCMに対するローレベルの書き込みが発生することを検知した場合、指令信号APを出力しない。一方、指令回路60Aは、ラッチノードNPCMに対するハイレベルの書き込みが発生することを検知した場合、指令信号APを出力する(図7参照)。
指令回路60Aは、ライトイネーブル信号WEの論理レベルが非アクティブ(本例では、ローレベル)である場合、指令信号APを出力しない。一方、指令回路60Aは、ライトイネーブル信号WEの論理レベルがアクティブ(本例では、ハイレベル)であり、且つ、調整クロック信号PCP及びライトデータWDがハイレベルである場合、指令信号APを出力する。
例えば、指令回路60Aは、制御信号WPよりも位相を進めた調整クロック信号PCP(図7参照)をクロック信号CKを用いて生成する位相調整チョッパ61を有する。位相調整チョッパ61は、調整クロック信号生成回路の一例である。実施例1では、指令回路60Aは、調整クロック信号PCPとライトデータWDとライトイネーブル信号WEとを用いて、指令信号APを生成する論理積回路62を有する。論理積回路62は、調整クロック信号PCPとライトデータWDとライトイネーブル信号WEとの論理積を指令信号APとして出力する。
このような構成によれば、ラッチノードPCMに対するハイレベルの書き込みが発生するケースC1のときも、ラッチノードNPCMに対するハイレベルの書き込みが発生するケースC2のときも、第1段階でラッチノードPCMは中間電位まで引き上げられる。したがって、ラッチ10の書き込み性能の偏りを抑制することができる。
また、電位調整回路70Aは、ラッチノードNPCMにソースSが接続されたトランジスタ71を有する。トランジスタ71は、第4のnMOSトランジスタの一例である。電位調整回路70Aは、トランジスタ71が指令信号APに基づいてオンとなることによって、ラッチノードNPCMの電位を上昇させる。これにより、第1段階でラッチノードNPCMを中間電位に引き上げることができる。つまり、電位調整回路70Aは、ラッチノードNPCMをプリチャージするプリチャージ回路である。
トランジスタ71は、指令回路60Aの論理積回路62の出力に接続されたゲートと、記憶回路1Aの電源に接続されたドレインと、ラッチノードNPCMに接続されたソースとを有する。トランジスタ71がnMOSトランジスタであることにより、pMOSトランジスタを使って電位調整回路が形成されている形態に比べて、電位調整回路の小型化が可能である。
<実施例2>
図8は、本開示に係る記憶回路の構成の第2の実施例を示す図である。図8では、実施例1の指令回路でのタイミング調整が簡素化されている。図9は、図8の記憶回路の動作波形の一例を示す図である。図8に示される記憶回路1Bは、図4の記憶回路1の一例である。
指令回路60Bは、ラッチノードNPCMに対して書き込む論理レベルがハイレベルかローレベルかにかかわらず、ラッチ10に対する書き込みが発生することを検知する。その書き込みが発生することを検知したことを表す指令信号APを受けて、電位調整回路70Aは、ラッチ10の書き込み動作が始まるタイミングt11前に作動し始める。ただし、ラッチ10の書き込み動作期間に電位調整回路70Aが作動すると、ラッチ10の内部でショートが発生する。そのため、指令回路60Bは、電位調整回路70AがラッチノードNPCMの電位を上昇させることがラッチノードPCMに対するローレベルの書き込みが開始するタイミングt11前に終了するように、指令信号APの出力を停止する(図9参照)。
指令回路60Bは、ライトイネーブル信号WEの論理レベルが非アクティブ(本例では、ローレベル)である場合、指令信号APを出力しない。一方、指令回路60Bは、ライトイネーブル信号WEの論理レベルがアクティブ(本例では、ハイレベル)であり、且つ、調整クロック信号PCP及びインバータ出力信号Invがハイレベルである場合、指令信号APを出力する。
例えば、指令回路60Bは、チョッパ出力信号CPの論理レベルを反転させたインバータ出力信号Invを出力するインバータ63を有する。実施例2では、指令回路60Bは、調整クロック信号PCPとインバータ出力信号Invとライトイネーブル信号WEとを用いて、指令信号APを生成する論理積回路62を有する。論理積回路62は、調整クロック信号PCPとインバータ出力信号Invとライトイネーブル信号WEとの論理積を指令信号APとして出力する。
実施例2では、ラッチノードNPCMに対するハイレベルの書き込みが発生するケースC2のときだけでなく、ラッチノードNPCMに対するローレベルの書き込みが発生するケースC1のときも、指令信号APが出力される。しかしながら、ケースC1のとき、ラッチノードNPCMのタイミングt10での初期値はハイレベルであるため、実際には電位調整回路70Aは作動しない。よって、ラッチノードNPCMは、トランジスタ22によりローレベルとなる。
<実施例3>
図10は、本開示に係る記憶回路の構成の第3の実施例を示す図である。図10に示される記憶回路1Cは、図4の記憶回路1の一例である。記憶回路1Cは、一つのラッチ10に対して複数の書き込み回路を備えた書き込み回路群20Cを有する。記憶回路1Cは、4つのライトデータWD1〜WD4のうち、ライトイネーブル信号WE1〜WE4によって書き込みが許可されたデータを、一つのラッチ10に書き込む。記憶回路1Cは、ラッチ10、書き込み回路群20C、入力回路30C、出力回路40、制御回路50C、指令回路60C及び電位調整回路70Aを備える。
書き込み回路群20Cは、4つの書き込み回路を有する。第1の書き込み回路は、トランジスタ21a,22a,23aを有し、入力回路30Cのインバータ31に入力されるライトデータWD1を制御信号WP1に基づいてラッチ10に書き込む。第2の書き込み回路は、トランジスタ21b,22b,23bを有し、入力回路30Cのインバータ32に入力されるライトデータWD2を制御信号WP2に基づいてラッチ10に書き込む。第3の書き込み回路は、トランジスタ21c,22c,23cを有し、入力回路30Cのインバータ33に入力されるライトデータWD3を制御信号WP3に基づいてラッチ10に書き込む。第4の書き込み回路は、トランジスタ21d,22d,23dを有し、入力回路30Cのインバータ34に入力されるライトデータWD4を制御信号WP4に基づいてラッチ10に書き込む。
制御回路50Cは、論理積回路51〜54を有する。論理積回路51は、チョッパ出力信号CPとライトイネーブル信号WE1との論理積を制御信号WP1として出力する。論理積回路52は、チョッパ出力信号CPとライトイネーブル信号WE2との論理積を制御信号WP2として出力する。論理積回路53は、チョッパ出力信号CPとライトイネーブル信号WE3との論理積を制御信号WP3として出力する。論理積回路54は、チョッパ出力信号CPとライトイネーブル信号WE4との論理積を制御信号WP4として出力する。
指令回路60Cは、論理和回路64を有する。論理和回路64は、4つのライトイネーブル信号WE1〜WE4の論理和を出力する。指令回路60Cは、調整クロック信号PCPとインバータ出力信号Invと論理和回路64の論理和出力信号との論理積を指令信号APとして出力する。
図10のような多ポート書き込み機能を持つラッチでも、基本的な動作は、実施例2と同じである。指令回路60Cは、各ポートからの書き込み動作を検知した結果に基づいて、電位調整回路70Aへの動作指示である指令信号APを出力する。電位調整回路70Aは、指令信号APに基づいて、ラッチノードNPCMを中間電位まで引き上げる。
実施例3では、電位調整回路70Aは、書き込みポート毎に設置されてなくてもよく、ラッチ10に記憶される1ビットにつき1つでよいため、面積増加の影響を最小限に抑えることができる。
以上、記憶回路及び記憶回路の制御方法を実施形態により説明したが、本発明は上記実施形態に限定されるものではない。他の実施形態の一部又は全部との組み合わせや置換などの種々の変形及び改良が、本発明の範囲内で可能である。
以上の実施形態に関し、更に以下の付記を開示する。
(付記1)
第1のノードと、第2のノードと、前記第1のノードに入力が接続され前記第2のノードに出力が接続される第1のインバータと、前記第2のノードに入力が接続され前記第1のノードに出力が接続される第2のインバータとを有するラッチと、
前記第1のノードに接続された第1のトランジスタと、前記第2のノードに接続された第2のトランジスタとを有し、前記第1のトランジスタと前記第2のトランジスタとによって前記ラッチに対する書き込みを行う書き込み回路と、
前記ラッチに対する書き込みが発生することを検知し、前記第2のノードの電位を前記第1のノードに対するローレベルの書き込みが終了する前に上昇させる指令信号を出力する指令回路と、
前記指令信号に基づいて前記第2のノードの電位を上昇させる電位調整回路とを備える、記憶回路。
(付記2)
前記指令回路は、前記第1のノードに対するローレベルの書き込みが開始する前に前記電位調整回路が前記第2のノードの電位を上昇させるように、前記指令信号を出力する、付記1に記載の記憶回路。
(付記3)
前記書き込み回路が前記ラッチに対する書き込みを行うタイミングを制御する制御信号をクロック信号を用いて生成する制御回路を備え、
前記指令回路は、前記指令信号を前記クロック信号を用いて生成する、付記1又は2に記載の記憶回路。
(付記4)
前記制御回路は、前記クロック信号に比べてパルス幅の狭いチョッパ出力信号を前記クロック信号を用いて生成するチョッパ回路を有し、前記制御信号を前記チョッパ出力信号を用いて生成する、付記3に記載の記憶回路。
(付記5)
前記指令回路は、前記制御信号よりも位相を進めた調整クロック信号を前記クロック信号を用いて生成する調整クロック信号生成回路を有し、前記指令信号を前記調整クロック信号を用いて生成する、付記4に記載の記憶回路。
(付記6)
前記指令回路は、前記ラッチに書き込まれるデータを更に用いて前記指令信号を生成する、付記3から5のいずれか一項に記載の記憶回路。
(付記7)
前記指令回路は、前記第2のノードに対するローレベルの書き込みが発生することを検知した場合、前記指令信号を出力せず、前記第2のノードに対するハイレベルの書き込みが発生することを検知した場合、前記指令信号を出力する、付記1から6のいずれか一項に記載の記憶回路。
(付記8)
前記指令回路は、前記指令信号を前記チョッパ出力信号を更に用いて生成する、付記4又は5に記載の記憶回路。
(付記9)
前記指令回路は、前記チョッパ出力信号の論理レベルを反転させたインバータ出力信号を出力するインバータを有し、前記指令信号を前記インバータ出力信号を更に用いて生成する、付記4又は5に記載の記憶回路。
(付記10)
前記指令回路は、前記電位調整回路が前記第2のノードの電位を上昇させることが前記第1のノードに対するローレベルの書き込みが開始する前に終了するように、前記指令信号の出力を停止する、付記1〜5,8,9のいずれか一項に記載の記憶回路。
(付記11)
前記指令回路は、前記ラッチに対する書き込み動作を可能にするライトイネーブル信号がアクティブである場合、前記指令信号を出力する、付記1から10のいずれか一項に記載の記憶回路。
(付記12)
前記書き込み回路は、前記第1のトランジスタのソースにゲートが接続され、前記第2のトランジスタのソースにドレインが接続された第3のトランジスタを有し、
前記第1のトランジスタのドレインは、前記第1のノードに接続され、前記第2のトランジスタのドレインは、前記第2のノードに接続された、付記1から11のいずれか一項に記載の記憶回路。
(付記13)
前記電位調整回路は、前記第2のノードにソースが接続された第4のトランジスタを有し、前記第4のトランジスタが前記指令信号に基づいてオンとなることによって、前記第2のノードの電位を上昇させる、付記1から12のいずれか一項に記載の記憶回路。
(付記14)
前記第1のインバータの出力電流は、前記第2のトランジスタの出力電流よりも小さく、前記第2のインバータの出力電流は、前記第1のトランジスタの出力電流よりも小さい、付記1から13のいずれか一項に記載の記憶回路。
(付記15)
一つの前記ラッチに対して複数の前記書き込み回路を備えた、付記1から14のいずれか一項に記載の記憶回路。
(付記16)
前記第1のトランジスタと前記第2のトランジスタは、nMOSトランジスタである、付記1から15のいずれか一項に記載の記憶回路。
(付記17)
前記第3のトランジスタは、nMOSトランジスタである、付記12に記載の記憶回路。
(付記18)
前記第4のトランジスタは、nMOSトランジスタである、付記13に記載の記憶回路。
(付記19)
第1のノードと、第2のノードと、前記第1のノードに入力が接続され前記第2のノードに出力が接続される第1のインバータと、前記第2のノードに入力が接続され前記第1のノードに出力が接続される第2のインバータとを有するラッチを備えた記憶回路の制御方法であって、
前記記憶回路が備える指令回路は、前記第1のノードに接続された第1のトランジスタと、前記第2のノードに接続された第2のトランジスタとによって前記ラッチに対する書き込みが発生することを検知し、
前記指令回路は、前記第2のノードの電位を前記第1のノードに対するローレベルの書き込みが終了する前に上昇させる指令信号を出力し、
前記記憶回路が備える電位調整回路は、前記指令信号に基づいて前記第2のノードの電位を上昇させる、記憶回路の制御方法。
(付記20)
前記指令回路は、前記第1のノードに対するローレベルの書き込みが開始する前に前記電位調整回路が前記第2のノードの電位を上昇させるように、前記指令信号を出力する、付記19に記載の記憶回路の制御方法。
(付記21)
前記記憶回路が備える制御回路は、前記ラッチに対する書き込みを行うタイミングを制御する制御信号をクロック信号を用いて生成し、
前記指令回路は、前記指令信号を前記クロック信号を用いて生成する、付記19又は20に記載の記憶回路の制御方法。
(付記22)
前記制御回路は、前記クロック信号に比べてパルス幅の狭いチョッパ出力信号を前記クロック信号を用いて生成し、前記制御信号を前記チョッパ出力信号を用いて生成する、付記21に記載の記憶回路の制御方法。
(付記23)
前記指令回路は、前記制御信号よりも位相を進めた調整クロック信号を前記クロック信号を用いて生成し、前記指令信号を前記調整クロック信号を用いて生成する、付記22に記載の記憶回路の制御方法。
(付記24)
前記指令回路は、前記ラッチに書き込まれるデータを更に用いて前記指令信号を生成する、付記21から23のいずれか一項に記載の記憶回路の制御方法。
(付記25)
前記指令回路は、前記第2のノードに対するローレベルの書き込みが発生することを検知した場合、前記指令信号を出力せず、前記第2のノードに対するハイレベルの書き込みが発生することを検知した場合、前記指令信号を出力する、付記19から24のいずれか一項に記載の記憶回路の制御方法。
(付記26)
前記指令回路は、前記指令信号を前記チョッパ出力信号を更に用いて生成する、付記22又は23に記載の記憶回路の制御方法。
(付記27)
前記指令回路は、前記チョッパ出力信号の論理レベルを反転させたインバータ出力信号を出力し、前記指令信号を前記インバータ出力信号を更に用いて生成する、付記22又は23に記載の記憶回路の制御方法。
(付記28)
前記指令回路は、前記電位調整回路が前記第2のノードの電位を上昇させることが前記第1のノードに対するローレベルの書き込みが開始する前に終了するように、前記指令信号の出力を停止する、付記19〜23,26,27のいずれか一項に記載の記憶回路の制御方法。
(付記29)
前記指令回路は、前記ラッチに対する書き込み動作を可能にするライトイネーブル信号がアクティブである場合、前記指令信号を出力する、付記19から28のいずれか一項に記載の記憶回路の制御方法。
(付記30)
前記記憶回路は、前記第1のトランジスタのソースにゲートが接続され、前記第2のトランジスタのソースにドレインが接続された第3のトランジスタを有し、
前記第1のトランジスタのドレインは、前記第1のノードに接続され、前記第2のトランジスタのドレインは、前記第2のノードに接続された、付記19から29のいずれか一項に記載の記憶回路の制御方法。
(付記31)
前記電位調整回路は、前記第2のノードにソースが接続された第4のトランジスタを有し、前記第4のトランジスタが前記指令信号に基づいてオンとなることによって、前記第2のノードの電位を上昇させる、付記19から30のいずれか一項に記載の記憶回路の制御方法。
(付記32)
前記第1のインバータの出力電流は、前記第2のトランジスタの出力電流よりも小さく、前記第2のインバータの出力電流は、前記第1のトランジスタの出力電流よりも小さい、付記19から31のいずれか一項に記載の記憶回路の制御方法。
(付記33)
前記第1のトランジスタと前記第2のトランジスタは、nMOSトランジスタである、付記19から32のいずれか一項に記載の記憶回路の制御方法。
(付記34)
前記第3のトランジスタは、nMOSトランジスタである、付記30に記載の記憶回路の制御方法。
(付記35)
前記第4のトランジスタは、nMOSトランジスタである、付記31に記載の記憶回路の制御方法。
1,1A,1B,1C 記憶回路
10 ラッチ
11,12 インバータ
20 書き込み回路
21〜23 トランジスタ
30 入力回路
40 出力回路
50 制御回路
60 指令回路
70 電位調整回路
PCM,NPCM ラッチノード

Claims (16)

  1. 第1のノードと、第2のノードと、前記第1のノードに入力が接続され前記第2のノードに出力が接続される第1のインバータと、前記第2のノードに入力が接続され前記第1のノードに出力が接続される第2のインバータとを有するラッチと、
    前記第1のノードに接続された第1のトランジスタと、前記第2のノードに接続された第2のトランジスタとを有し、前記第1のトランジスタと前記第2のトランジスタとによって前記ラッチに対する書き込みを行う書き込み回路と、
    前記ラッチに対する書き込みが発生することを検知し、前記第2のノードの電位の上昇を前記第1のノードに対するローレベルの書き込み段階が開始する前に開始させ前記書き込み段階が終了する前に終了させる指令信号を出力する指令回路と、
    前記指令信号に基づいて前記第2のノードの電位を上昇させる電位調整回路とを備え、
    前記書き込み回路は、前記第1のトランジスタのソースにゲートが接続され、前記第2のトランジスタのソースにドレインが接続された第3のトランジスタを有し、
    前記第1のトランジスタのドレインは、前記第1のノードに接続され、前記第2のトランジスタのドレインは、前記第2のノードに接続された、記憶回路。
  2. 前記電位調整回路は、前記指令信号に基づいて、前記書き込み段階が終了する前に前記第2のノードの電位を中間電位まで上昇させる、請求項1に記載の記憶回路。
  3. 前記書き込み回路が前記ラッチに対する書き込みを行うタイミングを制御する制御信号をクロック信号を用いて生成する制御回路を備え、
    前記指令回路は、前記指令信号を前記クロック信号を用いて生成する、請求項1又は2に記載の記憶回路。
  4. 前記制御回路は、前記クロック信号に比べてパルス幅の狭いチョッパ出力信号を前記クロック信号を用いて生成するチョッパ回路を有し、前記制御信号を前記チョッパ出力信号を用いて生成する、請求項3に記載の記憶回路。
  5. 前記指令回路は、前記制御信号よりも位相を進めた調整クロック信号を前記クロック信号を用いて生成する調整クロック信号生成回路を有し、前記指令信号を前記調整クロック信号を用いて生成する、請求項4に記載の記憶回路。
  6. 前記指令回路は、前記ラッチに書き込まれるデータを更に用いて前記指令信号を生成する、請求項3から5のいずれか一項に記載の記憶回路。
  7. 前記指令回路は、前記第2のノードに対するローレベルの書き込みが発生することを検知した場合、前記指令信号を出力せず、前記第2のノードに対するハイレベルの書き込みが発生することを検知した場合、前記指令信号を出力する、請求項1から6のいずれか一項に記載の記憶回路。
  8. 前記指令回路は、前記指令信号を前記チョッパ出力信号を更に用いて生成する、請求項4又は5に記載の記憶回路。
  9. 前記指令回路は、前記チョッパ出力信号の論理レベルを反転させたインバータ出力信号を出力するインバータを有し、前記指令信号を前記インバータ出力信号を更に用いて生成する、請求項4又は5に記載の記憶回路。
  10. 前記指令回路は、前記電位調整回路が前記第2のノードの電位を上昇させることが前記第1のノードに対するローレベルの書き込みが開始する前に終了するように、前記指令信号の出力を停止する、請求項1〜5,8,9のいずれか一項に記載の記憶回路。
  11. 前記指令回路は、前記ラッチに対する書き込み動作を可能にするライトイネーブル信号がアクティブである場合、前記指令信号を出力する、請求項1から10のいずれか一項に記載の記憶回路。
  12. 前記電位調整回路は、前記第2のノードにソースが接続された第4のトランジスタを有し、前記第4のトランジスタが前記指令信号に基づいてオンとなることによって、前記第2のノードの電位を上昇させる、請求項1から11のいずれか一項に記載の記憶回路。
  13. 前記第1のインバータの出力電流は、前記第2のトランジスタの出力電流よりも小さく、前記第2のインバータの出力電流は、前記第1のトランジスタの出力電流よりも小さい、請求項1から12のいずれか一項に記載の記憶回路。
  14. 一つの前記ラッチに対して複数の前記書き込み回路を備えた、請求項1から12のいずれか一項に記載の記憶回路。
  15. 前記第1のトランジスタと前記第2のトランジスタは、nMOSトランジスタである、請求項1から14のいずれか一項に記載の記憶回路。
  16. 第1のノードと、第2のノードと、前記第1のノードに入力が接続され前記第2のノードに出力が接続される第1のインバータと、前記第2のノードに入力が接続され前記第1のノードに出力が接続される第2のインバータとを有するラッチを備えた記憶回路の制御方法であって、
    前記記憶回路が備える指令回路は、前記第1のノードに接続された第1のトランジスタと、前記第2のノードに接続された第2のトランジスタとによって前記ラッチに対する書き込みが発生することを検知し、
    前記指令回路は、前記第2のノードの電位の上昇を前記第1のノードに対するローレベルの書き込み段階が開始する前に開始させ前記書き込み段階が終了する前に終了させる指令信号を出力し、
    前記記憶回路が備える電位調整回路は、前記指令信号に基づいて前記第2のノードの電位を上昇させ、
    前記記憶回路は、前記第1のトランジスタのソースにゲートが接続され、前記第2のトランジスタのソースにドレインが接続された第3のトランジスタを有し、
    前記第1のトランジスタのドレインは、前記第1のノードに接続され、前記第2のトランジスタのドレインは、前記第2のノードに接続された、記憶回路の制御方法。
JP2017097316A 2017-05-16 2017-05-16 記憶回路及び記憶回路の制御方法 Active JP6984166B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2017097316A JP6984166B2 (ja) 2017-05-16 2017-05-16 記憶回路及び記憶回路の制御方法
US15/972,510 US10425066B2 (en) 2017-05-16 2018-05-07 Memory circuit and control method for memory circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017097316A JP6984166B2 (ja) 2017-05-16 2017-05-16 記憶回路及び記憶回路の制御方法

Publications (2)

Publication Number Publication Date
JP2018195942A JP2018195942A (ja) 2018-12-06
JP6984166B2 true JP6984166B2 (ja) 2021-12-17

Family

ID=64272626

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017097316A Active JP6984166B2 (ja) 2017-05-16 2017-05-16 記憶回路及び記憶回路の制御方法

Country Status (2)

Country Link
US (1) US10425066B2 (ja)
JP (1) JP6984166B2 (ja)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6549042B2 (en) * 2000-06-23 2003-04-15 Integrated Device Technology, Inc. Complementary data line driver circuits with conditional charge recycling capability that may be used in random access and content addressable memory devices and method of operating same
JP2002050944A (ja) 2000-08-01 2002-02-15 Sharp Corp ラッチ回路、および、それを用いたフリップフロップ回路
KR20080065122A (ko) 2007-01-08 2008-07-11 삼성전자주식회사 고속 동작을 위한 플립플롭

Also Published As

Publication number Publication date
US10425066B2 (en) 2019-09-24
US20180337661A1 (en) 2018-11-22
JP2018195942A (ja) 2018-12-06

Similar Documents

Publication Publication Date Title
TWI614766B (zh) 非揮發性記憶體
JP6195393B1 (ja) 出力回路
JP4987607B2 (ja) レベルシフト回路
KR20140139595A (ko) 내장형 레벨 시프터 및 프로그래머블 상승 엣지 및 펄스 폭을 갖는 펄스 클록 발생 로직
JP2010198718A (ja) 半導体記憶装置、半導体装置及び電子機器
TWI661431B (zh) 整合式位準移位鎖存電路及這種鎖存電路的操作方法
JP2008103028A (ja) 半導体記憶装置
JP2010238347A (ja) パイプラッチ回路及びこれを用いた半導体メモリ装置
KR100968156B1 (ko) 전원제어회로 및 이를 이용한 반도체 메모리 장치
JP4562515B2 (ja) 論理回路及びワードドライバ回路
JP2008306697A (ja) 内部クロックドライバ回路
KR100776747B1 (ko) 반도체 메모리 장치의 로우 어드레스 제어 회로 및 방법
JP6984166B2 (ja) 記憶回路及び記憶回路の制御方法
US20150288350A1 (en) Signal transfer circuit and operating method thereof
JP6540290B2 (ja) レベルコンバータ回路
JP5529661B2 (ja) 半導体メモリ
JP4952194B2 (ja) 半導体記憶装置
JP2004253072A (ja) 半導体装置及びその制御方法
KR100766372B1 (ko) 반도체 메모리의 뱅크 제어장치 및 방법
KR100678458B1 (ko) 레벨 쉬프트 회로 및 이의 동작 방법
JP6751470B2 (ja) 書き込み動作時、状態切替認識が可能な磁気抵抗メモリ装置及びそのための読み出し及び書き込み動作方法
JP5115275B2 (ja) 出力バッファ回路
JP2006286100A (ja) 半導体メモリ
US20120126874A1 (en) Integrated circuit
JP2011170919A (ja) 半導体集積回路

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200213

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201222

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210608

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210802

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210907

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20211007

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211026

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211108

R150 Certificate of patent or registration of utility model

Ref document number: 6984166

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150