JP6980077B1 - 回転電機の制御装置 - Google Patents

回転電機の制御装置 Download PDF

Info

Publication number
JP6980077B1
JP6980077B1 JP2020177088A JP2020177088A JP6980077B1 JP 6980077 B1 JP6980077 B1 JP 6980077B1 JP 2020177088 A JP2020177088 A JP 2020177088A JP 2020177088 A JP2020177088 A JP 2020177088A JP 6980077 B1 JP6980077 B1 JP 6980077B1
Authority
JP
Japan
Prior art keywords
temperature
electric machine
rotary electric
value
refrigerant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020177088A
Other languages
English (en)
Other versions
JP2022068423A (ja
Inventor
健吾 熊谷
仁志 磯田
太祐 池田
慎介 茅野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2020177088A priority Critical patent/JP6980077B1/ja
Application granted granted Critical
Publication of JP6980077B1 publication Critical patent/JP6980077B1/ja
Publication of JP2022068423A publication Critical patent/JP2022068423A/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Control Of Electric Motors In General (AREA)
  • Motor Or Generator Cooling System (AREA)

Abstract

【課題】回転電機の運転開始時の冷媒の温度が、回転電機の温度よりも高くなる場合でも、温度推定値の初期値を適切に設定し、温度推定値が、実際の温度よりも低くなることを抑制することができる回転電機の制御装置を提供する。【解決手段】回転電機の温度推定を開始する際に、回転電機の温度検出値Tmpdに基づいて温度推定値の初期値である検出初期値Tindを設定し、想定される冷媒の温度に対応して予め設定された基準初期値Tinbと、検出初期値Tindとのいずれか大きい方を、最終的な温度推定値の初期値Tinに設定する回転電機の制御装置。【選択図】図7

Description

本願は、回転電機の制御装置に関するものである。
車両用の回転電機は、回転子と、その周囲に配設され、固定子コイルが巻装された固定子コアとを有する。回転電機は、固定子コイルに通電して回転力を得て、発電機は、回転子の回転により固定子コイルに流れる電流を取り出す。そして、回転子の回転時に固定子コイルに電流が流れると、固定子コア及び固定子コイルが発熱する。この発熱により固定子温度が上昇すると、固定子コイルの損傷、永久磁石の熱減磁等の不具合が発生する可能性がある。このことから、過熱保護のために、回転電機の温度を推定する手法が提案されている。
例えば、特許文献1では、固定子コイルに温度センサを設けずに、コイルを流れる電流を算出し、コイルに流れる電流により、演算周期毎に、コイルに発生するコイル発熱量を算出し、演算周期の間にコイルからコイルに隣接する部材への内部伝達熱量に基づくコイル温度変化量を算出し、演算周期の間にコイルに隣接する部材から外気への前回外部伝達熱量に基づく部材温度変化量を算出するステップを実行することにより、演算周期毎に回転電機のコイル温度を推定するコイル温度推定方法が開示されている。
特許第5075418号
特許文献1には、温度推定値の初期値は、想定される最悪の高温使用環境での外気温度と同じにすることが好ましいと記載されている。しかし、特に、冷却油等の液状の冷媒を用いる場合は、回転電機の運転停止状態において、冷却の状態によって、冷媒の温度が、回転電機の温度及び外気温度を上回る場合がある。この場合は、運転開始後に、回転電機は、高い温度の冷媒により加熱され、温度上昇が大きくなる。特許文献1のように、外気温度により、温度推定値の初期値を設定すると、運転開始後に、温度推定値は、実際の温度よりも低くなり、温度推定値を用いた過熱保護が遅れる可能性がある。一方、温度推定値の初期値を高く設定し過ぎると、運転開始後の温度推定値が、実際の温度よりも、高くなり過ぎ、不必要にも関わらず過熱保護により回転電機の出力が制限される可能性がある。
そこで、本願は、回転電機の運転開始時の冷媒の温度が、回転電機の温度よりも高くなる場合でも、温度推定値の初期値を適切に設定し、温度推定値が、実際の温度よりも低くなることを抑制することができる回転電機の制御装置を提供することを目的とする。
本願に係る回転電機の制御装置は、
回転電機に取り付けられた温度センサの出力信号に基づいて、前記回転電機の温度を検出する温度検出部と、
回転電機の運転状態に基づいて、前記回転電機内の推定箇所の温度を推定する温度推定部と、を備え、
前記推定箇所は、前記温度センサが取り付けられた箇所とは異なっており、
前記温度推定部は、前記回転電機の運転を開始し、温度推定を開始する際に、前記回転電機の温度検出値に基づいて温度推定値の初期値である検出初期値を設定し、想定される冷媒の温度に対応して予め設定された又は冷媒の温度検出値に基づいて設定した基準初期値と、前記検出初期値とのいずれか大きい方を、最終的な温度推定値の初期値に設定するものである。
本願の回転電機の制御装置によれば、回転電機の温度検出値に基づいて設定された検出初期値が、想定される冷媒の温度に対応して予め設定された又は冷媒の温度検出値に基づいて設定した基準初期値よりも低い場合に、基準初期値が温度推定値の初期値に設定されるので、運転開始後に、高い温度の冷媒により、回転電機が過熱される場合でも、温度推定値が、実際の温度よりも低くなることを抑制することができる。一方、回転電機の温度検出値に基づいて設定された検出初期値が、基準初期値よりも高い場合に、検出初期値が温度推定値の初期値に設定されるので、温度推定値が、実際の温度から大きくずれることを抑制できる。
実施の形態1に係る回転電機及び回転電機の制御装置の概略構成図である。 実施の形態1に係る回転電機の概略断面図である。 実施の形態1に係る回転電機の冷媒循環冷却装置の概略構成図である。 実施の形態1に係るインバータの概略回路図である。 実施の形態1に係る回転電機の制御装置の概略ブロック図である。 実施の形態1に係る回転電機の制御装置の概略ハードウェア構成図である。 実施の形態1に係る温度推定部のブロック図である。 実施の形態1に温度予測データを説明する図である。 実施の形態1に最大トルクデータを説明する図である。 実施の形態1に相関温度データを説明する図である。 実施の形態1にトルク低減率データを説明する図である。 実施の形態2に係る回転電機の冷媒循環冷却装置の概略構成図である。 実施の形態4に係るインバータの冷媒循環冷却装置の概略構成図である。
1.実施の形態1
以下、実施の形態1に係る回転電機の制御装置30(以下、単に、制御装置30と称す)について図面を参照して説明する。図1は、回転電機1、インバータ4、及び制御装置30等の概略構成図である。
1−1.回転電機1
図2に、回転軸心を通る平面で切断した回転電機1の断面図を示す。回転電機1は、円筒状の固定子100と、固定子100の径方向内側に配置され、軸受204、205により回転可能に支持された円筒状の回転子200と、を有している。本実施の形態では、回転電機1は、永久磁石型の同期モータとされており、固定子100にはコイル102が巻装され、回転子200には永久磁石202が設けられている。回転電機1は、油冷式とされている。
固定子100は、円環板状の電磁鋼板が軸方向に積層された固定子コア101と、固定子コア101の各ティースに巻装されたコイル102と、を備えている。ティースは、周方向に均等間隔で複数備えられている。コイル102は、固定子コア101内(スロット内)に配置されたコイル部分104(コア内コイル部104)と、固定子コア101から軸方向両側に突出したコイルエンド部103と、を有している。コイル102として、複数相のコイル(本例では、U相、V相、W相の3相のコイルCu、Cv、Cw)が設けられており、各相のコイルの端部は、インバータ4に接続されている。なお、3相のコイルが複数組(例えば、2組)設けられてもよい。
コイルの温度を検出する温度センサ110が備えられている。本実施の形態では、温度センサ110は、軸方向一方側のコイルエンド部103に取り付けられ、コイルエンド部103の温度を検出する。温度センサ110の出力信号は、制御装置30に入力される。温度センサ110は、後述する温度の推定箇所にできるだけ近い位置に取り付けることが望ましいが、推定箇所がスロット内のコア内コイル部104である場合は、限界がある。
回転子200は、円環板状の電磁鋼板が軸方向に積層された回転子コア201と、回転子コア201の各スロットに装着された永久磁石202と、回転子コア201の内周面に固定された回転軸203と、を備えている。なお、永久磁石202は、回転子コア201の外周面に固定されてもよい。回転軸203には、回転子200の回転角度を検出するための回転センサ2(図2には不図示)が備えられている。回転センサ2には、レゾルバ、エンコーダ、MRセンサ等が用いられる。回転センサ2の出力信号は、制御装置30に入力される。
固定子100及び回転子200は、ハウジング内に収容され、液密状態にシールされている。ハウジングとして、底の深い有底円筒状の第1ハウジング300と、第1ハウジング300の開口部を塞ぐ、底の浅い有底円筒状の第2ハウジング301と、を備えている。第1ハウジング300の周壁の内周面に、固定子100(固定子コア101)が固定されている。第1ハウジング300の底壁及び第2ハウジング301の底壁には、回転軸203が貫通する貫通孔が設けられており、第1ハウジング300の底壁の貫通孔の内周面が、第1軸受204を介して、回転軸203の軸方向の一方側を回転可能に支持し、第2ハウジング301の底壁の貫通孔の内周面が、第2軸受205を介して、回転軸203の軸方向の他方側を回転可能に支持している。第1軸受204及び第2軸受205は、シール付き軸受であり、ハウジング内の冷却油を外部に漏らさない構造になっている。
ハウジングには、後述する外部の冷媒循環冷却装置50から供給された冷却油をハウジング内に供給する冷媒供給孔401と、ハウジング内の冷却油を冷媒循環冷却装置50に排出する冷媒排出孔402とが設けられている。ハウジング内に供給された冷却油は、固定子100及び回転子200の各部を冷却した後、ハウジング内から排出される。冷却油は、回転子200の回転により攪拌され、固定子100及び回転子200の各部に供給される。
1−2.冷媒循環冷却装置50
冷媒循環冷却装置50は、回転電機1を冷却する冷媒(本例では、冷却油)を、冷却し循環させる。図3に示すように、冷媒循環冷却装置50は、冷却器51、循環器52、及び循環配管53を備えている。ポンプ等の循環器52により昇圧された冷媒は、循環配管53を通り、回転電機1の冷媒供給孔401に送られる。回転電機1の冷媒排出孔402から排出された冷媒は、循環配管53を通り、ラジエータ等の冷却器51に送られ、冷却される。冷却器51で冷却された冷媒は、循環器52に送られ、再び昇圧される。
1−4.インバータ4
図4に示すように、インバータ4は、直流電源3の正極側に接続される正極側のスイッチング素子SPと直流電源3の負極側に接続される負極側のスイッチング素子SNとが直列接続された直列回路(レッグ)を、3相各相に対応して3セット設けている。そして、各相の直列回路における2つのスイッチング素子の接続点が、対応する相のコイルに接続されている。
具体的には、U相の直列回路では、U相の正極側のスイッチング素子SPuとU相の負極側のスイッチング素子SNuとが直列接続され、2つのスイッチング素子の接続点がU相のコイルCuに接続されている。V相の直列回路では、V相の正極側のスイッチング素子SPvとV相の負極側のスイッチング素子SNvとが直列接続され、2つのスイッチング素子の接続点がV相のコイルCvに接続されている。W相の直列回路では、Wの正極側のスイッチング素子SPwとW相の負極側のスイッチング素子SNwとが直列接続され、2つのスイッチング素子の接続点がW相のコイルCwに接続されている。平滑コンデンサ7が、直流電源3の正極側と負極側との間に接続される。
スイッチング素子には、ダイオードが逆並列接続されたFET(Field Effect Transistor)、ダイオードが逆並列接続されたIGBT(Insulated Gate Bipolar Transistor)、MOSFET(Metal Oxide Semiconductor Field Effect Transistor)、ダイオードが逆並列接続されたバイポーラトランジスタ等が用いられる。各スイッチング素子のゲート端子は、ゲート駆動回路等を介して、制御装置30に接続されている。各スイッチング素子は、制御装置30から出力されたスイッチング信号によりオン又はオフされる。
直流電源3は、インバータ4に直流電圧Vdcを出力する。直流電源3として、バッテリー、DC−DCコンバータ、ダイオード整流器、PWM整流器等の直流電圧を出力する機器であれば、どのような機器であってもよい。直流電源3には、直流電源3の直流電圧Vdcを検出する電圧センサ6が設けられ、電圧センサ6の出力信号が制御装置30に入力される。
各相のコイルに流れる電流を検出する電流センサ5が設けられている。電流センサ5は、各相の2つのスイッチング素子の直列回路と各相のコイルとを接続する電線上に備えられている。電流センサ5の出力信号は、制御装置30に入力される。なお、電流センサ5は、各相の2つのスイッチング素子の直列回路に備えられてもよい。
1−4.制御装置30
制御装置30は、インバータ4を介して回転電機1を制御する。図5に示すように、制御装置30は、運転状態検出部31、トルク制御部32、温度検出部33、温度推定部34、及び出力制限部35等を備えている。制御装置30の各機能は、制御装置30が備えた処理回路により実現される。具体的には、制御装置30は、図6に示すように、処理回路として、CPU(Central Processing Unit)等の演算処理装置90(コンピュータ)、演算処理装置90とデータのやり取りする記憶装置91、演算処理装置90に外部の信号を入力する入力回路92、及び演算処理装置90から外部に信号を出力する出力回路93等を備えている。
演算処理装置90として、ASIC(Application Specific Integrated Circuit)、IC(Integrated Circuit)、DSP(Digital Signal Processor)、FPGA(Field Programmable Gate Array)、各種の論理回路、及び各種の信号処理回路等が備えられてもよい。また、演算処理装置90として、同じ種類のもの又は異なる種類のものが複数備えられ、各処理が分担して実行されてもよい。記憶装置91として、演算処理装置90からデータを読み出し及び書き込みが可能に構成されたRAM(Random Access Memory)、演算処理装置90からデータを読み出し可能に構成されたROM(Read Only Memory)等が備えられている。入力回路92は、回転センサ2、電流センサ5、電圧センサ6、温度センサ110等の各種のセンサ、スイッチが接続され、これらセンサ、スイッチの出力信号を演算処理装置90に入力するA/D変換器等を備えている。出力回路93は、スイッチング素子をオンオフ駆動するゲート駆動回路等の電気負荷が接続され、これら電気負荷に演算処理装置90から制御信号を出力する駆動回路等を備えている。
そして、制御装置30が備える各制御部31〜35等の各機能は、演算処理装置90が、ROM等の記憶装置91に記憶されたソフトウェア(プログラム)を実行し、記憶装置91、入力回路92、及び出力回路93等の制御装置30の他のハードウェアと協働することにより実現される。なお、各制御部31〜35等が用いる相関温度データ、基準初期値、温度予測データ、及び最大トルクデータ等の設定データは、ソフトウェア(プログラム)の一部として、ROM等の記憶装置91に記憶されている。以下、制御装置30の各機能について詳細に説明する。
1−4−1.運転状態検出部31
運転状態検出部31は、電気角での回転子の磁極位置θ(回転子の回転角度θ)及び回転角速度ωを検出する。本実施の形態では、運転状態検出部31は、回転センサ2の出力信号に基づいて、回転子の回転角度θ(磁極位置θ)及び回転角速度ωを検出する。磁極位置θ(回転角度θ)は、回転子に設けられた永久磁石のN極の向きに設定される。運転状態検出部31は、電気角での回転角速度ω[rad/s]に所定の換算定数を乗算して、機械角での回転速度N[rpm]を算出する。なお、運転状態検出部31は、電流指令値に高調波成分を重畳することによって得られる電流情報等に基づいて、回転センサを用いずに、回転角度(磁極位置)を推定するように構成されてもよい(いわゆる、センサレス方式)。
運転状態検出部31は、電流センサ5の出力信号に基づいて、3相各相のコイルに流れる電流Iur、Ivr、Iwrを検出する。運転状態検出部31は、電圧センサ6の出力信号に基づいて、インバータ4に供給される直流電圧Vdcを検出する。
1−4−2.トルク制御部32
トルク制御部32は、回転電機1の3相コイルに印加する印加電圧を制御して、回転電機1のトルクを制御する。本実施の形態では、トルク制御部32は、電流指令値算出部321、電圧指令値算出部322、及びスイッチング制御部323を備えている。
電流指令値算出部321は、トルク指令値To、回転速度N、及び直流電圧Vdcに基づいて、電流指令値を算出する。本実施の形態では、電流指令値算出部321は、d軸の電流指令値Ido及びq軸の電流指令値Iqoを算出する。d軸は、ロータの磁極(N極、磁極位置θ)の方向に定められ、q軸は、d軸より電気角で90°進んだ方向に定められている。dq軸の回転座標系は、ロータの磁極位置θの回転に同期して回転する。本実施の形態では、トルク指令値Toとして、後述する出力制限部35による処理後の値が用いられる。
電流指令値算出部321は、最大トルク電流制御、弱め界磁制御、Id=0制御などの公知のベクトル制御方法に従って、d軸及びq軸の電流指令値Ido、Iqoを算出する。トルク指令値Toは、制御装置30の内部で演算されてもよいし、制御装置30の外部から伝達されてもよい。
電圧指令値算出部322は、電流指令値に基づいて3相の電圧指令値Vuo、Vvo、Vwoを算出する。本実施の形態では、電圧指令値算出部322は、d軸及びq軸の電流検出値Idr、Iqrが、d軸及びq軸の電流指令値Ido、Iqoに近づくように、d軸及びq軸の電圧指令値Vdo、Vqoを変化させる電流フィードバック制御を行う。
電圧指令値算出部322は、3相コイルの電流検出値Iur、Ivr、Iwrを、磁極位置θに基づいて3相2相変換及び回転座標変換を行って、d軸の電流検出値Idr及びq軸の電流検出値Iqrに変換する。
そして、電圧指令値算出部322は、d軸及びq軸の電圧指令値Vdo、Vqoを、磁極位置θに基づいて、固定座標変換及び2相3相変換を行って、3相の電圧指令値Vuo、Vvo、Vwoに変換する。
スイッチング制御部323は、3相の電圧指令値Vuo、Vvo、Vwoに基づいて、PWM制御(Pulse Width Modulation)により、インバータ4が有するスイッチング素子をオンオフ制御することにより、3相のコイルに電圧を印加する。スイッチング制御部323は、3相の電圧指令値Vuo、Vvo、Vwoのそれぞれとキャリア波とを比較することにより、複数のスイッチング素子をオンオフ制御する。キャリア波は、PWM周期で直流電圧Vdcの振幅で振動する三角波とされている。
1−4−3.温度検出部33
温度検出部33は、回転電機1に取り付けられた温度センサ110の出力信号に基づいて、温度Tmpdを検出する。本実施の形態では、温度センサ110は、コイルエンド部103に取り付けられており、温度検出値Tmpdは、コイルエンド部103の温度である。コイルエンド部103は、固定子コアから外部に露出しており、冷媒(本例では、冷却油)により冷却され易くなっている。
なお、温度センサ110の取り付け箇所は、回転電機の構造、冷却機構の構成等によって、変化されてもよい。
1−4−4.温度推定部34
1−4−4−1.温度推定処理
温度推定部34は、回転電機の運転状態に基づいて、回転電機内の推定箇所の温度Tmpeを推定する。推定箇所は、温度センサ110が取り付けられた箇所とは異なっている。図7に本実施の形態に係る温度推定部34のブロック図を示す。
コイルは、樹脂等により絶縁されており、絶縁を確保するためには、過熱を抑制する必要がある。そこで、本実施の形態では、推定箇所は、コイルの内、最も温度が高くなる箇所又は過熱保護が必要な箇所に設定されている。過熱保護が必要な箇所は、コイルの内、冷却され難く、特に温度が上昇し易い箇所に設定される。例えば、推定箇所は、固定子コア内に配置されたコア内コイル部104(例えば、軸方向の中心部分)に設定される。
<温度の推定方法>
温度の推定方法として、公知の各種の方法を用いることができるが、本実施の形態では、以下の例を示す。
温度推定部34は、予め設定された推定演算周期Δt毎の演算タイミングで、温度予測データを参照し、現在の回転速度N、現在のトルク情報、及び前回の演算タイミングで算出された温度推定値Tmpe(n−1)に対応する、前回の演算タイミングから推定演算周期Δtの経過後の温度推定値Tmpe(n)(以下、現在の演算タイミングの温度推定値Tmpe(n)と称す)を算出する。
図8に示すように、温度予測データには、回転速度N、トルク情報、及び基準時点t0の推定箇所の温度Tmp(t0)と、基準時点t0から推定演算周期Δtの経過後の推定箇所の温度Tmp(t0+Δt)との関係が予め設定されている。温度予測データは、回転速度N及びトルクTの各動作点において、実験又は解析により取得した推定箇所の温度の時系列の挙動に基づいて設定される。
温度推定部34は、温度予測データから、前回の演算タイミングで算出された回転電機の温度推定値Tmpe(n−1)に対応する基準時点の温度Tmp(t0)、現在の回転速度Nに対応する回転速度N、及び現在のトルク情報に対応するトルク情報を探索し、探索した基準時点の温度Tmp(t0)、回転速度N、及びトルク情報に対応して設定されている基準時点t0から推定演算周期Δtの経過後の回転電機の温度Tmp(t0+Δt)を、前回の演算タイミングから推定演算周期Δtの経過後の温度推定値Tmpe(n)として算出する。
本実施の形態では、トルク情報として、対応する回転速度Nにおいて出力可能な最大トルクTmaxに対する回転電機のトルクTの比であるトルク負荷率Tload(=T/Tmax×100%)が用いられる。なお、トルク情報として、トルクTが用いられてもよい。
温度推定部34は、図9に示すような、回転速度Nと最大トルクTmaxとの関係が予め設定された最大トルクデータを参照し、現在の回転速度Nに対応する最大トルクTmaxを算出する。そして、温度推定部34は、現在のトルクTを、算出した最大トルクTmaxで除算して、現在のトルク負荷率Tloadを算出する。
温度推定部34は、公知のトルク方程式を用い、d軸及びq軸の電流検出値Idr、Iqrに基づいて、現在のトルクTを算出する。或いは、温度推定部34は、トルク指令値Toを、現在のトルクTとして用いてもよい。
図8に示すように、温度予測データとして、予め設定された複数の回転電機の基準回転速度N0、N1・・・のそれぞれについて、トルク情報及び基準時点t0の推定箇所の温度Tmp(t0)と、基準時点t0から推定演算周期Δtの経過後の推定箇所の温度Tmp(t0+Δt)との関係が予め設定された基準速度の温度予測データが設けられている。そして、温度推定部34は、複数の基準回転速度N0、N1・・・のそれぞれに対応して設けられた複数の基準速度の温度予測データから、現在の回転速度Nに対応する基準速度の温度予測データを選択し、選択した基準速度の温度予測データを参照し、現在のトルク情報、及び前回の演算タイミングで算出された温度推定値Tmpe(n−1)に対応する、現在の演算タイミングの温度推定値Tmpe(n)を算出する。
本実施の形態では、図8に示すように、各基準回転速度の基準速度の温度予測データは、トルク負荷率Tload及び基準時点の推定箇所の温度Tmp(t0)をマップ軸としたマップデータとされている。トルク負荷率Tloadのマップ軸、及び基準時点の推定箇所の温度Tmp(t0)のマップ軸の格子点は、それぞれ、所定の刻みで設定されている。トルク負荷率Tloadのマップ軸の各格子点と基準時点の推定箇所の温度Tmp(t0)のマップ軸の各格子点との各交点に、対応する基準時点t0から推定演算周期Δtの経過後の推定箇所の温度Tmp(t0+Δt)の値が設定されている。
本実施の形態では、7つの基準回転速度N0、N1、・・・N6が設けられ、トルク負荷率Tloadのマップ軸の刻みは、20%に設定されており、基準時点の温度Tmp(t0)のマップ軸の刻みは、20℃に設定されている。
温度推定部34の温度推定の処理は、推定演算周期Δt毎に実行される。図7に示すように、温度推定部34は、上述したように、最大トルクデータを参照し、現在の回転速度Nに対応する最大トルクTmaxを算出する。そして、温度推定部34は、現在のトルクTを最大トルクTmaxで除算して、トルク負荷率Tloadを算出する。そして、温度推定部34は、温度予測データを参照し、現在の回転速度N、現在のトルク負荷率Tload、前回の演算タイミングの温度推定値Tmpe(n−1)に対応する、現在の演算タイミングの温度推定値Tmpe(n)を算出する。温度推定部34は、現在の演算タイミングの温度推定値Tmpe(n)をRAM等に保持し、次回の演算タイミングで、前回の演算タイミングの温度推定値Tmpe(n−1)として用いる。
1−4−4−2.温度推定値の初期値の設定
回転電機の運転を開始し、温度推定を開始する際に、温度推定値Tmpeの初期値Tinを設定する必要がある。
回転電機の各部の温度は、回転電機の運転を停止した時点から、時間の経過とともに、次第に低下していき、最終的には周囲の環境温度に一致する。そのため、運転停止期間が短い場合は、温度が十分に低下しておらず、運転開始時の回転電機の温度が高くなる。一方、運転停止期間が長い場合は、運転開始時の回転電機の温度は低くなる。そのため、運転開始時の回転電機の温度検出値に応じて、温度推定値の初期値を設定することが考えられる。
しかし、運転停止期間が長い場合に、条件の差から、回転電機の温度が、冷媒の温度よりも低くなる場合がある。この場合に、低い温度検出値に応じて温度推定値の初期値を設定すると、運転開始後の温度推定値の温度が低くなる。しかし、実際の温度は、運転開始後に、高い温度の冷媒により加熱され、温度推定値よりも高くなる。よって、温度推定値を用いた過熱保護が遅れる可能性がある。一方、回転電機の温度が、冷媒の温度よりも高い場合は、運転開始後に、高い温度の回転電機は、低い温度の冷媒により通常通り冷却されるため、温度検出値に応じて温度推定値の初期値を設定しても、実際の温度は、温度推定値から大きくずれることはなく、温度推定値を用いた過熱保護が適切に行われる。
そこで、温度推定部34は、回転電機の運転を開始し、温度推定を開始する際に、温度検出値Tmpdに基づいて温度推定値の初期値である検出初期値Tindを設定し、検出初期値Tindと、想定される冷媒温度に対応して予め設定された基準初期値Tinbとのいずれか大きい方を、最終的な温度推定値の初期値Tinに設定する。そして、温度推定部34は、温度推定の開始時に、温度推定値Tmpeを、最終的な温度推定値の初期値Tinに設定する。なお、現在及び前回の演算タイミングの温度推定値Tmpe(n)、Tmpe(n−1)の双方が、温度推定値の初期値Tinに設定される。
<ステップ1>
Tmpdに基づいてTindを設定
<ステップ2>
1)Tind>Tinbの場合、
Tin=Tind
2)Tind≦Tinbの場合、
Tin=Tinb
<ステップ3>
Tmpe=Tin
この構成によれば、温度検出値Tmpdに基づいて設定された検出初期値Tindが、想定される冷媒温度に対応して予め設定された基準初期値Tinbよりも低い場合に、基準初期値Tinbが温度推定値の初期値Tinに設定されるので、運転開始後に、高い温度の冷媒により、回転電機が過熱される場合でも、温度推定値Tmpeが、実際の温度よりも低くなることを抑制することができ、過熱保護が遅れることを抑制できる。一方、温度検出値Tmpdに基づいて設定された検出初期値Tindが、基準初期値Tinbよりも高い場合に、検出初期値Tindが温度推定値の初期値Tinに設定されるので、温度推定値Tmpeが、実際の温度から大きくずれることを抑制でき、過熱保護を適切に行うことができる。
<相関温度データ>
温度推定部34は、回転電機の運転停止状態における、温度検出値Tmpdと推定箇所の温度Tmpとの関係が予め設定された相関温度データを参照し、今回の温度検出値Tmpdに対応する推定箇所の温度Tmpを検出初期値Tindとして算出する。
図10に示すように、相関温度データは、温度検出値Tmpdをマップ軸としたマップデータとされている。相関温度データを参照する際に、公知の線形補間、スプライン補間等が行われる。なお、相関温度データとして、多項式などの関数が用いられもよい。相関温度データは、ROM等の記憶装置91に記憶されている。
相関温度データは、事前に、実験又は解析により取得した、回転電機の運転停止状態における、温度センサ取付け箇所の温度と推定箇所の温度との相関関係に基づいて予め設定される。なお、相関温度データに設定される推定箇所の温度は、実験又は解析により取得した推定箇所の温度に任意の係数を乗算した値に設定され、調整されてもよい。
回転電機の各部の温度は、回転電機の運転を停止した時点から、時間の経過とともに、次第に低下していき、最終的には周囲の環境温度に一致する。この運転停止時の冷却過程において、回転電機の各部によって、温度の低下の速度が異なり、回転電機内に温度むらが生じる。例えば、回転電機の各部の表面側は、外部への放熱により、温度の低下の速度が速いが、回転電機の各部の内側は、表面側への伝熱により放熱され、温度の低下の速度が遅い。各部の温度勾配によって、各部の温度の低下の速度が変化する。回転電機は、複雑な構造を有しているため、各部の温度は、複雑に変化する。
しかし、実験又は解析により、回転電機の運転停止状態における、温度検出箇所の温度と温度推定箇所の温度との相関関係が取得され、それによって、相関温度データが設定されているので、回転電機の運転停止時点から次第に低下する温度推定箇所の温度を、温度検出値に基づいて、精度よく設定することができる。
また、温度センサとコイルとの間には接触熱抵抗が存在するほか、接着剤などにより温度センサを固定している場合、温度センサとコイルとの間に接着剤の熱抵抗も存在する。そのため、温度センサによる温度検出値と実際の取付け箇所のコイル温度とには、ずれがある。相関温度データは、このずれも考慮して設定される。
なお、温度センサが、温度推定箇所の近くに取り付けられており、温度センサの取付け部の熱抵抗及び温度センサの熱容量の影響を無視できる場合は、温度推定部34は、温度検出値Tmpdをそのまま検出初期値Tindとして設定してよい。
<基準初期値>
基準初期値Tinbは、想定される運転状態における、冷媒の最高温度に対応して予め設定されている。回転電機の使用環境、回転電機の定格出力の状態における発熱量及び冷却器51の冷却能力から、冷媒の最高温度は予め把握できる。また、冷却器51が、冷媒温度が上限温度以下になるように、冷却ファン等を作動させる場合は、上限温度が、冷媒の最高温度になる。基準初期値Tinbは、冷媒の最高温度に任意の係数を乗算した値に設定され、調整されてもよい。
この構成によれば、基準初期値Tinbが、冷媒の最高温度に対応して設定されるので、冷媒温度を検出しなくても、運転開始後に高い温度の冷媒により回転電機が過熱される場合に、検出初期値Tindが温度推定値の初期値Tinに設定されることを抑制できる。一方、実際の冷媒温度が、最高温度よりも低く、検出初期値Tindが、実際の冷媒温度よりも高く、最高温度よりも低い場合に、最高温度が温度推定値の初期値Tinに設定され、温度推定値Tmpeが実際の温度よりも高くなるが、過熱保護の観点から安全側であるので許容できる。また、想定される運転状態における冷媒の最高温度であるので、基準初期値Tinbを、必要最小限の高い温度に設定でき、温度推定値Tmpeが実際の温度よりも高くことを必要最小限に抑制できる。
また、冷媒の最高温度は、回転電機に供給される直前の冷媒の最高温度であると好適である。例えば、冷媒供給孔401の付近を流れる冷媒の最高温度が用いられる。この構成によれば、回転電機に供給される冷媒の最高温度を、基準初期値Tinbに設定することができ、冷媒により回転電機が過熱されるか否かを精度よく判定し、温度推定値の初期値Tinを設定することできる。
1−4−5.出力制限部35
出力制限部35は、温度推定値Tmpeが、閾値温度Tmpaを超えた場合に、回転電機の出力制限を行う。例えば、出力制限部35は、図11に示すような温度推定値Tmpeとトルク低減率Tdcrとの関係が予め設定されたトルク低減率データを参照し、現在の温度推定値Tmpeに対応するトルク低減率Tdcrを算出する。図11に示すように、温度推定値Tmpeが、閾値温度Tmpa以下の場合は、トルク低減率Tdcrは、100%に設定され、温度推定値Tmpeが、閾値温度Tmpaよりも大きくなるに従って、トルク低減率Tdcrは100%から次第に低下される。或いは、出力制限部35は、温度推定値Tmpeが閾値温度Tmpaを超えている場合に、トルク低減率Tdcrを次第に減少させ、温度推定値Tmpeが閾値温度Tmpaを下回っている場合に、トルク低減率Tdcrを次第に増加させるフィードバック制御を行ってもよい。
出力制限部35は、トルク指令値Toに、トルク低減率Tdcrを乗算した値を、最終的なトルク指令値Toに設定する。出力制限を行うことより、推定箇所の温度が上昇し過ぎることを抑制し、温度上昇による故障を抑制することができる。
2.実施の形態2
実施の形態2に係る制御装置30について説明する。上記の実施の形態1と同様の構成部分は説明を省略する。本実施の形態に係る回転電機1及び制御装置30の基本的な構成は実施の形態1と同様であるが、基準初期値Tinbが、冷媒の温度検出値に基づいて設定される点が実施の形態1と異なる。
冷媒の最高温度を事前に求められない場合、又は使用環境又は回転電機の出力の変動が大きく、基準初期値を冷媒の最高温度とすることが不適切である場合がある。
そこで、本実施の形態では、温度推定部34は、冷媒の温度検出値に基づいて、基準初期値Tinbを設定する。例えば、温度推定部34は、冷媒の温度と基準初期値Tinbの関係が予め設定された基準値設定データを参照し、今回の冷媒の温度検出値に対応する基準初期値Tinbを算出する。或いは、温度推定部34は、冷媒の温度検出値に、所定の係数を乗算した値を、基準初期値Tinbとして設定してもよい。
図12に示すように、冷媒の温度を検出する冷媒の温度センサ54が設けられている。冷媒の温度センサ54の出力信号は、制御装置30に入力される。制御装置30は、冷媒の温度センサ54の出力信号に基づいて、冷媒の温度を検出する。
冷媒の温度センサ54は、冷媒の流通経路に取り付けられる。例えば、冷媒の温度センサ54は、回転電機に供給される直前の冷媒の温度を検出する位置に取り付けられると好適である。例えば、冷媒の温度センサ54は、冷媒供給孔401の付近に取り付けられる。この構成によれば、回転電機に供給される冷媒の温度を、基準初期値Tinbに設定することができ、冷媒により回転電機が過熱されるか否かを精度よく判定し、温度推定値の初期値Tinを設定することできる。
3.実施の形態3
実施の形態3に係る制御装置30について説明する。上記の実施の形態1と同様の構成部分は説明を省略する。本実施の形態に係る回転電機1及び制御装置30の基本的な構成は実施の形態1と同様であるが、推定箇所が、回転子に設けられた磁石に設定されている点が実施の形態1と異なる。
回転子の磁石の磁束が大きいほど、大きなトルクを得ることができる。本実施の形態では、磁石は、永久磁石である。一般に、永久磁石の温度が高くなると、永久磁石の磁束が減少するほか、永久磁石の温度が高くなり過ぎると、不可逆的な減磁が生じる。よって、永久磁石が過熱しないように保護することが求められる。
そこで、本実施の形態では、推定箇所は、回転子に設けられた磁石に設定されている。よって、温度推定部34は、回転電機の運転状態に基づいて、回転子に設けられた磁石の温度を推定する。温度推定値Tmpeは、磁石の温度推定値であり、温度予測データ、及び相関温度データには、磁石の温度の情報が設定されている。温度推定部34は、実施の形態1と同様の処理により、温度推定値Tmpeを算出する。
推定箇所は、磁石の内、最も温度が高くなる箇所又は過熱保護が必要な箇所に設定されている。過熱保護が必要な箇所は、磁石の内、冷却され難く、特に温度が上昇し易い箇所に設定される。例えば、推定箇所は、回転子コア内に配置された磁石の軸方向の中心部分に設定される。
回転電機の運転停止状態では、回転電機の各部の間で熱伝達が行われ、各部は発熱もしないので、コイルの温度と磁石の温度とには相関関係がある。よって、コイルの温度検出値Tmpdに基づいて、磁石の検出初期値Tindを設定することができる。
なお、回転子の磁石が、界磁巻線型の磁石である場合は、推定箇所は、回転子に巻装された界磁コイルとされてもよい。或いは、推定箇所は、過熱保護が必要な回転電機内の任意の箇所とされてもよい。
また、温度センサ110は、回転子に取り付けられてもよい。この場合は、温度センサ110の出力信号は、スリップリング等を介して、制御装置30に伝達されればよい。そして、温度推定部34は、回転電機の運転を開始し、温度推定を開始する際に、回転子に取り付けられた温度センサ110により検出した温度検出値に基づいて、磁石の検出初期値Tindを設定する。
磁石の温度に応じて磁石の磁束が変化すること利用し、磁石の温度は、回転子が回転した時の、固定子の3相巻線の端子間に生じる誘起電圧を測定することにより、検出されてもよい。制御装置30は、回転開始時にトルクが生じないように制御し、固定子の3相巻線の端子間の電圧を、電圧センサにより検出する。そして、温度推定部34は、端子間の誘起電圧と磁石の温度との関係が予め設定された磁石温度データを参照し、今回の端子間の電圧検出値に対応する磁石の温度を算出する。この方法は、回転電機にトルクを発生させない場合に実行可能であるため、特に、回転電機を発電機として使用する場合に好適である。
4.実施の形態4
実施の形態4に係る制御装置30について説明する。上記の実施の形態1と同様の構成部分は説明を省略する。本実施の形態に係る回転電機1及び制御装置30の基本的な構成は実施の形態1と同様であるが、推定箇所が、インバータ内の箇所に設定されている点が実施の形態1と異なる。
インバータも、回転電機と同様に水冷又は油冷といった液状の冷媒により冷却される構成が広く知られている。よって、実施の形態1及び2の推定方法をインバータに適用しても同様の効果を得ることができる。
図13に示すように、インバータの冷媒循環冷却装置60は、インバータ4を冷却する冷媒(例えば、冷却水、又は冷却油)を、冷却し循環させる。図13に示すように、冷媒循環冷却装置60は、冷却器61、循環器62、及び循環配管63を備えている。ポンプ等の循環器62により昇圧された冷媒は、循環配管63を通り、インバータ4に設けられた冷却流路41の冷媒供給孔43に送られる。冷却流路41の冷媒排出孔44から排出された冷媒は、循環配管63を通り、ラジエータ等の冷却器61に送られ、冷却される。冷却器61で冷却された冷媒は、循環器62に送られ、昇圧される。
なお、実施の形態1の回転電機の冷媒循環冷却装置50と、本実施の形態の冷媒循環冷却装置60とが共通化されてもよい。すなわち、共通の冷媒が、回転電機1及びインバータ4を循環するように構成されてもよい。
本実施の形態では、温度センサ110は、回転電機1又はインバータ4に取り付けられる。温度検出部33は、回転電機1又はインバータ4に取り付けられた温度センサ110の出力信号に基づいて、温度Tmpdを検出する。
温度推定部34は、インバータの運転状態に基づいて、インバータ内の推定箇所の温度Tmpeを推定する。推定箇所は、インバータ内の最も温度が高くなる箇所又は過熱保護が必要な箇所に設定されている。例えば、推定箇所は、スイッチング素子に設定される。
発熱に関わるインバータの運転状態として、スイッチング素子のオンオフ周波数、スイッチング素子を流れる電流等がある。これらのスイッチング素子のオンオフ周波数、及びスイッチング素子の電流は、回転速度N及びトルク情報等の回転電機の運転状態に応じて変化する。よって、インバータの運転状態として、回転電機の運転状態を用いることができる。
そこで、実施の形態1と同様に、温度推定部34は、回転電機の回転速度N及びトルク情報等の回転電機の運転状態に基づいて、インバータの推定箇所の温度推定値Tmpeを算出する。温度予測データには、インバータの推定箇所の温度の情報が設定されている。すなわち、温度推定部34は、実施の形態1と同様の処理により、温度推定値Tmpeを算出する。
なお、温度推定部34は、スイッチング素子のオンオフ周波数、スイッチング素子の電流等のインバータの運転状態に基づいて、温度推定値Tmpeを算出してもよい。この場合は、温度予測データには、スイッチング素子のオンオフ周波数及びスイッチング素子の電流等のインバータの運転状態、及び基準時点t0の推定箇所の温度Tmp(t0)と、基準時点t0から推定演算周期Δtの経過後の推定箇所の温度Tmp(t0+Δt)との関係が予め設定される。
回転電機及びインバータの各部の温度は、回転電機及びインバータの運転を停止した時点から、時間の経過とともに、次第に低下していき、最終的には周囲の環境温度に一致する。よって、運転停止状態における回転電機又はインバータの温度検出値Tmpdと、インバータの推定箇所の温度とには相関関係がある。
実施の形態1の回転電機の場合と同様に、運転停止期間が長い場合に、条件の差から、インバータの温度が、冷媒の温度よりも低くなる場合がある。この場合に、低い温度検出値に応じて温度推定値の初期値を設定すると、運転開始後の温度推定値の温度が低くなる。しかし、実際の温度は、運転開始後に、高い温度の冷媒により加熱され、温度推定値よりも高くなる。よって、温度推定値を用いた過熱保護が遅れる可能性がある。
そこで、実施の形態1と同様に、温度推定部34は、インバータの運転を開始し、温度推定を開始する際に、温度検出値Tmpdに基づいて温度推定値の初期値である検出初期値Tindを設定する。そして、温度推定部34は、検出初期値Tindと、想定される冷媒の温度に対応して予め設定された基準初期値Tinbとのいずれか大きい方を、最終的な温度推定値の初期値Tinに設定する。
実施の形態1と同様に、温度推定部34は、インバータの運転停止状態における、温度検出値Tmpdと推定箇所の温度との関係が予め設定された相関温度データを参照し、今回の温度検出値Tmpdに対応する推定箇所の温度を検出初期値Tindとして算出する。相関温度データには、インバータの推定箇所の温度の情報が設定されている。
なお、実施の形態2と同様に、基準初期値Tinbが、冷媒の温度検出値に基づいて設定されてもよい。
実施の形態1と同様に、基準初期値Tinbは、想定されるインバータの運転状態における、冷媒の最高温度に対応して予め設定されている。
実施の形態1と同様に、出力制限部35は、インバータの温度推定値Tmpeが、閾値温度Tmpaを超えた場合に、回転電機の出力制限を行う。
<転用例>
(1)上記の各実施の形態では、推定箇所が回転電機又はインバータの1箇所に設定されている場合を例に説明した。しかし、推定箇所が、回転電機及びインバータの一方又は双方の複数個所に設定され、各推定箇所について、上記の各実施の形態の推定処理が実行され、各推定箇所の温度が推定されてもよい。
(2)上記の各実施の形態では、温度推定部34は、温度予測データを用いて温度推定を行う場合を例に説明した。しかし、温度推定の方法として、回転電機又はインバータの運転状態に基づいて温度推定を行う、公知の各種の方法が用いられてもよい。例えば、特許文献1の温度推定の方法が用いられてもよい。
(3)上記の実施の形態1では、油冷式の回転電機が用いられる場合を例に説明した。しかし、水冷式の回転電機が用いられてもよい。例えば、ハウジングにウォータジャケット等の冷媒流路が設けられ、冷媒流路に冷却水が供給され、冷媒流路から冷却水が排出されてもよい。すなわち、液状の冷媒を用いて回転電機又はインバータを冷却する冷却機構であれば、任意の冷却機構が設けられてもよい。
(4)上記の実施の形態では、永久磁石式の同期モータが用いられる場合を例に説明した。しかし、界磁巻線式の同期モータ、誘導モータ、直流モータ等の各種の回転電機が用いられもよい。
本願は、様々な例示的な実施の形態及び実施例が記載されているが、1つ、または複数の実施の形態に記載された様々な特徴、態様、及び機能は特定の実施の形態の適用に限られるのではなく、単独で、または様々な組み合わせで実施の形態に適用可能である。従って、例示されていない無数の変形例が、本願明細書に開示される技術の範囲内において想定される。例えば、少なくとも1つの構成要素を変形する場合、追加する場合または省略する場合、さらには、少なくとも1つの構成要素を抽出し、他の実施の形態の構成要素と組み合わせる場合が含まれるものとする。
1 回転電機、4 インバータ、30 回転電機の制御装置、33 温度検出部、34 温度推定部、54 温度センサ、100 固定子、102 コイル、200 回転子、Tmpd 温度検出値、Tmpe 温度推定値、Tin 温度推定値の初期値、Tinb 基準初期値、Tind 検出初期値

Claims (7)

  1. 回転電機に取り付けられた温度センサの出力信号に基づいて、前記回転電機の温度を検出する温度検出部と、
    回転電機の運転状態に基づいて、前記回転電機内の推定箇所の温度を推定する温度推定部と、を備え、
    前記推定箇所は、前記温度センサが取り付けられた箇所とは異なっており、
    前記温度推定部は、前記回転電機の運転を開始し、温度推定を開始する際に、前記回転電機の温度検出値に基づいて温度推定値の初期値である検出初期値を設定し、想定される冷媒の温度に対応して予め設定された又は冷媒の温度検出値に基づいて設定した基準初期値と、前記検出初期値とのいずれか大きい方を、最終的な温度推定値の初期値に設定する回転電機の制御装置。
  2. 前記温度推定部は、前記回転電機の運転停止状態における、前記温度検出値と前記推定箇所の温度との関係が予め設定された相関温度データを参照し、今回の前記温度検出値に対応する前記推定箇所の温度を前記検出初期値として算出する請求項1に記載の回転電機の制御装置。
  3. 前記冷媒は、循環する液状の冷媒であり、
    前記基準初期値は、想定される前記回転電機の運転状態における前記冷媒の最高温度に対応して予め設定されている請求項1又は2に記載の回転電機の制御装置。
  4. 前記冷媒の温度は、前記回転電機に供給される直前の前記冷媒の温度である請求項1から3のいずれか一項に記載の回転電機の制御装置。
  5. 前記推定箇所は、固定子に巻装されたコイルの内、最も温度が高くなる箇所又は過熱保護が必要な箇所に設定されている請求項1から4のいずれか一項に記載の回転電機の制御装置。
  6. 前記推定箇所は、回転子に設けられた磁石に設定されている請求項1から4のいずれか一項に記載の回転電機の制御装置。
  7. 回転電機又はインバータに取り付けられた温度センサの出力信号に基づいて、温度を検出する温度検出部と、
    前記インバータの運転状態に基づいて、前記インバータ内の推定箇所の温度を推定する温度推定部と、を備え、
    前記推定箇所は、前記温度センサが取り付けられた箇所とは異なっており、
    前記温度推定部は、前記インバータの運転を開始し、温度推定を開始する際に、前記回転電機又は前記インバータの温度検出値に基づいて温度推定値の初期値である検出初期値を設定し、想定される冷媒の温度に対応して予め設定された又は冷媒の温度検出値に基づいて設定した基準初期値と、前記検出初期値とのいずれか大きい方を、最終的な温度推定値の初期値に設定する回転電機の制御装置。
JP2020177088A 2020-10-22 2020-10-22 回転電機の制御装置 Active JP6980077B1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020177088A JP6980077B1 (ja) 2020-10-22 2020-10-22 回転電機の制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020177088A JP6980077B1 (ja) 2020-10-22 2020-10-22 回転電機の制御装置

Publications (2)

Publication Number Publication Date
JP6980077B1 true JP6980077B1 (ja) 2021-12-15
JP2022068423A JP2022068423A (ja) 2022-05-10

Family

ID=78870826

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020177088A Active JP6980077B1 (ja) 2020-10-22 2020-10-22 回転電機の制御装置

Country Status (1)

Country Link
JP (1) JP6980077B1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220196483A1 (en) * 2019-09-12 2022-06-23 Denso Corporation Temperature estimation device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012046049A (ja) * 2010-08-26 2012-03-08 Toyota Motor Corp 操舵装置
JP2014156005A (ja) * 2013-01-21 2014-08-28 Fanuc Ltd モータがオーバーヒート温度に達するまでの時間を推定する時間推定手段を有する工作機械の制御装置
JP2017118714A (ja) * 2015-12-24 2017-06-29 ファナック株式会社 モータ温度及びアンプ温度に応じて動作を変更する機能を有する工作機械の制御装置
WO2019239657A1 (ja) * 2018-06-12 2019-12-19 株式会社日立製作所 永久磁石同期電動機の駆動装置、駆動システムおよび駆動方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012046049A (ja) * 2010-08-26 2012-03-08 Toyota Motor Corp 操舵装置
JP2014156005A (ja) * 2013-01-21 2014-08-28 Fanuc Ltd モータがオーバーヒート温度に達するまでの時間を推定する時間推定手段を有する工作機械の制御装置
JP2017118714A (ja) * 2015-12-24 2017-06-29 ファナック株式会社 モータ温度及びアンプ温度に応じて動作を変更する機能を有する工作機械の制御装置
WO2019239657A1 (ja) * 2018-06-12 2019-12-19 株式会社日立製作所 永久磁石同期電動機の駆動装置、駆動システムおよび駆動方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220196483A1 (en) * 2019-09-12 2022-06-23 Denso Corporation Temperature estimation device

Also Published As

Publication number Publication date
JP2022068423A (ja) 2022-05-10

Similar Documents

Publication Publication Date Title
JP6980068B1 (ja) 回転電機の制御装置
JP4513914B2 (ja) モータ制御回路,車両用ファン駆動装置及びモータ制御方法
JP6463966B2 (ja) モータ駆動装置およびモータ駆動用モジュール並びに冷凍機器
JP2015116021A (ja) 永久磁石同期モータの制御装置
JP6980077B1 (ja) 回転電機の制御装置
JP2010226842A (ja) ブラシレスdcモータの制御方法およびブラシレスdcモータの制御装置
US20220299377A1 (en) Controller and control method
JP2011135713A (ja) 電動機駆動制御装置
JP6983290B1 (ja) 回転電機の制御装置
JP6714114B1 (ja) 温度推定装置及び温度推定方法
JP2017103918A (ja) 回転電機の制御装置およびその制御方法
Chen et al. Torque ripple reduction of brushless DC motor on current prediction and overlapping commutation
JP6091546B2 (ja) 回転電機制御装置
JP2016127759A (ja) 回転電機制御装置
JP7361925B2 (ja) モータ制御装置およびモータ制御方法
JP7033973B2 (ja) モータ制御装置及びモータ制御方法
JP2011125161A (ja) 電動機駆動制御装置
JP2019213246A (ja) 回転電機の制御装置
JP7191074B2 (ja) 交流回転機の制御装置
JP2011188717A (ja) インバータの冷却装置
JP6532546B2 (ja) 回転電機駆動システムの制御装置
JP2012244670A (ja) 回転電機
JP2024060260A (ja) 回転電機の制御装置
JP6607016B2 (ja) モータ制御装置
JP2023010329A (ja) モータ制御装置及びプログラム

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201022

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211019

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211116

R151 Written notification of patent or utility model registration

Ref document number: 6980077

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350