JP6977822B2 - エネルギー管理システム、エネルギー管理方法及びコンピュータプログラム - Google Patents

エネルギー管理システム、エネルギー管理方法及びコンピュータプログラム Download PDF

Info

Publication number
JP6977822B2
JP6977822B2 JP2020127237A JP2020127237A JP6977822B2 JP 6977822 B2 JP6977822 B2 JP 6977822B2 JP 2020127237 A JP2020127237 A JP 2020127237A JP 2020127237 A JP2020127237 A JP 2020127237A JP 6977822 B2 JP6977822 B2 JP 6977822B2
Authority
JP
Japan
Prior art keywords
power
target
output
equipment
control unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020127237A
Other languages
English (en)
Other versions
JP2020184881A (ja
Inventor
圭久 石垣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP2020127237A priority Critical patent/JP6977822B2/ja
Publication of JP2020184881A publication Critical patent/JP2020184881A/ja
Application granted granted Critical
Publication of JP6977822B2 publication Critical patent/JP6977822B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/70Smart grids as climate change mitigation technology in the energy generation sector
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/12Monitoring or controlling equipment for energy generation units, e.g. distributed energy generation [DER] or load-side generation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/14Energy storage units
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/50Systems or methods supporting the power network operation or management, involving a certain degree of interaction with the load-side end user applications

Landscapes

  • Supply And Distribution Of Alternating Current (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)
  • Remote Monitoring And Control Of Power-Distribution Networks (AREA)

Description

本発明は、発電装置及び蓄電装置のうちの少なくとも1種類の対象設備を含む電力設備の運転状態を管理するエネルギー管理システムと、このシステムにおいて実行されるエネルギー管理方法と、そのシステムに適用するコンピュータプログラムに関する。
この種のエネルギー管理システムとして、数理計画法を利用して電力設備に含まれる電力機器の運転計画を算出するものが知られている(特許文献1等参照)。
このエネルギー管理システムは、管理対象である電力設備の時間ステップごとの変数でモデル化した機器条件を含む制約条件を設定し、設定した制約条件の下で、例えばコストなどに関する目的関数が最小となるように、時間ステップごとの電力設備の変数の解(運転計画)を数理計画法により算出するものである。
エネルギー管理システムが算出する運転計画は、具体的には、発電量や需要量の予測値に基づく比較的長期の運転計画であり、エネルギー管理システムは、算出した運転計画通りに動作するように各電力設備に指令する。
従って、発電量や需要量の予測が外れることによって、目的関数に適合するような所期の条件が達成されない場合がある。
上記の解決方法として、長期間の未来を見越した運転計画の演算を、秒やミリ秒オーダーの短期間の周期で再計画を繰り返すことが考えられるが、このような高い頻度での再計画演算は、処理負荷の点で非常に困難である。
そこで、電力調整可能な発電装置や蓄電装置などの対象設備について、現状の電力需給状態と、対象設備の現状の出力電力とに基づいて制御を実行して、運転計画では想定できない外乱を実時間で補償する技術が知られている(特許文献1、非特許文献1及び2参照)。
特開2009−141993号公報
小島康弘、古塩正展、中村静香 「マイクログリッド向け需給制御機能の開発と実証検討」、電学論B、128巻2号(2008) 林巨己、島崎祐一、近藤英之、長田悠人、飯坂達也、勝野徹、中西要祐 「マイクログリッド向け需給制御システムの開発」、平成25年 電気学会 電力・エネルギー部門大会 (2013)
運転計画を実時間で補償する従来の制御技術では、いずれも、電力設備に採用する対象設備の種別を予め特定してから、特定された対象設備の種別に対応する特性(蓄電装置ならば発電機と異なり、充電が可能であり充電残量を管理する必要がある等)それぞれに特化したアルゴリズムを用意することで、外乱を含む現状を運転計画に近づける手法を採用している。
このため、従来の制御技術では、既存の蓄電装置から異なる蓄電装置に変更するなど、対象設備の種別を変更する場合には、充電は可能であるか、発電の基になる1次エネルギーは有限であるかなどの特性に対応したアルゴリズムが必要になり、対象設備の変更に対して簡便かつ柔軟に対応できないという欠点がある。
本発明は、かかる従来の問題点に鑑み、運転計画に基づいて電力設備を制御し、電力需給を管理するエネルギー管理システムにおいて、対象設備の種別に関係なく運転計画との乖離を適切に調整することを目的とする。
(1) 本発明の一態様に係るシステムは、運転計画に基づいて電力需給を管理するエネルギー管理システムであって、現状の電力需給状態と、発電装置及び蓄電装置のうち少なくとも1種類の1又は複数の装置である対象設備を含む電力設備についての出力電力とを取得する取得部と、取得した現状の前記電力需給状態及び前記出力電力に基づいて、前記運転計画の計画値に可能な限り準ずるような前記対象設備の出力指令値を算出する処理を、前記対象設備の種別を区別しない統合アルゴリズムを用いて実行する制御部と、を備える。
(8) 本発明の他の態様は、運転計画に基づいて電力需給を管理するエネルギー管理システムとして、コンピュータを機能させるためのコンピュータプログラムであって、前記コンピュータは、現状の電力需給状態と、発電装置及び蓄電装置のうち少なくとも1種類の1又は複数の装置である対象設備を含む電力設備についての出力電力とを取得する取得部と、取得した現状の前記電力需給状態及び前記出力電力に基づいて、前記運転計画の計画値に可能な限り準ずるような前記対象設備の出力指令値を算出する処理を、前記対象設備の種別を区別しない統合アルゴリズムを用いて実行する制御部として機能させる。
(9) 本発明の他の態様は、運転計画に基づいて電力需給を管理するエネルギー管理方法であって、現状の電力需給状態と、発電装置及び蓄電装置のうち少なくとも1種類の1又は複数の装置である対象設備を含む電力設備についての出力電力とを取得するステップと、取得した現状の前記電力需給状態及び前記出力電力に基づいて、前記運転計画の計画値に可能な限り準ずるような前記対象設備の出力指令値を算出する処理を、前記対象設備の種別を区別しない統合アルゴリズムを用いて実行するステップと、を含む。
本発明によれば、対象設備の種別に関係なく運転計画との乖離を適切に調整することができる。
本発明の実施形態として例示する電力システムの全体構成を示すブロック図である。 エネルギー管理システムの構成例を示すブロック図である。 動的再配分制御部の処理内容の一例を示すフローチャートである。 充電必要量の計算アルゴリズムの一例を示すフローチャートである。 計画乖離率の算出式を示す説明図である。 対象設備に配分する電力を算出する電力算出部の制御ブロック図である。 電力配分のルールの一例を示す説明図である。 出力指令値の計算処理の一例を示すフローチャートである。 動的再配分制御のシミュレーション結果を示すグラフ(前半部分)である。 動的再配分制御のシミュレーション結果を示すグラフ(後半部分)である。
<本発明の実施形態の概要>
以下、本発明の実施形態の概要を列記して説明する。
(1) 本発明の実施形態に係るシステムは、運転計画に基づいて電力需給を管理するエネルギー管理システムであって、現状の電力需給状態と、複数種類の発電装置を含む複数の装置である対象設備を含む電力設備についての出力電力とを取得する取得部と、取得した現状の前記電力需給状態及び前記出力電力に基づいて、前記運転計画の計画値からの乖離に応じた前記対象設備の出力指令値を算出する処理を、前記対象設備の台数に応じて設定可能な優先順位の制御ブロックを含む統合アルゴリズムを用いて実行する制御部と、を備える。
本実施形態のエネルギー管理システムによれば、制御部が、対象設備の出力指令値を算出する処理を、対象設備の台数に応じて設定可能な優先順位の制御ブロックを含む統合アルゴリズムを用いて実行するので、対象設備の種別に関係なく運転計画との乖離を適切に調整することができる。
従って、電力設備に採用する対象設備の種別が変更されても、従来の制御技術のように、特化したアルゴリズムを考案し直す必要がなく、対象設備の種別の変更に対して簡便かつ柔軟に対応することができる。
(2) 本実施形態のエネルギー管理システムにおいて、前記統合アルゴリズムは、例えば、現状の前記出力電力の前記計画値からの外れ度合いに応じて動的に決定される優先順位の前記制御ブロックに前記対象設備を割り当てることにより、現状の前記電力需給状態に対して減少又は増加させるべき電力を、複数の前記対象設備にそれぞれ配分するアルゴリズムを採用することができる。
このアルゴリズムを採用すれば、計画値からの外れ度合いに応じて動的に決定される優先順位の制御ブロックに対象設備を割り当てるので、長期的な視点の運転計画とできるだけ両立した制御を実行することができる。
(3) 例えば、前記制御部は、電力会社からの受電電力が目標電力未満である場合には、前記計画値に対する充電量の不足度合いが大きい前記蓄電装置から順に、前記目標電力から前記受電電力の減算値以下の受電余力を、前記蓄電装置の充電に配分すればよい。
この場合、計画値に対する充電量の不足度合いが大きい蓄電装置から順に、受電余力が蓄電装置の充電に配分されるので、蓄電装置の充電量が計画値に復帰する期間が短くなり、運転計画に基づくエネルギー管理を早期に回復することができる。
(4) また、前記制御部は、前記受電余力の配分後に余剰電力が残っている場合には、前記計画値に対する前記出力電力の過剰度合いが大きい前記発電装置又は前記蓄電装置から順に、前記余剰電力を、前記発電装置の発電量の減少又は前記蓄電装置の放電量の減少に配分すればよい。
この場合、計画値に対する出力電力の過剰度合いが大きい発電装置又は蓄電装置から順に、余剰電力が発電装置の発電量の減少又は蓄電装置の放電量の減少に配分されるので、発電装置の発電量又は蓄電装置の放電量が過剰な状態から計画値に復帰する期間が短くなり、運転計画に基づくエネルギー管理を早期に回復することができる。
(5) 更に、前記制御部は、電力会社からの受電電力が目標電力以上である場合には、前記計画値に対する前記出力電力の不足度合いが大きい前記発電装置又は前記蓄電装置から順に、前記電力設備において増加すべき電力を、前記発電装置の発電量の増加又は前記蓄電装置の放電量の増加に配分すればよい。
この場合、計画値に対する出力電力の不足度合いが大きい発電装置又は蓄電装置から順に、電力設備において増加すべき電力が、発電装置の発電量の増加又は蓄電装置の放電量の増加に配分されるので、電力会社からの受電電力が目標電力以上となることを防止できる。
また、発電装置の発電量又は蓄電装置の放電量が不足する状態から計画値に復帰する期間が短くなり、運転計画に基づくエネルギー管理を早期に回復することができる。
(6) 本実施形態のエネルギー管理システムにおいて、前記制御部は、現状の前記出力電力を更に増加させる余裕がある前記対象設備の出力余力を充電に充当する場合には、当該出力余力の算出対象に前記発電装置を含め、当該出力余力の算出対象から前記蓄電装置を除外することが好ましい。
このようにすれば、複数の蓄電装置が電力設備に含まれる場合において、一方の蓄電装置の放電電力が他方の蓄電装置の充電電力に充当されるという、運転計画にない無駄な電力移動を防止することができる。
(7) 本実施形態のエネルギー管理システムにおいて、前記制御部は、現状の前記出力電力を更に増加させる余裕がある前記対象設備の出力余力を充電に充当する場合には、当該出力余力の算出対象に前記発電装置と前記運転計画による指令が放電である前記蓄電装置とを含め、前記蓄電装置の出力余力については、前記運転計画で指定された放電量を上限とすることが好ましい。
このようにすれば、複数の蓄電装置が電力設備に含まれる場合において、一方の対象蓄電池が計画値を超える放電を実行してまで、他方の対象蓄電池の充電電力に充当されるのを未然に防止することができ、無駄な電力移動をできるだけ抑制することができる。
(8) 本実施形態のコンピュータプログラムは、上述のエネルギー管理システムが行う処理をコンピュータに実行させるためのプログラムに関する。
従って、本実施形態のコンピュータプログラムは、上述のエネルギー管理システムと同様の作用効果を奏する。
(9) 本実施形態のエネルギー管理方法は、上述のエネルギー管理システムにより行われる管理方法に関する。
従って、本実施形態のエネルギー管理方法は、上述のエネルギー管理システムと同様の作用効果を奏する。
<本発明の実施形態の詳細>
以下、図面を参照して、本発明の実施形態の詳細を説明する。なお、以下に記載する実施形態の少なくとも一部を任意に組み合わせてもよい。
〔システムの全体構成〕
図1は、本発明の実施形態に係る電力システムの全体構成を示すブロック図である。
図1に示すように、本実施形態の電力システムは、管理対象となる電力設備1と、電力設備1に含まれる各種の電力設備の運転状態を管理するエネルギー管理システム(以下、「EMS」ともいう。)2とを含む。
本実施形態の電力設備1は、例えば工場に設置される電力設備であり、工場内に配線された配電線3よりなる配電網と、配電線3にそれぞれ接続された負荷装置4,5、蓄電装置6及び発電装置7,8とを備えている。
負荷装置4は、例えば、照明、エアコンなどの消費電力の調整が可能な調整型の負荷装置よりなる。負荷装置5は、工場の生産機械などの電力調整が不可能あるいは可能であっても実際上調整が許されない非調整型の負荷装置よりなる。
これらの負荷装置4,5は、それぞれスマートタップ(図示せず)もしくはスマート分電盤等の制御と電力情報の計測とが可能な機器を介して配電線3に接続されている。
蓄電装置6は、例えば、レドックスフロー(RF)電池、リチウムイオン電池、溶融塩電池、鉛蓄電池などよりなる。この蓄電装置6は、DC/AC変換器11を介して配電線3に接続されている。
発電装置7は、例えば、太陽光や風力などの自然エネルギーを電気エネルギーに変換する自然エネルギー発電装置よりなる。発電装置8は、ガスやディーゼル油などの燃焼エネルギーまたは燃料電池など化学変化によるエネルギーを電気エネルギーに変換する発電装置よりなる。これらの発電装置7,8は、それぞれDC/AC変換器11を介して配電線3に接続されている。
本実施形態の電力設備1では、スマートメーター(電力量計)15を経由して配電線3が商用電源14と繋がっている。このため、電力設備1は、商用電源14に対する系統連系が可能となっている。
EMS2は、有線LAN(Local Area Network)又はその他の通信方式により、通信線16を介して電力設備1の各種の電力設備と通信可能である。なお、EMS2と電力設備との通信は、無線LANなどの無線通信であってもよい。
EMS2は、複数種類の制御指令E1〜E3を電力設備1に含まれる通信可能な電力設備に送信可能である。EMS2は、電力設備1の運転状況を示す現在情報S1を通信可能なそれらの電力設備から受信可能である。
例えば、EMS2は、制御指令E1によって負荷装置4,5が接続されたスマートタップの接続または接続解除することができる。EMS2は、消費電力を調整可能な負荷装置4に対しては、制御指令E1によってその消費電力の調整を行うこともできる。
EMS2は、制御指令E2によって蓄電装置6のDC/AC変換器11を接続または接続解除することができる。
また、EMS2は、制御指令E2によって配電線3に接続中の蓄電装置6に対する充電電力又は放電電力を調整することができる。
EMS2は、制御指令E3によって発電装置7,8のDC/AC変換器11を接続または接続解除することができる。EMS2は、発電量を調整可能な発電装置8に対しては、制御指令E3によってその発電量の調整を行うこともできる。出力を抑制することが可能な発電装置7に対しては、制御指令E3によってその発電量の調整を行うこともできる。
EMS2は、電力設備1に含まれる各種の変換器10〜12とスマートタップの接続状況(オン/オフ)、各装置4〜8の稼働状況と電力値などよりなる現在情報S1を、所定時間(例えば1秒)ごとに収集している。
現在情報S1には、電力設備1における現時点の電力需要も含まれる。現時点の電力需要は、現時点における受電電力(スマートメーター15の計測値)と発電電力を合計することによって算出することができる。また、現時点の電力需要は、各負荷装置4,5の現時点の電力消費(稼働実績)を合計することによって算出してもよい。
〔エネルギー管理システムの構成〕
図2は、エネルギー管理システム2の構成例を示すブロック図である。
図2に示すように、EMS2は、制御装置21と記憶装置22とを含むコンピュータ装置によって構成されている。制御装置21は、CPU(Central Processing Unit)等を含む情報処理装置よりなる。記憶装置22は、RAM(Random Access Memory)等よりなるメモリと、HDD(Hard Disk Drive)等よりなる大容量記憶部とを有する。
EMS2を構成するコンピュータ装置には、通信装置23、入力装置24及び表示装置25が接続されている。
通信装置23は、有線LAN、無線LANあるいはその他の通信方式によって電力設備1に含まれる各種の電力設備と通信する。入力装置24は、電力設備1の管理者が操作入力を行うためのマウスやキーボードなどよりなる。表示装置25は、制御装置21が出力する画像を管理者に提示するための液晶ディスプレイなどよりなる。
制御装置21は、記憶装置22に格納されたコンピュータプログラムを読み出して実行することにより、通信装置23に対する通信制御、入力装置24及び表示装置25に対するデバイス制御、及び後述のエネルギー管理などの各種の制御を行う。
例えば、通信装置23は、制御装置21の通信制御に基づき、制御指令E1〜E3を電力設備1に含まれる通信可能な電力設備に送信し、電力設備1の運転状況を示す現在情報S1を電力設備から受信して制御装置21に転送する。
通信装置23は、インターネットなどの公衆通信網に接続することも可能で、公衆通信網に繋がる他のサーバー装置(図示せず)と通信することもできる。
入力装置24は、制御装置21の入力に関するデバイス制御に基づき、管理者の操作入力に応じた操作信号を制御装置21に送信する。
表示装置25は、制御装置21の出力に関するデバイス制御に基づき、制御装置21から入力された静止画又は動画よりなる画像信号を自装置の画面に表示させる。
図2に示すように、EMS2の制御装置21は、電力設備1に対するエネルギー管理に関する機能部分として、計画立案部30及び動的再配分制御部40を備えている。
計画立案部30は、比較的長期(例えば48時間)における電力設備1の運転計画を算出する機能部分である。動的再配分制御部40は、運転計画の実行中の外乱に応じて所定の制御対象に制御を実行する機能部分である。
なお、本実施形態では、計画立案部30が行う運転計画の算出結果に対して、動的再配分制御部40が制御を行う場合を想定する。
もっとも、動的再配分制御部40は、必ずしも計画立案部30が出力する運転計画の結果だけでなく、人的に入力された運転計画やスケジュールに対して制御を行うこともできる。
動的再配分制御部40は、受信した運転計画と設備の現在状態、需要電力の状況に基づいて、制御対象である所定の対象設備の出力値に制御指令E2及びE3を送信する。
動的再配分制御部40は、対象設備の受電電力が目標電力以下となるようにかつ運転計画ができるだけ維持できるように所定の対象設備の出力値を演算し、演算した出力値を対象設備に送信する。
通信装置23は、計画立案部30が作成した運転計画及び動的再配分制御部が作成した制御指令E2,E3を、インターネットなどの公衆通信網を介して管理者のサーバー装置に送信することもできる。
管理者のサーバー装置は、公衆通信網を介して他のコンピュータ端末とも通信可能である。従って、エネルギー管理システム2の管理者(ユーザー)は、他のコンピュータ端末からサーバー装置にアクセスすることにより、計画立案部30が生成した運転計画の内容だけでなく、動的再配分制御部40の作成した制御指令を閲覧することができる。
〔EMSの長期計画の課題と解決方法〕
制御装置21の立案する計画は、発電/需要量の予測値に基づいて算出される比較的長期に渡る電力設備の運転計画である。かかる制御装置21による運転計画には、主に次の2つの課題がある。
課題1:発電量や需要量の予測が外れることによって、計画の目的である所期の条件が達成されない場合がある。
課題2:課題1の解決策として、長期間の未来を見越した運転計画の演算を、秒やミリ秒オーダーの短期間の周期で再計画を繰り返すことが考えられる。しかし、かかる高い頻度での再計画演算は、処理負荷の点で非常に困難である。
そこで、本実施形態では、動的再配分制御部40が、電力調整可能な対象設備(例えば、図1の蓄電装置6と発電電力の調整可能な発電装置8)について、電力設備1における現状の電力需給状態と、対象設備の現状の出力電力とに基づいて出力指令値を算出する。
一方、蓄電装置6及び発電装置8などの複数の対象設備が電力設備1に含まれる場合には、複数の対象設備にそれぞれ独立して制御を行うと、複数の対象設備について最適な出力配分とならないことがある。そのため、長期かつ全体的に最適である計画に基づいて対象設備の出力を決定する必要がある。
そこで、本実施形態では、動的再配分制御部40が、計画値からの乖離に応じて動的に設定された優先順位に従って、蓄電装置6及び発電装置8の出力配分を行う。
これにより、計画立案部30が演算した運転計画をできるだけ遵守しつつ、計画外の外乱に適切に対応するEMS2を実現する。
また、本実施形態では、蓄電装置6の充電残量については、動的再配分制御によって計画と逸脱して減少する可能性があるが、できる限り計画通りとなるように運用する。
以下、動的再配分制御部40が行う制御(以下、「動的再配分制御」という。)の内容を説明するが、その説明に先立ち、まず動的再配分制御に用いる用語の定義を記載する。
〔動的再配分制御における用語の定義〕
「対象発電機」:動的再配分制御部40の制御対象である対象設備のうち出力(発電電力)の制御が可能な発電装置8のことである。対象発電機の例としては、例えば、ガス発電機などが考えられる。
「対象蓄電池」:動的再配分制御部40の制御対象である対象設備のうち、出力(放電電力)の制御が可能な蓄電装置6のことである。対象蓄電池の例としては、例えば、電気二重層キャパシタなどの化学電池や、フライホイール及びヒートポンプなどが考えられる。
「受電電力」:電力会社から購入している現時点の電力値(瞬時値)のことである。
「契約電力」:電力会社との契約により、超えてはいけないと規定された30分間平均の電力値のことである。
「目標電力」:契約電力≧目標電力となるように所定のマージンが考慮された電力であって、動的再配分制御において超えてはいけないと定義された電力のことである。
「受電余力」:(目標電力−受電電力)により算出される電力のことである。
「出力余力」:対象発電機及び対象蓄電池の少なくとも1つの出力を増加させる余地のある電力のことである。
「充電可能電力」:受電電力、目標電力及び出力余力の少なくとも1つの電力から、対象蓄電池を充電することができる電力のことである。
「出力減少可能電力」:受電電力及び目標電力の少なくとも1つから、対象発電機及び対象蓄電池のうちの少なくとも1つの出力を減少させることができる電力のことである。
「出力増加電力」:受電電力及び目標電力を考慮して、対象発電機及び対象蓄電池のうちの少なくとも1つの出力を増加させなければならない電力のことである。
「充電必要量」:計画によって与えられる対象蓄電池の充電残量を守るために、対象蓄電池に充電しなければならない電力量のことである。
「計画乖離率」:対象発電機の出力電力(発電電力)及び対象蓄電池の出力電力(放電電力)について、計画値からの外れ度合いを数値化したものである。
〔リアルタイム制御部の処理内容の概要〕
図3は、動的再配分制御部40の処理内容の一例を示すフローチャートである。
図3に示すように、動的再配分制御部40は、計画立案部30から取得した計画値を入力情報として、ステップST11〜ステップST15までの各処理を概ねリアルタイムと評価し得る所定の演算周期の時間内に実行し、その演算の結果得られた出力指令値を当該演算周期ごとに出力する。
すなわち、動的再配分制御部40は、計画立案部30による計画値の入力→各電力設備の状態判定(ステップST11)→充電必要量の計算(ステップST12)→計画乖離率の更新(ステップST13)→対象設備に配分する電力の算出(ステップST14)→出力指令値の計算(ステップST15)の順で、各処理を演算周期ごとに繰り返し実行する。
動的再配分制御部40の演算周期は、計画立案部30の再計画期間(例えば15分)に比べて極めて短時間であり、例えば1〜10秒に設定されている。
図3のステップST11の処理(各電力設備の状態判定)は、運転計画に含まれる電力設備が動的再配分制御の対象設備であるか否か、及び、その対象設備の状態が運転か否かを判定することによって行われる。
動的再配分制御部40は、運転計画に含まれる電力設備が動的再配分制御の対象設備であり、かつ、その対象設備の状態変数が運転である場合に、次の充電必要量の計算(ステップST12)を実行する。
図3のステップST12の処理(充電必要量の計算)の内容は図4に記載されている。
図3のステップST13の処理(計画乖離率の更新)の内容は図5に記載されている。
図3のステップST14の処理(対象設備に配分する電力の算出)を行う電力算出部41は図6に記載され、電力配分のルールは図7に記載されている。
図3のステップST15の処理(計画値の計算)の内容は図8に記載されている。そこで、以下において、図4〜図8を参照して、動的再配分制御の内容を具体的に説明する。
〔充電必要量の計算〕
図4は、充電必要量の計算アルゴリズムの一例を示すフローチャートである。
図4に示すように、動的再配分制御部40は、まず、現在ステップの「充電必要量」として、前のステップの充電必要量の値を引き継ぐ(ステップS10)。
次に、動的再配分制御部40は、引き継いだ充電必要量の値から、前ステップの対象蓄電池における出力値(放電電力)を減算する(ステップS12)。
次に、動的再配分制御部40は、計画立案部30における運転計画が更新されたか否かを判定する(ステップS14)。
上記の判定結果が肯定的である場合には、動的再配分制御部40は、充電必要量の値を「0」にリセットして(ステップS16)、処理をステップS18に移行する。また、上記の判定結果が否定的である場合には、動的再配分制御部40は、充電必要量の値をリセットせずに、処理をステップS18に移行する。
そして、動的再配分制御部40は、ステップS18において、充電必要量の値に現ステップにおける対象蓄電池についての出力計画値を加算し、加算後の値を現ステップにおける充電必要量の値として採用する。
動的再配分制御部40は、電力設備1に複数の対象充電機が存在する場合には、各対象充電機について図4の処理を行ってそれぞれの充電必要量の値を求める。本実施形態の充電必要量は、その値が負の値か0以上であるかにより、それぞれ以下の意味を有する。
「充電必要量」の値<0の場合:
対象蓄電池に充電が必要である。充電必要量の値の絶対値は、必要な充電量を表す。
「充電必要量」の値≧0の場合:
対象蓄電池に充電が不要である。充電必要量の値の絶対値は、必要充電量を減少させることができる電力量、すなわち、放電することができる電力量を表す。
〔計画乖離率の更新〕
図5は、計画乖離率の算出式を示す説明図である。
現ステップにおける充電必要量の値が求まると、動的再配分制御部40は、図5に示す算出式(1)及び(2)を用いて、電力設備1に含まれる対象発電機及び対象蓄電池について、現ステップにおける「計画乖離率」を算出する。
具体的には、充電必要量<0である場合、すなわち、充電が必要な対象蓄電池である場合には、動的再配分制御部40は、次の式(1)によって計画乖離率を求める。
計画乖離率=(出力計画値−実際の出力値+充電必要量)/出力可能最大幅 …(1)
また、充電必要量≧0の場合、すなわち、充電が不要な対象蓄電池である場合又は対象発電機の場合は、動的再配分制御部40は、次の式(2)によって計画乖離率を求める。
計画乖離率=(出力計画値−実際の出力値)/出力可能最大幅 …(2)
ここで、(2)では(1)と異なり、分子で充電必要量の加算を行っていないが、本実施例では、計画以上の充電残量となった場合に、意図的な放電によって計画通りの充電残量にするような制御を実施しないことを意図としている。充電残量を計画通りに制御したい場合は(1)と(2)の式は同一となる。
また、出力可能最大幅による除算は、出力能力の異なる設備を正規化する目的でおこなっているため、なくても構わない。もしくは、出力能力に限らない基準で正規化することを目的に異なる基準で除算することも構わない。
上記の算出式により算出される計画乖離率が0を基準として正方向の値の場合は、計画よりも過少な発電の程度を意味する。
すなわち、計画乖離率が正の値でかつその絶対値が大きいほど、計画よりも発電量が少なく、次のステップにおいて出力(発電量)を増やしてもよいことを意味する。
また、上記により算出される計画乖離率が0を基準として負方向の値の場合は、計画よりも過剰な発電又は不足する充電の程度を意味する。
すなわち、対象設備が対象発電機である場合、計画乖離率が負の値でかつその絶対値が大きいほど、対象発電機が計画よりも過剰に発電しており、次のステップにおいて出力を減らしてもよいことを意味する。
また、対象設備が対象蓄電池である場合、計画乖離率が負の値でかつその絶対値が大きいほど、対象充電器が計画よりも充電が不足しており、次のステップにおいて充電を増やしてもよいことを意味する。
なお、対象設備の計画乖離率が0の場合は、当該対象設備については計画通りの出力が行われており、次のステップにおいても出力を維持すべきことを意味する。
〔電力算出部の機能的構成〕
図6は、対象設備に配分する電力を算出する電力算出部41の制御ブロック図である。図6の電力算出部41は、動的再配分制御部40が用いる機能ブロックの1つである。
図6に示すように、電力算出部41は、優先順位が高い方(図6の上側)から順に、対象設備A1のための制御ブロックB1と、対象設備A2のための制御ブロックB2とを備えている。
優先順位が高い方の制御ブロックB1は、対象設備A1が制御周期内において出力可能な範囲に入力電力のレンジを絞るリミッタを有する。
制御ブロックB1のリミッタには、最初に配分する電力が入力される。制御ブロックB1では、リミッタの出力電力に対象設備A1の現時点の出力電力が加算され、対象設備A2に対する出力指令値が算出される。
優先順位が低い方の制御ブロックB2は、対象設備B1が制御周期内において出力可能な範囲に入力電力のレンジを絞るリミッタを有する。
制御ブロックB2のリミッタには、制御ブロックB1に電力を配分した後の余りの電力(最初に配分する電力から制御ブロックB1のリミッタの出力電力を減算した電力値)が入力される。制御ブロックB2では、リミッタの出力電力に対象設備A2の現時点の出力電力が加算され、対象設備A2に対する出力指令値が算出される。
図6に「吹き出し」で示すように、動的再配分制御部40の電力算出部41は、計画乖離率の種類に応じて優先順位を決定し、決定した優先順位に基づいて、複数の対象設備のうちのどの対象設備をどの制御ブロックB1,B2に割り当てるかを決定する。
なお、図6では、2つの制御ブロックB1,B2の場合を例示しているが、実際の電力算出部41は、対象設備の台数分(1台でも3台以上でもよい。)に対応する数の制御ブロックが、優先順位の高い方から低い方に向かって順に並設されている。
図6に示すように、本実施形態の電力算出部41では、対象設備A1,A2の出力指令値を算出する制御ブロックB1,B2には対象設備の種別が予め設定されておらず、優先順位に応じて対象発電機又は対象蓄電池のいずれかを割り当てることができる。
すなわち、動的再配分制御部40の電力算出部41は、対象設備A1,A2の出力指令値を算出する処理を、対象設備A1,A2が対象発電機であるか対象蓄電池であるかなどの種別を区別しないという点で、統合アルゴリズムを構成している。
図7は、電力算出部41に適用する電力の配分ルールの一例を示す説明図である。
図7に示すように、本実施形態では、電力算出部41に適用する電力の配分ルールとして、次の3種類のルール1〜3が設定されている。
配分ルール1:配分する電力が「充電可能電力」である場合
この場合、電力算出部41への「入力電力」、電力配分の「対象設備」及び「優先順位」は次のようになる。
入力電力:充電可能電力(負値)
対象設備:充電を必要とする対象蓄電池
優先順位:計画乖離率が負方向に大きい順
上記の通り、対象設備に配分する電力が「充電可能電力」である場合は、電力算出部41への「入力電力」は、充電可能電力(負値)となり、「対象設備」は、充電を必要とする対象蓄電池となる。
この場合、電力算出部41は、電力配分の優先順位を計画乖離率が負方向に大きい順(充電量の不足が大きい順)に設定する。具体的には、電力算出部41は、負方向の計画乖離率の絶対値が大きい方の対象設備を制御ブロックB1に割り当て、その絶対値が小さい方の対象設備を制御ブロックB2に割り当てる。
配分ルール2:配分する電力が「出力減少可能電力」である場合
この場合、電力算出部41への「入力電力」、電力配分の「対象設備」及び「優先順位」は次のようになる。
入力電力:充電可能電力(負値)
対象設備:対象発電機及び充電を必要としない対象蓄電池
優先順位:計画乖離率が負方向に大きい順
上記の通り、対象設備に配分する電力が「出力減少可能電力」である場合は、電力算出部41への「入力電力」は、充電可能電力(負値)となり、「対象設備」は、対象発電機及び充電を必要としない対象蓄電池となる。
この場合、電力算出部41は、電力配分の優先順位を計画乖離率が負方向に大きい順(発電量又は放電量の過剰が大きい順)に設定する。具体的には、負方向の計画乖離率の絶対値を大きい方の対象設備を制御ブロックB1に割り当て、その絶対値が小さい方の対象設備を制御ブロックB2に割り当てる。
配分ルール3:配分する電力が「出力増加電力」である場合
この場合、電力算出部41への「入力電力」、電力配分の「対象設備」及び「優先順位」は次のようになる。
入力電力:出力増加電力(正値)
対象設備:すべての対象発電機及び対象蓄電池
優先順位:計画乖離率が正方向に大きい順
上記の通り、複数の対象設備に配分する電力が「出力増加電力」である場合は、電力算出部41への「入力電力」は、出力増加電力(正値)となり、「対象設備」は、すべての対象発電機及び対象蓄電池となる。
この場合、電力算出部41は、電力配分の優先順位を計画乖離率が正方向に大きい順(発電量又は放電量の不足が大きい順)に設定する。具体的には、正方向の計画乖離率の絶対値が大きい方の対象設備を制御ブロックB1に割り当て、その絶対値が小さい方の対象設備を制御ブロックB2に割り当てる。
〔対象設備に対する出力指令値の計算〕
図8は、動的再配分制御部40が実行する出力指令値の計算処理の一例を示すフローチャートである。なお、以下の例では、受電電力を目標電力以下にすることが制御目的であるとする。
図11に示すように、動的再配分制御部40は、まず、現時点の電力状態において、「目標電力>受電電力」の不等式が成立するか否かを判定する(ステップS20)。
ステップS20判定結果が肯定的である場合は、受電電力が契約電力(≧目標電力)よりも少ない状態であるから、商用電源14から購入している受電電力に余裕があることを意味する。
そこで、この場合、動的再配分制御部40は、「充電可能電力」に「受電余力」を代入する(ステップS36)。この処理は、現時点で購入中の受電電力を充電可能電力に充当することを意味する。
その後、動的再配分制御部40は、充電を必要とする対象蓄電池に充電可能電力(=受電余力)を配分する(ステップS38)。
具体的には、動的再配分制御部40は、ステップS38の電力配分を前述の配分ルール1(図7参照)によって実行する。配分ルール1では、計画乖離率が負方向に大きい順(すなわち、計画値に対する充電量の不足度合いが大きい順)で充電可能電力(=受電余力)が対象蓄電池に配分される。
次に、動的再配分制御部40は、配分後の充電可能電力が負値(=充電可能な状態である)であるか否かを判定する(ステップS40)。
ステップS40の判定結果が肯定的である場合は、充電可能電力(=受電余力)を対象蓄電池に配分した後でも、受電電力にまだ余裕があることを意味する。
そこで、この場合、動的再配分制御部40は、「出力減少可能電力」に「充電可能電力の余り」を代入する(ステップS42)。この処理は、配分後の充電可能電力の余りを更に出力減少可能電力に充当することを意味する。
その後、動的再配分制御部40は、出力減少可能電力を対象発電機と対象蓄電池に配分する(ステップS44)。
具体的には、動的再配分制御部40は、ステップS44における電力配分を、前述の配分ルール2(図10参照)によって実行する。配分ルール2では、計画乖離率が負方向に大きい順(すなわち、計画値に対する出力電力の過剰度合いが大きい順)で、出力減少可能電力が対象発電機又は対象蓄電池に配分される。
動的再配分制御部40は、ステップS44の処理を実行した後は、処理をステップS24の前に移行する。
ステップS40の判定結果が否定的である場合は、充電可能電力(=受電余力)を対象蓄電池に配分した後には、受電電力に余裕がないことを意味する。
そこで、この場合、動的再配分制御部40は、ステップS42とステップS44の処理(出力減少可能電力の配分)を行わずに、処理をステップS24の前に移行する。
ステップS20の判定結果が否定的である場合は、受電電力が契約電力(≧目標電力)と等しいあるいは近い状態であるから、商用電源14から購入している受電電力に余裕がないことを意味する。
そこで、この場合、動的再配分制御部40は、「充電可能電力」に0を代入する(ステップS22)。この処理は、受電余力がない(=0)と見なして、ゼロの電力値を充電可能電力に充当することを意味する。
その後、動的再配分制御部40は、現時点の電力状態において、「目標電力+対象発電機の出力余力>受電電力」の不等式が成立するか否かを判定する(ステップS24)。
ステップ24の判定結果が肯定的である場合は、電力設備1に含まれる対象発電機の発電電力にまだ余裕があることを意味する。
そこで、動的再配分制御部40は、「充電可能電力」に「設備の出力余力」を加算する(ステップS26)。この処理は、対象発電機及び対象蓄電池の少なくとも1つの出力電力を増加させる余地があれば、その出力電力を増加させて充電に充当することを意味する。
もっとも、この「設備の出力余力」の算出対象として、対象蓄電池を含めると、電力設備1に複数の対象蓄電池が含まれる場合に、一方の対象蓄電池の放電電力を他方の対象特電地の充電電力に充当することになり、電力損失を伴う無駄な電力移動が発生する。
そこで、ステップS26の「設備の出力余力」の算出対象としては、対象蓄電池を除いて対象発電機のみを採用することが好ましい。
このように、ステップS26の「設備の出力余力」の算出対象を対象発電機のみに絞ることとし、その算出対象から対象蓄電池を除外すれば、一方の対象蓄電池の放電電力が他方の対象蓄電池の充電電力に充当される無駄な電力移動を防止することができる。ただし、計画が前記のような電力移動を予定した場合には、算出対象に対象蓄電池を含めることもある。
また、ステップS26の「設備の出力余力」の算出対象として、対象蓄電池を含める場合には、計画による指令が放電でありかつ前回の出力(放電量)が計画値以下であることを条件とすることが好ましい。そして、当該対象蓄電池については、計画値を上限として出力余力を算出することにすればよい。
このようにすれば、一方の対象蓄電池が計画値を超える放電を実行してまで、他方の対象蓄電池の充電電力に充当されるのを未然に防止することができる。ただし、蓄電池の充電残量を計画通りに運用することを必定として運用するならば、その限りではない。
その後、動的再配分制御部40は、充電可能電力(=設備の出力余力)を対象蓄電池に配分し(ステップS28)、「出力増加電力」に「配分した充電可能電力」を代入して(ステップS30)、処理をステップS34の前に移行する。
ステップS24の判定結果が否定的である場合は、受電電力が目標電力を超えているにも拘わらず(ステップS20でNo)、電力設備1に含まれる対象発電機の発電電力に余裕がないことを意味する。
そこで、この場合、動的再配分制御部40は、出力増加電力に(受電電力−目標電力)を代入する(ステップS32)。この処理は、受電電力では不足する電力分を対象発電機又は対象蓄電池に出力させることを意味する。
その後、動的再配分制御部40は、出力増加電力を対象発電機及び対象蓄電池に配分する(ステップS34)。
具体的には、動的再配分制御部40は、ステップS34における電力配分を、前述の配分ルール3(図7参照)によって実行する。配分ルール3では、計画乖離率が正方向に大きい順(すなわち、計画値に対する出力電力の不足度合いが大きい順)で、出力増加電力が対象発電機及び対象蓄電池に配分される。
ステップS34を実行した後は、動的再配分制御部40は処理を終了する。
〔EMSの効果〕
本実施形態のEMS2によれば、動的再配分制御部40が、電力の需給バランス維持を目的として対象設備の出力指令値を算出する際に、現状の出力電力の計画値からの外れ度合い(具体的には、「計画乖離率」)に応じて動的に決定される優先順位に従って、現状の電力需給状態に対して減少又は増加させるべき電力を、複数の対象設備にそれぞれ配分するアルゴリズムを採用する(図6及び図7参照)。
従って、計画値からの外れ度合いに応じて動的に決定される優先順位を用いて、長期的な視点の運転計画とできるだけ両立した制御を実行することができる。
本実施形態のEMS2によれば、対象設備の出力指令値を算出する処理を、対象設備の種別を区別しない統合アルゴリズム(具体的には、図6の電力算出部41)を用いて実行するので、対象設備の種別に関係なく運転計画との乖離を適切に調整することができる。
従って、電力設備1に採用する対象設備の種別が変更されても、同じ統合アルゴリズムを継続的に採用することができる。このため、従来の制御技術のように、制御パラメータ及びアルゴリズムを設定し直す必要がなく、対象設備の種別の変更に対して簡便かつ柔軟に対応することができる。
本実施形態のEMS2によれば、動的再配分制御部40が、電力会社からの受電電力が目標電力未満である場合に、計画値に対する充電量の不足度合いが大きい対象蓄電池から順に、目標電力から受電電力の減算値以下の受電余力を、対象蓄電池の充電に配分する(図7の配分ルール1及び図8のステップS38参照)。
従って、対象蓄電池の充電量が計画値に復帰する期間をできるだけ短くすることができ、運転計画に基づくエネルギー管理を早期に回復することができる。
本実施形態のEMS2によれば、動的再配分制御部40が、受電余力の配分後に余剰電力が残っている場合に、計画値に対する出力電力の過剰度合いが大きい対象発電機又は対象蓄電池から順に、余剰電力を、対象発電機の発電量の減少又は対象蓄電池の放電量の減少に配分する(図10の配分ルール2及び図11のステップS44参照)。
従って、対象発電機の発電量又は対象蓄電池の放電量が過剰な状態から計画値に復帰する期間をできるだけ短くすることができ、運転計画に基づくエネルギー管理を早期に回復することができる。
本実施形態のEMS2によれば、動的再配分制御部40が、電力会社からの受電電力が目標電力以上である場合には、計画値に対する出力電力の不足度合いが大きい対象発電機又は対象蓄電池から順に、電力設備において増加すべき電力を、対象発電機の発電量の増加又は対象蓄電池の放電量の増加に配分する(図7の配分ルール3及び図8のステップS34参照)。
従って、受電電力を含む需給バランスを、目標電力を基に所望の状態に維持することができる。
また、この場合、対象発電機の発電量又は対象蓄電池の放電量が不足する状態から計画値に復帰する期間をできるだけ短くすることができ、運転計画に基づくエネルギー管理を早期に回復することができる。
〔動的再配分制御のシミュレーション結果〕
図9及び図10は、本実施形態の動的再配分制御のシミュレーション結果を示すグラフである。なお、図12は前半部分のシミュレーション結果を示し、図13は後半部分のシミュレーション結果を示している。
このシミュレーション結果は、それぞれ2台ずつの発電機A,B及び蓄電器A,Bを含む仮想の電力設備1について、本実施形態の動的再配分制御をシミュレーションした場合のグラフであり、シミュレーション条件を列挙すると以下の通りである。
シミュレーション期間:4500s
動的再配分制御の制御周期:10s
目標電力:4500kW
受電可能電力量は1800s(30分)でリセット
需要電力の変動:5000kW+矩形波を想定
ただし、矩形波の周期は1000s、振幅はpeak-peak間で1100kW
発電機Aの特性
出力範囲:300〜700kW
応答速度:+1.2kW/s,−2.5kW/s
計画値:0〜1200s=500kW,1201〜4500s=350kW
発電機Bの特性
出力範囲:300〜700kW
応答速度:+1.2kW/s,−2.5kW/s
計画値:0〜2000s=350kW,2001〜4500s=600kW
蓄電池Aの特性
出力範囲:−500〜500kW(−は充電を意味する)
応答速度:+1000kW/s,−1000kW/s
計画値:0〜1500s=−200kW,1501〜4500s=300kW
充放電効率:80%
蓄電池Bの特性
出力範囲:−250〜250kW(−は充電を意味する)
応答速度:+500kW/s,−500kW/s
計画値:0〜2500s=200kW,2501〜4500s=−100kW
充放電効率:80%
図12及び図13において、上から1段目のグラフでは、「需要電力」が一点鎖線で示され、「受電電力」が細い実線で示され、「目標電力」が破線で示されている。
上から2段目のグラフでは、「受電可能電力量」が太い実線で示されている。「受電可能電力量」とは、受電電力の累積値の平均値のことであり、負の場合が受電可能を意味し、正の場合が電力設備での発電が必要であることを意味する。契約電力は30分単位でカウントされるので、30分間でリセットされる時点の受電可能電力量が負値であれば、契約電力を守っていることになる。
上から3段目のグラフは、対象設備の設備出力(負の場合は充電)のグラフである。
このグラフでは、「発電機A」の設備出力が一点鎖線で示され、「発電機B」の設備出力が細い実線で示され、「蓄電池A」の設備出力が太い実線で示され、「蓄電池B」の設備出力が破線で示されている。
上から4段目のグラフは、対象設備の運転計画(負の場合は充電)のグラフである。
このグラフでは、「発電機A」の運転計画が一点鎖線で示され、「発電機B」の運転計画が細い実線で示され、「蓄電池A」の運転計画が太い実線で示され、「蓄電池B」の運転計画が破線で示されている。
上から5段目のグラフは、対象設備の充電必要量のグラフである。
このグラフでは、「発電機A」の充電必要量が一点鎖線で示され、「発電機B」の充電必要量が細い実線で示され、「蓄電池A」の充電必要量が太い実線で示され、「蓄電池B」の充電必要量が破線で示されている。
上から6段目のグラフは、対象設備の計画乖離率のグラフである。
このグラフでは、「発電機A」の計画乖離率が一点鎖線で示され、「発電機B」の計画乖離率が細い実線で示され、「蓄電池A」の計画乖離率が太い実線で示され、「蓄電池B」の計画乖離率が破線で示されている。
1段目のグラフに示すように、このシミュレーションでは、周期が1000sでかつ振幅が1100kWの矩形波で需要電力が急激に変動することとした。
従って、2段目のグラフに示すように、需要電力が急激に減少する時点(T=500s,1500sなど)では、受電可能電力量が一時的に低下する。また、需要電力が急激に増加する時点(T=1000s,2000sなど)では、受電可能電力量が一時的に増加する。
しかし、本実施形態では、動的再配分制御により契約電力を守るように設備出力が調整されるので、需要電力の急変動によって受電可能電力量が変化しても直ぐに0付近に復帰し、受電可能電力量がリセット時点において正になることはない。
例えば、3段目のグラフに示すように、蓄電池A,Bは、発電機A,Bに比べて応答速度が非常に速いので、需要電力の変動時点において、その変動に応じて設備出力が急激に変動し、受電可能電力量の安定化に寄与している。
また、発電機A,Bは、蓄電池A,Bに比べて応答速度が遅いものの、需要電力の変動時点において、その変動に応じて設備出力が緩やかに変動し、受電可能電力量の安定化に寄与している。
4段目のグラフに示すように、蓄電池Aの運転計画は0〜1500sの時間帯で−200kWの充電になっている。従って、運転計画のみに従う場合、蓄電池Aは、基本的には設備出力が負値(充電)となるように制御される。
しかし、T=1000sの時点で需要電力が急増したことに応じて、蓄電池Aはいったん放電に転じるように設備出力を増大させ、その後、充電に転じるように設備出力を減少させている。
〔その他の変形例〕
今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は特許請求の範囲によって示され、特許請求の範囲と均等の意味及び範囲内での全ての変更が含まれることが意図される。
例えば、上述の実施形態では、EMS2の管理対象である電力設備1に、電力調整が可能な発電装置8及び蓄電装置6が含まれる場合を例示したが、発電装置8又は蓄電装置6のいずれか一方の種別の電力設備を1台又は複数台備える電力設備1であってもよい。
具体的には、本実施形態のEMS2の管理対象となる電力設備1は、蓄電装置6は備えていないが、ガス発電機とその他の種別の発電機など、複数種類の発電装置8を備える電力設備であってもよい。
逆に、当該電力設備1は、発電装置8は備えていないが、化学電池とその他の種別の蓄電池など、複数種類の蓄電装置6を備える電力設備であってもよい。
上述の実施形態に係るEMS2は、運転計画と制御を統合する点が特徴の1つでもあるが、運転計画を実際に算出しない場合でも計画値を仮定することにより、動的配分制御部40を単独で動作させることもできる。
上述の実施形態に係るEMS2は、電力設備1の需給バランスを実現するので、電力設備1には必ずしも電力系統14が接続されていなくてもよい。
上述の実施形態では、EMS2の管理対象が電力設備1である場合を例示したが、EMS2が「電力」の代わりに「熱量」を制御することにすれば、上述の実施形態のEMS2を、熱利用設備のエネルギー管理システムに適用することもできる。
電力及び熱量はいずれも「エネルギー」であるから、熱量の需給管理を行うことができる本実施形態のEMS2は、特許請求の範囲中の「電力」を「エネルギー」に読み替えた内容の発明を含む。
すなわち、本実施形態のEMS2は、例えば下記のEMSであってもよい。
「運転計画に基づいてエネルギー需給を管理するEMSであって、
現状のエネルギー需給状態と、エネルギー発生装置及びエネルギー蓄積装置のうち少なくとも1種類の1又は複数の装置である対象設備を含むエネルギー設備についての出力エネルギーとを取得する取得部と、取得した現状の前記エネルギー需給状態及び前記出力エネルギーに基づいて、前記運転計画の計画値に可能な限り準ずるような前記対象設備の出力指令値を算出する処理を、前記対象設備の種別を区別しない統合アルゴリズムを用いて実行する制御部と、を備えるEMS。」
1 電力設備
2 エネルギー管理システム(EMS)
3 配電線
4 負荷装置
5 負荷装置
6 蓄電装置
7 発電装置
8 発電装置
11 DC/AC変換器
14 商用電源
15 スマートメーター(電力量計)
16 通信線
21 制御装置
22 記憶装置
23 通信装置(取得部)
24 入力装置
25 表示装置
30 計画立案部
40 動的再配分制御部(制御部)
41 電力算出部(統合アルゴリズム)

Claims (9)

  1. 運転計画に基づいて電力需給を管理するエネルギー管理システムであって、
    現状の電力需給状態と、複数種類の発電装置を含む複数の装置である対象設備を含む電力設備についての出力電力とを取得する取得部と、
    取得した現状の前記電力需給状態及び前記出力電力に基づいて、前記運転計画の計画値からの乖離に応じた前記対象設備の出力指令値を算出する処理を、前記対象設備の台数に応じて設定可能な優先順位の制御ブロックを含む統合アルゴリズムを用いて実行する制御部と、を備えるエネルギー管理システム。
  2. 前記統合アルゴリズムは、
    現状の前記出力電力の前記計画値からの外れ度合いに応じて動的に決定される優先順位の前記制御ブロックに前記対象設備を割り当てることにより、現状の前記電力需給状態に対して減少又は増加させるべき電力量を、複数の前記対象設備にそれぞれ配分するアルゴリズムである請求項1に記載のエネルギー管理システム。
  3. 前記対象設備は、蓄電装置を含み、
    前記制御部は、電力会社からの受電電力が目標電力未満である場合には、
    前記計画値に対する充電量の不足度合いが大きい、前記対象設備に含まれる前記蓄電装置から順に、前記目標電力から前記受電電力の減算値以下の受電余力を、前記蓄電装置の充電に配分する請求項2に記載のエネルギー管理システム。
  4. 前記制御部は、前記受電余力の配分後に余剰電力が残っている場合には、
    前記計画値に対する前記出力電力の過剰度合いが大きい前記発電装置又は前記蓄電装置から順に、前記余剰電力を、前記発電装置の発電量の減少又は前記蓄電装置の放電量の減少に配分する請求項3に記載のエネルギー管理システム。
  5. 前記制御部は、電力会社からの受電電力が目標電力以上である場合には、
    前記計画値に対する前記出力電力の不足度合いが大きい前記発電装置又は前記蓄電装置から順に、前記電力設備において増加すべき電力を、前記発電装置の発電量の増加又は前記蓄電装置の放電量の増加に配分する請求項3または請求項4に記載のエネルギー管理システム。
  6. 前記制御部は、現状の前記出力電力を更に増加させる余裕がある前記対象設備の出力余力を充電に充当する場合には、
    当該出力余力の算出対象に前記発電装置を含め、当該出力余力の算出対象から前記蓄電装置を除外する請求項5に記載のエネルギー管理システム。
  7. 前記制御部は、現状の前記出力電力を更に増加させる余裕がある前記対象設備の出力余力を充電に充当する場合には、
    当該出力余力の算出対象に前記発電装置と前記運転計画による指令が放電である前記蓄電装置とを含め、前記蓄電装置の出力余力については、前記計画値で指定された放電量を上限とする請求項5に記載のエネルギー管理システム。
  8. 運転計画に基づいて電力需給を管理するエネルギー管理システムとして、コンピュータを機能させるためのコンピュータプログラムであって、前記コンピュータを、
    現状の電力需給状態と、複数種類の発電装置を含む複数の装置である対象設備を含む電力設備についての出力電力とを取得する取得部と、
    取得した現状の前記電力需給状態及び前記出力電力に基づいて、前記運転計画の計画値からの乖離に応じた前記対象設備の出力指令値を算出する処理を、前記対象設備の台数に応じて設定可能な優先順位の制御ブロックを含む統合アルゴリズムを用いて実行する制御部として機能させるコンピュータプログラム。
  9. 運転計画に基づいて電力需給を管理するエネルギー管理方法であって、
    現状の電力需給状態と、複数種類の発電装置を含む複数の装置である対象設備を含む電力設備についての出力電力とを取得するステップと、
    取得した現状の前記電力需給状態及び前記出力電力に基づいて、前記運転計画の計画値からの乖離に応じた前記対象設備の出力指令値を算出する処理を、前記対象設備の台数に応じて設定可能な優先順位の制御ブロックを含む統合アルゴリズムを用いて実行するステップと、を含むエネルギー管理方法。
JP2020127237A 2015-01-13 2020-07-28 エネルギー管理システム、エネルギー管理方法及びコンピュータプログラム Active JP6977822B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020127237A JP6977822B2 (ja) 2015-01-13 2020-07-28 エネルギー管理システム、エネルギー管理方法及びコンピュータプログラム

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2015004394A JP2016131434A (ja) 2015-01-13 2015-01-13 エネルギー管理システム、エネルギー管理方法及びコンピュータプログラム
JP2019136711A JP6743953B2 (ja) 2015-01-13 2019-07-25 エネルギー管理システム、エネルギー管理方法及びコンピュータプログラム
JP2020127237A JP6977822B2 (ja) 2015-01-13 2020-07-28 エネルギー管理システム、エネルギー管理方法及びコンピュータプログラム

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2019136711A Division JP6743953B2 (ja) 2015-01-13 2019-07-25 エネルギー管理システム、エネルギー管理方法及びコンピュータプログラム

Publications (2)

Publication Number Publication Date
JP2020184881A JP2020184881A (ja) 2020-11-12
JP6977822B2 true JP6977822B2 (ja) 2021-12-08

Family

ID=56415678

Family Applications (3)

Application Number Title Priority Date Filing Date
JP2015004394A Pending JP2016131434A (ja) 2015-01-13 2015-01-13 エネルギー管理システム、エネルギー管理方法及びコンピュータプログラム
JP2019136711A Active JP6743953B2 (ja) 2015-01-13 2019-07-25 エネルギー管理システム、エネルギー管理方法及びコンピュータプログラム
JP2020127237A Active JP6977822B2 (ja) 2015-01-13 2020-07-28 エネルギー管理システム、エネルギー管理方法及びコンピュータプログラム

Family Applications Before (2)

Application Number Title Priority Date Filing Date
JP2015004394A Pending JP2016131434A (ja) 2015-01-13 2015-01-13 エネルギー管理システム、エネルギー管理方法及びコンピュータプログラム
JP2019136711A Active JP6743953B2 (ja) 2015-01-13 2019-07-25 エネルギー管理システム、エネルギー管理方法及びコンピュータプログラム

Country Status (1)

Country Link
JP (3) JP2016131434A (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102563891B1 (ko) * 2016-10-27 2023-08-09 한국전기연구원 신재생기반 독립형 마이크로그리드의 최적 운전을 위한 운영 시스템 및 방법
JPWO2018139603A1 (ja) * 2017-01-27 2019-11-07 京セラ株式会社 電源制御方法、電源制御装置及び電源制御システム
CN111276989B (zh) * 2020-02-26 2023-08-08 深圳市科陆电子科技股份有限公司 储能控制保护方法及系统
WO2022219817A1 (ja) * 2021-04-16 2022-10-20 株式会社 東芝 電力制御装置および電力制御方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001086649A (ja) * 1999-09-09 2001-03-30 Kansai Electric Power Co Inc:The 電力系統における負荷周波数制御方法
JP5268458B2 (ja) * 2008-07-09 2013-08-21 株式会社東芝 小規模電力系統の需給制御装置
JP5628820B2 (ja) * 2009-10-05 2014-11-19 日本碍子株式会社 制御装置、制御装置網及び制御方法
JP5372987B2 (ja) * 2011-03-16 2013-12-18 三菱電機株式会社 電力マネジメントシステム
JP5877479B2 (ja) * 2011-11-01 2016-03-08 清水建設株式会社 電力管理システム、電力管理方法、プログラム
JP6018380B2 (ja) * 2011-12-27 2016-11-02 川崎重工業株式会社 スマートグリッドシステムのグリッドコントローラ、それを備えたスマートグリッドシステムおよびその制御方法
JP5971701B2 (ja) * 2012-05-18 2016-08-17 株式会社東芝 分散電源装置及び分散電源連携システム
JP2014003778A (ja) * 2012-06-18 2014-01-09 Hitachi Ltd 蓄電池装置制御システム及び蓄電装置制御方法

Also Published As

Publication number Publication date
JP6743953B2 (ja) 2020-08-19
JP2016131434A (ja) 2016-07-21
JP2020184881A (ja) 2020-11-12
JP2019193571A (ja) 2019-10-31

Similar Documents

Publication Publication Date Title
JP6977822B2 (ja) エネルギー管理システム、エネルギー管理方法及びコンピュータプログラム
JP7059583B2 (ja) エネルギーマネジメントシステム、電力需給計画最適化方法、および電力需給計画最適化プログラム
Jiang et al. Energy management of microgrid in grid-connected and stand-alone modes
Purvins et al. Application of battery-based storage systems in household-demand smoothening in electricity-distribution grids
Salee et al. Optimal siting and sizing of battery energy storage systems for grid-supporting in electrical distribution network
US20220149619A1 (en) Energy control utilizing a virtual power plant
Carpinelli et al. Exponential weighted method and a compromise programming method for multi-objective operation of plug-in vehicle aggregators in microgrids
JP6427826B2 (ja) 制御装置、制御方法およびプログラム
Pandi et al. Adaptive coordinated feeder flow control in distribution system with the support of distributed energy resources
JP6379567B2 (ja) 需要家電力マネジメントシステム
JP7285053B2 (ja) 電力需給制御装置、電力需給制御システムおよび電力需給制御方法
EP3000162A1 (en) A system for providing a primary control power for a power grid
Ricardo et al. Energy management supported on genetic algorithms for the equalization of battery energy storage systems in microgrid systems
JP5917292B2 (ja) 電力管理装置、電力管理システム、及び電力管理方法
JP5349160B2 (ja) 充放電制御装置
JP2017050911A (ja) 運転計画の算出装置、算出方法及びコンピュータプログラム
Yahyaie et al. Optimal operation strategy and sizing of battery energy storage systems
CN110943487A (zh) 一种园区能源系统能量优化的方法和装置
JP7518401B2 (ja) 電力制御システム、負荷装置、制御方法および情報処理装置
JP7425267B1 (ja) 分散電源統合管理システム、分散電源統合管理装置、分散電源統合管理方法、および、プログラム
WO2023063383A1 (ja) 生成方法、生成装置、及び生成プログラム
CN118017563B (zh) 一种用户侧共享储能系统的配置方法和系统
TWI797019B (zh) 微電網電力調度系統及其方法
Zheng et al. Distributed control of aggregated smart buildings for frequency regulation
Qiu Planning and Operation of Energy Storage Systems in Power Systems

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200825

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200825

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210614

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210629

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210730

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210806

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211012

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211025

R150 Certificate of patent or registration of utility model

Ref document number: 6977822

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150