JP6972927B2 - 空調制御システム - Google Patents

空調制御システム Download PDF

Info

Publication number
JP6972927B2
JP6972927B2 JP2017210207A JP2017210207A JP6972927B2 JP 6972927 B2 JP6972927 B2 JP 6972927B2 JP 2017210207 A JP2017210207 A JP 2017210207A JP 2017210207 A JP2017210207 A JP 2017210207A JP 6972927 B2 JP6972927 B2 JP 6972927B2
Authority
JP
Japan
Prior art keywords
vehicle
air conditioning
destination
heat load
prediction unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017210207A
Other languages
English (en)
Other versions
JP2019081470A (ja
Inventor
陽太 大橋
好則 一志
剛史 脇阪
拡樹 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2017210207A priority Critical patent/JP6972927B2/ja
Publication of JP2019081470A publication Critical patent/JP2019081470A/ja
Application granted granted Critical
Publication of JP6972927B2 publication Critical patent/JP6972927B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Air-Conditioning For Vehicles (AREA)

Description

この明細書における開示は、車両用空調装置を制御する空調制御システムに関する。
特許文献1には、乗員が乗車する前に行う車室内の空調、所謂プレ空調に関する技術が開示されている。この技術では、乗員の携帯する発信機が、プレ空調を開始指示するためのプレ空調リクエスト信号と、乗員の位置情報とを共に車両に送信する。プレ空調リクエスト信号を受信した車両のECUは、乗員の位置情報および車両の位置情報に基づいて乗員から車両までの距離を推定し、乗員が車両に乗り込むまでの時間を推定する。そして、バッテリの残量を検出してプレ空調可能な時間を算出し、プレ空調可能時間と、乗員が車両に乗り込むまでの時間とに基づいて、プレ空調の開始タイミングを決定する。
特許第4265566号公報
特許文献1の技術では、バッテリの残量の制御に関しては開示されていない。一方で従来の空調制御システムにおいては、バッテリの残量によってはプレ空調の実行時間が短くなり、乗員が車両に乗り込む際に車室内温度が目標温度に到達していない状況が考えられる。すなわち、従来の空調制御システムでは、プレ空調の実行に必要なバッテリの充電量が不足する状況が考えられる。
開示される目的は、プレ空調の実行に必要なバッテリの充電量が不足することを回避可能な空調制御システムを提供することである。
この明細書に開示された複数の態様は、それぞれの目的を達成するために、互いに異なる技術的手段を採用する。また、特許請求の範囲およびこの項に記載した括弧内の符号は、ひとつの態様として後述する実施形態に記載の具体的手段との対応関係を示す一例であって、技術的範囲を限定するものではない。
開示された空調制御システムのひとつは、エンジン(19a)およびモータ(18a)を走行駆動源として有する車両(10)において乗員の乗車前に車室内を空調するプレ空調を実行可能な車両用空調装置(15)と、車両用空調装置に駆動電力を供給するバッテリ(17a)と、車両の目的地を取得する目的地取得部(14a)と、目的地においてプレ空調を実行する際の熱負荷を予測する熱負荷予測部(14c)と、目的地における車室内温度の最大温度変化量を予測する変化量予測部(14c1)と、目的地にて乗員が車両に再乗車する前にプレ空調を実行して車室内温度を目標温度に到達させるために必要な目標電力量を予測する目標電力量予測部(14d)と、車両が目的地に到着した時点での充電量が目標電力量以上となるようにバッテリの充電量を制御する充電量制御部(16a)と、を備え、熱負荷予測部は、最大温度変化量だけ変化した車室内温度と目標温度との差から熱負荷を予測し、目標電力量予測部は、熱負荷予測部において予測された熱負荷に基づいて目標電力量を予測する
開示された空調制御システムのひとつは、エンジン(19a)およびモータ(18a)を走行駆動源として有する車両(10)において乗員の乗車前に車室内を空調するプレ空調を実行可能な車両用空調装置(15)と、車両用空調装置に駆動電力を供給するバッテリ(17a)と、車両の目的地を取得する目的地取得部(14a)と、目的地においてプレ空調を実行する際の熱負荷を予測する熱負荷予測部(14c)と、目的地にて乗員が車両に再乗車する前にプレ空調を実行して車室内温度を目標温度に到達させるために必要な目標電力量を予測する目標電力量予測部(14d)と、車両が目的地に到着した時点での充電量が目標電力量以上となるようにバッテリの充電量を制御する充電量制御部(16a)と、目的地における駐車場の施設情報を取得する駐車場情報取得部(33c)と、を備え、熱負荷予測部は、駐車場情報取得部にて取得された駐車場の施設情報を熱負荷の予測に使用し、目標電力量予測部は、熱負荷予測部において予測された熱負荷に基づいて目標電力量を予測する。
この開示によれば、空調制御システムは、車両が目的地に到着した時点で、プレ空調により車室内温度を目標温度に到達させるために必要な目標充電量を充電しているようにバッテリの充電量を制御することができる。したがって、プレ空調の実行に必要なバッテリの充電量が不足することを回避可能な空調制御システムを提供することができる。
第1実施形態に係る空調制御システムを示す概略図である。 第1実施形態に係る空調制御システムを示すブロック図である。 第1実施形態の空調制御システムが実行する処理を示すフローチャートである。 SOCおよび車室内温度の時間変化の様子の一例を示すグラフである。 第2実施形態に係る空調制御システムを示すブロック図である。 第3実施形態に係る空調制御システムを示すブロック図である。
(第1実施形態)
第1実施形態の空調制御システム1について、図1〜図6を参照しながら説明する。空調制御システム1は、例えば、車両10と、携帯端末20と、サーバ装置30とを備える。空調制御システム1は、車両10の車室内の空調を行う車両用空調装置15の作動を制御することができる。特に空調制御システム1は、乗員が車両10に乗車する前に車室内を空調するプレ空調の実行を制御する。空調制御システム1は、乗員が車両に対して閾値Ls以内に接近するとプレ空調を実行開始するシステムである。空調制御システム1は、例えばモータとエンジンの両方を走行駆動源として利用するハイブリッド車およびプラグインハイブリッド車等が搭載する車両用空調装置15の制御システムとして適用される。空調制御システム1は、プレ空調の実行に必要なバッテリ17aの電力残量を管理する。
携帯端末20は、図2に示すように無線通信部21と、制御部23とを備える。携帯端末20は、乗員が持ち運び可能な通信デバイスである。携帯端末20は、例えばスマートフォン、ウェアラブルデバイス、タブレット端末等、車両10を利用する乗員が所有する通信デバイスによって提供することができる。携帯端末20は、電子キーやスマートキー等の車両10ドアの施解錠の許可を行う機能を有する通信端末によって提供されてもよい。無線通信部21は、車両10の無線通信部11と同様に公衆回線網および基地局を介してサーバ装置30と無線通信を行う。測位部は、GNSS(Global Navigation Satellite System)受信機を備える。測位部22は、GNSS受信機による測位信号に基づいて携帯端末20の位置を決定する。すなわち測位部22は、携帯端末20の位置を特定する機能を有する。測位部22は、得られた端末位置情報を無線通信部からサーバ装置30へと送信可能である。携帯端末20は乗員が持ち運ぶので、端末位置情報は乗員の位置情報とみなすことができる。
制御部23は、コンピュータによって読み取り可能な記憶媒体を備えるマイクロコンピュータを主なハードウェア要素として備える。記憶媒体は、コンピュータによって読み取り可能な所定のプログラムを非一時的に記憶する非遷移的実体的記憶媒体である。記憶媒体は、半導体メモリまたは磁気ディスクなどによって提供されうる。制御部23は、記憶媒体に記憶された各種のプログラムをCPU等のプロセッサによって実行することで、各種制御処理を実施する機能を有する。制御部23は、測位部22が取得した位置情報を、無線通信部21からサーバ装置30へと送信する機能を有する。
次にサーバ装置30について説明する。サーバ装置30は、無線通信部31と、制御部33と、データ格納部32とを有する。サーバ装置30は、例えば管理センタに設置されたホストコンピュータによって提供される。サーバ装置30は、1台のコンピュータまたは複数のコンピュータによって構成される。無線通信部31は、インターネット、携帯電話網等の公衆回線網および基地局を介して車両10および携帯端末20と無線通信を行う。無線通信部31は、車両10および携帯端末20と相互通信可能である。
データ格納部32は、無線通信部31が受信したデータ、制御部33による演算処理結果等を記憶して蓄積する記憶装置である。データ格納部32は、例えば乗員の行動パターン等を記憶する。乗員の行動パターンとは、例えば乗員が車両10を運転して向かった場所、施設の種類と、向かった場所で乗員が滞在した時間等である。データ格納部32は、これらの情報を、車両10および携帯端末20の位置情報を取得することで記憶する。また、データ格納部32は、駐車場の施設情報をデータベースとして記憶する。ここで駐車場の施設情報とは、各地の駐車場の構造等により決定される駐車場の日当たり情報である。駐車場の施設情報は、その駐車場に駐車された車両10の受ける日射量が、遮蔽物のない状態で受ける日射量に対してどの程度の量かを評価するための情報である。例えば、平面駐車場等の屋根がない構造の駐車場では、日射が遮蔽されることなく車両10に到達する。また、立体駐車場等の屋根がある構造の駐車場では、日射が遮蔽されるため、車両10に到達する日射量は減少する。または、屋根の有無だけでなく、周囲の建造物等から日射量を評価してもよい。
制御部33は、コンピュータによって読み取り可能な記憶媒体を備えるマイクロコンピュータを主なハードウェア要素として備える。記憶媒体は、コンピュータによって読み取り可能な所定のプログラムを非一時的に記憶する非遷移的実体的記憶媒体である。記憶媒体は、半導体メモリまたは磁気ディスクなどによって提供されうる。制御部33は、記憶媒体に記憶された各種のプログラムをCPU等のプロセッサによって実行することで、各種制御処理を実施する機能を有する。特に制御部33は、接近判定部33a、駐車場情報取得部33c、開始時刻予測部33d、プレ空調開始指示部33jとしての機能を有する。
目的地推定部33bは、乗員の現在地が予め設定された滞在地であるか否かを判定する。目的地推定部33bは、データ格納部32が格納する乗員の行動パターンに基づいて、乗員の目的地を推定する。目的地推定部33bは、特に乗員がカーナビ等で目的地を設定しなかった場合に、目的地を推定する。より具体的な例としては、目的地推定部33bは、乗員が平日何時に出社して何時に帰宅するかといった定常的な行動スケジュール、またその場合にどのような経路で出発地から目的地まで車両10を運転するかといった経路情報等に基づき乗員の目的地を推定する。目的地推定部33bは、推定する時点での乗員および車両10の位置や時間等の行動パターンがデータ格納部32に記憶された行動パターンと実質的に一致する場合に、記憶された行動パターンをもとに乗員の目的地を推定する。
接近判定部33aは、携帯端末20と車両10との間の現在距離Lnowが、閾値Lsを下回っているか否かによって乗員が車両10に接近しているか否かを判定する。換言すれば、距離Lnowが、閾値Ls以内になったか否かを判定する。現在距離Lnowは、例えば携帯端末20から送信された端末位置情報と、車両10から送信された車両位置情報から、携帯端末20と車両10との直線距離として算出される。閾値Lsは、制御部33に予め設定された乗員と車両10との間の直線距離である。閾値Lsは、例えば、プレ空調に必要な時間に基づいて求められる。ここでプレ空調に必要な時間とは、車室内に乗り込んだ際に乗員が不快感を覚えることを回避可能な温度に内気温が到達するために必要なプレ空調の時間である。
閾値Lsとしては、例えば目標空調時間Tpに基づいて定められる乗員と車両10との間の距離が設定される。ここで目標空調時間Tpとは、プレ空調の実行に確保されるプレ空調確保時間である。ここでプレ空調の実行に確保される時間とは、例えば車室内に乗り込んだ際に乗員が不快感を覚えることを回避可能な温度に内気温が到達するために必要なプレ空調の時間である。
目標空調時間Tpの決め方の一例について説明する。例えばプレ空調を夏季に実施する場合を考えると、車室内に乗り込んだ際に乗員が暑さによる不快感を覚えることを抑制するには、車室内温度(以下、内気温と表記)が外気温と同等以下であることが望ましい。したがって、乗員が乗車するまでにプレ空調によって内気温を外気温と同等な温度に到達させるのに必要な時間を、上述の必要な時間として定めることができる。より具体的な例としては、外気温が35℃で日射が届く環境に車両10を駐車すると、20〜30分程度で内気温は50℃まで上昇する。この状態でプレ空調を開始し、内気温が外気温と同等、すなわち35℃まで下がるには、3分程度の時間が必要となる。以上により、夏季のプレ空調に必要な時間Tpとして、3分を設定することができる。
すなわち閾値Lsは、上述のように定められたプレ空調に必要な時間と、乗員の歩行速度とを用いて算出することができる。乗員の歩行速度は、人の平均歩行速度とすることができる。または、乗員の平均歩行速度を携帯端末20等によって収集する乗員の歩行データから算出してもよい。例えばプレ空調に必要な時間を上述の3分、乗員の歩行速度を4km/hとすると、閾値Lsは200mと設定できる。
開始時刻予測部33dは、再乗車時間に基づいてプレ空調を開始する時刻を予測する。開始時刻予測部33dは、例えばデータ格納部32に記憶された乗員の行動パターンに基づいて再乗車時間を予測する。より具体的な例としては、データ格納部32が記憶した施設種類別の乗員の平均滞在時間から、目的地となっている施設が該当する施設種類の平均滞在時間を再乗車時間として選択する。または、乗員個人の平均滞在時間ではなく、目的地を訪れる人の平均滞在時間を、データ格納部32に記憶されたデータベースやインターネット等から取得して再乗車時間として採用してもよい。開始時刻予測部33dは、再乗車時間に加えて、例えばカーナビ等が算出する目的地への到着予定時刻と、予め設定された目標空調時間Tpとに基づいて開始時刻を予測する。すなわち、到着予定時刻から再乗車時間分だけ進めた時刻である再乗車時刻から目標空調時間Tpだけ戻った時刻を、開始時刻として予測する。
プレ空調開始指示部33jは、プレ空調を開始する指示を無線通信部31から車両10に対して送信する。プレ空調開始指示部33jは、車両10側の無線通信部11を介して空調ECU14に対してプレ空調開始を指示する。プレ空調開始指示部33jは、接近判定部33aの判定に基づいてプレ空調の開始を空調ECU14に指示する。より具体的には、乗員が閾値Ls以内に車両10に接近していると判定された場合に空調指示を送信する。
車両10は、モータに電力を供給するバッテリ17aが搭載されている。モータは、バッテリ17aからの電力供給によって回転駆動するだけでなく、エンジン19aの駆動力または走行駆動輪の駆動力の一部を利用して発電を行うことでバッテリ17aを充電可能なモータジェネレータによって提供される。バッテリ17aは、モータ以外の電子機器に対しても電力を供給可能である。特にバッテリ17aは、車両用空調装置15に電力を駆動し、空調を実施させることができる。これにより車両用空調装置15は、乗員の乗車前、すなわちイグニッションスイッチがオフの状態であってもプレ空調を実施することができる。エンジン19a、モータジェネレータ18a(以下、MG18aと表記)、バッテリ17aは、それぞれエンジンECU19、MGECU18、バッテリECU17によってその挙動を監視および/または制御される。エンジンECU19、MGECU18、バッテリECU17は、上位ECUであるHVECU16と相互に通信し、HVECU16からの指令に基づいてエンジン19a、MG18a、バッテリ17aの制御を行う。
車両用空調装置15は、例えばヒートポンプサイクルを備える。車両用空調装置15は車室内の空調を実現するための各種の空調機能部品によって構成される。例えば、車両用空調装置15は、内外気を切り替える内外気切替ドア、送風するためのブロワ、電動コンプレッサやエバポレータ、コンデンサなどで構成された空気の冷却、加熱を行うためのヒートポンプサイクルユニットなどで構成される。車両用空調装置15は、空調ECU14によってその作動を制御される。
車両10には、測位部22と、無線通信部21とが搭載されている。測位部12は、GNSS(Global Navigation Satellite System)受信機と慣性センサとを備える。GNSS受信機は、GNSSを構成する測位衛星が送信する測位信号を受信する受信機である。GNSS受信機は、GPS、GLONASS、Galileo、IRNSS、QZSS、Beidou等の衛星測位システムのうちで、少なくとも1つの衛星測位システムの各測位衛星から、測位信号を受信可能である。慣性センサは、車両10の角速度を計測するジャイロセンサや、車両10の加速度を計測する加速度センサである。測位部12は、GNSS受信機による測位信号と慣性センサによる計測結果との組み合わせにより車両10の位置を逐次決定する。すなわち測位部12は、車両10の位置を特定する機能を有する。測位部12は、得られた車両位置情報を無線通信部21からサーバ装置30へと送信可能である。
無線通信部11は、インターネット、携帯電話網等の公衆回線網および基地局を介してサーバ装置30および携帯端末20と無線通信を行う。無線通信部11は、サーバ装置30および携帯端末20と相互通信可能である。または、携帯端末20とは直接通信を行わない構成であってもよい。
空調ECU14、HVECU16、エンジンECU19、MGECU18、バッテリECU17は、それぞれ車両10に搭載された複数の車載ECU(Electronic Control Unit)の1つである。複数の車載ECUは、コンピュータによって読み取り可能な記憶媒体を備えるマイクロコンピュータを主なハードウェア要素として備える。記憶媒体は、コンピュータによって読み取り可能な所定のプログラムを非一時的に記憶する非遷移的実体的記憶媒体である。記憶媒体は、半導体メモリまたは磁気ディスクなどによって提供されうる。複数の車載ECUは、記憶媒体に記憶された各種のプログラムをCPU等のプロセッサによって実行することで、各種制御処理を実施する機能を有する。
バッテリECU17は、電流センサによって検出されるバッテリ17a電流に基づいて、バッテリ17aの充電状態を表すSOC(State of charge)を算出する。ここでSOCとは、満充電時の充電量に対する実際の充電量の割合である。例えば、バッテリECU17は、バッテリ17aの充電電流をプラス値とし、バッテリ17aの放電電流をマイナス値として充放電電流を積算し、その積算値に基づいてバッテリ17aの現在のSOCを算出する。なお、SOCの検出方法は、電流センサによって検出されたバッテリ電流に基づいてSOCを算出するものに限られず、例えば、バッテリ電解液比重センサ、セル電圧センサ、バッテリ端子電圧センサ等に基づいて算出する構成としても良い。
HVECU16は、バッテリECU17、MGECU18、エンジンECU19の上位のECUである。HVECU16は、運転者のアクセルペダル操作量を示すアクセル開度、車速などの情報に基づいて、車両10を駆動するために必要な駆動トルクを算出する。HVECU16は、バッテリ17aの実際のSOCを考慮しつつ、すなわちモータアシスト可能なSOC範囲を考慮しつつ、MG18aとエンジン19aとの駆動トルク合計値が必要駆動トルクと一致するよう、MG18aとエンジンへの要求駆動トルクを決定する。なお、バッテリ17aのSOCが極端に低下している場合には、エンジン19aのみが駆動トルクを発生し、さらに、そのエンジン19aの発生動力の一部を用いて、MG18aに発電を行わせる場合もある。
エンジンECU19は、エンジン19aへの要求駆動トルクを実現すべく、燃料噴射量や噴射時期、点火タイミング、エンジン19aの吸入空気量などを制御する。なお、MG18aに発電を行わせる場合、HVECU16は、MGECU18に対し、要求駆動トルクとして負の駆動トルクを出力する。
空調ECU14は、車両用空調装置15を制御する制御装置である。空調ECU14は、車両用空調装置におけるブロワ、コンプレッサ、エアミックスドア、内外気切替ドア、吹出口切替ドア等を制御する。空調ECU14は、車両10に乗員が乗車する前、イグニッションスイッチがオフの状態でも車両用空調装置15を制御して空調を実行することができる。空調ECU14は、プレ空調の実行開始または実行中のプレ空調の解除を、サーバ装置30からの指示を受けて実行する。空調ECUは、車両に設けられた各種センサ13と通信し、各種センサが検出した情報を取得する。各種センサ13とは、車室内温度センサ、車外温度センサ、日射センサ、車室内湿度センサ、車外湿度センサ等である。
空調ECU14は、機能ブロックとして、目的地取得部14a、開始時温度予測部14b、熱負荷予測部14c、必要SOC予測部14d、開始指示に従ってプレ空調を実行するプレ空調制御部14eを有する。
目的地取得部14aは、走行前または走行中の車両が到着する目的地の位置情報を取得する。目的地取得部14aは、例えば乗員が入力したカーナビの目的地情報に基づいて目的地を取得する。または、目的地取得部14aは、乗員の行動パターンから目的地を推定することで目的地の位置情報を取得してもよい。
開始時温度予測部14bは、プレ空調を開始する時点での車室内温度である開始時温度を予測する。開始時温度予測部14bは、外気温情報、日射情報に基づいて、目的地への到着予定時刻からプレ空調開始時刻までの間に、車室内温度が到達する温度を開始時温度として予測する。ここでプレ空調開始時刻は、サーバ装置30にて予測された時刻である。また、目的地への到着予定時刻における車室内温度は、例えば内気センサによって取得される走行中の車両10の車室内温度である。
熱負荷予測部14cは、目的地取得部14aが取得した目的地にてプレ空調を実行する際の熱負荷を予測する。熱負荷とは、車室内と車外との間で移動する熱量の和である。熱負荷予測部14cは、例えば目的地の日射情報、外気温、開始時温度等を使用する。すなわち、熱負荷予測部14cは、日射情報から日射による車室内への侵入熱を予測し、外気温から車室内外温度差による侵入熱を予測することで、車外から車室内へと流入する熱量を予測する。熱負荷予測部14cは、この車外から車室内へと流入する熱量と、開始時温度に基づいて、プレ空調の開始から目標空調時間Tp後に目標温度に到達させる場合の熱負荷を予測する。
必要SOC予測部14dは、熱負荷予測部14cが予測した熱負荷に基づいて、目的地に到着した時点でバッテリ17aの必要SOCを算出する。ここで必要SOCとは、目的地にてプレ空調を実行して乗員が乗車するまでに車室内温度を目標車室内温度に到達させるために車両用空調装置15が必要とする目標電力量に相当するバッテリ17aの充電量である。必要SOC予測部14dは、目標電力量予測部の一例である。
空調ECU14は、必要SOC予測部14dにて予測した必要SOCの情報を、HVECU16に対して出力する。HVECU16は、機能ブロックとして、充電量制御部16aを有する。充電量制御部16aは、空調ECU14から取得した必要SOCに基づいて、目的地へと走行中の車両10におけるバッテリ17aの充電量を制御する。すなわち、目的に到着した時点で、バッテリ17aの残量SOCが、必要SOCと同等となっているように、残量SOCを調整する。より具体的な例としては、充電量制御部16aは、車両が目的地に所定距離以内に接近した場合に、バッテリ17aの電力を利用したモータ走行を停止して、エンジン走行へと切り替える。このときのエンジン19aのクランク軸の回転による回生発電によって、バッテリ17aに充電する。この場合の所定距離は、例えば目的地までの走行パターンから推定されるSOCの変動パターンおよび必要SOCに基づいて、どの時点で回生発電に切り替えれば目的地の到着時に必要SOCを残すことが可能かによって定めればよい。
次に、空調制御システム1が実行する処理の一例について図3のフローチャートを参照しながら説明する。空調制御システム1は、図3のフローチャートの処理を、例えば乗員が車両10にてイグニッションをオンにした時点で実行する。
まず空調制御システム1は、ステップS10で目的地がカーナビに設定されているか否かを判定する。目的地がカーナビに設定されていると判定された場合には、ステップS20へと進み、この設定された目的地の情報を熱負荷予測のために取得する。目的地がカーナビに設定されていないと判定された場合には、ステップS15へと進む。
ステップS15では、乗員の行動パターンから目的地を推定可能か否か判定する。ステップS15の処理は、目的地推定部33bにおける処理である。目的地が推定可能でないと判定された場合には、ステップS10に戻り、目的地が取得できる状況になるまでステップS10、ステップS15の処理を繰り返す。ステップS15で目的地が推定可能であると判定された場合には、ステップS20に進んで推定した目的地を取得する。ステップS20の処理は、目的地取得部14aにおける処理である。
ステップS20の後にはステップS30へと進み、開始時温度を予測する。ステップS30は、開始時温度予測部14bの処理である。ステップS30の後にステップS40へと進み、目的地の環境情報および予測した開始時温度に基づいて、目的地における熱負荷を予測する。ステップS40の処理が、熱負荷予測部14cにおける処理である。ステップS40の後にステップS50へと進み、予測した熱負荷を基に必要SOCを予測する。ステップS50の処理が、必要SOC予測部14dにおける処理である。
ステップS50にて必要SOCが算出されると、ステップS60へと進んで必要SOCに応じた充電量制御を開始する。ステップS60の処理は、空調ECU14が出力した必要SOCの情報を取得したHVECU16の充電量制御部16aが実行する処理である。
次に図4のグラフを参照して具体的な状況の一例における空調制御システム1の作動を説明する。図4の上段のグラフは、バッテリ17aのSOCの時間変化を示すグラフである。より具体的には、車両が時刻t0で目的地へと出発し、時刻t2で目的地に到着して乗員が降車し、t5で乗員が乗車するまでの間のSOCの変化を示している。図4の下段のグラフは、車室内温度の時間変化を示すグラフである。なお、図4の例においては、夏季で車両用空調装置15が冷房を実施する場合を想定している。
まず時刻t0でイグニッションがオンになった時点で、フローチャートの処理を開始する。ここで乗員がカーナビに目的地を入力したとすると、ステップS10からステップS20へと進み、目的地情報を取得する。その後ステップS30からステップS50までの処理で、必要SOCを算出した後にステップS60でSOCの制御スケジュールを決定する。時刻t1で、車両10が目的地まで所定距離の範囲に到達したとすると、HVECU16が車両10をモータ走行からエンジン走行に切り替え、回生発電を開始する。
したがって、時刻t2にて目的地に到達した時点で、バッテリ17aのSOCが必要SOCだけ残っている状態となる。なお、時刻t0から時刻t2までの間の車室内温度は、車両用空調装置15の空調によって一定に保たれているとする。時刻t2にて目的地に到着して乗員が車両10を駐車して降車すると、イグニッションがオフになった時点で車両用空調装置15も作動を停止し、車室内温度が外部からの熱の流入によって上昇し始める。
時刻t3で、乗員が車両10に乗車するために接近し、プレ空調開始距離に到達したとすると、プレ空調を開始する。空調制御システムは、事前に乗員が再乗車する時刻t5を予測し、プレ空調の開始時刻t3での車室内温度を予測している。したがって、必要SOC分の電力による車両用空調装置15の稼働によって、時刻t5までプレ空調を持続させ、車室内温度を目標室温まで低下させることができる。
例えば図4のグラフにおいて破線で示すように、上述の充電量制御を実行しない場合には、時刻t2で目的地に到達した時点で必要SOCに相当する電力量が残っていない状況が起こりうる。この場合、時刻t3でプレ空調を開始しても、時刻t5よりも早い時刻t4でプレ空調に使用可能な電力量がなくなり、プレ空調を停止してしまう。したがって、時刻t4から時刻t5まで車室内に流入する熱量によって再び車室内温度が上昇してしまう。また、時刻t5までプレ空調を持続できるようにプレ空調の開始を時刻t3より遅らせたとしても、その間の熱負荷の増加により目標室温に到達させるのに必要な電力量が増加するため、プレ空調に必要な電力量が足りなくなる。したがって、空調制御システム1による必要SOCの予測と充電量制御とによって、乗員の再乗車時に車室内温度が目標車室内温度へと到達する確実性を高めることができる。
次に第1実施形態の空調制御システム1がもたらす作用効果について説明する。第1実施形態の空調制御システム1は、車両用空調装置15にプレ空調を実行させる空調ECU14と、車両10の目的地を取得する目的地取得部14aを備える。空調制御システム1は、目的地取得部14aが取得した目的地でプレ空調を実行して車室内温度を目標車室内温度に到達させるために必要な目標充電量である必要SOCを予測する必要SOC予測部14dを備える。空調制御システム1は、目的地に到着した時点での充電量が必要SOC以上となるようにバッテリ17aの充電量を制御する充電量制御部16aを備える。
これによれば、空調制御システム1は、車両が目的地に到着した時点で、目的地においてプレ空調を実行して車室内温度を目標車室内温度に到達させるために必要な目標充電量を充電しているようにバッテリ17aの充電量を制御することができる。したがって、プレ空調を実行するために必要なバッテリ17aの充電量が不足することを回避可能な空調制御システムを提供することができる。
空調制御システム1は、目的地に駐車した状態の車両における熱負荷を予測する熱負荷予測部14cをさらに備える。目標充電量決定部は、熱負荷予測部14cにおいて予測された熱負荷と、プレ空調の実行に確保されるプレ空調確保時間と、プレ空調目標温度とに基づいて目標充電量を決定する。
これによれば、空調制御システム1は、車両における熱負荷を予測して、予測した熱負荷、プレ空調確保時間、プレ空調目標温度に基づいて目標充電量を決定できる。したがって、より目的地の環境に合わせた目標充電量を決定できる。
目的地における駐車場の形状を取得する駐車場情報取得部33cをさらに備え、熱負荷予測部14cは、駐車場情報取得部33cにて取得された駐車場の形状に基づいて熱負荷を予測する。これによれば、目的地の駐車場の形状に基づいて熱負荷を予測する。したがって、目的地における車両の日射環境をより正確に予測できる。すなわち、目的地の環境に合わせた目標充電量の予測を、より正確に行うことが可能である。
空調制御システム1は、目的地にてプレ空調を開始する開始時刻を予測する開始時刻予測部33dと、開始時刻における車室内温度を予測する開始時温度予測部14bと、を備える。熱負荷予測部14cは、開始時温度予測部14bにおいて予測された開始時刻における車室内温度と、目標温度との差から熱負荷を予測する。これによれば、プレ空調を開始すると予測される開始時刻における車室内温度を予測することができるので、熱負荷をより正確に予測することが可能となる。
モータジェネレータ18aは、エンジン19aの駆動力で発電可能である。充電量制御部16aは、車両10が目的地に対して所定距離以内に接近した場合にモータジェネレータ18aの発電によってバッテリ17aに対する充電を開始する。これによって目的地に到着した時点での充電量が目標電力量以上となるようにバッテリ17aの充電量を制御する。これによれば、空調制御システム1は、所定距離以内に車両10が接近するまでは、通常の走行制御を継続することができる。
(第1実施形態の変形例)
上述の実施形態において、充電量制御部16aは、車両10が目的地に対して所定距離以内に接近した場合にバッテリ17aに対する充電を開始することで目的地に到着した時点での充電量が必要SOCとなるようにバッテリ17aの充電量を制御するとした。これに代えて、充電量制御部16aは、以下のようにバッテリ17aの充電量を制御してもよい。
すなわち、車両10の走行開始時のバッテリ17aの残量SOCが必要SOCよりも大きい値であった場合には、走行を開始してバッテリ17aのSOCが必要SOC未満まで低下しないように充電量を制御してもよい。具体的には、例えばSOCが必要SOCにまで低下した時点でモータ走行を禁止するように走行制御を行うことで、充電量を制御する。このとき、エンジン19aの駆動力による発電でバッテリ17aに充電し、SOCが必要SOCよりも所定量以上大きくなった場合には、再びモータ走行を許可するようにしてもよい。
また、SOCが必要SOC未満に低下しても目的地到着までに必要SOC以上まで充電可能であると判断できる場合には、SOCが必要SOC未満に低下した場合あるいは低下すると推定される場合であってもモータ走行を許可する構成であってもよい。
(第2実施形態)
第2実施形態では、第1実施形態における空調制御システムの変形例について説明する。図5において第1実施形態の図面中と同一符号を付した構成要素は、同様の構成要素であり、同様の作用効果を奏するものである。
第2実施形態において、熱負荷予測部14cは、目的地における車室内温度の最大温度変化量を予測する変化量予測部14c1をより細かい機能ブロックとして備える。変化量予測部14c1は、目的地の外気温、日射量等より、車室内温度の目的地到着時からの最大温度変化量を予測する。換言すれば、車外から車室内に流入する熱量と車室内から車外へと流出する熱量とがつりあった状態での到着時からの車室内温度の変化量を予測する。
熱負荷予測部14cは、この最大温度変化量に基づいて、熱負荷を予測する。すなわち、車外から車室内に流入する熱量と車室内から車外へと流出する熱量とがつりあった状態での車室内温度からプレ空調によって目標空調温度まで到達させる場合のプレ空調の熱負荷を予測する。
以上のように、第2実施形態の空調制御システムは、目的地における車室内温度の最大温度変化量を予測し、最大温度変化量だけ変化した車室内温度と目標車室内温度との差から熱負荷を予測する。これによれば、最大温度変化量だけ変化した車室内温度に基づいた熱負荷を予測し、この熱負荷を基に目標電力量を設定するので、乗員の再乗車のタイミングによらず乗員の再乗車までプレ空調を持続させる確実性をより向上することができる。
(第3実施形態)
第3実施形態では、第1実施形態における空調制御システム1の変形例について説明する。図6において第1実施形態の図面中と同一符号を付した構成要素は、同様の構成要素であり、同様の作用効果を奏するものである。
第3実施形態において、空調ECUは、目標温度を設定する目標温度設定部14fを有する。目標温度設定部14fは、車両用空調装置における空調の温度設定履歴に基づいて、目標温度を設定する。例えば、目標温度設定部14fは、車両用空調装置15におけるマニュアル操作による設定温度の履歴を記憶し、この履歴に基づいて目標温度を設定する。例えば、設定温度の履歴から設定温度の平均を算出し、この平均を乗員の好みの設定温度として目標温度に設定する。
第3実施形態において空調制御システム1は車両用空調装置の実行する空調の設定温度の履歴に基づいて目標温度を設定する目標温度設定部14fを有する。これによれば、プレ空調の目標温度を設定温度の履歴に基づいて設定することができるので、プレ空調によって乗員の乗車時に車室内温度をより乗員にとって好ましい温度に近づけることが可能となる。
(他の実施形態)
この明細書における開示は、例示された実施形態に制限されない。開示は、例示された実施形態と、それらに基づく当業者による変形態様を包含する。例えば、開示は、実施形態において示された部品および/または要素の組み合わせに限定されない。開示は、多様な組み合わせによって実施可能である。開示は、実施形態に追加可能な追加的な部分をもつことができる。開示は、実施形態の部品および/または要素が省略されたものを包含する。開示は、ひとつの実施形態と他の実施形態との間における部品および/または要素の置き換え、または組み合わせを包含する。開示される技術的範囲は、実施形態の記載に限定されない。開示されるいくつかの技術的範囲は、特許請求の範囲の記載によって示され、さらに特許請求の範囲の記載と均等の意味及び範囲内での全ての変更を含むものと解されるべきである。
上述の実施形態において、接近判定部33a、駐車場情報取得部33c、開始時刻予測部33d、プレ空調開始指示部33jは、サーバ装置30の制御部33によって実行されるとした。これに代えて、空調ECU14等の車載ECUがこれらの機能を有する構成であってもよい。
上述の実施形態において、乗員と車両との間の現在距離Lnowは、測位衛星が送信する測位信号に基づいて携帯端末20と車両10のそれぞれの位置情報を取得し、取得された位置情報から算出するとした。これに代えて、携帯端末と車両との間で実施される近距離通信によって直線距離を算出してもよい。近距離通信とは、例えばBluetooth(登録商標)や、Wi−Fi(登録商標)、ZigBee(登録商標)等の近距離無線通信規格に準拠した通信である。
上述の実施形態において、乗員が一旦降車して車両10から離れた後で、再び車両10に所定距離以内に接近した際にプレ空調を開始するとした。これに代えて、車両10のイグニッションがオフになった時点でプレ空調を開始してもよい。特に、比較的目的地での滞在時間が短いと予測される場合にこの構成を採用することができる。
10 車両、 14a 目的地取得部、 14b 開始時温度予測部、 14c 熱負荷予測部、 14c1 変化量予測部、 14d 目標電力量予測部、14f 目標温度設定部、 15 車両用空調装置、 16a 充電量制御部、 17a バッテリ、 18a モータ、 19a エンジン、 33c 駐車場情報取得部、 33d 開始時刻予測部。

Claims (6)

  1. エンジン(19a)およびモータ(18a)を走行駆動源として有する車両(10)において乗員の乗車前に車室内を空調するプレ空調を実行可能な車両用空調装置(15)と、
    前記車両用空調装置に駆動電力を供給するバッテリ(17a)と、
    前記車両の目的地を取得する目的地取得部(14a)と、
    前記目的地において前記プレ空調を実行する際の熱負荷を予測する熱負荷予測部(14c)と、
    前記目的地における車室内温度の最大温度変化量を予測する変化量予測部(14c1)と、
    前記目的地にて前記乗員が前記車両に再乗車する前に前記プレ空調を実行して前記車室内温度を目標温度に到達させるために必要な目標電力量を予測する目標電力量予測部(14d)と、
    前記車両が前記目的地に到着した時点での充電量が前記目標電力量以上となるように前記バッテリの充電量を制御する充電量制御部(16a)と、
    を備え
    前記熱負荷予測部は、
    前記最大温度変化量だけ変化した前記車室内温度と前記目標温度との差から前記熱負荷を予測し、
    前記目標電力量予測部は、
    前記熱負荷予測部において予測された前記熱負荷に基づいて前記目標電力量を予測する空調制御システム。
  2. 前記目的地における駐車場の施設情報を取得する駐車場情報取得部(33c)をさらに備え、
    前記熱負荷予測部は、
    前記駐車場情報取得部にて取得された前記駐車場の施設情報を前記熱負荷の予測に使用する請求項に記載の空調制御システム。
  3. エンジン(19a)およびモータ(18a)を走行駆動源として有する車両(10)において乗員の乗車前に車室内を空調するプレ空調を実行可能な車両用空調装置(15)と、
    前記車両用空調装置に駆動電力を供給するバッテリ(17a)と、
    前記車両の目的地を取得する目的地取得部(14a)と、
    前記目的地において前記プレ空調を実行する際の熱負荷を予測する熱負荷予測部(14c)と、
    前記目的地にて前記乗員が前記車両に再乗車する前に前記プレ空調を実行して車室内温度を目標温度に到達させるために必要な目標電力量を予測する目標電力量予測部(14d)と、
    前記車両が前記目的地に到着した時点での充電量が前記目標電力量以上となるように前記バッテリの充電量を制御する充電量制御部(16a)と、
    前記目的地における駐車場の施設情報を取得する駐車場情報取得部(33c)と、
    を備え
    前記熱負荷予測部は、
    前記駐車場情報取得部にて取得された前記駐車場の施設情報を前記熱負荷の予測に使用し、
    前記目標電力量予測部は、
    前記熱負荷予測部において予測された前記熱負荷に基づいて前記目標電力量を予測する空調制御システム。
  4. 前記目的地にて前記プレ空調を開始する開始時刻を予測する開始時刻予測部(33d)と、
    前記開始時刻における前記車室内温度を予測する開始時温度予測部(14b)と、
    を備え、
    前記熱負荷予測部は、
    前記開始時温度予測部において予測された前記開始時刻における前記車室内温度と、前記目標温度との差から前記熱負荷を予測する請求項に記載の空調制御システム。
  5. 前記車両用空調装置が実行する空調の設定温度の履歴に基づいて前記目標温度を設定する目標温度設定部(14f)をさらに備える請求項1から請求項のいずれか1項に記載の空調制御システム。
  6. 前記モータは、前記エンジンの駆動力で発電可能であって、
    前記充電量制御部は、
    前記車両が前記目的地に対して所定距離以内に接近した場合に前記モータの発電によって前記バッテリに対する充電を開始することで、前記目的地に到着した時点での充電量が前記目標電力量以上となるように前記バッテリの充電量を制御する請求項1から請求項のいずれか1項に記載の空調制御システム。
JP2017210207A 2017-10-31 2017-10-31 空調制御システム Active JP6972927B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017210207A JP6972927B2 (ja) 2017-10-31 2017-10-31 空調制御システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017210207A JP6972927B2 (ja) 2017-10-31 2017-10-31 空調制御システム

Publications (2)

Publication Number Publication Date
JP2019081470A JP2019081470A (ja) 2019-05-30
JP6972927B2 true JP6972927B2 (ja) 2021-11-24

Family

ID=66669969

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017210207A Active JP6972927B2 (ja) 2017-10-31 2017-10-31 空調制御システム

Country Status (1)

Country Link
JP (1) JP6972927B2 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111284301A (zh) * 2020-04-07 2020-06-16 宁波吉利汽车研究开发有限公司 一种基于大数据的车载空调控制方法、车辆和控制系统

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3126773B2 (ja) * 1991-11-27 2001-01-22 本田技研工業株式会社 電気自動車のプリエアコンディショニング装置
JPH07193901A (ja) * 1993-12-28 1995-07-28 Nissan Motor Co Ltd 電気自動車用空調装置
JP3546505B2 (ja) * 1995-01-31 2004-07-28 日産自動車株式会社 車両用空調装置
JP2003237351A (ja) * 2002-02-21 2003-08-27 Sanyo Electric Co Ltd 自動車用空調システム
JP2004176624A (ja) * 2002-11-27 2004-06-24 Nissan Motor Co Ltd ハイブリッド車両
JP4393277B2 (ja) * 2004-06-04 2010-01-06 富士通テン株式会社 車室温監視装置
US7715957B2 (en) * 2006-02-22 2010-05-11 Toyota Jidosha Kabushiki Kaisha Control device of vehicle
JP5636970B2 (ja) * 2011-01-10 2014-12-10 株式会社デンソー ハイブリッド車両の充電量制御装置
JP2017159691A (ja) * 2016-03-07 2017-09-14 株式会社デンソー 車両用空調装置

Also Published As

Publication number Publication date
JP2019081470A (ja) 2019-05-30

Similar Documents

Publication Publication Date Title
US11267316B2 (en) Air conditioning control device, air conditioning control method, and program
US10562369B2 (en) Efficient HVAC operation by predictive control
CN108202608B (zh) 对电池充电的电动车辆及其系统和电动车辆电池充电方法
CN108725353B (zh) 用于监测处于点火开关关断状态的车辆的控制模块激活
CN108733025B (zh) 处于点火开关关断状态的车辆的控制模块激活
JP6981151B2 (ja) 空調制御システム
CN108725352B (zh) 在点火开关关断状态下确定驾驶路线的车辆控制模块激活
CN102529637B (zh) 通过最小化截留的hvac能量来增加车辆行程
CN104344503A (zh) 用于对车辆进行持续空气调节的方法和装置
JP6965669B2 (ja) 空調制御システム
EP3670247A1 (en) A system and method for preparing a vehicle for a journey
JP7540381B2 (ja) 走行制御装置、方法、及びプログラム
US11341789B2 (en) Remote/offline processing of vehicle data
JP6972927B2 (ja) 空調制御システム
US20210300324A1 (en) System and method for controlling energy consumption in a vehicle
US11220192B1 (en) Systems and methods for providing an adjusted state of charge limit
JP5636970B2 (ja) ハイブリッド車両の充電量制御装置
JP2016003646A (ja) 制御装置
JP6939422B2 (ja) 空調制御システム
JP2012096757A (ja) 自動車エアコンシステム及び自動車エアコンシステムの運転方法
CN114555430A (zh) 用于确定车辆的车辆功能的启动时间点的系统和方法
JP7196719B2 (ja) 電動車両用の制御装置
JP2022053033A (ja) 機械学習装置
JP2020044981A (ja) 車両空調システムおよび車両空調プログラム
JP2020175688A (ja) 空調制御システム

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200914

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210715

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210720

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210831

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211005

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211018

R151 Written notification of patent or utility model registration

Ref document number: 6972927

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151