JP6972843B2 - Calibration method of resistance measuring device, resistance measuring device, board inspection device, and reference resistor - Google Patents

Calibration method of resistance measuring device, resistance measuring device, board inspection device, and reference resistor Download PDF

Info

Publication number
JP6972843B2
JP6972843B2 JP2017186640A JP2017186640A JP6972843B2 JP 6972843 B2 JP6972843 B2 JP 6972843B2 JP 2017186640 A JP2017186640 A JP 2017186640A JP 2017186640 A JP2017186640 A JP 2017186640A JP 6972843 B2 JP6972843 B2 JP 6972843B2
Authority
JP
Japan
Prior art keywords
resistance
unit
resistance value
voltage
measurement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017186640A
Other languages
Japanese (ja)
Other versions
JP2019060767A (en
Inventor
宗寛 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nidec Read Corp
Original Assignee
Nidec Read Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nidec Read Corp filed Critical Nidec Read Corp
Priority to JP2017186640A priority Critical patent/JP6972843B2/en
Publication of JP2019060767A publication Critical patent/JP2019060767A/en
Application granted granted Critical
Publication of JP6972843B2 publication Critical patent/JP6972843B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measurement Of Resistance Or Impedance (AREA)

Description

本発明は、抵抗を測定する抵抗測定装置の校正方法、抵抗測定装置、これを用いた基板検査装置、及び基準抵抗器に関する。 The present invention relates to a calibration method of a resistance measuring device for measuring resistance, a resistance measuring device, a substrate inspection device using the same, and a reference resistor.

従来より、抵抗を測定する計測用回路を備えた基板検査装置において、計測用回路の校正に用いるために既知の抵抗を有する基準抵抗器(標準器)を備えたものが知られている(例えば、特許文献1参照。)。特許文献1には、計測部(計測用回路)は四端子法による抵抗測定が可能であること(段落0055)、基準抵抗器となる抵抗R1の一端にピン端子C1,C2を接続し、抵抗R1の他端にピン端子C3,C4を接続すること(段落0093、図11)、及びピン端子C1〜C4を介して計測用回路に抵抗R1を接続し、抵抗R1の抵抗を測定して抵抗R1の既知の抵抗値との差を演算し、計測用回路の校正を行うことが記載されている(段落0095)。 Conventionally, a substrate inspection device provided with a measurement circuit for measuring resistance has been known to be provided with a reference resistor (standard device) having a known resistance for use in calibrating the measurement circuit (for example). , Patent Document 1). According to Patent Document 1, the measuring unit (measurement circuit) can measure resistance by the four-terminal method (paragraph 0055), and pin terminals C1 and C2 are connected to one end of a resistor R1 serving as a reference resistor to form a resistor. Connect the pin terminals C3 and C4 to the other end of R1 (paragraph 093, FIG. 11), connect the resistor R1 to the measurement circuit via the pin terminals C1 to C4, measure the resistance of the resistor R1 and resist. It is described that the difference from the known resistance value of R1 is calculated and the measurement circuit is calibrated (paragraph 0995).

特開2015−55516号公報Japanese Unexamined Patent Publication No. 2015-55516

ところで、測定対象の抵抗が低抵抗である場合、低抵抗を測定可能な抵抗測定装置を校正するためには、低抵抗の基準抵抗器が必要になる。また、測定対象の抵抗値が変化した場合であっても高精度の抵抗測定を可能にするためには、校正用に、抵抗値の異なる複数の基準抵抗器が必要となる。 By the way, when the resistance to be measured is low resistance, a low resistance reference resistor is required in order to calibrate a resistance measuring device capable of measuring low resistance. Further, in order to enable highly accurate resistance measurement even when the resistance value of the measurement target changes, a plurality of reference resistors having different resistance values are required for calibration.

しかしながら、1mΩ程度の低抵抗の抵抗器は入手が困難であり、市販されていても入手可能な抵抗値が限られ、適切な抵抗値を有する基準抵抗器を入手することが困難である。このような低抵抗の基準抵抗器を入手する方法として、例えば銅を適切な長さと太さに加工することで、任意の抵抗値を有する基準抵抗器を作成することが考えられる。しかしながら、銅は電子部品として市販されている抵抗器と比べて抵抗温度係数が大きい。そのため、銅を用いた抵抗器では、抵抗値の精度が低下するという不都合がある。また、所望の抵抗値にするために銅をある程度の太さと長さにする必要があり、銅を用いた低抵抗の抵抗器は、小型化するのが容易でない。 However, it is difficult to obtain a resistor having a low resistance of about 1 mΩ, and even if it is commercially available, the available resistance value is limited, and it is difficult to obtain a reference resistor having an appropriate resistance value. As a method of obtaining such a low resistance reference resistor, it is conceivable to prepare a reference resistor having an arbitrary resistance value by, for example, processing copper to an appropriate length and thickness. However, copper has a larger temperature coefficient of resistance than resistors commercially available as electronic components. Therefore, a resistor using copper has a disadvantage that the accuracy of the resistance value is lowered. Further, it is necessary to make copper to a certain thickness and length in order to obtain a desired resistance value, and a low resistance resistor using copper is not easy to miniaturize.

本発明の目的は、低抵抗の基準抵抗値を得ることが容易な基準抵抗器、抵抗測定装置の校正方法、抵抗測定装置、及び基板検査装置を提供することである。 An object of the present invention is to provide a reference resistor, a method for calibrating a resistance measuring device, a resistance measuring device, and a substrate inspection device, which make it easy to obtain a reference resistance value of low resistance.

本発明に係る抵抗測定装置の校正方法は、測定対象に供給するための測定用電流を供給する電流供給部と前記測定対象に生じた電圧を測定するための電圧測定部と前記電圧測定部により測定された測定電圧を前記測定用電流の電流値で除算することによって抵抗値を算出する抵抗算出部とを備える抵抗測定装置の校正方法であって、(a)それぞれが予め設定された抵抗値を有する複数の設定抵抗が直列接続された直列抵抗部と、予め設定された基礎抵抗値Rsを有する基礎抵抗とが並列接続された基準抵抗器を準備する工程と、(b)前記基準抵抗器の、前記基礎抵抗に対して前記電流供給部によって前記測定用電流を供給させる工程と、(c)前記複数の設定抵抗のうちの一又は連続する一部の設定抵抗である選択抵抗部の両端間の電圧を、前記電圧測定部によって前記測定電圧として測定させる工程と、(d)前記抵抗算出部によって、前記測定電圧を前記測定用電流の電流値で除算させることによって測定抵抗値Rxを算出させる工程と、(e)下記の式(A)で示される基準抵抗値Rrefを、前記測定抵抗値Rxの目標である校正の目標値として取得する工程とを含む。基準抵抗値Rref=Rs×Rt/Rz ・・・(A)但し、Rtは前記選択抵抗部の抵抗値、Rzは前記直列抵抗部全体の抵抗値である。 The calibration method of the resistance measuring device according to the present invention is based on a current supply unit that supplies a measurement current to supply the measurement target, a voltage measurement unit for measuring the voltage generated in the measurement target, and the voltage measurement unit. It is a calibration method of a resistance measuring device including a resistance calculation unit that calculates a resistance value by dividing the measured measured voltage by the current value of the measurement current, and (a) each has a preset resistance value. A step of preparing a reference resistor in which a series resistance portion in which a plurality of set resistors having a plurality of set resistors are connected in series and a fundamental resistor having a preset basic resistance value Rs are connected in parallel, and (b) the reference resistor. The step of supplying the measurement current to the basic resistance by the current supply unit, and (c) both ends of the selection resistance unit which is one or a continuous part of the plurality of set resistances. The measured resistance value Rx is calculated by the step of measuring the voltage between them as the measured voltage by the voltage measuring unit and (d) dividing the measured voltage by the current value of the measuring current by the resistance calculating unit. The process includes (e) a step of acquiring a reference resistance value Rref represented by the following formula (A) as a calibration target value which is a target of the measured resistance value Rx. Reference resistance value Rref = Rs × Rt / Rz ... (A) However, Rt is the resistance value of the selective resistance portion, and Rz is the resistance value of the entire series resistance portion.

また、本発明に係る抵抗測定装置は、測定対象の抵抗を測定する抵抗測定装置であって、前記測定対象に供給するための測定用電流を供給する電流供給部と、前記測定対象に生じた電圧を測定電圧として測定するための電圧測定部と、それぞれが予め設定された抵抗値を有する複数の設定抵抗が直列接続された直列抵抗部と、予め設定された基礎抵抗値Rsを有する基礎抵抗とが並列接続された基準抵抗器と、前記基準抵抗器の前記基礎抵抗に対して、前記電流供給部によって前記測定用電流を供給させる電流供給切替部と、前記複数の設定抵抗のうちの一又は連続する一部の設定抵抗である選択抵抗部の両端間の電圧を、前記電圧測定部によって前記測定電圧として測定させる測定対象切替部と、前記電圧測定部により測定された測定電圧を前記測定用電流の電流値で除算することによって測定抵抗値Rxを算出する抵抗算出部と、下記の式(A)で示される基準抵抗値Rrefを、前記測定抵抗値Rxの目標である校正の目標値として取得する校正部とを備える。基準抵抗値Rref=Rs×Rt/Rz ・・・(A)但し、Rtは前記選択抵抗部の抵抗値、Rzは前記直列抵抗部全体の抵抗値である。 Further, the resistance measuring device according to the present invention is a resistance measuring device that measures the resistance of the measurement target, and is generated in the current supply unit that supplies the measurement current for supplying the measurement target and the measurement target. A voltage measuring unit for measuring voltage as a measured voltage, a series resistance unit in which a plurality of set resistors each having a preset resistance value are connected in series, and a basic resistance having a preset basic resistance value Rs. A reference resistor connected in parallel with the reference resistor, a current supply switching section for supplying the measurement current by the current supply section to the basic resistance of the reference resistor, and one of the plurality of set resistors. Alternatively, the measurement target switching unit that causes the voltage measurement unit to measure the voltage between both ends of the selection resistance unit, which is a part of the continuous set resistance, and the measurement voltage measured by the voltage measurement unit are measured. The resistance calculation unit that calculates the measured resistance value Rx by dividing by the current value of the current, and the reference resistance value Rref represented by the following formula (A) are the target values for calibration that are the targets of the measured resistance value Rx. It is equipped with a calibration unit to be acquired as. Reference resistance value Rref = Rs × Rt / Rz ... (A) However, Rt is the resistance value of the selective resistance portion, and Rz is the resistance value of the entire series resistance portion.

これらの構成によれば、基準抵抗器の基礎抵抗に対して電流供給部によって測定用電流が供給され、この測定用電流によって基礎抵抗の両端に生じた電圧が直列抵抗部に印加され、その印加電圧が選択抵抗部によって分圧されて、電圧測定部によって測定電圧として測定される。さらに抵抗算出部によって、電圧測定部により測定された測定電圧が測定用電流の電流値で除算されて測定抵抗値Rxが算出される。その結果、抵抗測定装置の測定結果が正確であれば、得られた測定抵抗値Rxは、式(A)で示される基準抵抗値Rrefと等しくなる。従って、基準抵抗値Rrefを校正の目標値として用いることができる。また、式(A)から、基準抵抗値Rrefは基礎抵抗の基礎抵抗値Rsより小さい。この場合、得ようとする低抵抗の基準抵抗値Rrefよりも抵抗値が大きく、従って入手が容易な基礎抵抗を用いて校正に利用可能な基準抵抗値Rrefを得ることができるので、低抵抗の基準抵抗値を得ることが容易である。 According to these configurations, a measurement current is supplied to the basic resistance of the reference resistor by the current supply unit, and the voltage generated across the basic resistance by this measurement current is applied to the series resistance unit, and the voltage is applied. The voltage is divided by the selective resistance unit and measured as the measured voltage by the voltage measuring unit. Further, the resistance calculation unit calculates the measured resistance value Rx by dividing the measured voltage measured by the voltage measuring unit by the current value of the measuring current. As a result, if the measurement result of the resistance measuring device is accurate, the obtained measured resistance value Rx becomes equal to the reference resistance value Rref represented by the formula (A). Therefore, the reference resistance value Rref can be used as the calibration target value. Further, from the equation (A), the reference resistance value Rref is smaller than the basic resistance value Rs of the basic resistance. In this case, the resistance value is larger than the reference resistance value Rref of the low resistance to be obtained, and therefore the reference resistance value Rref that can be used for calibration can be obtained by using the easily available basic resistance. It is easy to obtain the reference resistance value.

また、前記複数の設定抵抗のうち、一又は連続する一部の設定抵抗を、前記選択抵抗部として選択する選択部をさらに備えることが好ましい。 Further, it is preferable to further include a selection unit that selects one or a part of the plurality of setting resistances as the selection resistance unit.

この構成によれば、選択部によって、任意の選択抵抗部を選択することができる。選択抵抗部を選択することができれば、式(A)における選択抵抗部の抵抗値Rzを選択することができる結果、基準抵抗値Rrefを変更することが可能になる。 According to this configuration, any selection resistance unit can be selected by the selection unit. If the selective resistance unit can be selected, the resistance value Rz of the selective resistance unit in the equation (A) can be selected, and as a result, the reference resistance value Rref can be changed.

また、前記校正部は、前記測定抵抗値Rxを、下記の式(A)で示される基準抵抗値Rrefに近づけるように、前記抵抗測定装置を校正することが好ましい。 Further, it is preferable that the calibration unit calibrates the resistance measuring device so that the measured resistance value Rx approaches the reference resistance value Rref represented by the following formula (A).

この構成によれば、抵抗測定装置の抵抗測定精度を調整することができる。 According to this configuration, the resistance measurement accuracy of the resistance measuring device can be adjusted.

また、本発明に係る基板検査装置は、上述の抵抗測定装置と、前記電流供給切替部によって、前記電流供給部による前記測定用電流の供給先を前記測定対象に切り替えさせ、前記測定対象切替部によって、前記電圧測定部による前記測定電圧の測定先を前記測定対象に切り替えさせる切替制御部と、前記抵抗算出部によって算出された測定抵抗値Rxに基づいて、前記測定対象である基板の検査を行う基板検査部とを備える。 Further, in the substrate inspection device according to the present invention, the above-mentioned resistance measuring device and the current supply switching unit switch the supply destination of the measurement current by the current supply unit to the measurement target, and the measurement target switching unit. Inspects the substrate to be measured based on the switching control unit that switches the measurement destination of the measured voltage to the measurement target by the voltage measurement unit and the measurement resistance value Rx calculated by the resistance calculation unit. It is equipped with a board inspection unit to perform.

この構成によれば、校正に用いるための低抵抗の基準抵抗値を得ることが容易な基板検査装置を構成することができる。 According to this configuration, it is possible to configure a substrate inspection device that can easily obtain a low resistance reference resistance value for use in calibration.

また、本発明に係る基準抵抗器は、それぞれが予め設定された抵抗値を有する複数の設定抵抗が直列接続された直列抵抗部と予め設定された基礎抵抗値Rsを有する基礎抵抗とが並列接続された基準抵抗本体部と、前記基礎抵抗の両端に接続され、測定用電流の入力を受け付けるための一対の電流入力端子と、前記複数の設定抵抗相互間の接続点のうち少なくとも三か所にそれぞれ接続され、基準抵抗値Rrefに対応する電圧を測定するための電圧測定用端子とを備える。 Further, in the reference resistor according to the present invention, a series resistor portion in which a plurality of set resistors each having a preset resistance value are connected in series and a basic resistor having a preset basic resistance value Rs are connected in parallel. At least three of the reference resistor main body, a pair of current input terminals connected to both ends of the basic resistor to receive the input of the measurement current, and the connection points between the plurality of set resistors. Each is connected and includes a voltage measuring terminal for measuring a voltage corresponding to the reference resistance value Rref.

この構成によれば、一対の電流入力端子によって受け付けられた測定用電流の電流が基準抵抗器の基礎抵抗に対して供給され、この測定用電流によって基礎抵抗の両端に生じた電圧が直列抵抗部に印加され、その印加電圧が複数の設定抵抗によって分圧されて、その分圧電圧が少なくとも三つの電圧測定用端子間に生じる。この電圧を測定用電流で除算すると、式(A)で示される基準抵抗値Rrefとなるから、基準抵抗器を、基準抵抗値Rrefを与える基準器として用いることができる。そして、式(A)から、基準抵抗値Rrefは基礎抵抗の基礎抵抗値Rsより小さい。この場合、得ようとする低抵抗の基準抵抗値Rrefよりも抵抗値が大きく、従って入手が容易な基礎抵抗を用いて基準抵抗値Rrefを得ることができるので、低抵抗の基準抵抗値を得ることが容易である。 According to this configuration, the current of the measurement current received by the pair of current input terminals is supplied to the basic resistance of the reference resistor, and the voltage generated across the basic resistance by this measurement current is the series resistance section. The applied voltage is divided by a plurality of set resistors, and the divided voltage is generated between at least three voltage measuring terminals. When this voltage is divided by the measuring current, the reference resistance value Rref represented by the formula (A) is obtained. Therefore, the reference resistor can be used as a reference device for giving the reference resistance value Rref. Then, from the equation (A), the reference resistance value Rref is smaller than the basic resistance value Rs of the basic resistance. In this case, the reference resistance value Rref is larger than the reference resistance value Rref of the low resistance to be obtained, and therefore the reference resistance value Rref can be obtained by using the easily available basic resistance, so that the reference resistance value of the low resistance is obtained. Is easy.

また、前記基礎抵抗及び前記複数の設定抵抗は、銅よりも小さい抵抗温度係数を有することが好ましい。 Further, it is preferable that the basic resistance and the plurality of set resistances have a temperature coefficient of resistance smaller than that of copper.

この構成によれば、銅で作成された低抵抗の基準器よりも、温度安定性に優れた基準抵抗器となる。 According to this configuration, the reference resistor has better temperature stability than the low resistance reference device made of copper.

また、前記直列抵抗部は、前記複数の設定抵抗として、第一、第二、第三、第四、第五、第六、第七、第八、第九、及び第十抵抗をこの順に含み、前記第一及び第二抵抗の抵抗値は10Ω×N、前記第三〜第八抵抗の抵抗値は30Ω×N、前記第九抵抗の抵抗値は10Ω×N、前記第十抵抗の抵抗値は120Ω×N、Nは自然数であり、前記基礎抵抗値Rsは3.3mΩ+3.3mΩ×10×M、Mは0以上の整数であり、前記第一〜第九抵抗相互間の接続点と、前記第一抵抗の前記第二抵抗とは反対側の端部とに、それぞれ前記電圧測定用端子が接続されていることが好ましい。 Further, the series resistance unit includes the first, second, third, fourth, fifth, sixth, seventh, eighth, ninth, and tenth resistances in this order as the plurality of set resistances. The resistance value of the first and second resistances is 10Ω × N, the resistance value of the third to eighth resistances is 30Ω × N, the resistance value of the ninth resistance is 10Ω × N, and the resistance value of the tenth resistance. Is 120Ω × N, N is a natural number, the basic resistance value Rs is 3.3mΩ + 3.3mΩ × 10 × M, M is an integer of 0 or more, and the connection point between the first to ninth resistances and the connection point. It is preferable that the voltage measurement terminal is connected to the end of the first resistance on the side opposite to the second resistance.

この構成によれば、複数の電圧測定用端子のうち二本を選んでその電圧を測定し、測定用電流で除算することにより、二本の選択の仕方に応じて連続する値の基準抵抗値Rrefを得ることができる。 According to this configuration, two of the multiple voltage measurement terminals are selected, the voltage is measured, and the voltage is divided by the measurement current, so that the reference resistance value is a continuous value according to the selection method of the two. Rref can be obtained.

このような構成の基準抵抗器、抵抗測定装置の校正方法、抵抗測定装置、及び基板検査装置は、低抵抗の基準抵抗値を得ることが容易である。 The reference resistor having such a configuration, the calibration method of the resistance measuring device, the resistance measuring device, and the substrate inspection device can easily obtain a reference resistance value of low resistance.

本発明の一実施形態に係る抵抗測定装置を用いた基板検査装置の構成の一例を示すブロック図である。It is a block diagram which shows an example of the structure of the substrate inspection apparatus which used the resistance measuring apparatus which concerns on one Embodiment of this invention. 図1に示す基準抵抗器の構成の一例を示す回路図である。It is a circuit diagram which shows an example of the structure of the reference resistor shown in FIG. 予め記憶部に記憶されるルックアップテーブルの一例を示す説明図である。It is explanatory drawing which shows an example of the look-up table which is stored in the storage part in advance. 二端子測定法による抵抗測定装置を用いた基板検査装置に基準抵抗器を適用した例を示すブロック図である。It is a block diagram which shows the example which applied the reference resistor to the substrate inspection apparatus which used the resistance measuring apparatus by the two-terminal measurement method. 基準抵抗器を備えない基板検査装置を本発明の一実施形態に係る校正方法により校正する場合の構成例を示すブロック図である。It is a block diagram which shows the structural example in the case of calibrating the substrate inspection apparatus which does not have a reference resistor by the calibration method which concerns on one Embodiment of this invention. 本発明の一実施形態に係る抵抗測定装置の校正方法の一例を示すフローチャートである。It is a flowchart which shows an example of the calibration method of the resistance measuring apparatus which concerns on one Embodiment of this invention.

以下、本発明に係る実施形態を図面に基づいて説明する。図1は、本発明の一実施形態に係る抵抗測定装置を用いた基板検査装置1の構成の一例を示すブロック図である。なお、各図において同一の符号を付した構成は、同一の構成であることを示し、その説明を省略する。 Hereinafter, embodiments according to the present invention will be described with reference to the drawings. FIG. 1 is a block diagram showing an example of the configuration of a substrate inspection device 1 using the resistance measuring device according to the embodiment of the present invention. It should be noted that the configurations with the same reference numerals in the respective figures indicate that they are the same configurations, and the description thereof will be omitted.

図1に示す基板検査装置1(抵抗測定装置)は、基準抵抗器3、電流供給部CS、電圧測定部4、電流プローブPc1、電流プローブPc2、検出プローブPv1、検出プローブPv2、切替回路6(電流供給切替部、測定対象切替部)、選択部7、及び制御部5を備えている。基板検査装置1は、基板検査のために抵抗測定を行うから、抵抗測定装置の一例に相当する。 The substrate inspection device 1 (resistance measuring device) shown in FIG. 1 includes a reference resistor 3, a current supply unit CS, a voltage measuring unit 4, a current probe Pc1, a current probe Pc2, a detection probe Pv1, a detection probe Pv2, and a switching circuit 6 (switching circuit 6). It includes a current supply switching unit, a measurement target switching unit), a selection unit 7, and a control unit 5. Since the substrate inspection device 1 measures resistance for substrate inspection, it corresponds to an example of a resistance measuring device.

図1は、検査対象となる基板Aに対して、基板検査装置1の各プローブが接触された状態を示している。基板検査装置1は、いわゆる四端子測定法により、抵抗測定を行うようになっている。基板検査装置1から後述する基板検査部55を除いた部分が抵抗測定装置の一例に相当している。 FIG. 1 shows a state in which each probe of the substrate inspection device 1 is in contact with the substrate A to be inspected. The substrate inspection device 1 is adapted to measure resistance by a so-called four-terminal measuring method. The portion excluding the substrate inspection unit 55, which will be described later, from the substrate inspection apparatus 1 corresponds to an example of the resistance measuring apparatus.

検査対象の基板は、例えば半導体パッケージ用のパッケージ基板、インターポーザ基板、フィルムキャリア、プリント配線基板、ガラスエポキシ基板、フレキシブル基板、セラミック多層配線基板等の基板であってもよく、液晶ディスプレイ、EL(Electro-Luminescence)ディスプレイ等のディスプレイ用の電極板や、タッチパネル用等の透明導電板であってもよく、半導体ウェハ、半導体チップ、CSP(Chip size package)等の半導体基板等々種々の基板であってもよい。 The substrate to be inspected may be, for example, a package substrate for a semiconductor package, an interposer substrate, a film carrier, a printed wiring board, a glass epoxy substrate, a flexible substrate, a ceramic multilayer wiring board, or the like, and may be a liquid crystal display or an EL (Electro). -Luminescence) It may be an electrode plate for a display such as a display, a transparent conductive plate for a touch panel, or various substrates such as a semiconductor wafer, a semiconductor chip, or a semiconductor substrate such as a CSP (Chip size package). good.

また、検査対象の基板は、半導体チップ等の電子部品が埋め込まれた部品内蔵基板(エンベデッド基板)であってもよい。また、検査対象は基板に限られず、半導体チップ等の電子部品であってもよい。検査対象の基板や電子部品には、配線パターン、パッド、ランド、半田バンプ、及び端子等の検査点が形成されている。 Further, the substrate to be inspected may be a component-embedded substrate (embedded substrate) in which electronic components such as semiconductor chips are embedded. Further, the inspection target is not limited to the substrate, and may be an electronic component such as a semiconductor chip. Inspection points such as wiring patterns, pads, lands, solder bumps, and terminals are formed on the substrate and electronic components to be inspected.

図1では、検査対象の基板Aとして半導体パッケージ用のインターポーザ基板の断面図を例示している。基板Aの一方の面には、半導体チップと接続されるチップ側電極A1が複数形成されている。基板Aの他方の面には、半導体チップを外部と接続するための外向電極A2が複数形成されている。 FIG. 1 illustrates a cross-sectional view of an interposer substrate for a semiconductor package as the substrate A to be inspected. A plurality of chip-side electrodes A1 connected to the semiconductor chip are formed on one surface of the substrate A. A plurality of outward electrodes A2 for connecting the semiconductor chip to the outside are formed on the other surface of the substrate A.

各チップ側電極A1と各外向電極A2とは、基板Aの厚み方向を貫通するように形成された配線A3(導体)によってそれぞれ導通接続されている。基板検査装置1は、各配線A3の抵抗値を測定し、検査する。配線A3は測定対象の一例に相当している。以下、電流プローブPc1,Pc2、及び検出プローブPv1,Pv2のことを、単にプローブPc1,Pc2,Pv1,Pv2と記載することがある。 Each chip-side electrode A1 and each outward electrode A2 are electrically connected to each other by a wiring A3 (conductor) formed so as to penetrate the thickness direction of the substrate A. The board inspection device 1 measures and inspects the resistance value of each wiring A3. Wiring A3 corresponds to an example of a measurement target. Hereinafter, the current probes Pc1 and Pc2 and the detection probes Pv1 and Pv2 may be simply referred to as probes Pc1, Pc2, Pv1 and Pv2.

プローブPc1,Pc2,Pv1,Pv2は、例えば直径が100μm〜200μm程度の弾性(可撓性)を有するワイヤ状の接触子である。電流プローブPc1,Pc2及び検出プローブPv1,Pv2は、例えばタングステン、ハイス鋼(SKH)、ベリリウム銅(Be−Cu)等の金属その他の導電体で形成されている。 The probes Pc1, Pc2, Pv1, and Pv2 are wire-shaped contacts having elasticity (flexibility) having a diameter of, for example, about 100 μm to 200 μm. The current probes Pc1 and Pc2 and the detection probes Pv1 and Pv2 are made of a metal or other conductor such as tungsten, high-speed steel (SKH), or beryllium copper (Be-Cu).

電流プローブPc1及び検出プローブPv1の先端は、基板Aのチップ側電極A1に接触される。電流プローブPc2及び検出プローブPv2の先端は、チップ側電極A1から離間した位置で外向電極A2に接触される。 The tips of the current probe Pc1 and the detection probe Pv1 are in contact with the chip-side electrode A1 of the substrate A. The tips of the current probe Pc2 and the detection probe Pv2 are in contact with the outward electrode A2 at a position separated from the chip side electrode A1.

図1では図示を簡略化してプローブPc1,Pc2,Pv1,Pv2をそれぞれ一つずつ記載しているが、一枚の基板に対し、検査点が数百から数千設定されている場合があり、そのような多数の検査点に対応してプローブPc1,Pc2,Pv1,Pv2がそれぞれ数百から数千設けられている場合がある。 In FIG. 1, the probes Pc1, Pc2, Pv1, and Pv2 are shown one by one for simplification of the illustration, but there are cases where hundreds to thousands of inspection points are set for one substrate. Probes Pc1, Pc2, Pv1, and Pv2 may be provided in the hundreds to thousands, respectively, corresponding to such a large number of inspection points.

電流供給部CSは、一定の電流を流す定電流回路である。測定用電流Iの電流値Isは、例えば20mA程度とされている。電流供給部CSは、切替回路6によって選択された電流プローブPc1,Pc2間、又は選択部7を介して基準抵抗器3へ、測定用電流Iを供給する。 The current supply unit CS is a constant current circuit through which a constant current flows. The current value Is of the measuring current I is, for example, about 20 mA. The current supply unit CS supplies the measurement current I to the reference resistor 3 between the current probes Pc1 and Pc2 selected by the switching circuit 6 or via the selection unit 7.

電圧測定部4は、検出プローブPv1,Pv2間の電圧、又は後述する基準抵抗器3の選択抵抗端子の電圧を測定する。電圧測定部4は、例えばアナログデジタルコンバータや分圧抵抗等を用いて構成されている。電圧測定部4は、切替回路6によって選択された検出プローブPv1,Pv2間の電圧を測定電圧Vxとして測定し、あるいは選択抵抗端子の電圧を測定電圧Vxとして測定し、測定電圧Vxを示すデータを制御部5へ出力する。 The voltage measuring unit 4 measures the voltage between the detection probes Pv1 and Pv2, or the voltage of the selective resistance terminal of the reference resistor 3 described later. The voltage measuring unit 4 is configured by using, for example, an analog-digital converter, a voltage dividing resistor, or the like. The voltage measuring unit 4 measures the voltage between the detection probes Pv1 and Pv2 selected by the switching circuit 6 as the measured voltage Vx, or measures the voltage of the selected resistance terminal as the measured voltage Vx, and obtains data indicating the measured voltage Vx. Output to the control unit 5.

基準抵抗器3は、校正のための基準となる基準抵抗値Rrefを提供する。図2は、図1に示す基準抵抗器3の構成の一例を示す回路図である。図2に示す基準抵抗器3は、基準抵抗本体部31と、端子Ts1,Ts2(電流入力端子)と、端子T1,T2,T3,T4,T5,T6,T7,T8,T9(電圧測定用端子)とを備えている。 The reference resistor 3 provides a reference resistance value Rref as a reference for calibration. FIG. 2 is a circuit diagram showing an example of the configuration of the reference resistor 3 shown in FIG. The reference resistor 3 shown in FIG. 2 includes a reference resistor main body 31, terminals Ts1, Ts2 (current input terminals), and terminals T1, T2, T3, T4, T5, T6, T7, T8, T9 (for voltage measurement). It has a terminal).

基準抵抗本体部31は、抵抗Rstd(基礎抵抗)と、抵抗R1(第一抵抗),R2(第二抵抗),R3(第三抵抗),R4(第四抵抗),R5(第五抵抗),R6(第六抵抗),R7(第七抵抗),R8(第八抵抗),RA(第九抵抗),RB(第十抵抗)が直列接続された直列抵抗部32との並列回路から構成されている。抵抗R1,R2,R3,R4,R5,R6,R7,R8,RA,RBは、設定抵抗の一例に相当している。 The reference resistor main body 31 has a resistor Rstd (basic resistor) and resistors R1 (first resistor), R2 (second resistor), R3 (third resistor), R4 (fourth resistor), and R5 (fifth resistor). , R6 (sixth resistor), R7 (seventh resistor), R8 (eighth resistor), RA (nineth resistor), RB (tenth resistor) are connected in series to the series resistance section 32. Has been done. The resistors R1, R2, R3, R4, R5, R6, R7, R8, RA, and RB correspond to an example of the set resistance.

抵抗Rstdの一端に端子Ts1が接続され、抵抗Rstdの他端に端子Ts2が接続されている。抵抗R1の抵抗R2とは反対側の端部に端子T1が接続され、抵抗R1〜R8,RA相互間の接続点に、それぞれ端子T2〜T9が接続されている。抵抗Rstd、及び抵抗R1〜R8,RA,RBの抵抗温度係数は、銅の温度係数よりも小さな値にされている。 The terminal Ts1 is connected to one end of the resistor Rstd, and the terminal Ts2 is connected to the other end of the resistor Rstd. The terminal T1 is connected to the end of the resistor R1 opposite to the resistor R2, and the terminals T2 to T9 are connected to the connection points between the resistors R1 to R8 and RA, respectively. The temperature coefficients of the resistors Rstd and the resistors R1 to R8, RA, and RB are set to be smaller than the temperature coefficient of copper.

以下、抵抗Rstdの抵抗値をRs、抵抗R1〜R8の抵抗値をR〜R、抵抗RA,RBの抵抗値をRa、Rbと表記する。 Hereinafter, the resistance value of the resistor Rstd Rs, the resistance value R 1 to R 8 of the resistors R1 to R8, the resistor RA, the resistance value of the RB is denoted Ra, and Rb.

切替回路6は、電流供給部CSの接続先を、電流プローブPc1,Pc2と基準抵抗器3との間で切り替え可能にされている。また、切替回路6は、電圧測定部4の接続先を、検出プローブPv1,Pv2と選択部7との間で切り替え可能にされている。 The switching circuit 6 is capable of switching the connection destination of the current supply unit CS between the current probes Pc1 and Pc2 and the reference resistor 3. Further, the switching circuit 6 is capable of switching the connection destination of the voltage measuring unit 4 between the detection probes Pv1 and Pv2 and the selection unit 7.

切替回路6は、例えばスイッチ61a,61b,62a,62b,63a,63b,64a,64bを含む複数のスイッチを備えている。これらのスイッチは、例えばトランジスタ等の半導体スイッチや、リレースイッチ等、種々のスイッチング素子である。各スイッチは、例えば制御部5からの制御信号に応じてオン、オフする。 The changeover circuit 6 includes a plurality of switches including, for example, switches 61a, 61b, 62a, 62b, 63a, 63b, 64a, 64b. These switches are various switching elements such as semiconductor switches such as transistors and relay switches. Each switch is turned on and off according to, for example, a control signal from the control unit 5.

具体的には、電流供給部CSの正極(+)は、スイッチ61aの一端とスイッチ61bの一端とに接続され、スイッチ61aの他端が電流プローブPc1に接続され、スイッチ61bの他端が基準抵抗器3の端子Ts1に接続されている。電流供給部CSの負極(−)は、スイッチ62aの一端とスイッチ62bの一端とに接続され、スイッチ62aの他端が電流プローブPc2に接続され、スイッチ62bの他端が基準抵抗器3の端子Ts2に接続されている。 Specifically, the positive electrode (+) of the current supply unit CS is connected to one end of the switch 61a and one end of the switch 61b, the other end of the switch 61a is connected to the current probe Pc1, and the other end of the switch 61b is the reference. It is connected to the terminal Ts1 of the resistor 3. The negative electrode (-) of the current supply unit CS is connected to one end of the switch 62a and one end of the switch 62b, the other end of the switch 62a is connected to the current probe Pc2, and the other end of the switch 62b is the terminal of the reference resistor 3. It is connected to Ts2.

電圧測定部4の正極側(+)端子は、スイッチ63aの一端とスイッチ63bの一端とに接続され、スイッチ63aの他端が検出プローブPv1に接続され、スイッチ63bの他端が選択部7を介して基準抵抗器3に接続されている。電圧測定部4の負極側(−)端子は、スイッチ64aの一端とスイッチ64bの一端とに接続され、スイッチ64aの他端が検出プローブPv2に接続され、スイッチ64bの他端が選択部7を介して基準抵抗器3に接続されている。 The positive electrode side (+) terminal of the voltage measuring unit 4 is connected to one end of the switch 63a and one end of the switch 63b, the other end of the switch 63a is connected to the detection probe Pv1, and the other end of the switch 63b connects the selection unit 7. It is connected to the reference resistor 3 via. The negative electrode side (-) terminal of the voltage measuring unit 4 is connected to one end of the switch 64a and one end of the switch 64b, the other end of the switch 64a is connected to the detection probe Pv2, and the other end of the switch 64b connects the selection unit 7. It is connected to the reference resistor 3 via.

これにより、スイッチ61a,62aがオン、スイッチ61b,62bがオフされると、測定用電流Iの供給先が、測定対象の配線A3側に切り替えられ、配線A3の抵抗測定可能な状態にされる。一方、スイッチ61a,62aがオフ、スイッチ61b,62bがオンされると、測定用電流Iの供給先が基準抵抗器3の端子Ts1,Ts2側に切り替えられ、校正可能な状態にされる。スイッチ61a,61b,62a,62bは、電流供給切替部の一例に相当している。 As a result, when the switches 61a and 62a are turned on and the switches 61b and 62b are turned off, the supply destination of the measurement current I is switched to the wiring A3 side to be measured, and the resistance of the wiring A3 can be measured. .. On the other hand, when the switches 61a and 62a are turned off and the switches 61b and 62b are turned on, the supply destination of the measurement current I is switched to the terminals Ts1 and Ts2 of the reference resistor 3 so that they can be calibrated. The switches 61a, 61b, 62a, 62b correspond to an example of the current supply switching unit.

スイッチ63a,64aがオン、スイッチ63b,64bがオフされると、電圧測定部4による測定電圧Vxの測定先が、測定対象の配線A3側に切り替えられ、配線A3の抵抗測定可能な状態にされる。一方、スイッチ63a,64aがオフ、スイッチ63b,64bがオンされると、電圧測定部4による測定電圧Vxの測定先が、選択部7で選択された基準抵抗器3の端子間側に切り替えられ、校正可能な状態にされる。スイッチ63a,63b,64a,64bは、測定対象切替部の一例に相当している。 When the switches 63a and 64a are turned on and the switches 63b and 64b are turned off, the measurement destination of the measured voltage Vx by the voltage measuring unit 4 is switched to the wiring A3 side to be measured, and the resistance of the wiring A3 can be measured. NS. On the other hand, when the switches 63a and 64a are turned off and the switches 63b and 64b are turned on, the measurement destination of the voltage Vx measured by the voltage measuring unit 4 is switched to the terminal-to-terminal side of the reference resistor 3 selected by the selection unit 7. , Ready to calibrate. The switches 63a, 63b, 64a, 64b correspond to an example of the measurement target switching unit.

選択部7は、いわゆるマルチプレクサ回路である。選択部7は、制御部5からの制御信号に応じて端子T1〜T9のうち二端子を選択し、スイッチ63b,64bに接続することによって、選択された二端子間の選択抵抗部を選択する。以下、選択抵抗部の両端に位置する二端子を選択抵抗端子と称する。すなわち、選択抵抗端子間に挟まれた抵抗が、選択抵抗部である。 The selection unit 7 is a so-called multiplexer circuit. The selection unit 7 selects two terminals T1 to T9 according to the control signal from the control unit 5 and connects them to the switches 63b and 64b to select a selection resistance unit between the selected two terminals. .. Hereinafter, the two terminals located at both ends of the selective resistance portion are referred to as selective resistance terminals. That is, the resistance sandwiched between the selection resistance terminals is the selection resistance portion.

制御部5は、例えば、所定の演算処理を実行するCPU(Central Processing Unit)、データを一時的に記憶するRAM(Random Access Memory)、所定の制御プログラム等を記憶する不揮発性の記憶装置、及びこれらの周辺回路等を備えたいわゆるマイクロコンピュータである。記憶装置は、記憶部56としても用いられる。制御部5は、所定の制御プログラムを実行することによって、切替制御部52、抵抗算出部53、校正部54、及び基板検査部55として機能する。 The control unit 5 includes, for example, a CPU (Central Processing Unit) that executes predetermined arithmetic processing, a RAM (Random Access Memory) that temporarily stores data, a non-volatile storage device that stores a predetermined control program, and the like. It is a so-called microcomputer equipped with these peripheral circuits and the like. The storage device is also used as the storage unit 56. The control unit 5 functions as a switching control unit 52, a resistance calculation unit 53, a calibration unit 54, and a board inspection unit 55 by executing a predetermined control program.

図3は、予め記憶部56に記憶されるルックアップテーブルLUTの一例を示す説明図である。図3に示すルックアップテーブルLUTは、図2に示す基準抵抗器3において、抵抗値R,Rを10Ω、抵抗値R〜Rを30Ωとした場合の、選択抵抗端子及び選択抵抗部の抵抗値Rtと、基準抵抗値Rrefとを対応付けている。 FIG. 3 is an explanatory diagram showing an example of a look-up table LUT stored in the storage unit 56 in advance. Look-up table LUT shown in FIG. 3, the reference resistor 3 shown in FIG. 2, the resistance value R 1, R 2 10 [Omega, a resistance value R 3 to R 8 in the case of a 30 [Omega, selected resistor terminal and select the resistor The resistance value Rt of the unit and the reference resistance value Rref are associated with each other.

例えば、ルックアップテーブルLUTの「T3−T2:10Ω」との記載は、選択抵抗端子が端子T3,T2であり、端子T3,T2に挟まれた選択抵抗部の抵抗値Rtが10Ωであることを示している。 For example, the description of "T3-T2: 10Ω" in the look-up table LUT means that the selection resistance terminal is the terminals T3 and T2, and the resistance value Rt of the selection resistance portion sandwiched between the terminals T3 and T2 is 10Ω. Is shown.

タイプA〜Eは、抵抗値Rs,Ra,Rbの違いによって、異なる基準抵抗値Rrefが得られることを示している。図2に示す基準抵抗器3では、抵抗値Rs,Ra,Rbは固定値であるから、基板検査装置1に備えられている基準抵抗器3のタイプに対応した部分のみをルックアップテーブルLUTとして記憶部56に記憶させておくようにしてもよい。 Types A to E show that different reference resistance values Rref can be obtained depending on the difference in resistance values Rs, Ra, and Rb. In the reference resistor 3 shown in FIG. 2, since the resistance values Rs, Ra, and Rb are fixed values, only the portion corresponding to the type of the reference resistor 3 provided in the substrate inspection device 1 is used as the look-up table LUT. It may be stored in the storage unit 56.

基準抵抗値Rrefと、抵抗Rstdの抵抗値Rs及び選択抵抗部の抵抗値Rtとの間には、略下記の式(A)で示す関係がある。 There is a relationship represented by the following formula (A) between the reference resistance value Rref, the resistance value Rs of the resistance Rstd, and the resistance value Rt of the selective resistance portion.

基準抵抗値Rref=Rs×Rt/Rz ・・・(A)
但し、Rzは直列抵抗部32全体の抵抗値であり、Rz=R+R+R+R+R+R+R+R+Ra+Rb=330Ωである。ルックアップテーブルLUTは、予め式(A)に基づき計算され、記憶部56に記憶されている。
Reference resistance value Rref = Rs × Rt / Rz ・ ・ ・ (A)
However, Rz is the resistance value of the entire series resistance unit 32, and Rz = R 1 + R 2 + R 3 + R 4 + R 5 + R 6 + R 7 + R 8 + Ra + Rb = 330Ω. The look-up table LUT is calculated in advance based on the equation (A) and stored in the storage unit 56.

例えば、タイプAで、選択抵抗端子が端子T3,T2であれば、Rs=3.3mΩ、Rt=10Ω、Rz=330Ωであるから、式(A)に代入すると、基準抵抗値Rref=3.3mΩ×10Ω/330Ω=0.1mΩとなり、ルックアップテーブルLUTと一致する。 For example, in type A, if the selective resistance terminals are terminals T3 and T2, Rs = 3.3 mΩ, Rt = 10 Ω, and Rz = 330 Ω. Therefore, when substituted into the equation (A), the reference resistance value Rref = 3. 3mΩ × 10Ω / 330Ω = 0.1mΩ, which matches the look-up table LUT.

切替制御部52は、測定対象の抵抗測定を行うときは、スイッチ61a,61b,62a,62bによって、電流供給部CSによる測定用電流Iの供給先を基板Aに切り替えさせ、スイッチ63a,63b,64a,64bによって、電圧測定部4による測定電圧Vxの測定先を基板Aに切り替えさせる。以下、この切替状態を測定モードと称する。 When the switching control unit 52 measures the resistance of the measurement target, the switches 61a, 61b, 62a, 62b switch the supply destination of the measurement current I by the current supply unit CS to the substrate A, and the switches 63a, 63b, By 64a and 64b, the measurement destination of the measured voltage Vx by the voltage measuring unit 4 is switched to the substrate A. Hereinafter, this switching state is referred to as a measurement mode.

また、切替制御部52は、抵抗測定の校正を行うときは、スイッチ61a,61b,62a,62bによって、電流供給部CSによる測定用電流Iの供給先を端子Ts1,Ts2(抵抗Rstd)に切り替えさせ、スイッチ63a,63b,64a,64bによって、電圧測定部4による測定電圧の測定先を、選択部7で選択された基準抵抗器3の選択抵抗部に切り替えさせる。以下、この切替状態を校正モードと称する。 Further, when calibrating the resistance measurement, the switching control unit 52 switches the supply destination of the measurement current I by the current supply unit CS to the terminals Ts1 and Ts2 (resistance Rstd) by the switches 61a, 61b, 62a, 62b. Then, the switches 63a, 63b, 64a, 64b switch the measurement destination of the voltage measured by the voltage measuring unit 4 to the selection resistance unit of the reference resistor 3 selected by the selection unit 7. Hereinafter, this switching state is referred to as a calibration mode.

これにより、校正モードでは、基準抵抗器3の抵抗Rstd(基礎抵抗)に対して電流供給部CSによって測定用電流Iが供給され(工程(b))、選択抵抗部の両端間の電圧が電圧測定部4によって測定電圧Vxとして測定される(工程(c))。 As a result, in the calibration mode, the measurement current I is supplied by the current supply unit CS to the resistance Rstd (basic resistance) of the reference resistor 3 (step (b)), and the voltage between both ends of the selection resistance unit is a voltage. It is measured as a measured voltage Vx by the measuring unit 4 (step (c)).

なお、本明細書において、「校正」とは、JIS Z 8103:2000「計測用語」の定義に従い、計器又は測定系の示す値(測定抵抗値Rx)と、標準によって実現される値(基準抵抗値Rref)との間の関係を確定することを意味し、必ずしも基板検査装置1を調整して誤差を修正することは含まない。 In the present specification, "calibration" means a value indicated by an instrument or a measuring system (measured resistance value Rx) and a value realized by a standard (reference resistance) in accordance with the definition of JIS Z 8103: 2000 "measurement term". It means to establish the relationship with the value Rref), and does not necessarily include adjusting the substrate inspection device 1 to correct the error.

抵抗算出部53は、電圧測定部4によって検出された測定電圧Vxと、測定用電流Iの電流値Isとに基づき、下記の式(1)を用いて測定抵抗値Rxを算出する(工程(d))。
測定抵抗値Rx=Vx/Is ・・・(1)
The resistance calculation unit 53 calculates the measured resistance value Rx using the following equation (1) based on the measured voltage Vx detected by the voltage measuring unit 4 and the current value Is of the measuring current I (step (step (step)). d)).
Measurement resistance value Rx = Vx / Is ... (1)

なお、基板検査装置1(抵抗測定装置)は、測定用電流Iの実際の電流値Isを測定する電流測定部を備え、抵抗算出部53は、電流測定部によって測定された電流値Isと測定電圧Vxとを用いて測定抵抗値Rxを算出してもよい。 The substrate inspection device 1 (resistance measuring device) includes a current measuring unit that measures the actual current value Is of the measuring current I, and the resistance calculating unit 53 measures the current value Is measured by the current measuring unit. The measured resistance value Rx may be calculated using the voltage Vx.

校正部54は、記憶部56に記憶されたルックアップテーブルLUTを参照し、選択部7によって選択される選択抵抗端子に対応する基準抵抗値Rrefを取得する(工程(e))。ルックアップテーブルLUTの基準抵抗値Rrefは、式(A)で示される値とされているから、校正部54は、ルックアップテーブルLUTを参照することによって、式(A)で示される基準抵抗値Rrefを、測定抵抗値Rxの目標である校正の目標値として取得することができる。式(A)によって、校正の目標値である基準抵抗値Rrefが得られる原理については後述する。 The calibration unit 54 refers to the look-up table LUT stored in the storage unit 56, and acquires the reference resistance value Rref corresponding to the selection resistance terminal selected by the selection unit 7 (step (e)). Since the reference resistance value Rref of the look-up table LUT is set to the value represented by the formula (A), the calibration unit 54 refers to the look-up table LUT to refer to the reference resistance value represented by the formula (A). Rref can be acquired as a calibration target value which is a target of the measured resistance value Rx. The principle of obtaining the reference resistance value Rref, which is the target value of calibration, by the formula (A) will be described later.

なお、校正部54は、必ずしもルックアップテーブルLUTを参照することによって、基準抵抗値Rrefを取得する例に限らない。校正部54は、実際に式(A)の計算を実行することによって、基準抵抗値Rrefを取得してもよい。 The calibration unit 54 is not necessarily limited to the example of acquiring the reference resistance value Rref by referring to the look-up table LUT. The calibration unit 54 may acquire the reference resistance value Rref by actually executing the calculation of the equation (A).

また、校正部54は、予め設定された、あるいは基板検査装置1に外部から入力された基準抵抗値Rrefをそのまま取得してもよい。そして、校正部54は、上記ルックアップテーブルを参照してその基準抵抗値Rrefと対応する選択抵抗端子を取得し、選択部7によって、その選択抵抗端子に対応する電圧測定用端子を選択させるようにしてもよい。 Further, the calibration unit 54 may acquire the reference resistance value Rref set in advance or input to the substrate inspection device 1 from the outside as it is. Then, the calibration unit 54 acquires the selection resistance terminal corresponding to the reference resistance value Rref with reference to the above lookup table, and causes the selection unit 7 to select the voltage measurement terminal corresponding to the selection resistance terminal. You may do it.

校正モードにおいて、抵抗算出部53によって測定抵抗値Rxが算出され、校正部54によって基準抵抗値Rrefが得られたならば、計器又は測定系の示す値(測定抵抗値Rx)と、標準によって実現される値(基準抵抗値Rref)との間の関係が対応付けられて確定されたことになるので、工程(b)〜(e)は、校正に相当する。 In the calibration mode, if the measured resistance value Rx is calculated by the resistance calculation unit 53 and the reference resistance value Rref is obtained by the calibration unit 54, it is realized by the value indicated by the instrument or the measurement system (measured resistance value Rx) and the standard. Since the relationship with the value to be determined (reference resistance value Rref) is associated and determined, the steps (b) to (e) correspond to calibration.

校正部54は、測定抵抗値Rxを、基準抵抗値Rrefに近づけるように、電流供給部CS、電圧測定部4、又は測定用電流Iの実際の電流値Isを測定する電流測定部等を調整して誤差を修正する工程を実行するようにしてもよい。 The calibration unit 54 adjusts the current supply unit CS, the voltage measurement unit 4, the current measurement unit that measures the actual current value Is of the measurement current I, and the like so that the measurement resistance value Rx approaches the reference resistance value Rref. The process of correcting the error may be executed.

あるいは、校正部54は、例えば選択抵抗部(選択抵抗端子)を順次切り替えつつ、工程(b)〜(e)を実行し、各選択抵抗部に対応して得られた測定抵抗値Rxと基準抵抗値Rrefとを対応付ける校正テーブル、あるいは測定抵抗値Rxと基準抵抗値Rrefとの差を測定抵抗値Rxに対応付ける校正テーブルを作成して記憶部56に記憶させてもよい。そして、抵抗算出部53は、測定モードにおいて測定抵抗値Rxを算出した後、校正テーブルを参照してその測定抵抗値Rxに対応付けられた基準抵抗値Rref又は差に基づいて測定抵抗値Rxを補正するようにしてもよい。 Alternatively, the calibration unit 54 executes steps (b) to (e) while sequentially switching, for example, the selection resistance unit (selection resistance terminal), and the measured resistance value Rx and the reference obtained corresponding to each selection resistance unit. A calibration table associated with the resistance value Rref or a calibration table associated with the measured resistance value Rx and the difference between the measured resistance value Rx and the reference resistance value Rref may be created and stored in the storage unit 56. Then, the resistance calculation unit 53 calculates the measured resistance value Rx in the measurement mode, then refers to the calibration table and calculates the measured resistance value Rx based on the reference resistance value Rref or the difference associated with the measured resistance value Rx. It may be corrected.

また、校正部54は、測定抵抗値Rxと基準抵抗値Rrefとを含む校正情報を、例えば図略の表示装置に表示させたり、図略の通信回路を用いて外部に送信したりする等して、保守作業者やユーザ等に通知してもよい。校正情報が通知された保守作業者等は、通知された校正情報に基づいて、測定抵抗値Rxを基準抵抗値Rrefに近づけるように基板検査装置1を調整することが可能となる。 Further, the calibration unit 54 displays calibration information including the measured resistance value Rx and the reference resistance value Rref on, for example, a display device shown in the figure, or transmits the calibration information to the outside using the communication circuit shown in the figure. The maintenance worker, the user, or the like may be notified. The maintenance worker or the like who has been notified of the calibration information can adjust the substrate inspection device 1 so that the measured resistance value Rx approaches the reference resistance value Rref based on the notified calibration information.

基板検査部55は、測定モードにおいて、抵抗算出部53によって算出された測定抵抗値Rxに基づき、測定対象である配線A3の検査を行う。具体的には、基板検査部55は、予め記憶部に記憶された判定基準値RRと、測定抵抗値Rxとを比較し、測定抵抗値Rxが判定基準値RRより小さかった場合、その配線A3を良品と判定し、測定抵抗値Rxが判定基準値RR以上であった場合、その配線A3を不良と判定する。 In the measurement mode, the board inspection unit 55 inspects the wiring A3 to be measured based on the measured resistance value Rx calculated by the resistance calculation unit 53. Specifically, the substrate inspection unit 55 compares the determination reference value RR stored in the storage unit in advance with the measurement resistance value Rx, and if the measurement resistance value Rx is smaller than the determination reference value RR, the wiring A3. Is determined to be a non-defective product, and if the measured resistance value Rx is equal to or greater than the determination reference value RR, the wiring A3 is determined to be defective.

次に、基準抵抗器3を用いて、ルックアップテーブルLUTすなわち式(A)に基づいて校正の目標値である基準抵抗値Rrefが得られる原理について説明する。 Next, the principle of obtaining the reference resistance value Rref, which is the target value for calibration, based on the look-up table LUT, that is, the equation (A), will be described using the reference resistor 3.

校正モードでは、切替回路6によって、電流供給部CSから出力された電流値Isの測定用電流Iが端子Ts1,Ts2に供給され、抵抗Rstdに流れる。なお、抵抗Rstdと直列抵抗部32とは並列接続されているから、厳密には測定用電流Iは抵抗Rstdと直列抵抗部32とに分流することになる。しかしながら、直列抵抗部32の抵抗値Rzが抵抗Rstdの抵抗値Rsよりも充分大きければ、直列抵抗部32に流れる電流は無視できる。そこで、測定用電流Iはすべて抵抗Rstdを流れるものと近似して説明する。 In the calibration mode, the switching circuit 6 supplies the measurement current I of the current value Is output from the current supply unit CS to the terminals Ts1 and Ts2, and flows them to the resistor Rstd. Since the resistor Rstd and the series resistance section 32 are connected in parallel, strictly speaking, the measurement current I is divided between the resistor Rstd and the series resistance section 32. However, if the resistance value Rz of the series resistance unit 32 is sufficiently larger than the resistance value Rs of the resistance Rstd, the current flowing through the series resistance unit 32 can be ignored. Therefore, the measurement current I will be described by approximating the current flowing through the resistor Rstd.

例えば、ルックアップテーブルLUTに示すタイプAの場合、直列抵抗部32の抵抗値Rz=330Ω、抵抗Rstdの抵抗値Rs=3.3mΩであり、Rz:Rs=100000:1となる。Rz、Rsに流れる電流値は抵抗比の逆比となるから、直列抵抗部32に流れる電流は、抵抗Rstdに流れる電流の1/100000となり、略無視できる。 For example, in the case of type A shown in the look-up table LUT, the resistance value Rz = 330Ω of the series resistance unit 32, the resistance value Rs = 3.3 mΩ of the resistance Rstd, and Rz: Rs = 1000000: 1. Since the current value flowing through Rz and Rs is the inverse ratio of the resistance ratio, the current flowing through the series resistance portion 32 is 1/10000 of the current flowing through the resistor Rstd, which can be substantially ignored.

抵抗Rstdに電流値Isの測定用電流Iが流れると、抵抗Rstdの両端間の電圧Vsは、Vs=Is×Rsとなる。抵抗Rstdと直列抵抗部32とは並列接続されているから、直列抵抗部32にも電圧Vsが印加される。そうすると、二本の選択抵抗端子間に生じる測定電圧Vxは、直列抵抗部32の抵抗値Rzと選択抵抗部の抵抗値Rtとの分圧により、下記の式(2)で表される。
測定電圧Vx=Vs×(Rt/Rz)=Is×Rs×Rt/Rz ・・・(2)
When the measuring current I of the current value Is flows through the resistor Rstd, the voltage Vs between both ends of the resistor Rstd becomes Vs = Is × Rs. Since the resistor Rstd and the series resistance section 32 are connected in parallel, the voltage Vs is also applied to the series resistance section 32. Then, the measured voltage Vx generated between the two selective resistance terminals is represented by the following equation (2) by dividing the voltage between the resistance value Rz of the series resistance portion 32 and the resistance value Rt of the selective resistance portion 32.
Measurement voltage Vx = Vs × (Rt / Rz) = Is × Rs × Rt / Rz ・ ・ ・ (2)

ここで、式(A)から、基準抵抗値Rref=Rs×Rt/Rzである。式(2)に式(A)を代入すると、 Here, from the equation (A), the reference resistance value Rref = Rs × Rt / Rz. Substituting equation (A) into equation (2),

測定電圧Vx=Is×Rref ・・・(3)
となる。
Measured voltage Vx = Is × Rref ・ ・ ・ (3)
Will be.

校正モードでは、切替回路6及び選択部7によって、選択抵抗端子が電圧測定部4に接続され、二本の選択抵抗端子間に生じた測定電圧Vxが電圧測定部4で測定される。電圧測定部4で測定された測定電圧Vxから、抵抗算出部53によって、上記式(1)を用いて測定抵抗値Rxが算出される。ここで、式(1)に式(3)を代入すると、下記の式(4)が得られる。
測定抵抗値Rx=Vx/Is=(Is×Rref)/Is=Rref ・・・(4)
In the calibration mode, the selection resistance terminal is connected to the voltage measurement unit 4 by the switching circuit 6 and the selection unit 7, and the measured voltage Vx generated between the two selection resistance terminals is measured by the voltage measurement unit 4. From the measured voltage Vx measured by the voltage measuring unit 4, the resistance calculating unit 53 calculates the measured resistance value Rx using the above equation (1). Here, by substituting the equation (3) into the equation (1), the following equation (4) is obtained.
Measurement resistance value Rx = Vx / Is = (Is × Rref) / Is = Rref ... (4)

式(4)から、校正モードにおいて、抵抗算出部53で算出される測定抵抗値Rxは、基準抵抗値Rrefと等しくなる。 From the equation (4), the measured resistance value Rx calculated by the resistance calculation unit 53 in the calibration mode is equal to the reference resistance value Rref.

すなわち、電流供給部CSから出力される測定用電流Iの電流値Isと、電圧測定部4の検出精度とが正確であれば、基準抵抗器3の、抵抗Rstd(基礎抵抗)に対して電流供給部CSによって測定用電流Iを供給させる工程(b)と、選択抵抗部の両端間の電圧を、電圧測定部4によって測定電圧Vxとして測定させる工程(c)と、抵抗算出部53によって、測定電圧Vxを測定用電流Iの電流値Isで除算させることによって測定抵抗値Rxを算出させる工程(d)とを実行することによって、基準抵抗器3を、等価的に基準抵抗値Rrefを有する基準抵抗体として利用できることがわかる。 That is, if the current value Is of the measurement current I output from the current supply unit CS and the detection accuracy of the voltage measurement unit 4 are accurate, the current is relative to the resistance Rstd (basic resistance) of the reference resistor 3. The step (b) of supplying the measurement current I by the supply unit CS, the step (c) of measuring the voltage between both ends of the selective resistance unit as the measurement voltage Vx by the voltage measurement unit 4, and the resistance calculation unit 53. By executing the step (d) of calculating the measured resistance value Rx by dividing the measured voltage Vx by the current value Is of the measuring current I, the reference resistor 3 has the reference resistance value Rref equivalently. It can be seen that it can be used as a reference resistor.

従って、電流供給部CS、電圧測定部4、及び抵抗算出部53を含む抵抗測定回路系の測定精度が正確であれば、校正モードにおいて抵抗算出部53で得られる測定抵抗値Rxは、式(A)で示される基準抵抗値Rref、すなわちルックアップテーブルLUTで示される基準抵抗値Rrefと一致するはずであるから、校正部54は、基準抵抗値Rrefを校正の目標値として用いることができる。 Therefore, if the measurement accuracy of the resistance measurement circuit system including the current supply unit CS, the voltage measurement unit 4, and the resistance calculation unit 53 is accurate, the measured resistance value Rx obtained by the resistance calculation unit 53 in the calibration mode is expressed by the equation ( Since it should match the reference resistance value Rref shown in A), that is, the reference resistance value Rref shown in the lookup table LUT, the calibration unit 54 can use the reference resistance value Rref as the target value for calibration.

ここで、式(A)から、基準抵抗値Rref=Rs×Rt/Rzであるから、分圧比(Rt/Rz)によって、抵抗Rstdの抵抗値Rsよりも小さな基準抵抗値Rrefを得ることができる。 Here, from the equation (A), since the reference resistance value Rref = Rs × Rt / Rz, the reference resistance value Rref smaller than the resistance value Rs of the resistance Rstd can be obtained by the voltage division ratio (Rt / Rz). ..

例えば、図3に示すタイプAのように、抵抗Rstdとして抵抗値Rsが3.3mΩの抵抗を一つ用いれば、抵抗R1〜R8,RA,RBは分圧に用いられるだけなので、市場で入手が容易な抵抗値、例えば10〜120Ωの抵抗を用いることができる。その結果、低抵抗の3.3mΩの抵抗Rstdを一つと、入手容易な抵抗値範囲の抵抗を用いて基準抵抗器3を構成することができる。 For example, as in Type A shown in FIG. 3, if one resistor having a resistance value Rs of 3.3 mΩ is used as the resistor Rstd, the resistors R1 to R8, RA, and RB are only used for voltage division, and are therefore available on the market. A resistance value that is easy to use, for example, a resistance of 10 to 120 Ω can be used. As a result, the reference resistor 3 can be configured by using one low resistance 3.3 mΩ resistor Rstd and a resistor in the easily available resistance value range.

また、基準抵抗器3によれば、3.3mΩの抵抗Rstdよりもさらに低抵抗であるために市場での入手が困難な、0.1mΩ〜2.0mΩの基準抵抗値Rrefを、入手が容易な抵抗値の抵抗R1〜R8,RA,RB、及び抵抗Rstdを組み合わせることによって得ることができるので、低抵抗の基準抵抗値Rrefを得ることが容易となる。 Further, according to the reference resistor 3, it is easy to obtain a reference resistance value Rref of 0.1 mΩ to 2.0 mΩ, which is difficult to obtain in the market because the resistance is lower than the resistance Rstd of 3.3 mΩ. Since it can be obtained by combining resistors R1 to R8, RA, RB, and resistors Rstd having a high resistance value, it becomes easy to obtain a reference resistance value Rref having a low resistance.

また、0.2mΩのような低抵抗の特殊な抵抗は、入手困難であるのみならず、入手できたとしても高価である可能性が高い。一方、抵抗R1〜R8,RA,RB,Rstdは、0.2mΩのような特殊な抵抗よりも入手が容易で安価である可能性が高く、従って、このような特殊な抵抗を用いる場合よりも基準抵抗器3の方が低コストにできる可能性がある。 Further, a special resistance having a low resistance such as 0.2 mΩ is not only difficult to obtain, but also likely to be expensive even if it can be obtained. On the other hand, the resistors R1 to R8, RA, RB, Rstd are likely to be easier and cheaper to obtain than special resistors such as 0.2 mΩ, and therefore more than when such special resistors are used. There is a possibility that the reference resistor 3 can be made at a lower cost.

また、基準抵抗器3は、複数の電圧測定用端子T1〜T9を備え、これらの中から選択抵抗端子を選択することによって、複数種類の基準抵抗値Rrefを得ることができる。従って、抵抗値の異なる複数の基準抵抗を備える必要がなく、利便性が向上する。また、複数の基準抵抗を備えるよりも、基準抵抗器3の方が低コストにできる可能性がある。 Further, the reference resistor 3 includes a plurality of voltage measuring terminals T1 to T9, and by selecting a selective resistance terminal from these, a plurality of types of reference resistance value Rref can be obtained. Therefore, it is not necessary to provide a plurality of reference resistors having different resistance values, which improves convenience. Further, there is a possibility that the reference resistor 3 can be made at a lower cost than having a plurality of reference resistors.

例えば、図3に示すタイプA〜Eでは、抵抗値Rsを10倍ずつ大きくすることによって、タイプAでは、0.1mΩ〜2.0mΩまで0.1mΩ刻みの基準抵抗値Rrefが得られ、タイプBでは、1mΩ〜20mΩまで1mΩ刻みの基準抵抗値Rrefが得られ、以下、タイプC,D,Eでは10倍ずつ大きな基準抵抗値Rrefが得られ、抵抗値Rsを変えるだけで所望の基準抵抗値Rrefが得られるので、利便性が高い。 For example, in the types A to E shown in FIG. 3, by increasing the resistance value Rs by 10 times, in the type A, a reference resistance value Rref in 0.1 mΩ increments is obtained from 0.1 mΩ to 2.0 mΩ, and the type. In B, a reference resistance value Rref from 1 mΩ to 20 mΩ in 1 mΩ increments is obtained, and in types C, D, and E, a reference resistance value Rref that is 10 times larger is obtained, and a desired reference resistance is obtained simply by changing the resistance value Rs. Since the value Rref can be obtained, it is highly convenient.

このように、連続する値の基準抵抗値Rrefが得られる基準抵抗器3は、抵抗R1,R2の抵抗値R,Rを10Ω×N、抵抗R3〜R8の抵抗値R〜Rを30Ω×N、抵抗RAの抵抗値Raを10Ω×N、抵抗RBの抵抗値Rbを120Ω×N、Nは自然数とし、抵抗Rstdの抵抗値Rsを3.3mΩ+3.3mΩ×10×M、Mは0以上の整数とすることによって得られる。 Thus, the reference resistor 3 which reference resistance value Rref of successive values are obtained, the resistor R1, the resistance value of R2 R 1, R 2 a 10 [Omega × N, the resistance value R 3 to R 8 in the resistance R3~R8 Is 30Ω × N, the resistance value Ra of the resistor RA is 10Ω × N, the resistance value Rb of the resistor RB is 120Ω × N, N is a natural number, and the resistance value Rs of the resistor Rstd is 3.3mΩ + 3.3mΩ × 10 × M, M. Is obtained by setting it to an integer greater than or equal to 0.

また、銅を加工して基準抵抗器を作成した場合、銅は抵抗温度係数が大きいために温度変化に起因する抵抗値の変動が生じ、抵抗値が不安定になる。一方、基準抵抗器3の場合、銅を用いずに、銅より遙かに抵抗温度係数の小さい市販の抵抗器を組み合わせて作成できるので、銅を加工して基準抵抗器を作成した場合よりも遙かに安定性の高い基準抵抗を容易に得ることができる。例えば、銅の温度係数が0.00393[1/℃]であるのに対し、例えばAlpha Electronics社製MPPシリーズ超精密チップ抵抗器では抵抗温度係数が0.2×10−6/℃程度であり、例えばパナソニック(株)社製低抵抗金属板抵抗器ERJM03Nでは抵抗温度係数が100×10−6/℃程度である。 Further, when a reference resistor is produced by processing copper, the resistance temperature coefficient of copper is large, so that the resistance value fluctuates due to the temperature change, and the resistance value becomes unstable. On the other hand, in the case of the reference resistor 3, since it can be manufactured by combining a commercially available resistor having a temperature coefficient of resistance much smaller than that of copper without using copper, it is possible to manufacture a reference resistor by processing copper. A much more stable reference resistor can be easily obtained. For example, the temperature coefficient of copper is 0.00393 [1 / ° C.], whereas the temperature coefficient of resistance of MPP series ultra-precision chip resistors manufactured by Alpha Electronics is about 0.2 × 10 -6 / ° C. For example, in the low resistance metal plate resistor ERJM03N manufactured by Panasonic Corporation, the temperature coefficient of resistance is about 100 × 10 -6 / ° C.

また、小さなチップ抵抗器が市販されているので、銅で抵抗器を構成する場合よりも小型化が容易である。また、市販の抵抗器を入手すればよいので、銅を加工するよりもリードタイムや加工費が安くなる可能性が高い。 Moreover, since a small chip resistor is commercially available, it is easier to reduce the size than when the resistor is made of copper. In addition, since it is only necessary to obtain a commercially available resistor, there is a high possibility that the lead time and processing cost will be lower than those for processing copper.

なお、四端子測定法で抵抗測定を行う基板検査装置1に基準抵抗器3を備える例を示したが、例えば図4に示すように、電流プローブPc1と検出プローブPv1との代わりに一つのプローブPr1を備え、電流プローブPc2と検出プローブPv2との代わりに一つのプローブPr2を備え、一つのプローブで電流供給と電圧測定とを兼ねる二端子測定法を行う基板検査装置1aの場合であっても、基準抵抗器3による校正を行うことができる。 Although an example in which the reference resistor 3 is provided in the substrate inspection device 1 that measures resistance by the four-terminal measurement method is shown, for example, as shown in FIG. 4, one probe is used instead of the current probe Pc1 and the detection probe Pv1. Even in the case of a substrate inspection device 1a equipped with Pr1, equipped with one probe Pr2 instead of the current probe Pc2 and the detection probe Pv2, and performing a two-terminal measurement method that combines current supply and voltage measurement with one probe. , The reference resistor 3 can be used for calibration.

また、基準抵抗器3は、必ずしも基板検査装置1や抵抗測定装置に組み込まれている必要はない。例えば図5に示すように、四端子測定法で抵抗測定を行う基板検査装置1b又は抵抗測定装置であって、基準抵抗器3、切替制御部52、及び校正部54を備えない基板検査装置1b又は抵抗測定装置を、本発明に係る抵抗測定装置の校正方法によって校正することも可能である。 Further, the reference resistor 3 does not necessarily have to be incorporated in the substrate inspection device 1 or the resistance measuring device. For example, as shown in FIG. 5, a substrate inspection device 1b or a resistance measuring device that measures resistance by a four-terminal measurement method and does not include a reference resistor 3, a switching control unit 52, and a calibration unit 54. Alternatively, the resistance measuring device can be calibrated by the calibration method of the resistance measuring device according to the present invention.

この場合、図5に示すように、基準抵抗器3を準備し(工程(a))、電流プローブPc1,Pc2を基準抵抗器3の端子Ts1,Ts2に接触させて電流供給部CSから測定用電流Iを供給させ(工程(b))、検出プローブPv1,Pv2を基準抵抗器3の選択抵抗端子に接触させて電圧測定部4によって測定電圧Vxを測定させ(工程(c))、抵抗算出部53によって測定抵抗値Rxを算出させ(工程(d))、これを保守作業者等に通知させればよい。保守作業者等は、ルックアップテーブルLUTを参照する等して選択抵抗端子に対応する基準抵抗値Rrefを取得し(工程(e))、測定抵抗値Rxとを対比することによって、基板検査装置1b又は抵抗測定装置を校正することが可能となる。 In this case, as shown in FIG. 5, the reference resistor 3 is prepared (step (a)), and the current probes Pc1 and Pc2 are brought into contact with the terminals Ts1 and Ts2 of the reference resistor 3 for measurement from the current supply unit CS. The current I is supplied (step (b)), the detection probes Pv1 and Pv2 are brought into contact with the selective resistance terminal of the reference resistor 3, and the measured voltage Vx is measured by the voltage measuring unit 4 (step (c)), and the resistance is calculated. The measured resistance value Rx may be calculated by the unit 53 (step (d)), and this may be notified to the maintenance worker or the like. The maintenance worker or the like obtains the reference resistance value Rref corresponding to the selected resistance terminal by referring to the look-up table LUT (step (e)), and compares it with the measured resistance value Rx to inspect the substrate. It is possible to calibrate 1b or the resistance measuring device.

図6は、本発明の一実施形態に係る抵抗測定装置の校正方法の一例を示すフローチャートである。まず、基準抵抗器3を準備する(工程(a))。工程(a)には、図1、図4に示すように、基板検査装置1,1a等の抵抗測定装置内に基準抵抗器3を組み込むことや、図5に示すように、基準抵抗器3を、基板検査装置1b等の抵抗測定装置の外部に測定対象として配置することが含まれる。 FIG. 6 is a flowchart showing an example of a calibration method of the resistance measuring device according to the embodiment of the present invention. First, the reference resistor 3 is prepared (step (a)). In the step (a), as shown in FIGS. 1 and 4, the reference resistor 3 is incorporated in the resistance measuring device such as the substrate inspection devices 1 and 1a, and as shown in FIG. 5, the reference resistor 3 is incorporated. Is included as a measurement target outside the resistance measuring device such as the substrate inspection device 1b.

次に、基準抵抗器3の抵抗Rstdに対して電流供給部CSによって測定用電流Iを供給させる(工程(b))。工程(b)には、図1、図4に示すように、基板検査装置1,1a等の抵抗測定装置内の内部配線によって抵抗Rstdに測定用電流Iを供給する態様や、図5に示すように、基板検査装置1b等の抵抗測定装置が備える電流プローブPc1,Pc2を介して電流を供給する態様が含まれる。 Next, the measurement current I is supplied to the resistance Rstd of the reference resistor 3 by the current supply unit CS (step (b)). In the step (b), as shown in FIGS. 1 and 4, a mode in which the measurement current I is supplied to the resistor Rstd by internal wiring in the resistance measuring device such as the substrate inspection devices 1 and 1a, and a mode shown in FIG. As described above, the embodiment in which the current is supplied via the current probes Pc1 and Pc2 included in the resistance measuring device such as the substrate inspection device 1b is included.

内部配線によって抵抗Rstdに測定用電流Iを供給する態様では、基準抵抗器3は、必ずしも端子Ts1,Ts2を備える必要はなく、抵抗Rstdの両端に直接配線されていてもよい。 In the embodiment in which the measurement current I is supplied to the resistor Rstd by internal wiring, the reference resistor 3 does not necessarily have to include the terminals Ts1 and Ts2, and may be directly wired to both ends of the resistor Rstd.

次に、選択抵抗部の両端間の電圧を、電圧測定部4によって測定電圧Vxとして測定させる(工程(c))。工程(c)には、図1、図4に示すように、基板検査装置1,1a等の抵抗測定装置内の内部配線を介して電圧測定部4を選択抵抗部の両端に接続して測定電圧Vxを測定させる態様や、図5に示すように、基板検査装置1b等の抵抗測定装置が備える検出プローブPv1,Pv2を選択抵抗端子に接触させて測定電圧Vxを測定する態様が含まれる。 Next, the voltage between both ends of the selective resistance unit is measured by the voltage measuring unit 4 as the measured voltage Vx (step (c)). In the step (c), as shown in FIGS. 1 and 4, the voltage measuring unit 4 is connected to both ends of the selected resistance unit for measurement via the internal wiring in the resistance measuring device such as the substrate inspection devices 1 and 1a. A mode of measuring the voltage Vx and a mode of measuring the measured voltage Vx by contacting the detection probes Pv1 and Pv2 included in the resistance measuring device such as the substrate inspection device 1b with the selective resistance terminal are included.

次に、抵抗算出部53によって、測定電圧Vxを測定用電流Iの電流値Isで除算させることによって測定抵抗値Rxを算出させる(工程(d))。 Next, the resistance calculation unit 53 calculates the measured resistance value Rx by dividing the measured voltage Vx by the current value Is of the measuring current I (step (d)).

次に、上記式(A)で示される基準抵抗値Rrefを、測定抵抗値Rxの目標である校正の目標値として取得する(工程(e))。工程(e)には、図1、図4に示すような基板検査装置1,1a等の校正部54が基準抵抗値Rrefを取得する態様や、図5に示すように、基準抵抗器3や校正部54を備えない基板検査装置1b等の抵抗測定装置に測定対象として基準抵抗器3を接続して電流プローブPc1,Pc2及び検出プローブPv1,Pv2を接触させ、保守作業者等が予め作成されたルックアップテーブルLUTを参照するなどして式(A)で示される基準抵抗値Rref、すなわち検出プローブPv1,Pv2を接触させた選択抵抗端子に対応する基準抵抗値Rrefを、測定抵抗値Rxの目標である校正の目標値として取得する態様が含まれる。 Next, the reference resistance value Rref represented by the above formula (A) is acquired as the target value for calibration, which is the target of the measured resistance value Rx (step (e)). In the step (e), the calibration unit 54 of the substrate inspection devices 1, 1a and the like as shown in FIGS. 1 and 4 acquires the reference resistance value Rref, and as shown in FIG. 5, the reference resistor 3 and the like. A reference resistor 3 is connected to a resistance measuring device such as a substrate inspection device 1b that does not have a calibration unit 54 as a measurement target, and the current probes Pc1 and Pc2 and the detection probes Pv1 and Pv2 are brought into contact with each other, and a maintenance worker or the like is created in advance. The reference resistance value Rref represented by the formula (A) by referring to the lookup table LUT, that is, the reference resistance value Rref corresponding to the selective resistance terminal to which the detection probes Pv1 and Pv2 are contacted is determined by the measured resistance value Rx. The mode to be acquired as the target value of the calibration which is the target is included.

以上、工程(a)〜(e)によれば、基準抵抗器3を用いて校正の目標値(基準値)となる基準抵抗値Rrefを取得することができる。 As described above, according to the steps (a) to (e), the reference resistance value Rref, which is the target value (reference value) for calibration, can be obtained by using the reference resistor 3.

なお、設定抵抗として、抵抗R1〜R8,RA,RBの10個の抵抗を用いる例を示したが、設定抵抗は二つ以上であればよい。設定抵抗が少なくとも二つあれば、二つの合計抵抗値をRz、二つのうちから選択された選択抵抗部の抵抗値をRtとすることにより、上述の式(2)において抵抗分圧の効果が得られ、従って式(A)を適用することができる。その結果、抵抗Rstdよりも小さい基準抵抗値Rrefを得ることができるから、低抵抗の基準抵抗値を得ることが容易な基準抵抗器を構成することが可能となる。 Although an example in which 10 resistors R1 to R8, RA, and RB are used as the set resistance is shown, the set resistance may be two or more. If there are at least two set resistors, the effect of the resistance voltage divider in the above equation (2) can be obtained by setting the total resistance value of the two to Rz and the resistance value of the selected resistor selected from the two to Rt. Obtained and therefore formula (A) can be applied. As a result, since the reference resistance value Rref smaller than the resistance Rstd can be obtained, it is possible to construct a reference resistor in which it is easy to obtain a reference resistance value having a low resistance.

また、電圧測定用端子の一例として9つの端子T1〜T9を示したが、電圧測定用端子は、複数の設定抵抗相互間の接続点のうち少なくとも三か所にそれぞれ接続されていればよい。当該三か所にそれぞれ接続された三つの電圧測定用端子があれば、少なくとも二種類の選択抵抗部を選択することが可能となる。 Further, although nine terminals T1 to T9 are shown as an example of the voltage measurement terminals, the voltage measurement terminals may be connected to at least three of the connection points between the plurality of set resistors. If there are three voltage measurement terminals connected to each of the three locations, it is possible to select at least two types of selective resistors.

また、基板検査装置1,1bは、選択部7を備えず、選択抵抗端子(選択抵抗部)が固定的に切替回路6に接続されていてもよい。 Further, the substrate inspection devices 1 and 1b may not include the selection unit 7, and the selection resistance terminal (selection resistance unit) may be fixedly connected to the switching circuit 6.

また、抵抗R1〜R8,RA,RB,Rstdの抵抗温度係数は、必ずしも銅より小さい例に限らない。抵抗R1〜R8,RA,RB,Rstdの抵抗温度係数が銅以上であった場合であっても、抵抗Rstdよりも小さい基準抵抗値Rrefを得ることができ、従って低抵抗の基準抵抗値を得ることが容易な基準抵抗器を構成することが可能である。 Further, the temperature coefficient of resistance of the resistors R1 to R8, RA, RB, and Rstd is not necessarily limited to the example smaller than that of copper. Even when the temperature coefficient of resistance of the resistors R1 to R8, RA, RB, and Rstd is copper or higher, a reference resistance value Rref smaller than the resistance Rstd can be obtained, and therefore a reference resistance value of low resistance can be obtained. It is possible to construct a reference resistor that is easy to do.

また、基板検査装置1,1a,1bは、基板検査部55を備えない抵抗測定装置として構成されていてもよい。 Further, the substrate inspection devices 1, 1a and 1b may be configured as a resistance measuring device that does not include the substrate inspection unit 55.

1,1a,1b 基板検査装置(抵抗測定装置)
3 基準抵抗器
4 電圧測定部
5 制御部
6 切替回路(電流供給切替部、測定対象切替部)
7 選択部
31 基準抵抗本体部
32 直列抵抗部
52 切替制御部
53 抵抗算出部
54 校正部
55 基板検査部
56 記憶部
61a,61b,62a,62b スイッチ(電流供給切替部)
63a,63b,64a,64b スイッチ(測定対象切替部)
A 基板
A1 チップ側電極
A2 外向電極
A3 配線(測定対象)
CS 電流供給部
I 測定用電流
Is 電流値(測定用電流Iの電流値)
LUT ルックアップテーブル
Pc1,Pc2 電流プローブ
Pr1,Pr2 プローブ
Pv1,Pv2 検出プローブ
R1〜R8,RA,RB 抵抗(設定抵抗)
RR 判定基準値
Rref 基準抵抗値
Rstd 抵抗(基礎抵抗)
Rs 抵抗値(Rstdの抵抗値)
Rt 抵抗値(選択抵抗部の抵抗値)
Rx 測定抵抗値
Rz 抵抗値(直列抵抗部全体の抵抗値)
T1〜T9 端子(電圧測定用端子)
Ts1,Ts2 端子(電流入力端子)
Vs 電圧(Rstdの両端電圧)
Vx 測定電圧
1,1a, 1b Board inspection device (resistance measuring device)
3 Reference resistor 4 Voltage measuring unit 5 Control unit 6 Switching circuit (current supply switching unit, measurement target switching unit)
7 Selection unit 31 Reference resistance main unit 32 Series resistance unit 52 Switching control unit 53 Resistance calculation unit 54 Calibration unit 55 Board inspection unit 56 Storage unit 61a, 61b, 62a, 62b Switch (current supply switching unit)
63a, 63b, 64a, 64b switch (measurement target switching unit)
A Substrate A1 Chip side electrode A2 Extraverted electrode A3 Wiring (measurement target)
CS current supply unit I Measurement current Is current value (current value of measurement current I)
LUT Look-up table Pc1, Pc2 Current probe Pr1, Pr2 Probe Pv1, Pv2 Detection probe R1 to R8, RA, RB Resistance (set resistance)
RR Judgment reference value Rref Reference resistance value Rstd resistance (basic resistance)
Rs resistance value (Rstd resistance value)
Rt resistance value (resistance value of the selective resistance part)
Rx measurement resistance value Rz resistance value (resistance value of the entire series resistance part)
T1 to T9 terminals (voltage measurement terminals)
Ts1, Ts2 terminal (current input terminal)
Vs voltage (voltage across Rstd)
Vx measured voltage

Claims (7)

測定対象に供給するための測定用電流を供給する電流供給部と前記測定対象に生じた電圧を測定するための電圧測定部と前記電圧測定部により測定された測定電圧を前記測定用電流の電流値で除算することによって抵抗値を算出する抵抗算出部とを備える抵抗測定装置の校正方法であって、
(a)それぞれが予め設定された抵抗値を有する複数の設定抵抗が直列接続された直列抵抗部と、予め設定された基礎抵抗値Rsを有する基礎抵抗とが並列接続された基準抵抗器を準備する工程と、
(b)前記基準抵抗器の、前記基礎抵抗に対して前記電流供給部によって前記測定用電流を供給させる工程と、
(c)前記複数の設定抵抗のうちの一又は連続する一部の設定抵抗である選択抵抗部の両端間の電圧を、前記電圧測定部によって前記測定電圧として測定させる工程と、
(d)前記抵抗算出部によって、前記測定電圧を前記測定用電流の電流値で除算させることによって測定抵抗値Rxを算出させる工程と、
(e)下記の式(A)で示される基準抵抗値Rrefを、前記測定抵抗値Rxの目標である校正の目標値として取得する工程とを含む抵抗測定装置の校正方法。
基準抵抗値Rref=Rs×Rt/Rz ・・・(A)
但し、Rtは前記選択抵抗部の抵抗値、Rzは前記直列抵抗部全体の抵抗値である。
The current supply unit that supplies the measurement current to supply to the measurement target, the voltage measurement unit for measuring the voltage generated in the measurement target, and the measurement voltage measured by the voltage measurement unit are the current of the measurement current. It is a calibration method of a resistance measuring device including a resistance calculation unit that calculates a resistance value by dividing by a value.
(A) Prepare a reference resistor in which a series resistor unit in which a plurality of set resistors each having a preset resistance value are connected in series and a basic resistor having a preset basic resistance value Rs are connected in parallel. And the process to do
(B) A step of supplying the measurement current to the basic resistance of the reference resistor by the current supply unit.
(C) A step of causing the voltage measuring unit to measure the voltage between both ends of the selective resistance portion, which is one or a continuous part of the set resistances among the plurality of set resistors, as the measured voltage.
(D) A step of calculating the measured resistance value Rx by dividing the measured voltage by the current value of the measuring current by the resistance calculation unit.
(E) A calibration method of a resistance measuring device including a step of acquiring a reference resistance value Rref represented by the following formula (A) as a calibration target value which is a target of the measured resistance value Rx.
Reference resistance value Rref = Rs × Rt / Rz ・ ・ ・ (A)
However, Rt is the resistance value of the selective resistance portion, and Rz is the resistance value of the entire series resistance portion.
測定対象の抵抗を測定する抵抗測定装置であって、
前記測定対象に供給するための測定用電流を供給する電流供給部と、
前記測定対象に生じた電圧を測定電圧として測定するための電圧測定部と、
それぞれが予め設定された抵抗値を有する複数の設定抵抗が直列接続された直列抵抗部と、予め設定された基礎抵抗値Rsを有する基礎抵抗とが並列接続された基準抵抗器と、
前記基準抵抗器の前記基礎抵抗に対して、前記電流供給部によって前記測定用電流を供給させる電流供給切替部と、
前記複数の設定抵抗のうちの一又は連続する一部の設定抵抗である選択抵抗部の両端間の電圧を、前記電圧測定部によって前記測定電圧として測定させる測定対象切替部と、
前記電圧測定部により測定された測定電圧を前記測定用電流の電流値で除算することによって測定抵抗値Rxを算出する抵抗算出部と、
下記の式(A)で示される基準抵抗値Rrefを、前記測定抵抗値Rxの目標である校正の目標値として取得する校正部とを備える抵抗測定装置。
基準抵抗値Rref=Rs×Rt/Rz ・・・(A)
但し、Rtは前記選択抵抗部の抵抗値、Rzは前記直列抵抗部全体の抵抗値である。
A resistance measuring device that measures the resistance of the object to be measured.
A current supply unit that supplies a measurement current to supply the measurement target,
A voltage measuring unit for measuring the voltage generated in the measurement target as a measurement voltage,
A series resistor unit in which a plurality of set resistors each having a preset resistance value are connected in series, a reference resistor in which a basic resistor having a preset basic resistance value Rs is connected in parallel, and a reference resistor.
A current supply switching unit that supplies the measurement current to the basic resistance of the reference resistor by the current supply unit.
A measurement target switching unit that causes the voltage measuring unit to measure the voltage between both ends of the selective resistance unit, which is one or a part of the set resistances of the plurality of set resistors, as the measured voltage.
A resistance calculation unit that calculates the measured resistance value Rx by dividing the measured voltage measured by the voltage measuring unit by the current value of the measuring current.
A resistance measuring device including a calibration unit that acquires a reference resistance value Rref represented by the following formula (A) as a calibration target value that is a target of the measured resistance value Rx.
Reference resistance value Rref = Rs × Rt / Rz ・ ・ ・ (A)
However, Rt is the resistance value of the selective resistance portion, and Rz is the resistance value of the entire series resistance portion.
前記複数の設定抵抗のうち、一又は連続する一部の設定抵抗を、前記選択抵抗部として選択する選択部をさらに備える請求項2記載の抵抗測定装置。 The resistance measuring apparatus according to claim 2, further comprising a selection unit for selecting one or a part of the plurality of setting resistances as the selection resistance unit. 前記校正部は、前記測定抵抗値Rxを、下記の式(A)で示される基準抵抗値Rrefに近づけるように、前記抵抗測定装置を校正する請求項2又は3に記載の抵抗測定装置。 The resistance measuring device according to claim 2 or 3, wherein the calibration unit calibrates the resistance measuring device so that the measured resistance value Rx approaches the reference resistance value Rref represented by the following formula (A). 請求項2〜4のいずれか1項に記載の抵抗測定装置と、
前記電流供給切替部によって、前記電流供給部による前記測定用電流の供給先を前記測定対象に切り替えさせ、前記測定対象切替部によって、前記電圧測定部による前記測定電圧の測定先を前記測定対象に切り替えさせる切替制御部と、
前記抵抗算出部によって算出された測定抵抗値Rxに基づいて、前記測定対象である基板の検査を行う基板検査部とを備える基板検査装置。
The resistance measuring device according to any one of claims 2 to 4,
The current supply switching unit switches the supply destination of the measurement current by the current supply unit to the measurement target, and the measurement target switching unit switches the measurement destination of the measurement voltage by the voltage measurement unit to the measurement target. Switching control unit to switch and
A substrate inspection device including a substrate inspection unit that inspects the substrate to be measured based on the measured resistance value Rx calculated by the resistance calculation unit.
それぞれが予め設定された抵抗値を有する複数の設定抵抗が直列接続された直列抵抗部と予め設定された基礎抵抗値Rsを有する基礎抵抗とが並列接続された基準抵抗本体部と、
前記基礎抵抗の両端に接続され、測定用電流の入力を受け付けるための一対の電流入力端子と、
前記複数の設定抵抗相互間の接続点のうち少なくとも三か所にそれぞれ接続され、基準抵抗値Rrefに対応する電圧を測定するための電圧測定用端子とを備える基準抵抗器。
A reference resistance main unit in which a series resistance unit in which a plurality of set resistors each having a preset resistance value are connected in series and a basic resistance unit having a preset basic resistance value Rs are connected in parallel, and
A pair of current input terminals connected to both ends of the basic resistor to receive the input of measurement current,
A reference resistor that is connected to at least three of the connection points between the plurality of set resistors and includes a voltage measuring terminal for measuring a voltage corresponding to the reference resistance value Rref.
前記基礎抵抗及び前記複数の設定抵抗は、銅よりも小さい抵抗温度係数を有する請求項6記載の基準抵抗器。 The reference resistor according to claim 6, wherein the basic resistor and the plurality of set resistors have a temperature coefficient of resistance smaller than that of copper.
JP2017186640A 2017-09-27 2017-09-27 Calibration method of resistance measuring device, resistance measuring device, board inspection device, and reference resistor Active JP6972843B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017186640A JP6972843B2 (en) 2017-09-27 2017-09-27 Calibration method of resistance measuring device, resistance measuring device, board inspection device, and reference resistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017186640A JP6972843B2 (en) 2017-09-27 2017-09-27 Calibration method of resistance measuring device, resistance measuring device, board inspection device, and reference resistor

Publications (2)

Publication Number Publication Date
JP2019060767A JP2019060767A (en) 2019-04-18
JP6972843B2 true JP6972843B2 (en) 2021-11-24

Family

ID=66178145

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017186640A Active JP6972843B2 (en) 2017-09-27 2017-09-27 Calibration method of resistance measuring device, resistance measuring device, board inspection device, and reference resistor

Country Status (1)

Country Link
JP (1) JP6972843B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102279949B1 (en) * 2019-12-09 2021-07-22 한국표준과학연구원 Direct current low current meter calibration using high resistance
JP7371532B2 (en) * 2020-02-28 2023-10-31 ニデックアドバンステクノロジー株式会社 Calibration jig
CN113484811B (en) * 2021-05-26 2023-12-26 中国电力科学研究院有限公司 Self-calibration method and system for direct-current resistor voltage divider
WO2023249094A1 (en) * 2022-06-24 2023-12-28 日置電機株式会社 Measurement device and standard resistor

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02287163A (en) * 1989-04-27 1990-11-27 Matsushita Electric Ind Co Ltd Measuring method for resistance value
AU1863895A (en) * 1994-03-02 1995-09-18 Industrial Research Limited A resistance network
JP3189866B2 (en) * 1995-12-04 2001-07-16 横河電機株式会社 Resistance meter calibration device
JP2001056309A (en) * 1999-08-20 2001-02-27 Tic Keisokuki Kogyo Kk Conductivity detection electrode and conductivity measuring apparatus using the same
JP2012149973A (en) * 2011-01-19 2012-08-09 Furukawa Battery Co Ltd:The Internal resistance measurement value calibration circuit of charge element
JP2015055516A (en) * 2013-09-11 2015-03-23 日置電機株式会社 Substrate inspection device and standard

Also Published As

Publication number Publication date
JP2019060767A (en) 2019-04-18

Similar Documents

Publication Publication Date Title
JP6972843B2 (en) Calibration method of resistance measuring device, resistance measuring device, board inspection device, and reference resistor
CN109557376B (en) Resistance measuring device, substrate inspection device, and resistance measuring method
US10175284B2 (en) Circuit board testing apparatus and circuit board testing method
TWI652491B (en) Inspection jig, substrate inspection device, and substrate inspection method
US9200968B2 (en) On-chip temperature sensor using interconnect metal
KR20120139795A (en) Measurement device and measurement method
US6300757B1 (en) Procedure for the calibration of a measuring device
US20110156730A1 (en) Chip-based prober for high frequency measurements and methods of measuring
JP6547559B2 (en) Circuit board and method of measuring impedance of circuit board
EP1655612A1 (en) Universal test fixture
US10488437B2 (en) Electronics tester with output circuits operable in voltage compensated power mode, driver mode or current compensated power mode
CN108693388B (en) Kelvin connection with positioning accuracy
JP2764517B2 (en) Chip resistor, and current detection circuit and current detection method using the same
JP2007165365A (en) Semiconductor device and its testing method
TWI650568B (en) Test system and method for testing an integrated circuit and a circuit board including the integrated circuit
JP2005049314A (en) Probing test method and probe condition detector
KR101292047B1 (en) Testing apparaus for carbon resistor of pcb
JP2007333438A (en) Characteristic measuring apparatus
JP4911598B2 (en) Insulation inspection device and insulation inspection method
KR0166322B1 (en) Standard resistor of ultra pure water resistivity meter
JP6255833B2 (en) Substrate inspection method and substrate inspection apparatus
CN115485572A (en) Inspection device and inspection method
MATKOWSKI et al. Stability of Solder Joint Resistance After Multiple Aging Processes. Repeatable Multiple Measurements of Solder Joint Resistance
JPH1012422A (en) Manufacture of hybrid ic
TW201445155A (en) Board inspecting apparatus and method for inspecting of the board

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200914

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20200914

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210622

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210706

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20210806

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20210806

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210902

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211005

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211018

R150 Certificate of patent or registration of utility model

Ref document number: 6972843

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150