JP2019060767A - Calibration method of resistance measuring device, resistance measuring device, substrate inspection device, and reference resistor - Google Patents

Calibration method of resistance measuring device, resistance measuring device, substrate inspection device, and reference resistor Download PDF

Info

Publication number
JP2019060767A
JP2019060767A JP2017186640A JP2017186640A JP2019060767A JP 2019060767 A JP2019060767 A JP 2019060767A JP 2017186640 A JP2017186640 A JP 2017186640A JP 2017186640 A JP2017186640 A JP 2017186640A JP 2019060767 A JP2019060767 A JP 2019060767A
Authority
JP
Japan
Prior art keywords
resistance
measurement
unit
resistance value
voltage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017186640A
Other languages
Japanese (ja)
Other versions
JP6972843B2 (en
Inventor
山下 宗寛
Munehiro Yamashita
宗寛 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nidec Read Corp
Original Assignee
Nidec Read Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nidec Read Corp filed Critical Nidec Read Corp
Priority to JP2017186640A priority Critical patent/JP6972843B2/en
Publication of JP2019060767A publication Critical patent/JP2019060767A/en
Application granted granted Critical
Publication of JP6972843B2 publication Critical patent/JP6972843B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Measurement Of Resistance Or Impedance (AREA)

Abstract

To provide a reference resistor capable of easily obtaining a low-resistance reference resistance value, a calibration method of a resistance measuring device, the resistance measuring device, and a substrate inspection device.SOLUTION: A reference resistor 3 includes: a reference resistance body 31 in which a series resistance section 32 in which a plurality of setting resistors R1-R8, RA, RB each of which has a preset resistance value are series-connected and a basic resistor Rstd having a preset basic resistance value Rs are parallel-connected; a pair of current input terminals Ts1 and Ts2 connected with both ends of the basic resistor Rstd for receiving an input of measurement current; and voltage measurement terminals T1-T9 each connected with at least three places of connection points among the plurality of setting resistors R1-R8, RA, RB for measuring voltage corresponding to the reference resistance value Rref.SELECTED DRAWING: Figure 2

Description

本発明は、抵抗を測定する抵抗測定装置の校正方法、抵抗測定装置、これを用いた基板検査装置、及び基準抵抗器に関する。   The present invention relates to a method of calibrating a resistance measurement device that measures a resistance, a resistance measurement device, a substrate inspection device using the same, and a reference resistor.

従来より、抵抗を測定する計測用回路を備えた基板検査装置において、計測用回路の校正に用いるために既知の抵抗を有する基準抵抗器(標準器)を備えたものが知られている(例えば、特許文献1参照。)。特許文献1には、計測部(計測用回路)は四端子法による抵抗測定が可能であること(段落0055)、基準抵抗器となる抵抗R1の一端にピン端子C1,C2を接続し、抵抗R1の他端にピン端子C3,C4を接続すること(段落0093、図11)、及びピン端子C1〜C4を介して計測用回路に抵抗R1を接続し、抵抗R1の抵抗を測定して抵抗R1の既知の抵抗値との差を演算し、計測用回路の校正を行うことが記載されている(段落0095)。   Conventionally, in a substrate inspection apparatus provided with a measurement circuit for measuring resistance, one having a reference resistor (standard unit) having a known resistance for use in calibration of the measurement circuit is known (for example, Patent Document 1). According to Patent Document 1, the measurement unit (measurement circuit) can measure resistance by the four-terminal method (Paragraph 0055), and the pin terminals C1 and C2 are connected to one end of the resistor R1 serving as a reference resistor. Connecting the pin terminals C3 and C4 to the other end of R1 (paragraph 0093, FIG. 11) and connecting the resistor R1 to the measurement circuit via the pin terminals C1 to C4 and measuring the resistance of the resistor R1 It is described that the difference from the known resistance value of R1 is calculated to calibrate the measurement circuit (paragraph 0095).

特開2015−55516号公報JP, 2015-55516, A

ところで、測定対象の抵抗が低抵抗である場合、低抵抗を測定可能な抵抗測定装置を校正するためには、低抵抗の基準抵抗器が必要になる。また、測定対象の抵抗値が変化した場合であっても高精度の抵抗測定を可能にするためには、校正用に、抵抗値の異なる複数の基準抵抗器が必要となる。   By the way, when the resistance to be measured is a low resistance, a low resistance reference resistor is required to calibrate a resistance measurement device capable of measuring the low resistance. Moreover, in order to enable highly accurate resistance measurement even when the resistance value of the measurement object changes, a plurality of reference resistors having different resistance values are required for calibration.

しかしながら、1mΩ程度の低抵抗の抵抗器は入手が困難であり、市販されていても入手可能な抵抗値が限られ、適切な抵抗値を有する基準抵抗器を入手することが困難である。このような低抵抗の基準抵抗器を入手する方法として、例えば銅を適切な長さと太さに加工することで、任意の抵抗値を有する基準抵抗器を作成することが考えられる。しかしながら、銅は電子部品として市販されている抵抗器と比べて抵抗温度係数が大きい。そのため、銅を用いた抵抗器では、抵抗値の精度が低下するという不都合がある。また、所望の抵抗値にするために銅をある程度の太さと長さにする必要があり、銅を用いた低抵抗の抵抗器は、小型化するのが容易でない。   However, a low resistance resistor of about 1 mΩ is difficult to obtain, and even if it is commercially available, the available resistance is limited, and it is difficult to obtain a reference resistor having an appropriate resistance. As a method of obtaining such a low resistance reference resistor, for example, it is conceivable to fabricate a reference resistor having an arbitrary resistance value by processing copper to an appropriate length and thickness. However, copper has a large temperature coefficient of resistance as compared to resistors commercially available as electronic components. Therefore, in the resistor using copper, there is a disadvantage that the accuracy of the resistance value is lowered. In addition, copper needs to have a certain thickness and length in order to achieve a desired resistance value, and a low resistance resistor using copper is not easy to miniaturize.

本発明の目的は、低抵抗の基準抵抗値を得ることが容易な基準抵抗器、抵抗測定装置の校正方法、抵抗測定装置、及び基板検査装置を提供することである。   An object of the present invention is to provide a reference resistor, a method of calibrating a resistance measurement device, a resistance measurement device, and a substrate inspection device which make it easy to obtain a low resistance reference resistance value.

本発明に係る抵抗測定装置の校正方法は、測定対象に供給するための測定用電流を供給する電流供給部と前記測定対象に生じた電圧を測定するための電圧測定部と前記電圧測定部により測定された測定電圧を前記測定用電流の電流値で除算することによって抵抗値を算出する抵抗算出部とを備える抵抗測定装置の校正方法であって、(a)それぞれが予め設定された抵抗値を有する複数の設定抵抗が直列接続された直列抵抗部と、予め設定された基礎抵抗値Rsを有する基礎抵抗とが並列接続された基準抵抗器を準備する工程と、(b)前記基準抵抗器の、前記基礎抵抗に対して前記電流供給部によって前記測定用電流を供給させる工程と、(c)前記複数の設定抵抗のうちの一又は連続する一部の設定抵抗である選択抵抗部の両端間の電圧を、前記電圧測定部によって前記測定電圧として測定させる工程と、(d)前記抵抗算出部によって、前記測定電圧を前記測定用電流の電流値で除算させることによって測定抵抗値Rxを算出させる工程と、(e)下記の式(A)で示される基準抵抗値Rrefを、前記測定抵抗値Rxの目標である校正の目標値として取得する工程とを含む。基準抵抗値Rref=Rs×Rt/Rz ・・・(A)但し、Rtは前記選択抵抗部の抵抗値、Rzは前記直列抵抗部全体の抵抗値である。   A calibration method of a resistance measuring device according to the present invention comprises: a current supply unit for supplying a measurement current to be supplied to a measurement object; a voltage measurement unit for measuring a voltage generated in the measurement object; and the voltage measurement unit A calibration method for a resistance measuring device, comprising: a resistance calculating unit that calculates a resistance value by dividing a measured voltage measured by a current value of the measurement current, wherein (a) each has a preset resistance value. Preparing a reference resistor in which a series resistance unit having a plurality of setting resistances connected in series and a basic resistance having a preset basic resistance value Rs connected in parallel; (b) the reference resistance A step of causing the current supply unit to supply the measurement current to the base resistor, and (c) both ends of the selection resistor which is one or a continuous portion of the plurality of setting resistors. Voltage between (D) calculating a measured resistance value Rx by dividing the measured voltage by the current value of the measurement current by the resistance calculating unit; (E) acquiring a reference resistance value Rref represented by the following formula (A) as a target value of calibration which is a target of the measured resistance value Rx. Reference resistance value Rref = Rs × Rt / Rz (A) where Rt is the resistance value of the selection resistance portion, and Rz is the resistance value of the entire series resistance portion.

また、本発明に係る抵抗測定装置は、測定対象の抵抗を測定する抵抗測定装置であって、前記測定対象に供給するための測定用電流を供給する電流供給部と、前記測定対象に生じた電圧を測定電圧として測定するための電圧測定部と、それぞれが予め設定された抵抗値を有する複数の設定抵抗が直列接続された直列抵抗部と、予め設定された基礎抵抗値Rsを有する基礎抵抗とが並列接続された基準抵抗器と、前記基準抵抗器の前記基礎抵抗に対して、前記電流供給部によって前記測定用電流を供給させる電流供給切替部と、前記複数の設定抵抗のうちの一又は連続する一部の設定抵抗である選択抵抗部の両端間の電圧を、前記電圧測定部によって前記測定電圧として測定させる測定対象切替部と、前記電圧測定部により測定された測定電圧を前記測定用電流の電流値で除算することによって測定抵抗値Rxを算出する抵抗算出部と、下記の式(A)で示される基準抵抗値Rrefを、前記測定抵抗値Rxの目標である校正の目標値として取得する校正部とを備える。基準抵抗値Rref=Rs×Rt/Rz ・・・(A)但し、Rtは前記選択抵抗部の抵抗値、Rzは前記直列抵抗部全体の抵抗値である。   The resistance measuring device according to the present invention is a resistance measuring device for measuring the resistance of a measurement target, and a current supply unit for supplying a measurement current for supplying the measurement target, and the measurement target are generated in the measurement target A voltage measurement unit for measuring a voltage as a measurement voltage, a series resistance unit in which a plurality of setting resistors each having a preset resistance value are connected in series, and a base resistor having a preset base resistance value Rs And a current supply switching unit that causes the current supply unit to supply the measurement current to the base resistance of the reference resistor, and a reference resistor connected in parallel, and one of the plurality of setting resistors Alternatively, a measurement target switching unit that causes the voltage measurement unit to measure the voltage across the selection resistor, which is a continuous partial set resistance, as the measurement voltage by the voltage measurement unit, and the measurement voltage measured by the voltage measurement unit A resistance calculation unit that calculates a measured resistance value Rx by dividing it by the current value of the measurement current, and a reference resistance value Rref represented by the following equation (A), which is a target of the measured resistance value Rx And a calibration unit for acquiring the target value. Reference resistance value Rref = Rs × Rt / Rz (A) where Rt is the resistance value of the selection resistance portion, and Rz is the resistance value of the entire series resistance portion.

これらの構成によれば、基準抵抗器の基礎抵抗に対して電流供給部によって測定用電流が供給され、この測定用電流によって基礎抵抗の両端に生じた電圧が直列抵抗部に印加され、その印加電圧が選択抵抗部によって分圧されて、電圧測定部によって測定電圧として測定される。さらに抵抗算出部によって、電圧測定部により測定された測定電圧が測定用電流の電流値で除算されて測定抵抗値Rxが算出される。その結果、抵抗測定装置の測定結果が正確であれば、得られた測定抵抗値Rxは、式(A)で示される基準抵抗値Rrefと等しくなる。従って、基準抵抗値Rrefを校正の目標値として用いることができる。また、式(A)から、基準抵抗値Rrefは基礎抵抗の基礎抵抗値Rsより小さい。この場合、得ようとする低抵抗の基準抵抗値Rrefよりも抵抗値が大きく、従って入手が容易な基礎抵抗を用いて校正に利用可能な基準抵抗値Rrefを得ることができるので、低抵抗の基準抵抗値を得ることが容易である。   According to these configurations, the measurement current is supplied by the current supply unit to the base resistance of the reference resistor, and the voltage generated across the base resistance is applied to the series resistance unit by the measurement current, and the application is performed. The voltage is divided by the selection resistor unit and measured as a measurement voltage by the voltage measurement unit. Furthermore, the measured voltage measured by the voltage measurement unit is divided by the current value of the measurement current by the resistance calculation unit to calculate the measured resistance value Rx. As a result, if the measurement result of the resistance measurement device is accurate, the obtained measured resistance value Rx becomes equal to the reference resistance value Rref represented by the formula (A). Therefore, the reference resistance value Rref can be used as a calibration target value. Also, from the equation (A), the reference resistance value Rref is smaller than the base resistance value Rs of the base resistance. In this case, since the resistance value is larger than the low resistance reference resistance value Rref to be obtained, and thus the readily available basic resistance can be used to obtain the reference resistance value Rref available for calibration, the low resistance It is easy to obtain the reference resistance value.

また、前記複数の設定抵抗のうち、一又は連続する一部の設定抵抗を、前記選択抵抗部として選択する選択部をさらに備えることが好ましい。   Moreover, it is preferable to further include a selection unit that selects one or a part of the setting resistors of the plurality of setting resistors as the selection resistor unit.

この構成によれば、選択部によって、任意の選択抵抗部を選択することができる。選択抵抗部を選択することができれば、式(A)における選択抵抗部の抵抗値Rzを選択することができる結果、基準抵抗値Rrefを変更することが可能になる。   According to this configuration, the selection unit can select an arbitrary selection resistor unit. If the selection resistance portion can be selected, the resistance value Rz of the selection resistance portion in the formula (A) can be selected. As a result, the reference resistance value Rref can be changed.

また、前記校正部は、前記測定抵抗値Rxを、下記の式(A)で示される基準抵抗値Rrefに近づけるように、前記抵抗測定装置を校正することが好ましい。   Moreover, it is preferable that the said calibration part calibrates the said resistance measurement apparatus so that the said measurement resistance value Rx may be closely approached to reference | standard resistance value Rref shown by following formula (A).

この構成によれば、抵抗測定装置の抵抗測定精度を調整することができる。   According to this configuration, it is possible to adjust the resistance measurement accuracy of the resistance measurement device.

また、本発明に係る基板検査装置は、上述の抵抗測定装置と、前記電流供給切替部によって、前記電流供給部による前記測定用電流の供給先を前記測定対象に切り替えさせ、前記測定対象切替部によって、前記電圧測定部による前記測定電圧の測定先を前記測定対象に切り替えさせる切替制御部と、前記抵抗算出部によって算出された測定抵抗値Rxに基づいて、前記測定対象である基板の検査を行う基板検査部とを備える。   Further, in the substrate inspection apparatus according to the present invention, the measurement target switching unit switches the supply destination of the measurement current by the current supply unit to the measurement target by the above-described resistance measurement device and the current supply switching unit. Testing the substrate to be measured based on the switching control unit that switches the measurement target of the measurement voltage by the voltage measurement unit to the measurement target, and the measured resistance value Rx calculated by the resistance calculation unit. And a substrate inspection unit.

この構成によれば、校正に用いるための低抵抗の基準抵抗値を得ることが容易な基板検査装置を構成することができる。   According to this configuration, it is possible to configure a substrate inspection apparatus that can easily obtain a low resistance reference resistance value to be used for calibration.

また、本発明に係る基準抵抗器は、それぞれが予め設定された抵抗値を有する複数の設定抵抗が直列接続された直列抵抗部と予め設定された基礎抵抗値Rsを有する基礎抵抗とが並列接続された基準抵抗本体部と、前記基礎抵抗の両端に接続され、測定用電流の入力を受け付けるための一対の電流入力端子と、前記複数の設定抵抗相互間の接続点のうち少なくとも三か所にそれぞれ接続され、基準抵抗値Rrefに対応する電圧を測定するための電圧測定用端子とを備える。   Further, in the reference resistor according to the present invention, a series resistor unit in which a plurality of setting resistors each having a preset resistance value is connected in series is connected in parallel with a base resistor having a preset base resistance value Rs. The reference resistor main body, a pair of current input terminals connected to both ends of the base resistor for receiving the input of the measuring current, and at least three of connection points between the plurality of set resistors And a voltage measurement terminal for measuring a voltage corresponding to the reference resistance value Rref.

この構成によれば、一対の電流入力端子によって受け付けられた測定用電流の電流が基準抵抗器の基礎抵抗に対して供給され、この測定用電流によって基礎抵抗の両端に生じた電圧が直列抵抗部に印加され、その印加電圧が複数の設定抵抗によって分圧されて、その分圧電圧が少なくとも三つの電圧測定用端子間に生じる。この電圧を測定用電流で除算すると、式(A)で示される基準抵抗値Rrefとなるから、基準抵抗器を、基準抵抗値Rrefを与える基準器として用いることができる。そして、式(A)から、基準抵抗値Rrefは基礎抵抗の基礎抵抗値Rsより小さい。この場合、得ようとする低抵抗の基準抵抗値Rrefよりも抵抗値が大きく、従って入手が容易な基礎抵抗を用いて基準抵抗値Rrefを得ることができるので、低抵抗の基準抵抗値を得ることが容易である。   According to this configuration, the current of the measurement current received by the pair of current input terminals is supplied to the base resistance of the reference resistor, and the voltage generated across the base resistance by the measurement current is the series resistance portion , And the applied voltage is divided by a plurality of set resistors, and the divided voltage is generated between at least three voltage measurement terminals. Since this voltage is divided by the measurement current to obtain the reference resistance value Rref represented by the equation (A), the reference resistor can be used as a reference device for giving the reference resistance value Rref. And from Formula (A), reference resistance value Rref is smaller than basic resistance value Rs of basic resistance. In this case, since the reference resistance value Rref can be obtained using a basic resistance which is larger in resistance than the low resistance reference resistance value Rref to be obtained and is therefore easily available, the reference resistance value of the low resistance is obtained. It is easy.

また、前記基礎抵抗及び前記複数の設定抵抗は、銅よりも小さい抵抗温度係数を有することが好ましい。   Preferably, the base resistance and the plurality of set resistances have a temperature coefficient of resistance smaller than that of copper.

この構成によれば、銅で作成された低抵抗の基準器よりも、温度安定性に優れた基準抵抗器となる。   This configuration provides a reference resistor with better temperature stability than a low resistance reference made of copper.

また、前記直列抵抗部は、前記複数の設定抵抗として、第一、第二、第三、第四、第五、第六、第七、第八、第九、及び第十抵抗をこの順に含み、前記第一及び第二抵抗の抵抗値は10Ω×N、前記第三〜第八抵抗の抵抗値は30Ω×N、前記第九抵抗の抵抗値は10Ω×N、前記第十抵抗の抵抗値は120Ω×N、Nは自然数であり、前記基礎抵抗値Rsは3.3mΩ+3.3mΩ×10×M、Mは0以上の整数であり、前記第一〜第九抵抗相互間の接続点と、前記第一抵抗の前記第二抵抗とは反対側の端部とに、それぞれ前記電圧測定用端子が接続されていることが好ましい。   In addition, the series resistance unit includes, in this order, the first, second, third, fourth, fifth, sixth, seventh, eighth, ninth and tenth resistances as the plurality of setting resistances. The resistance value of the first and second resistors is 10Ω × N, the resistance value of the third to eighth resistors is 30Ω × N, the resistance value of the ninth resistor is 10Ω × N, and the resistance value of the tenth resistor Is 120 Ω × N, N is a natural number, the base resistance value Rs is 3.3 mΩ + 3.3 mΩ × 10 × M, M is an integer of 0 or more, and a connection point between the first to ninth resistors, It is preferable that the voltage measurement terminal is connected to an end of the first resistor opposite to the second resistor.

この構成によれば、複数の電圧測定用端子のうち二本を選んでその電圧を測定し、測定用電流で除算することにより、二本の選択の仕方に応じて連続する値の基準抵抗値Rrefを得ることができる。   According to this configuration, two of the plurality of voltage measurement terminals are selected to measure the voltage, and by dividing by the measurement current, the reference resistance value of the continuous value according to the manner of the two selection We can get Rref.

このような構成の基準抵抗器、抵抗測定装置の校正方法、抵抗測定装置、及び基板検査装置は、低抵抗の基準抵抗値を得ることが容易である。   With such a reference resistor, a method of calibrating a resistance measurement device, a resistance measurement device, and a substrate inspection device, it is easy to obtain a low resistance reference resistance value.

本発明の一実施形態に係る抵抗測定装置を用いた基板検査装置の構成の一例を示すブロック図である。It is a block diagram which shows an example of a structure of the board | substrate inspection apparatus using the resistance measuring device which concerns on one Embodiment of this invention. 図1に示す基準抵抗器の構成の一例を示す回路図である。It is a circuit diagram which shows an example of a structure of the reference resistor shown in FIG. 予め記憶部に記憶されるルックアップテーブルの一例を示す説明図である。It is explanatory drawing which shows an example of the look-up table previously memorize | stored in a memory | storage part. 二端子測定法による抵抗測定装置を用いた基板検査装置に基準抵抗器を適用した例を示すブロック図である。It is a block diagram which shows the example which applied the reference | standard resistor to the board | substrate inspection apparatus using the resistance measuring device by a 2 terminal measuring method. 基準抵抗器を備えない基板検査装置を本発明の一実施形態に係る校正方法により校正する場合の構成例を示すブロック図である。It is a block diagram showing an example of composition in the case of calibrating a substrate inspection device which does not have a reference resistor with a calibration method concerning one embodiment of the present invention. 本発明の一実施形態に係る抵抗測定装置の校正方法の一例を示すフローチャートである。It is a flowchart which shows an example of the calibration method of the resistance measuring device which concerns on one Embodiment of this invention.

以下、本発明に係る実施形態を図面に基づいて説明する。図1は、本発明の一実施形態に係る抵抗測定装置を用いた基板検査装置1の構成の一例を示すブロック図である。なお、各図において同一の符号を付した構成は、同一の構成であることを示し、その説明を省略する。   Hereinafter, an embodiment according to the present invention will be described based on the drawings. FIG. 1 is a block diagram showing an example of the configuration of a substrate inspection apparatus 1 using a resistance measurement device according to an embodiment of the present invention. In addition, the structure which attached | subjected the same code | symbol in each figure shows that it is the same structure, and abbreviate | omits the description.

図1に示す基板検査装置1(抵抗測定装置)は、基準抵抗器3、電流供給部CS、電圧測定部4、電流プローブPc1、電流プローブPc2、検出プローブPv1、検出プローブPv2、切替回路6(電流供給切替部、測定対象切替部)、選択部7、及び制御部5を備えている。基板検査装置1は、基板検査のために抵抗測定を行うから、抵抗測定装置の一例に相当する。   The substrate inspection apparatus 1 (resistance measurement apparatus) shown in FIG. 1 includes a reference resistor 3, a current supply unit CS, a voltage measurement unit 4, a current probe Pc1, a current probe Pc2, a detection probe Pv1, a detection probe Pv2, a switching circuit 6 A current supply switching unit, a measurement target switching unit), a selection unit 7, and a control unit 5 are provided. The substrate inspection apparatus 1 performs resistance measurement for substrate inspection, and thus corresponds to an example of a resistance measurement apparatus.

図1は、検査対象となる基板Aに対して、基板検査装置1の各プローブが接触された状態を示している。基板検査装置1は、いわゆる四端子測定法により、抵抗測定を行うようになっている。基板検査装置1から後述する基板検査部55を除いた部分が抵抗測定装置の一例に相当している。   FIG. 1 shows a state in which each probe of the substrate inspection apparatus 1 is in contact with the substrate A to be inspected. The substrate inspection apparatus 1 is configured to perform resistance measurement by a so-called four-terminal measurement method. The part except board inspection part 55 mentioned below from substrate inspection device 1 is equivalent to an example of resistance measuring device.

検査対象の基板は、例えば半導体パッケージ用のパッケージ基板、インターポーザ基板、フィルムキャリア、プリント配線基板、ガラスエポキシ基板、フレキシブル基板、セラミック多層配線基板等の基板であってもよく、液晶ディスプレイ、EL(Electro-Luminescence)ディスプレイ等のディスプレイ用の電極板や、タッチパネル用等の透明導電板であってもよく、半導体ウェハ、半導体チップ、CSP(Chip size package)等の半導体基板等々種々の基板であってもよい。   The substrate to be inspected may be, for example, a package substrate for a semiconductor package, an interposer substrate, a film carrier, a printed wiring substrate, a glass epoxy substrate, a flexible substrate, a ceramic multilayer wiring substrate, etc. -Luminescence) It may be an electrode plate for displays such as displays, a transparent conductive plate for touch panels, etc., and various substrates such as semiconductor wafers, semiconductor chips, semiconductor substrates such as CSP (Chip size package), etc. Good.

また、検査対象の基板は、半導体チップ等の電子部品が埋め込まれた部品内蔵基板(エンベデッド基板)であってもよい。また、検査対象は基板に限られず、半導体チップ等の電子部品であってもよい。検査対象の基板や電子部品には、配線パターン、パッド、ランド、半田バンプ、及び端子等の検査点が形成されている。   Further, the substrate to be inspected may be a component built-in substrate (embedded substrate) in which electronic components such as semiconductor chips are embedded. The inspection target is not limited to the substrate, and may be an electronic component such as a semiconductor chip. Inspection points such as wiring patterns, pads, lands, solder bumps, terminals and the like are formed on a substrate or an electronic component to be inspected.

図1では、検査対象の基板Aとして半導体パッケージ用のインターポーザ基板の断面図を例示している。基板Aの一方の面には、半導体チップと接続されるチップ側電極A1が複数形成されている。基板Aの他方の面には、半導体チップを外部と接続するための外向電極A2が複数形成されている。   FIG. 1 illustrates a cross-sectional view of an interposer substrate for a semiconductor package as a substrate A to be inspected. A plurality of chip side electrodes A1 connected to the semiconductor chip are formed on one surface of the substrate A. On the other surface of the substrate A, a plurality of outward electrodes A2 for connecting the semiconductor chip to the outside are formed.

各チップ側電極A1と各外向電極A2とは、基板Aの厚み方向を貫通するように形成された配線A3(導体)によってそれぞれ導通接続されている。基板検査装置1は、各配線A3の抵抗値を測定し、検査する。配線A3は測定対象の一例に相当している。以下、電流プローブPc1,Pc2、及び検出プローブPv1,Pv2のことを、単にプローブPc1,Pc2,Pv1,Pv2と記載することがある。   Each chip side electrode A1 and each outward electrode A2 are electrically connected by a wiring A3 (conductor) formed to penetrate through the thickness direction of the substrate A. The substrate inspection apparatus 1 measures and inspects the resistance value of each wiring A3. The wiring A3 corresponds to an example of an object to be measured. Hereinafter, the current probes Pc1 and Pc2 and the detection probes Pv1 and Pv2 may be simply referred to as probes Pc1, Pc2, Pv1 and Pv2.

プローブPc1,Pc2,Pv1,Pv2は、例えば直径が100μm〜200μm程度の弾性(可撓性)を有するワイヤ状の接触子である。電流プローブPc1,Pc2及び検出プローブPv1,Pv2は、例えばタングステン、ハイス鋼(SKH)、ベリリウム銅(Be−Cu)等の金属その他の導電体で形成されている。   The probes Pc1, Pc2, Pv1, and Pv2 are, for example, wire-like contacts having a diameter of about 100 μm to about 200 μm and having elasticity (flexibility). The current probes Pc1 and Pc2 and the detection probes Pv1 and Pv2 are formed of, for example, a metal or other conductor such as tungsten, high-speed steel (SKH), beryllium copper (Be-Cu) or the like.

電流プローブPc1及び検出プローブPv1の先端は、基板Aのチップ側電極A1に接触される。電流プローブPc2及び検出プローブPv2の先端は、チップ側電極A1から離間した位置で外向電極A2に接触される。   The tips of the current probe Pc1 and the detection probe Pv1 are in contact with the tip side electrode A1 of the substrate A. The tips of the current probe Pc2 and the detection probe Pv2 are in contact with the outward electrode A2 at a position separated from the tip side electrode A1.

図1では図示を簡略化してプローブPc1,Pc2,Pv1,Pv2をそれぞれ一つずつ記載しているが、一枚の基板に対し、検査点が数百から数千設定されている場合があり、そのような多数の検査点に対応してプローブPc1,Pc2,Pv1,Pv2がそれぞれ数百から数千設けられている場合がある。   In FIG. 1, although the illustration is simplified and one probe is described for each of the probes Pc1, Pc2, Pv1 and Pv2, there may be cases where several hundreds to several thousand inspection points are set for one substrate, Several hundreds to several thousands of probes Pc1, Pc2, Pv1 and Pv2 may be provided corresponding to such a large number of inspection points.

電流供給部CSは、一定の電流を流す定電流回路である。測定用電流Iの電流値Isは、例えば20mA程度とされている。電流供給部CSは、切替回路6によって選択された電流プローブPc1,Pc2間、又は選択部7を介して基準抵抗器3へ、測定用電流Iを供給する。   The current supply unit CS is a constant current circuit that flows a constant current. The current value Is of the measurement current I is, for example, about 20 mA. The current supply unit CS supplies the measurement current I to the reference resistor 3 between the current probes Pc1 and Pc2 selected by the switching circuit 6, or via the selection unit 7.

電圧測定部4は、検出プローブPv1,Pv2間の電圧、又は後述する基準抵抗器3の選択抵抗端子の電圧を測定する。電圧測定部4は、例えばアナログデジタルコンバータや分圧抵抗等を用いて構成されている。電圧測定部4は、切替回路6によって選択された検出プローブPv1,Pv2間の電圧を測定電圧Vxとして測定し、あるいは選択抵抗端子の電圧を測定電圧Vxとして測定し、測定電圧Vxを示すデータを制御部5へ出力する。   The voltage measurement unit 4 measures the voltage between the detection probes Pv1 and Pv2 or the voltage of the selection resistance terminal of the reference resistor 3 described later. The voltage measurement unit 4 is configured using, for example, an analog-to-digital converter, a voltage dividing resistor, or the like. The voltage measurement unit 4 measures the voltage between the detection probes Pv1 and Pv2 selected by the switching circuit 6 as the measurement voltage Vx, or measures the voltage of the selection resistance terminal as the measurement voltage Vx, and displays data indicating the measurement voltage Vx Output to control unit 5.

基準抵抗器3は、校正のための基準となる基準抵抗値Rrefを提供する。図2は、図1に示す基準抵抗器3の構成の一例を示す回路図である。図2に示す基準抵抗器3は、基準抵抗本体部31と、端子Ts1,Ts2(電流入力端子)と、端子T1,T2,T3,T4,T5,T6,T7,T8,T9(電圧測定用端子)とを備えている。   The reference resistor 3 provides a reference resistance value Rref serving as a reference for calibration. FIG. 2 is a circuit diagram showing an example of the configuration of reference resistor 3 shown in FIG. The reference resistor 3 shown in FIG. 2 includes a reference resistor main body 31, terminals Ts1 and Ts2 (current input terminals), terminals T1, T2, T3, T4, T5, T6, T7, T8 and T9 (for voltage measurement). Terminal) and.

基準抵抗本体部31は、抵抗Rstd(基礎抵抗)と、抵抗R1(第一抵抗),R2(第二抵抗),R3(第三抵抗),R4(第四抵抗),R5(第五抵抗),R6(第六抵抗),R7(第七抵抗),R8(第八抵抗),RA(第九抵抗),RB(第十抵抗)が直列接続された直列抵抗部32との並列回路から構成されている。抵抗R1,R2,R3,R4,R5,R6,R7,R8,RA,RBは、設定抵抗の一例に相当している。   The reference resistor main body 31 includes a resistor Rstd (base resistor) and resistors R1 (first resistor), R2 (second resistor), R3 (third resistor), R4 (fourth resistor), R5 (fifth resistor) , R6 (sixth resistor), R7 (seventh resistor), R8 (seventh resistor), RA (the ninth resistor), and RB (the tenth resistor) are connected in series with a parallel circuit with the series resistor portion 32 It is done. The resistors R1, R2, R3, R4, R5, R6, R7, R8, RA, and RB correspond to an example of setting resistors.

抵抗Rstdの一端に端子Ts1が接続され、抵抗Rstdの他端に端子Ts2が接続されている。抵抗R1の抵抗R2とは反対側の端部に端子T1が接続され、抵抗R1〜R8,RA相互間の接続点に、それぞれ端子T2〜T9が接続されている。抵抗Rstd、及び抵抗R1〜R8,RA,RBの抵抗温度係数は、銅の温度係数よりも小さな値にされている。   The terminal Ts1 is connected to one end of the resistor Rstd, and the terminal Ts2 is connected to the other end of the resistor Rstd. A terminal T1 is connected to an end of the resistor R1 opposite to the resistor R2, and terminals T2 to T9 are connected to connection points between the resistors R1 to R8 and RA, respectively. The resistance temperature coefficients of the resistors Rstd and the resistors R1 to R8, RA, and RB are set to values smaller than the temperature coefficient of copper.

以下、抵抗Rstdの抵抗値をRs、抵抗R1〜R8の抵抗値をR〜R、抵抗RA,RBの抵抗値をRa、Rbと表記する。 Hereinafter, the resistance value of the resistor Rstd is denoted as Rs, the resistance values of the resistors R1 to R8 as R 1 to R 8 , and the resistance values of the resistors RA and RB as Ra and Rb.

切替回路6は、電流供給部CSの接続先を、電流プローブPc1,Pc2と基準抵抗器3との間で切り替え可能にされている。また、切替回路6は、電圧測定部4の接続先を、検出プローブPv1,Pv2と選択部7との間で切り替え可能にされている。   The switching circuit 6 can switch the connection destination of the current supply unit CS between the current probes Pc1 and Pc2 and the reference resistor 3. Further, the switching circuit 6 can switch the connection destination of the voltage measurement unit 4 between the detection probes Pv 1 and Pv 2 and the selection unit 7.

切替回路6は、例えばスイッチ61a,61b,62a,62b,63a,63b,64a,64bを含む複数のスイッチを備えている。これらのスイッチは、例えばトランジスタ等の半導体スイッチや、リレースイッチ等、種々のスイッチング素子である。各スイッチは、例えば制御部5からの制御信号に応じてオン、オフする。   The switching circuit 6 includes, for example, a plurality of switches including switches 61a, 61b, 62a, 62b, 63a, 63b, 64a, 64b. These switches are various switching elements, such as semiconductor switches, such as a transistor, a relay switch, etc., for example. Each switch is turned on / off according to, for example, a control signal from the control unit 5.

具体的には、電流供給部CSの正極(+)は、スイッチ61aの一端とスイッチ61bの一端とに接続され、スイッチ61aの他端が電流プローブPc1に接続され、スイッチ61bの他端が基準抵抗器3の端子Ts1に接続されている。電流供給部CSの負極(−)は、スイッチ62aの一端とスイッチ62bの一端とに接続され、スイッチ62aの他端が電流プローブPc2に接続され、スイッチ62bの他端が基準抵抗器3の端子Ts2に接続されている。   Specifically, the positive electrode (+) of the current supply unit CS is connected to one end of the switch 61a and one end of the switch 61b, the other end of the switch 61a is connected to the current probe Pc1, and the other end of the switch 61b is a reference It is connected to the terminal Ts1 of the resistor 3. The negative terminal (-) of the current supply unit CS is connected to one end of the switch 62a and one end of the switch 62b, the other end of the switch 62a is connected to the current probe Pc2, and the other end of the switch 62b is a terminal of the reference resistor 3 Connected to Ts2.

電圧測定部4の正極側(+)端子は、スイッチ63aの一端とスイッチ63bの一端とに接続され、スイッチ63aの他端が検出プローブPv1に接続され、スイッチ63bの他端が選択部7を介して基準抵抗器3に接続されている。電圧測定部4の負極側(−)端子は、スイッチ64aの一端とスイッチ64bの一端とに接続され、スイッチ64aの他端が検出プローブPv2に接続され、スイッチ64bの他端が選択部7を介して基準抵抗器3に接続されている。   The positive terminal (+) terminal of the voltage measurement unit 4 is connected to one end of the switch 63a and one end of the switch 63b, the other end of the switch 63a is connected to the detection probe Pv1, and the other end of the switch 63b is the selection unit 7 It is connected to the reference resistor 3 via The negative terminal (-) terminal of the voltage measurement unit 4 is connected to one end of the switch 64a and one end of the switch 64b, the other end of the switch 64a is connected to the detection probe Pv2, and the other end of the switch 64b is the selection unit 7 It is connected to the reference resistor 3 via

これにより、スイッチ61a,62aがオン、スイッチ61b,62bがオフされると、測定用電流Iの供給先が、測定対象の配線A3側に切り替えられ、配線A3の抵抗測定可能な状態にされる。一方、スイッチ61a,62aがオフ、スイッチ61b,62bがオンされると、測定用電流Iの供給先が基準抵抗器3の端子Ts1,Ts2側に切り替えられ、校正可能な状態にされる。スイッチ61a,61b,62a,62bは、電流供給切替部の一例に相当している。   Thus, when the switches 61a and 62a are turned on and the switches 61b and 62b are turned off, the destination of the measurement current I is switched to the side of the wiring A3 to be measured, and the resistance of the wiring A3 can be measured. . On the other hand, when the switches 61a and 62a are turned off and the switches 61b and 62b are turned on, the supply destination of the measurement current I is switched to the terminals Ts1 and Ts2 side of the reference resistor 3, and calibration is possible. The switches 61a, 61b, 62a, 62b correspond to an example of the current supply switching unit.

スイッチ63a,64aがオン、スイッチ63b,64bがオフされると、電圧測定部4による測定電圧Vxの測定先が、測定対象の配線A3側に切り替えられ、配線A3の抵抗測定可能な状態にされる。一方、スイッチ63a,64aがオフ、スイッチ63b,64bがオンされると、電圧測定部4による測定電圧Vxの測定先が、選択部7で選択された基準抵抗器3の端子間側に切り替えられ、校正可能な状態にされる。スイッチ63a,63b,64a,64bは、測定対象切替部の一例に相当している。   When the switches 63a and 64a are turned on and the switches 63b and 64b are turned off, the measurement target of the measurement voltage Vx by the voltage measurement unit 4 is switched to the wiring A3 side to be measured, and the resistance of the wiring A3 can be measured. Ru. On the other hand, when the switches 63a and 64a are turned off and the switches 63b and 64b are turned on, the measurement target of the measurement voltage Vx by the voltage measurement unit 4 is switched to the terminal side of the reference resistor 3 selected by the selection unit 7. , Can be calibrated. The switches 63a, 63b, 64a, 64b correspond to an example of the measurement target switching unit.

選択部7は、いわゆるマルチプレクサ回路である。選択部7は、制御部5からの制御信号に応じて端子T1〜T9のうち二端子を選択し、スイッチ63b,64bに接続することによって、選択された二端子間の選択抵抗部を選択する。以下、選択抵抗部の両端に位置する二端子を選択抵抗端子と称する。すなわち、選択抵抗端子間に挟まれた抵抗が、選択抵抗部である。   The selection unit 7 is a so-called multiplexer circuit. Selection unit 7 selects two terminals among terminals T1 to T9 according to a control signal from control unit 5, and selects the selection resistance unit between the selected two terminals by connecting to switches 63b and 64b. . Hereinafter, two terminals located at both ends of the selection resistance portion are referred to as selection resistance terminals. That is, the resistance sandwiched between the selection resistance terminals is the selection resistance portion.

制御部5は、例えば、所定の演算処理を実行するCPU(Central Processing Unit)、データを一時的に記憶するRAM(Random Access Memory)、所定の制御プログラム等を記憶する不揮発性の記憶装置、及びこれらの周辺回路等を備えたいわゆるマイクロコンピュータである。記憶装置は、記憶部56としても用いられる。制御部5は、所定の制御プログラムを実行することによって、切替制御部52、抵抗算出部53、校正部54、及び基板検査部55として機能する。   The control unit 5 includes, for example, a central processing unit (CPU) that executes predetermined arithmetic processing, a random access memory (RAM) that temporarily stores data, a non-volatile storage device that stores a predetermined control program, and the like. It is a so-called microcomputer provided with these peripheral circuits and the like. The storage device is also used as the storage unit 56. The control unit 5 functions as a switching control unit 52, a resistance calculation unit 53, a calibration unit 54, and a board inspection unit 55 by executing a predetermined control program.

図3は、予め記憶部56に記憶されるルックアップテーブルLUTの一例を示す説明図である。図3に示すルックアップテーブルLUTは、図2に示す基準抵抗器3において、抵抗値R,Rを10Ω、抵抗値R〜Rを30Ωとした場合の、選択抵抗端子及び選択抵抗部の抵抗値Rtと、基準抵抗値Rrefとを対応付けている。 FIG. 3 is an explanatory drawing showing an example of the look-up table LUT stored in advance in the storage unit 56. As shown in FIG. The look-up table LUT shown in FIG. 3 corresponds to the selection resistance terminal and the selection resistance when the resistance values R 1 and R 2 are 10 Ω and the resistance values R 3 to R 8 are 30 Ω in the reference resistor 3 shown in FIG. The resistance value Rt of the part is associated with the reference resistance value Rref.

例えば、ルックアップテーブルLUTの「T3−T2:10Ω」との記載は、選択抵抗端子が端子T3,T2であり、端子T3,T2に挟まれた選択抵抗部の抵抗値Rtが10Ωであることを示している。   For example, the description “T3-T2: 10Ω” of the lookup table LUT means that the selection resistance terminals are the terminals T3 and T2, and the resistance value Rt of the selection resistance portion sandwiched between the terminals T3 and T2 is 10Ω. Is shown.

タイプA〜Eは、抵抗値Rs,Ra,Rbの違いによって、異なる基準抵抗値Rrefが得られることを示している。図2に示す基準抵抗器3では、抵抗値Rs,Ra,Rbは固定値であるから、基板検査装置1に備えられている基準抵抗器3のタイプに対応した部分のみをルックアップテーブルLUTとして記憶部56に記憶させておくようにしてもよい。   Types A to E indicate that different reference resistance values Rref can be obtained depending on the difference between the resistance values Rs, Ra, and Rb. In the reference resistor 3 shown in FIG. 2, since the resistance values Rs, Ra, Rb are fixed values, only the portion corresponding to the type of the reference resistor 3 provided in the substrate inspection apparatus 1 is used as the lookup table LUT. You may make it memorize | store in the memory | storage part 56. FIG.

基準抵抗値Rrefと、抵抗Rstdの抵抗値Rs及び選択抵抗部の抵抗値Rtとの間には、略下記の式(A)で示す関係がある。   The reference resistance value Rref, the resistance value Rs of the resistance Rstd, and the resistance value Rt of the selection resistance portion have a relationship substantially indicated by the following formula (A).

基準抵抗値Rref=Rs×Rt/Rz ・・・(A)
但し、Rzは直列抵抗部32全体の抵抗値であり、Rz=R+R+R+R+R+R+R+R+Ra+Rb=330Ωである。ルックアップテーブルLUTは、予め式(A)に基づき計算され、記憶部56に記憶されている。
Reference resistance value Rref = Rs × Rt / Rz (A)
However, Rz is a resistance value of the whole series resistor portion 32, it is Rz = R 1 + R 2 + R 3 + R 4 + R 5 + R 6 + R 7 + R 8 + Ra + Rb = 330Ω. The look-up table LUT is calculated in advance based on the equation (A) and stored in the storage unit 56.

例えば、タイプAで、選択抵抗端子が端子T3,T2であれば、Rs=3.3mΩ、Rt=10Ω、Rz=330Ωであるから、式(A)に代入すると、基準抵抗値Rref=3.3mΩ×10Ω/330Ω=0.1mΩとなり、ルックアップテーブルLUTと一致する。   For example, in the case of type A, if the selection resistance terminal is the terminals T3 and T2, Rs = 3.3 mΩ, Rt = 10 Ω, and Rz = 330 Ω. Therefore, when substituted in equation (A), the reference resistance value Rref = 3. 3 mΩ × 10 Ω / 330 Ω = 0.1 mΩ, which matches the look-up table LUT.

切替制御部52は、測定対象の抵抗測定を行うときは、スイッチ61a,61b,62a,62bによって、電流供給部CSによる測定用電流Iの供給先を基板Aに切り替えさせ、スイッチ63a,63b,64a,64bによって、電圧測定部4による測定電圧Vxの測定先を基板Aに切り替えさせる。以下、この切替状態を測定モードと称する。   The switch control unit 52 switches the supply destination of the measurement current I by the current supply unit CS to the substrate A by the switches 61a, 61b, 62a, 62b when performing resistance measurement of the measurement object, and switches 63a, 63b, The measurement destination of the measurement voltage Vx by the voltage measurement unit 4 is switched to the substrate A by 64 a and 64 b. Hereinafter, this switching state is referred to as a measurement mode.

また、切替制御部52は、抵抗測定の校正を行うときは、スイッチ61a,61b,62a,62bによって、電流供給部CSによる測定用電流Iの供給先を端子Ts1,Ts2(抵抗Rstd)に切り替えさせ、スイッチ63a,63b,64a,64bによって、電圧測定部4による測定電圧の測定先を、選択部7で選択された基準抵抗器3の選択抵抗部に切り替えさせる。以下、この切替状態を校正モードと称する。   When calibration of resistance measurement is performed, the switching control unit 52 switches the supply destination of the measurement current I by the current supply unit CS to the terminals Ts1 and Ts2 (resistor Rstd) by the switches 61a, 61b, 62a and 62b. The switch 63a, 63b, 64a, 64b switches the measurement destination of the voltage measured by the voltage measurement unit 4 to the selection resistance unit of the reference resistor 3 selected by the selection unit 7. Hereinafter, this switching state is referred to as a calibration mode.

これにより、校正モードでは、基準抵抗器3の抵抗Rstd(基礎抵抗)に対して電流供給部CSによって測定用電流Iが供給され(工程(b))、選択抵抗部の両端間の電圧が電圧測定部4によって測定電圧Vxとして測定される(工程(c))。   Thus, in the calibration mode, the current supply unit CS supplies the measurement current I to the resistor Rstd (base resistance) of the reference resistor 3 (step (b)), and the voltage across the selection resistor is a voltage The measurement unit 4 measures the voltage as a measurement voltage Vx (step (c)).

なお、本明細書において、「校正」とは、JIS Z 8103:2000「計測用語」の定義に従い、計器又は測定系の示す値(測定抵抗値Rx)と、標準によって実現される値(基準抵抗値Rref)との間の関係を確定することを意味し、必ずしも基板検査装置1を調整して誤差を修正することは含まない。   In the present specification, “calibration” means the value (measurement resistance value Rx) indicated by the meter or measurement system and the value realized by the standard (reference resistance) according to the definition of “measurement terms” in JIS Z 8103: 2000. It means to establish the relationship between the value Rref) and does not necessarily include adjusting the substrate inspection apparatus 1 to correct the error.

抵抗算出部53は、電圧測定部4によって検出された測定電圧Vxと、測定用電流Iの電流値Isとに基づき、下記の式(1)を用いて測定抵抗値Rxを算出する(工程(d))。
測定抵抗値Rx=Vx/Is ・・・(1)
The resistance calculation unit 53 calculates the measured resistance value Rx using the following equation (1) based on the measured voltage Vx detected by the voltage measurement unit 4 and the current value Is of the measurement current I (step d)).
Measured resistance value Rx = Vx / Is (1)

なお、基板検査装置1(抵抗測定装置)は、測定用電流Iの実際の電流値Isを測定する電流測定部を備え、抵抗算出部53は、電流測定部によって測定された電流値Isと測定電圧Vxとを用いて測定抵抗値Rxを算出してもよい。   The substrate inspection apparatus 1 (resistance measurement apparatus) includes a current measurement unit that measures an actual current value Is of the measurement current I, and the resistance calculation unit 53 measures the current value Is measured by the current measurement unit. The measured resistance value Rx may be calculated using the voltage Vx.

校正部54は、記憶部56に記憶されたルックアップテーブルLUTを参照し、選択部7によって選択される選択抵抗端子に対応する基準抵抗値Rrefを取得する(工程(e))。ルックアップテーブルLUTの基準抵抗値Rrefは、式(A)で示される値とされているから、校正部54は、ルックアップテーブルLUTを参照することによって、式(A)で示される基準抵抗値Rrefを、測定抵抗値Rxの目標である校正の目標値として取得することができる。式(A)によって、校正の目標値である基準抵抗値Rrefが得られる原理については後述する。   The calibration unit 54 refers to the lookup table LUT stored in the storage unit 56, and acquires a reference resistance value Rref corresponding to the selected resistance terminal selected by the selection unit 7 (step (e)). Since the reference resistance value Rref of the look-up table LUT is the value represented by equation (A), the calibration unit 54 refers to the look-up table LUT to obtain the reference resistance value represented by equation (A). Rref can be obtained as a target value of calibration which is a target of the measured resistance value Rx. The principle by which the reference resistance value Rref which is the target value of calibration is obtained by the equation (A) will be described later.

なお、校正部54は、必ずしもルックアップテーブルLUTを参照することによって、基準抵抗値Rrefを取得する例に限らない。校正部54は、実際に式(A)の計算を実行することによって、基準抵抗値Rrefを取得してもよい。   The calibration unit 54 is not necessarily limited to the example of acquiring the reference resistance value Rref by referring to the lookup table LUT. The calibration unit 54 may obtain the reference resistance value Rref by actually performing the calculation of Equation (A).

また、校正部54は、予め設定された、あるいは基板検査装置1に外部から入力された基準抵抗値Rrefをそのまま取得してもよい。そして、校正部54は、上記ルックアップテーブルを参照してその基準抵抗値Rrefと対応する選択抵抗端子を取得し、選択部7によって、その選択抵抗端子に対応する電圧測定用端子を選択させるようにしてもよい。   In addition, the calibration unit 54 may obtain the reference resistance value Rref which is set in advance or input to the substrate inspection apparatus 1 from the outside as it is. Then, the calibration unit 54 refers to the look-up table to obtain the selected resistance terminal corresponding to the reference resistance value Rref, and causes the selection unit 7 to select the voltage measurement terminal corresponding to the selected resistance terminal. You may

校正モードにおいて、抵抗算出部53によって測定抵抗値Rxが算出され、校正部54によって基準抵抗値Rrefが得られたならば、計器又は測定系の示す値(測定抵抗値Rx)と、標準によって実現される値(基準抵抗値Rref)との間の関係が対応付けられて確定されたことになるので、工程(b)〜(e)は、校正に相当する。   In the calibration mode, if the measured resistance value Rx is calculated by the resistance calculation unit 53 and the reference resistance value Rref is obtained by the calibration unit 54, it is realized by the value (measured resistance value Rx) indicated by the meter or measurement system and the standard. Steps (b) to (e) correspond to calibration, since the relationship between the value (reference resistance value Rref) and the value to be calculated (the reference resistance value Rref) are associated and determined.

校正部54は、測定抵抗値Rxを、基準抵抗値Rrefに近づけるように、電流供給部CS、電圧測定部4、又は測定用電流Iの実際の電流値Isを測定する電流測定部等を調整して誤差を修正する工程を実行するようにしてもよい。   The calibration unit 54 adjusts the current supply unit CS, the voltage measurement unit 4, or a current measurement unit that measures the actual current value Is of the measurement current I so that the measured resistance value Rx approaches the reference resistance value Rref. Then, the step of correcting the error may be performed.

あるいは、校正部54は、例えば選択抵抗部(選択抵抗端子)を順次切り替えつつ、工程(b)〜(e)を実行し、各選択抵抗部に対応して得られた測定抵抗値Rxと基準抵抗値Rrefとを対応付ける校正テーブル、あるいは測定抵抗値Rxと基準抵抗値Rrefとの差を測定抵抗値Rxに対応付ける校正テーブルを作成して記憶部56に記憶させてもよい。そして、抵抗算出部53は、測定モードにおいて測定抵抗値Rxを算出した後、校正テーブルを参照してその測定抵抗値Rxに対応付けられた基準抵抗値Rref又は差に基づいて測定抵抗値Rxを補正するようにしてもよい。   Alternatively, the calibration unit 54 executes steps (b) to (e) while sequentially switching, for example, the selection resistance unit (selection resistance terminal), and the measured resistance value Rx obtained for each selection resistance unit and the reference A calibration table for correlating the resistance value Rref or a calibration table for correlating the difference between the measured resistance value Rx and the reference resistance value Rref to the measured resistance value Rx may be created and stored in the storage unit 56. Then, after calculating the measured resistance value Rx in the measurement mode, the resistance calculation unit 53 refers to the calibration table and determines the measured resistance value Rx based on the reference resistance value Rref or the difference associated with the measured resistance value Rx. You may make it correct | amend.

また、校正部54は、測定抵抗値Rxと基準抵抗値Rrefとを含む校正情報を、例えば図略の表示装置に表示させたり、図略の通信回路を用いて外部に送信したりする等して、保守作業者やユーザ等に通知してもよい。校正情報が通知された保守作業者等は、通知された校正情報に基づいて、測定抵抗値Rxを基準抵抗値Rrefに近づけるように基板検査装置1を調整することが可能となる。   Further, the calibration unit 54 causes calibration information including the measured resistance value Rx and the reference resistance value Rref to be displayed, for example, on a display device not shown, or transmitted outside using a communication circuit not shown, etc. May be notified to the maintenance worker or the user. The maintenance worker or the like who has been notified of the calibration information can adjust the substrate inspection apparatus 1 so that the measured resistance value Rx approaches the reference resistance value Rref, based on the notified calibration information.

基板検査部55は、測定モードにおいて、抵抗算出部53によって算出された測定抵抗値Rxに基づき、測定対象である配線A3の検査を行う。具体的には、基板検査部55は、予め記憶部に記憶された判定基準値RRと、測定抵抗値Rxとを比較し、測定抵抗値Rxが判定基準値RRより小さかった場合、その配線A3を良品と判定し、測定抵抗値Rxが判定基準値RR以上であった場合、その配線A3を不良と判定する。   The board inspection unit 55 inspects the wiring A3 to be measured based on the measured resistance value Rx calculated by the resistance calculation unit 53 in the measurement mode. Specifically, the board inspection unit 55 compares the determination reference value RR stored in advance in the storage unit with the measured resistance value Rx, and when the measured resistance value Rx is smaller than the determination reference value RR, the wiring A3 When the measured resistance value Rx is equal to or greater than the judgment reference value RR, the wiring A3 is judged to be defective.

次に、基準抵抗器3を用いて、ルックアップテーブルLUTすなわち式(A)に基づいて校正の目標値である基準抵抗値Rrefが得られる原理について説明する。   Next, the principle of obtaining a reference resistance value Rref which is a target value of calibration based on a look-up table LUT, that is, equation (A), using the reference resistor 3 will be described.

校正モードでは、切替回路6によって、電流供給部CSから出力された電流値Isの測定用電流Iが端子Ts1,Ts2に供給され、抵抗Rstdに流れる。なお、抵抗Rstdと直列抵抗部32とは並列接続されているから、厳密には測定用電流Iは抵抗Rstdと直列抵抗部32とに分流することになる。しかしながら、直列抵抗部32の抵抗値Rzが抵抗Rstdの抵抗値Rsよりも充分大きければ、直列抵抗部32に流れる電流は無視できる。そこで、測定用電流Iはすべて抵抗Rstdを流れるものと近似して説明する。   In the calibration mode, the switch circuit 6 supplies the measurement current I of the current value Is output from the current supply unit CS to the terminals Ts1 and Ts2, and flows to the resistor Rstd. Since the resistor Rstd and the series resistor 32 are connected in parallel, strictly speaking, the measurement current I is divided into the resistor Rstd and the series resistor 32. However, if the resistance value Rz of the series resistance portion 32 is sufficiently larger than the resistance value Rs of the resistance Rstd, the current flowing through the series resistance portion 32 can be ignored. Therefore, all the measuring currents I will be described as flowing through the resistor Rstd.

例えば、ルックアップテーブルLUTに示すタイプAの場合、直列抵抗部32の抵抗値Rz=330Ω、抵抗Rstdの抵抗値Rs=3.3mΩであり、Rz:Rs=100000:1となる。Rz、Rsに流れる電流値は抵抗比の逆比となるから、直列抵抗部32に流れる電流は、抵抗Rstdに流れる電流の1/100000となり、略無視できる。   For example, in the case of type A shown in the look-up table LUT, the resistance value Rz of the series resistor 32 is 330Ω, the resistance value Rs of the resistor Rstd is 3.3 mΩ, and Rz: Rs = 100000: 1. Since the current value flowing to Rz and Rs is an inverse ratio of the resistance ratio, the current flowing to the series resistance portion 32 is 1 / 100,000 of the current flowing to the resistor Rstd and can be substantially ignored.

抵抗Rstdに電流値Isの測定用電流Iが流れると、抵抗Rstdの両端間の電圧Vsは、Vs=Is×Rsとなる。抵抗Rstdと直列抵抗部32とは並列接続されているから、直列抵抗部32にも電圧Vsが印加される。そうすると、二本の選択抵抗端子間に生じる測定電圧Vxは、直列抵抗部32の抵抗値Rzと選択抵抗部の抵抗値Rtとの分圧により、下記の式(2)で表される。
測定電圧Vx=Vs×(Rt/Rz)=Is×Rs×Rt/Rz ・・・(2)
When the measurement current I of the current value Is flows through the resistor Rstd, the voltage Vs across the resistor Rstd is Vs = Is × Rs. Since the resistor Rstd and the series resistor 32 are connected in parallel, the voltage Vs is also applied to the series resistor 32. Then, the measurement voltage Vx generated between the two selection resistance terminals is expressed by the following equation (2) by the division of the resistance value Rz of the series resistance portion 32 and the resistance value Rt of the selection resistance portion.
Measurement voltage Vx = Vs × (Rt / Rz) = Is × Rs × Rt / Rz (2)

ここで、式(A)から、基準抵抗値Rref=Rs×Rt/Rzである。式(2)に式(A)を代入すると、   Here, from equation (A), reference resistance value Rref = Rs × Rt / Rz. Substituting equation (A) into equation (2),

測定電圧Vx=Is×Rref ・・・(3)
となる。
Measurement voltage Vx = Is × Rref (3)
It becomes.

校正モードでは、切替回路6及び選択部7によって、選択抵抗端子が電圧測定部4に接続され、二本の選択抵抗端子間に生じた測定電圧Vxが電圧測定部4で測定される。電圧測定部4で測定された測定電圧Vxから、抵抗算出部53によって、上記式(1)を用いて測定抵抗値Rxが算出される。ここで、式(1)に式(3)を代入すると、下記の式(4)が得られる。
測定抵抗値Rx=Vx/Is=(Is×Rref)/Is=Rref ・・・(4)
In the calibration mode, the selection resistance terminal is connected to the voltage measurement unit 4 by the switching circuit 6 and the selection unit 7, and the measurement voltage Vx generated between the two selection resistance terminals is measured by the voltage measurement unit 4. From the measurement voltage Vx measured by the voltage measurement unit 4, the resistance calculation unit 53 calculates the measurement resistance value Rx using the above equation (1). Here, when equation (3) is substituted into equation (1), the following equation (4) is obtained.
Measured resistance value Rx = Vx / Is = (Is × Rref) / Is = Rref (4)

式(4)から、校正モードにおいて、抵抗算出部53で算出される測定抵抗値Rxは、基準抵抗値Rrefと等しくなる。   From the equation (4), in the calibration mode, the measured resistance value Rx calculated by the resistance calculation unit 53 is equal to the reference resistance value Rref.

すなわち、電流供給部CSから出力される測定用電流Iの電流値Isと、電圧測定部4の検出精度とが正確であれば、基準抵抗器3の、抵抗Rstd(基礎抵抗)に対して電流供給部CSによって測定用電流Iを供給させる工程(b)と、選択抵抗部の両端間の電圧を、電圧測定部4によって測定電圧Vxとして測定させる工程(c)と、抵抗算出部53によって、測定電圧Vxを測定用電流Iの電流値Isで除算させることによって測定抵抗値Rxを算出させる工程(d)とを実行することによって、基準抵抗器3を、等価的に基準抵抗値Rrefを有する基準抵抗体として利用できることがわかる。   That is, if the current value Is of the measurement current I output from the current supply unit CS and the detection accuracy of the voltage measurement unit 4 are accurate, the current relative to the resistance Rstd (base resistance) of the reference resistor 3 The step (b) of supplying the measurement current I by the supply unit CS, the step (c) of measuring the voltage between both ends of the selection resistance unit as the measurement voltage Vx by the voltage measurement unit 4, and the resistance calculation unit 53 By performing step (d) of calculating the measured resistance value Rx by dividing the measured voltage Vx by the current value Is of the measurement current I, the reference resistor 3 equivalently has the reference resistance value Rref. It can be seen that it can be used as a reference resistor.

従って、電流供給部CS、電圧測定部4、及び抵抗算出部53を含む抵抗測定回路系の測定精度が正確であれば、校正モードにおいて抵抗算出部53で得られる測定抵抗値Rxは、式(A)で示される基準抵抗値Rref、すなわちルックアップテーブルLUTで示される基準抵抗値Rrefと一致するはずであるから、校正部54は、基準抵抗値Rrefを校正の目標値として用いることができる。   Therefore, if the measurement accuracy of the resistance measurement circuit system including the current supply unit CS, the voltage measurement unit 4 and the resistance calculation unit 53 is accurate, the measured resistance value Rx obtained by the resistance calculation unit 53 in the calibration mode is Since the reference resistance value Rref shown by A), that is, the reference resistance value Rref shown by the look-up table LUT should match, the calibration unit 54 can use the reference resistance value Rref as a calibration target value.

ここで、式(A)から、基準抵抗値Rref=Rs×Rt/Rzであるから、分圧比(Rt/Rz)によって、抵抗Rstdの抵抗値Rsよりも小さな基準抵抗値Rrefを得ることができる。   Here, according to the equation (A), since the reference resistance value Rref = Rs × Rt / Rz, the reference resistance value Rref smaller than the resistance value Rs of the resistor Rstd can be obtained by the voltage division ratio (Rt / Rz). .

例えば、図3に示すタイプAのように、抵抗Rstdとして抵抗値Rsが3.3mΩの抵抗を一つ用いれば、抵抗R1〜R8,RA,RBは分圧に用いられるだけなので、市場で入手が容易な抵抗値、例えば10〜120Ωの抵抗を用いることができる。その結果、低抵抗の3.3mΩの抵抗Rstdを一つと、入手容易な抵抗値範囲の抵抗を用いて基準抵抗器3を構成することができる。   For example, as in the type A shown in FIG. 3, if one resistor having a resistance value Rs of 3.3 mΩ is used as the resistor Rstd, the resistors R1 to R8, RA, and RB are only used for voltage division, A resistance value easy to use, for example, a resistance of 10 to 120 Ω can be used. As a result, it is possible to configure the reference resistor 3 using one low-resistance 3.3 mΩ resistor Rstd and a resistor in the readily available resistance value range.

また、基準抵抗器3によれば、3.3mΩの抵抗Rstdよりもさらに低抵抗であるために市場での入手が困難な、0.1mΩ〜2.0mΩの基準抵抗値Rrefを、入手が容易な抵抗値の抵抗R1〜R8,RA,RB、及び抵抗Rstdを組み合わせることによって得ることができるので、低抵抗の基準抵抗値Rrefを得ることが容易となる。   Also, according to the reference resistor 3, it is easy to obtain a reference resistance value Rref of 0.1 mΩ to 2.0 mΩ, which is difficult to obtain in the market because the resistance is lower than the 3.3 mΩ resistance Rstd. It can be obtained by combining the resistances R1 to R8, RA, RB, and the resistance Rstd of various resistance values, so it becomes easy to obtain the low resistance reference resistance value Rref.

また、0.2mΩのような低抵抗の特殊な抵抗は、入手困難であるのみならず、入手できたとしても高価である可能性が高い。一方、抵抗R1〜R8,RA,RB,Rstdは、0.2mΩのような特殊な抵抗よりも入手が容易で安価である可能性が高く、従って、このような特殊な抵抗を用いる場合よりも基準抵抗器3の方が低コストにできる可能性がある。   Also, low resistance special resistors such as 0.2 mΩ are not only difficult to obtain, but also likely to be expensive if available. On the other hand, the resistors R1 to R8, RA, RB, Rstd are likely to be more readily available and less expensive than special resistors such as 0.2 mΩ, so they are more likely to be used than when such special resistors are used. There is a possibility that the cost of the reference resistor 3 can be reduced.

また、基準抵抗器3は、複数の電圧測定用端子T1〜T9を備え、これらの中から選択抵抗端子を選択することによって、複数種類の基準抵抗値Rrefを得ることができる。従って、抵抗値の異なる複数の基準抵抗を備える必要がなく、利便性が向上する。また、複数の基準抵抗を備えるよりも、基準抵抗器3の方が低コストにできる可能性がある。   Further, the reference resistor 3 includes a plurality of voltage measurement terminals T1 to T9, and a plurality of reference resistance values Rref can be obtained by selecting a selection resistance terminal from among these. Therefore, it is not necessary to provide a plurality of reference resistors having different resistance values, and the convenience is improved. Also, there is a possibility that the reference resistor 3 can be lower in cost than providing a plurality of reference resistors.

例えば、図3に示すタイプA〜Eでは、抵抗値Rsを10倍ずつ大きくすることによって、タイプAでは、0.1mΩ〜2.0mΩまで0.1mΩ刻みの基準抵抗値Rrefが得られ、タイプBでは、1mΩ〜20mΩまで1mΩ刻みの基準抵抗値Rrefが得られ、以下、タイプC,D,Eでは10倍ずつ大きな基準抵抗値Rrefが得られ、抵抗値Rsを変えるだけで所望の基準抵抗値Rrefが得られるので、利便性が高い。   For example, in types A to E shown in FIG. 3, by increasing the resistance value Rs by 10 times, in type A, reference resistance values Rref in 0.1 mΩ increments are obtained from 0.1 mΩ to 2.0 mΩ, In B, the reference resistance value Rref in 1 mΩ steps is obtained from 1 mΩ to 20 mΩ, and in the following types C, D and E, a 10-fold larger reference resistance value Rref is obtained, and the desired reference resistance is obtained simply by changing the resistance value Rs. Since the value Rref is obtained, the convenience is high.

このように、連続する値の基準抵抗値Rrefが得られる基準抵抗器3は、抵抗R1,R2の抵抗値R,Rを10Ω×N、抵抗R3〜R8の抵抗値R〜Rを30Ω×N、抵抗RAの抵抗値Raを10Ω×N、抵抗RBの抵抗値Rbを120Ω×N、Nは自然数とし、抵抗Rstdの抵抗値Rsを3.3mΩ+3.3mΩ×10×M、Mは0以上の整数とすることによって得られる。 Thus, the reference resistor 3 from which the reference resistance value Rref of continuous values is obtained is 10 Ω × N of the resistance values R 1 and R 2 of the resistors R 1 and R 2, and the resistance values R 3 to R 8 of the resistors R 3 to R 8. Is 30Ω × N, resistance Ra of resistor RA is 10Ω × N, resistance Rb of resistor RB is 120Ω × N, N is a natural number, and resistance Rs of resistor Rstd is 3.3mΩ + 3.3mΩ × 10 × M, M Is obtained by making it an integer of 0 or more.

また、銅を加工して基準抵抗器を作成した場合、銅は抵抗温度係数が大きいために温度変化に起因する抵抗値の変動が生じ、抵抗値が不安定になる。一方、基準抵抗器3の場合、銅を用いずに、銅より遙かに抵抗温度係数の小さい市販の抵抗器を組み合わせて作成できるので、銅を加工して基準抵抗器を作成した場合よりも遙かに安定性の高い基準抵抗を容易に得ることができる。例えば、銅の温度係数が0.00393[1/℃]であるのに対し、例えばAlpha Electronics社製MPPシリーズ超精密チップ抵抗器では抵抗温度係数が0.2×10−6/℃程度であり、例えばパナソニック(株)社製低抵抗金属板抵抗器ERJM03Nでは抵抗温度係数が100×10−6/℃程度である。 In addition, when copper is processed to produce a reference resistor, copper has a large temperature coefficient of resistance, which causes a change in resistance due to temperature change, resulting in unstable resistance. On the other hand, in the case of the reference resistor 3, it can be made by combining a commercially available resistor having a resistance temperature coefficient much smaller than that of copper without using copper. A much more stable reference resistance can be easily obtained. For example, while the temperature coefficient of copper is 0.00393 [1 / ° C.], for example, in the case of MPP series ultra-precision chip resistors manufactured by Alpha Electronics, the temperature coefficient of resistance is about 0.2 × 10 −6 / ° C. For example, in the case of low resistance metal plate resistor ERJM03N manufactured by Panasonic Corporation, the temperature coefficient of resistance is approximately 100 × 10 −6 / ° C.

また、小さなチップ抵抗器が市販されているので、銅で抵抗器を構成する場合よりも小型化が容易である。また、市販の抵抗器を入手すればよいので、銅を加工するよりもリードタイムや加工費が安くなる可能性が高い。   In addition, since small chip resistors are commercially available, miniaturization is easier than when copper resistors are used. In addition, since it is sufficient to obtain a commercially available resistor, there is a high possibility that lead time and processing cost will be cheaper than processing copper.

なお、四端子測定法で抵抗測定を行う基板検査装置1に基準抵抗器3を備える例を示したが、例えば図4に示すように、電流プローブPc1と検出プローブPv1との代わりに一つのプローブPr1を備え、電流プローブPc2と検出プローブPv2との代わりに一つのプローブPr2を備え、一つのプローブで電流供給と電圧測定とを兼ねる二端子測定法を行う基板検査装置1aの場合であっても、基準抵抗器3による校正を行うことができる。   In addition, although the example provided with the reference resistance 3 in the board | substrate inspection apparatus 1 which measures resistance by a four-terminal measurement method was shown, for example, as shown in FIG. 4, one probe instead of current probe Pc1 and detection probe Pv1. Even in the case of the substrate inspection apparatus 1a which is equipped with Pr1 and equipped with one probe Pr2 instead of the current probe Pc2 and the detection probe Pv2 and which performs a two-terminal measurement method that combines current supply and voltage measurement with one probe. , Calibration by the reference resistor 3 can be performed.

また、基準抵抗器3は、必ずしも基板検査装置1や抵抗測定装置に組み込まれている必要はない。例えば図5に示すように、四端子測定法で抵抗測定を行う基板検査装置1b又は抵抗測定装置であって、基準抵抗器3、切替制御部52、及び校正部54を備えない基板検査装置1b又は抵抗測定装置を、本発明に係る抵抗測定装置の校正方法によって校正することも可能である。   Further, the reference resistor 3 does not necessarily have to be incorporated in the substrate inspection device 1 or the resistance measurement device. For example, as shown in FIG. 5, a substrate inspection apparatus 1b or a resistance measurement apparatus that performs resistance measurement by a four-terminal measurement method and does not include the reference resistor 3, the switching control unit 52, and the calibration unit 54 Alternatively, it is possible to calibrate the resistance measuring device by the method of calibrating the resistance measuring device according to the present invention.

この場合、図5に示すように、基準抵抗器3を準備し(工程(a))、電流プローブPc1,Pc2を基準抵抗器3の端子Ts1,Ts2に接触させて電流供給部CSから測定用電流Iを供給させ(工程(b))、検出プローブPv1,Pv2を基準抵抗器3の選択抵抗端子に接触させて電圧測定部4によって測定電圧Vxを測定させ(工程(c))、抵抗算出部53によって測定抵抗値Rxを算出させ(工程(d))、これを保守作業者等に通知させればよい。保守作業者等は、ルックアップテーブルLUTを参照する等して選択抵抗端子に対応する基準抵抗値Rrefを取得し(工程(e))、測定抵抗値Rxとを対比することによって、基板検査装置1b又は抵抗測定装置を校正することが可能となる。   In this case, as shown in FIG. 5, the reference resistor 3 is prepared (step (a)), and the current probes Pc1, Pc2 are brought into contact with the terminals Ts1, Ts2 of the reference resistor 3 to measure from the current supply portion CS. The current I is supplied (step (b)), the detection probes Pv1 and Pv2 are brought into contact with the selection resistance terminal of the reference resistor 3, and the voltage measurement unit 4 measures the measurement voltage Vx (step (c)) The measured resistance value Rx may be calculated by the unit 53 (step (d)), and the maintenance worker may be notified of this. The maintenance worker or the like acquires the reference resistance value Rref corresponding to the selected resistance terminal by referring to the look-up table LUT (step (e)), and compares the measured resistance value Rx with the substrate inspection apparatus. It is possible to calibrate 1b or the resistance measuring device.

図6は、本発明の一実施形態に係る抵抗測定装置の校正方法の一例を示すフローチャートである。まず、基準抵抗器3を準備する(工程(a))。工程(a)には、図1、図4に示すように、基板検査装置1,1a等の抵抗測定装置内に基準抵抗器3を組み込むことや、図5に示すように、基準抵抗器3を、基板検査装置1b等の抵抗測定装置の外部に測定対象として配置することが含まれる。   FIG. 6 is a flowchart showing an example of a method of calibrating a resistance measuring device according to an embodiment of the present invention. First, the reference resistor 3 is prepared (step (a)). In the step (a), as shown in FIGS. 1 and 4, the reference resistor 3 is incorporated in a resistance measuring device such as the substrate inspection device 1 or 1a, or as shown in FIG. Is disposed outside the resistance measuring apparatus such as the substrate inspection apparatus 1b as a measurement target.

次に、基準抵抗器3の抵抗Rstdに対して電流供給部CSによって測定用電流Iを供給させる(工程(b))。工程(b)には、図1、図4に示すように、基板検査装置1,1a等の抵抗測定装置内の内部配線によって抵抗Rstdに測定用電流Iを供給する態様や、図5に示すように、基板検査装置1b等の抵抗測定装置が備える電流プローブPc1,Pc2を介して電流を供給する態様が含まれる。   Next, the measuring current I is supplied to the resistor Rstd of the reference resistor 3 by the current supply unit CS (step (b)). In the step (b), as shown in FIGS. 1 and 4, an aspect in which the measuring current I is supplied to the resistor Rstd by the internal wiring in the resistance measuring device such as the substrate inspection device 1 or 1a, or Thus, an aspect is provided in which the current is supplied through the current probes Pc1 and Pc2 included in the resistance measurement device such as the substrate inspection device 1b.

内部配線によって抵抗Rstdに測定用電流Iを供給する態様では、基準抵抗器3は、必ずしも端子Ts1,Ts2を備える必要はなく、抵抗Rstdの両端に直接配線されていてもよい。   In the aspect in which the measurement current I is supplied to the resistor Rstd by the internal wiring, the reference resistor 3 does not necessarily have to include the terminals Ts1 and Ts2, and may be directly wired across the resistor Rstd.

次に、選択抵抗部の両端間の電圧を、電圧測定部4によって測定電圧Vxとして測定させる(工程(c))。工程(c)には、図1、図4に示すように、基板検査装置1,1a等の抵抗測定装置内の内部配線を介して電圧測定部4を選択抵抗部の両端に接続して測定電圧Vxを測定させる態様や、図5に示すように、基板検査装置1b等の抵抗測定装置が備える検出プローブPv1,Pv2を選択抵抗端子に接触させて測定電圧Vxを測定する態様が含まれる。   Next, the voltage between both ends of the selection resistance portion is measured by the voltage measurement portion 4 as a measurement voltage Vx (step (c)). In the step (c), as shown in FIG. 1 and FIG. 4, the voltage measurement unit 4 is connected to both ends of the selection resistance unit via internal wiring in the resistance measurement device such as the substrate inspection device 1 or 1a. A mode of measuring the voltage Vx and a mode of measuring the measurement voltage Vx by bringing the detection probes Pv1 and Pv2 included in the resistance measuring device such as the substrate inspection apparatus 1b into contact with the selection resistance terminal as shown in FIG.

次に、抵抗算出部53によって、測定電圧Vxを測定用電流Iの電流値Isで除算させることによって測定抵抗値Rxを算出させる(工程(d))。   Next, the measured resistance value Rx is calculated by dividing the measured voltage Vx by the current value Is of the measurement current I by the resistance calculation unit 53 (step (d)).

次に、上記式(A)で示される基準抵抗値Rrefを、測定抵抗値Rxの目標である校正の目標値として取得する(工程(e))。工程(e)には、図1、図4に示すような基板検査装置1,1a等の校正部54が基準抵抗値Rrefを取得する態様や、図5に示すように、基準抵抗器3や校正部54を備えない基板検査装置1b等の抵抗測定装置に測定対象として基準抵抗器3を接続して電流プローブPc1,Pc2及び検出プローブPv1,Pv2を接触させ、保守作業者等が予め作成されたルックアップテーブルLUTを参照するなどして式(A)で示される基準抵抗値Rref、すなわち検出プローブPv1,Pv2を接触させた選択抵抗端子に対応する基準抵抗値Rrefを、測定抵抗値Rxの目標である校正の目標値として取得する態様が含まれる。   Next, the reference resistance value Rref represented by the formula (A) is acquired as a calibration target value that is a target of the measured resistance value Rx (step (e)). In the step (e), a mode in which the calibration unit 54 such as the substrate inspection apparatus 1 or 1a as shown in FIGS. 1 and 4 acquires the reference resistance value Rref, or as shown in FIG. A reference resistor 3 is connected as a measurement target to a resistance measuring apparatus such as a substrate inspection apparatus 1b which does not include the calibration unit 54, and the current probes Pc1 and Pc2 and the detection probes Pv1 and Pv2 are brought into contact with each other. The reference resistance value Rref represented by the equation (A) with reference to the look-up table LUT, ie, the reference resistance value Rref corresponding to the selected resistance terminal with which the detection probes Pv1 and Pv2 are in contact It includes an aspect of acquiring as a target value of calibration which is a target.

以上、工程(a)〜(e)によれば、基準抵抗器3を用いて校正の目標値(基準値)となる基準抵抗値Rrefを取得することができる。   As described above, according to the steps (a) to (e), it is possible to obtain the reference resistance value Rref that is the target value (reference value) of calibration using the reference resistor 3.

なお、設定抵抗として、抵抗R1〜R8,RA,RBの10個の抵抗を用いる例を示したが、設定抵抗は二つ以上であればよい。設定抵抗が少なくとも二つあれば、二つの合計抵抗値をRz、二つのうちから選択された選択抵抗部の抵抗値をRtとすることにより、上述の式(2)において抵抗分圧の効果が得られ、従って式(A)を適用することができる。その結果、抵抗Rstdよりも小さい基準抵抗値Rrefを得ることができるから、低抵抗の基準抵抗値を得ることが容易な基準抵抗器を構成することが可能となる。   In addition, although the example which uses ten resistance of resistance R1-R8, RA, and RB as setting resistance was shown, the setting resistance should just be two or more. If there are at least two setting resistances, the effect of the resistance voltage division is obtained in the above equation (2) by setting two total resistance values as Rz and the resistance value of the selection resistance portion selected from two as Rt. The equation (A) can thus be applied. As a result, since it is possible to obtain a reference resistance value Rref smaller than the resistance Rstd, it becomes possible to configure a reference resistor which is easy to obtain a low resistance reference resistance value.

また、電圧測定用端子の一例として9つの端子T1〜T9を示したが、電圧測定用端子は、複数の設定抵抗相互間の接続点のうち少なくとも三か所にそれぞれ接続されていればよい。当該三か所にそれぞれ接続された三つの電圧測定用端子があれば、少なくとも二種類の選択抵抗部を選択することが可能となる。   Although nine terminals T1 to T9 are shown as an example of the voltage measurement terminals, the voltage measurement terminals may be connected to at least three of the connection points between the plurality of setting resistors. If there are three voltage measurement terminals connected to each of the three locations, it is possible to select at least two types of selection resistor parts.

また、基板検査装置1,1bは、選択部7を備えず、選択抵抗端子(選択抵抗部)が固定的に切替回路6に接続されていてもよい。   Moreover, the board | substrate inspection apparatus 1 and 1b may not be provided with the selection part 7, and the selection resistance terminal (selection resistance part) may be fixed to the switch circuit 6, and may be connected.

また、抵抗R1〜R8,RA,RB,Rstdの抵抗温度係数は、必ずしも銅より小さい例に限らない。抵抗R1〜R8,RA,RB,Rstdの抵抗温度係数が銅以上であった場合であっても、抵抗Rstdよりも小さい基準抵抗値Rrefを得ることができ、従って低抵抗の基準抵抗値を得ることが容易な基準抵抗器を構成することが可能である。   Further, the temperature coefficient of resistance of the resistors R1 to R8, RA, RB, Rstd is not necessarily limited to an example smaller than copper. Even if the resistance temperature coefficient of the resistors R1 to R8, RA, RB, Rstd is higher than copper, it is possible to obtain a reference resistance value Rref smaller than the resistor Rstd, and thus obtain a low resistance reference resistance value. It is possible to construct a reference resistor that is easy to do.

また、基板検査装置1,1a,1bは、基板検査部55を備えない抵抗測定装置として構成されていてもよい。   Further, the substrate inspection apparatus 1, 1 a, 1 b may be configured as a resistance measurement apparatus that does not include the substrate inspection unit 55.

1,1a,1b 基板検査装置(抵抗測定装置)
3 基準抵抗器
4 電圧測定部
5 制御部
6 切替回路(電流供給切替部、測定対象切替部)
7 選択部
31 基準抵抗本体部
32 直列抵抗部
52 切替制御部
53 抵抗算出部
54 校正部
55 基板検査部
56 記憶部
61a,61b,62a,62b スイッチ(電流供給切替部)
63a,63b,64a,64b スイッチ(測定対象切替部)
A 基板
A1 チップ側電極
A2 外向電極
A3 配線(測定対象)
CS 電流供給部
I 測定用電流
Is 電流値(測定用電流Iの電流値)
LUT ルックアップテーブル
Pc1,Pc2 電流プローブ
Pr1,Pr2 プローブ
Pv1,Pv2 検出プローブ
R1〜R8,RA,RB 抵抗(設定抵抗)
RR 判定基準値
Rref 基準抵抗値
Rstd 抵抗(基礎抵抗)
Rs 抵抗値(Rstdの抵抗値)
Rt 抵抗値(選択抵抗部の抵抗値)
Rx 測定抵抗値
Rz 抵抗値(直列抵抗部全体の抵抗値)
T1〜T9 端子(電圧測定用端子)
Ts1,Ts2 端子(電流入力端子)
Vs 電圧(Rstdの両端電圧)
Vx 測定電圧
1, 1a, 1b Substrate inspection device (resistance measuring device)
3 Reference Resistor 4 Voltage Measurement Unit 5 Control Unit 6 Switching Circuit (Current Supply Switching Unit, Measurement Target Switching Unit)
7 selection unit 31 reference resistance main unit 32 series resistance unit 52 switching control unit 53 resistance calculation unit 54 calibration unit 55 substrate inspection unit 56 storage units 61a, 61b, 62a, 62b switches (current supply switching unit)
63a, 63b, 64a, 64b switches (measurement object switching unit)
A Substrate A1 Chip side electrode A2 Outward electrode A3 Wiring (target of measurement)
CS Current supply unit I Measurement current Is Current value (current value of measurement current I)
LUT Look-up table Pc1, Pc2 Current probe Pr1, Pr2 Probe Pv1, Pv2 Detection probe R1 to R8, RA, RB Resistance (setting resistance)
RR judgment reference value Rref reference resistance value Rstd resistance (base resistance)
Rs resistance (resistance of Rstd)
Rt resistance value (resistance value of selection resistance section)
Rx measured resistance value Rz resistance value (resistance value of the whole series resistance section)
T1 to T9 terminals (terminals for voltage measurement)
Ts1 and Ts2 terminals (current input terminals)
Vs voltage (voltage across Rstd)
Vx measurement voltage

Claims (8)

測定対象に供給するための測定用電流を供給する電流供給部と前記測定対象に生じた電圧を測定するための電圧測定部と前記電圧測定部により測定された測定電圧を前記測定用電流の電流値で除算することによって抵抗値を算出する抵抗算出部とを備える抵抗測定装置の校正方法であって、
(a)それぞれが予め設定された抵抗値を有する複数の設定抵抗が直列接続された直列抵抗部と、予め設定された基礎抵抗値Rsを有する基礎抵抗とが並列接続された基準抵抗器を準備する工程と、
(b)前記基準抵抗器の、前記基礎抵抗に対して前記電流供給部によって前記測定用電流を供給させる工程と、
(c)前記複数の設定抵抗のうちの一又は連続する一部の設定抵抗である選択抵抗部の両端間の電圧を、前記電圧測定部によって前記測定電圧として測定させる工程と、
(d)前記抵抗算出部によって、前記測定電圧を前記測定用電流の電流値で除算させることによって測定抵抗値Rxを算出させる工程と、
(e)下記の式(A)で示される基準抵抗値Rrefを、前記測定抵抗値Rxの目標である校正の目標値として取得する工程とを含む抵抗測定装置の校正方法。
基準抵抗値Rref=Rs×Rt/Rz ・・・(A)
但し、Rtは前記選択抵抗部の抵抗値、Rzは前記直列抵抗部全体の抵抗値である。
A current supply unit for supplying a measurement current to be supplied to a measurement object, a voltage measurement unit for measuring a voltage generated in the measurement object, and a measurement voltage measured by the voltage measurement unit as a current of the measurement current A calibration method of a resistance measuring device, comprising: a resistance calculating unit that calculates a resistance value by dividing by a value,
(A) Prepare a reference resistor in which a series resistance section in which a plurality of setting resistances each having a preset resistance value is connected in series and a base resistance having a preset base resistance value Rs are connected in parallel The process to
(B) causing the current supply unit to supply the measurement current to the base resistance of the reference resistor;
(C) causing the voltage measuring unit to measure the voltage across the selection resistor, which is one or a continuous portion of the plurality of setting resistors, as the measurement voltage;
(D) calculating the measured resistance value Rx by dividing the measured voltage by the current value of the measurement current by the resistance calculation unit;
(E) acquiring a reference resistance value Rref represented by the following formula (A) as a target value of calibration which is a target of the measured resistance value Rx: a calibration method of a resistance measurement device.
Reference resistance value Rref = Rs × Rt / Rz (A)
However, Rt is a resistance value of the selection resistance portion, and Rz is a resistance value of the entire series resistance portion.
測定対象の抵抗を測定する抵抗測定装置であって、
前記測定対象に供給するための測定用電流を供給する電流供給部と、
前記測定対象に生じた電圧を測定電圧として測定するための電圧測定部と、
それぞれが予め設定された抵抗値を有する複数の設定抵抗が直列接続された直列抵抗部と、予め設定された基礎抵抗値Rsを有する基礎抵抗とが並列接続された基準抵抗器と、
前記基準抵抗器の前記基礎抵抗に対して、前記電流供給部によって前記測定用電流を供給させる電流供給切替部と、
前記複数の設定抵抗のうちの一又は連続する一部の設定抵抗である選択抵抗部の両端間の電圧を、前記電圧測定部によって前記測定電圧として測定させる測定対象切替部と、
前記電圧測定部により測定された測定電圧を前記測定用電流の電流値で除算することによって測定抵抗値Rxを算出する抵抗算出部と、
下記の式(A)で示される基準抵抗値Rrefを、前記測定抵抗値Rxの目標である校正の目標値として取得する校正部とを備える抵抗測定装置。
基準抵抗値Rref=Rs×Rt/Rz ・・・(A)
但し、Rtは前記選択抵抗部の抵抗値、Rzは前記直列抵抗部全体の抵抗値である。
A resistance measuring device for measuring the resistance of a measurement target,
A current supply unit for supplying a measurement current for supplying the measurement object;
A voltage measurement unit for measuring a voltage generated in the measurement object as a measurement voltage;
A series resistor unit in which a plurality of setting resistors each having a preset resistance value are connected in series, and a reference resistor in which a base resistor having a preset base resistance value Rs is connected in parallel;
A current supply switching unit that causes the current supply unit to supply the measurement current to the base resistance of the reference resistor;
A measurement target switching unit that causes the voltage measurement unit to measure a voltage between both ends of a selection resistance unit that is one or a continuous set resistance of the plurality of setting resistances as the measurement voltage;
A resistance calculation unit that calculates a measured resistance value Rx by dividing the measurement voltage measured by the voltage measurement unit by the current value of the measurement current;
A calibration unit configured to obtain a reference resistance value Rref represented by the following formula (A) as a calibration target value that is a target of the measurement resistance value Rx.
Reference resistance value Rref = Rs × Rt / Rz (A)
However, Rt is a resistance value of the selection resistance portion, and Rz is a resistance value of the entire series resistance portion.
前記複数の設定抵抗のうち、一又は連続する一部の設定抵抗を、前記選択抵抗部として選択する選択部をさらに備える請求項2記載の抵抗測定装置。   The resistance measuring apparatus according to claim 2, further comprising: a selection unit that selects one or a part of the setting resistances among the plurality of setting resistances as the selection resistance unit. 前記校正部は、前記測定抵抗値Rxを、下記の式(A)で示される基準抵抗値Rrefに近づけるように、前記抵抗測定装置を校正する請求項2又は3に記載の抵抗測定装置。   The resistance measuring apparatus according to claim 2 or 3, wherein the calibration unit calibrates the resistance measuring device such that the measured resistance value Rx approaches a reference resistance value Rref represented by the following formula (A). 請求項2〜4のいずれか1項に記載の抵抗測定装置と、
前記電流供給切替部によって、前記電流供給部による前記測定用電流の供給先を前記測定対象に切り替えさせ、前記測定対象切替部によって、前記電圧測定部による前記測定電圧の測定先を前記測定対象に切り替えさせる切替制御部と、
前記抵抗算出部によって算出された測定抵抗値Rxに基づいて、前記測定対象である基板の検査を行う基板検査部とを備える基板検査装置。
The resistance measuring device according to any one of claims 2 to 4,
The current supply switching unit switches the supply destination of the measurement current by the current supply unit to the measurement target, and the measurement target switching unit sets the measurement target of the measurement voltage by the voltage measurement unit as the measurement target A switching control unit for switching;
And a substrate inspection unit that inspects the substrate to be measured based on the measured resistance value Rx calculated by the resistance calculation unit.
それぞれが予め設定された抵抗値を有する複数の設定抵抗が直列接続された直列抵抗部と予め設定された基礎抵抗値Rsを有する基礎抵抗とが並列接続された基準抵抗本体部と、
前記基礎抵抗の両端に接続され、測定用電流の入力を受け付けるための一対の電流入力端子と、
前記複数の設定抵抗相互間の接続点のうち少なくとも三か所にそれぞれ接続され、基準抵抗値Rrefに対応する電圧を測定するための電圧測定用端子とを備える基準抵抗器。
A reference resistor main body portion in which a series resistance portion in which a plurality of set resistances each having a preset resistance value are connected in series and a base resistance having a preset base resistance value Rs are connected in parallel;
A pair of current input terminals connected to both ends of the base resistor for receiving an input of a measurement current;
A reference resistor comprising: voltage measurement terminals respectively connected to at least three of connection points between the plurality of setting resistors and for measuring a voltage corresponding to a reference resistance value Rref.
前記基礎抵抗及び前記複数の設定抵抗は、銅よりも小さい抵抗温度係数を有する請求項6記載の基準抵抗器。   The reference resistor of claim 6, wherein the base resistance and the plurality of set resistances have a resistance temperature coefficient smaller than copper. 前記直列抵抗部は、前記複数の設定抵抗として、第一、第二、第三、第四、第五、第六、第七、第八、第九、及び第十抵抗をこの順に含み、
前記第一及び第二抵抗の抵抗値は10Ω×N、前記第三〜第八抵抗の抵抗値は30Ω×N、前記第九抵抗の抵抗値は10Ω×N、前記第十抵抗の抵抗値は120Ω×N、Nは自然数であり、
前記基礎抵抗値Rsは3.3mΩ+3.3mΩ×10×M、Mは0以上の整数であり、
前記第一〜第九抵抗相互間の接続点と、前記第一抵抗の前記第二抵抗とは反対側の端部とに、それぞれ前記電圧測定用端子が接続されている請求項6又は7に記載の基準抵抗器。
The series resistor unit includes first, second, third, fourth, fifth, sixth, seventh, eighth, ninth and tenth resistors in this order as the plurality of setting resistors,
The resistance of the first and second resistors is 10Ω × N, the resistance of the third to eighth resistors is 30Ω × N, the resistance of the ninth resistor is 10Ω × N, and the resistance of the tenth resistor is 120 Ω × N, N is a natural number,
The base resistance value Rs is 3.3 mΩ + 3.3 mΩ × 10 × M, and M is an integer of 0 or more,
The voltage measurement terminal is connected to the connection point between the first to ninth resistances and the end of the first resistance opposite to the second resistance. Reference resistor described.
JP2017186640A 2017-09-27 2017-09-27 Calibration method of resistance measuring device, resistance measuring device, board inspection device, and reference resistor Active JP6972843B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017186640A JP6972843B2 (en) 2017-09-27 2017-09-27 Calibration method of resistance measuring device, resistance measuring device, board inspection device, and reference resistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017186640A JP6972843B2 (en) 2017-09-27 2017-09-27 Calibration method of resistance measuring device, resistance measuring device, board inspection device, and reference resistor

Publications (2)

Publication Number Publication Date
JP2019060767A true JP2019060767A (en) 2019-04-18
JP6972843B2 JP6972843B2 (en) 2021-11-24

Family

ID=66178145

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017186640A Active JP6972843B2 (en) 2017-09-27 2017-09-27 Calibration method of resistance measuring device, resistance measuring device, board inspection device, and reference resistor

Country Status (1)

Country Link
JP (1) JP6972843B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210072871A (en) * 2019-12-09 2021-06-18 한국표준과학연구원 Direct current low current meter calibration using high resistance
CN113484811A (en) * 2021-05-26 2021-10-08 中国电力科学研究院有限公司 Self-calibration method and system for direct-current resistor voltage divider
JP7371532B2 (en) 2020-02-28 2023-10-31 ニデックアドバンステクノロジー株式会社 Calibration jig
WO2023249094A1 (en) * 2022-06-24 2023-12-28 日置電機株式会社 Measurement device and standard resistor

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02287163A (en) * 1989-04-27 1990-11-27 Matsushita Electric Ind Co Ltd Measuring method for resistance value
JPH09159704A (en) * 1995-12-04 1997-06-20 Yokogawa Electric Corp Apparatus for calibrating resistance meter
JPH10502775A (en) * 1994-03-02 1998-03-10 インダストリアル リサーチ リミテッド Resistance network
JP2001056309A (en) * 1999-08-20 2001-02-27 Tic Keisokuki Kogyo Kk Conductivity detection electrode and conductivity measuring apparatus using the same
JP2012149973A (en) * 2011-01-19 2012-08-09 Furukawa Battery Co Ltd:The Internal resistance measurement value calibration circuit of charge element
JP2015055516A (en) * 2013-09-11 2015-03-23 日置電機株式会社 Substrate inspection device and standard

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02287163A (en) * 1989-04-27 1990-11-27 Matsushita Electric Ind Co Ltd Measuring method for resistance value
JPH10502775A (en) * 1994-03-02 1998-03-10 インダストリアル リサーチ リミテッド Resistance network
JPH09159704A (en) * 1995-12-04 1997-06-20 Yokogawa Electric Corp Apparatus for calibrating resistance meter
JP2001056309A (en) * 1999-08-20 2001-02-27 Tic Keisokuki Kogyo Kk Conductivity detection electrode and conductivity measuring apparatus using the same
JP2012149973A (en) * 2011-01-19 2012-08-09 Furukawa Battery Co Ltd:The Internal resistance measurement value calibration circuit of charge element
JP2015055516A (en) * 2013-09-11 2015-03-23 日置電機株式会社 Substrate inspection device and standard

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210072871A (en) * 2019-12-09 2021-06-18 한국표준과학연구원 Direct current low current meter calibration using high resistance
KR102279949B1 (en) * 2019-12-09 2021-07-22 한국표준과학연구원 Direct current low current meter calibration using high resistance
JP7371532B2 (en) 2020-02-28 2023-10-31 ニデックアドバンステクノロジー株式会社 Calibration jig
CN113484811A (en) * 2021-05-26 2021-10-08 中国电力科学研究院有限公司 Self-calibration method and system for direct-current resistor voltage divider
CN113484811B (en) * 2021-05-26 2023-12-26 中国电力科学研究院有限公司 Self-calibration method and system for direct-current resistor voltage divider
WO2023249094A1 (en) * 2022-06-24 2023-12-28 日置電機株式会社 Measurement device and standard resistor

Also Published As

Publication number Publication date
JP6972843B2 (en) 2021-11-24

Similar Documents

Publication Publication Date Title
JP6972843B2 (en) Calibration method of resistance measuring device, resistance measuring device, board inspection device, and reference resistor
US10175284B2 (en) Circuit board testing apparatus and circuit board testing method
US9140734B2 (en) Measuring apparatus and measuring method
CN101957243B (en) High-precision temperature measuring device and method
US9200968B2 (en) On-chip temperature sensor using interconnect metal
TWI793179B (en) Resistance measuring device, substrate inspection device, and resistance measuring method
CN107229028A (en) Method and battery sensor for determining load current
US6300757B1 (en) Procedure for the calibration of a measuring device
KR100974650B1 (en) Resistance Measuring Apparatus and Method
JP2006126197A (en) General-purpose testing tool
US10488437B2 (en) Electronics tester with output circuits operable in voltage compensated power mode, driver mode or current compensated power mode
CN108693388B (en) Kelvin connection with positioning accuracy
JP2007165365A (en) Semiconductor device and its testing method
CN116325104A (en) Semiconductor test apparatus and semiconductor test method
TW201428305A (en) Inspection method for test jig
TWI650568B (en) Test system and method for testing an integrated circuit and a circuit board including the integrated circuit
CN221007723U (en) Shunt type current sensor
JP7321524B2 (en) Reference Junction Compensator and Temperature Measuring Device
JP2011059085A (en) Semiconductor device and method of inspecting the same
JPH04315062A (en) Method for measuring resistance value of resistor
KR0166322B1 (en) Standard resistor of ultra pure water resistivity meter
WO2017004242A1 (en) Temperature sensing device and method for making same
Drumea et al. Study on Techniques for the Increase of the Current Carrying Capability of the PCB Tracks
CN113777471A (en) Method for calibrating relative voltage offset error of measurement module
JP2024066989A (en) Semiconductor device inspection method, semiconductor device and probe card

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200914

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20200914

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210622

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210706

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20210806

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20210806

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210902

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211005

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211018

R150 Certificate of patent or registration of utility model

Ref document number: 6972843

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150