WO2023249094A1 - Measurement device and standard resistor - Google Patents

Measurement device and standard resistor Download PDF

Info

Publication number
WO2023249094A1
WO2023249094A1 PCT/JP2023/023200 JP2023023200W WO2023249094A1 WO 2023249094 A1 WO2023249094 A1 WO 2023249094A1 JP 2023023200 W JP2023023200 W JP 2023023200W WO 2023249094 A1 WO2023249094 A1 WO 2023249094A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal
impedance
circuit
internal
value
Prior art date
Application number
PCT/JP2023/023200
Other languages
French (fr)
Japanese (ja)
Inventor
一暁 羽田
直也 北村
Original Assignee
日置電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日置電機株式会社 filed Critical 日置電機株式会社
Publication of WO2023249094A1 publication Critical patent/WO2023249094A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R27/00Arrangements for measuring resistance, reactance, impedance, or electric characteristics derived therefrom
    • G01R27/02Measuring real or complex resistance, reactance, impedance, or other two-pole characteristics derived therefrom, e.g. time constant
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R35/00Testing or calibrating of apparatus covered by the other groups of this subclass

Definitions

  • the present invention relates to a measuring device and a standard resistor, and for example, to a measuring device that measures the electrical characteristics of an object to be measured.
  • Measuring devices such as LCR meters, resistance meters, and battery testers that measure electrical characteristics such as impedance of an object to be measured (hereinafter also referred to as "DUT: Device Under Test”) are known (see Patent Document 1). ).
  • the measurement device described above includes various internal circuits such as a generation circuit that generates a voltage or current to be applied to the DUT, a voltage detection circuit that detects the voltage generated in the DUT, and a current detection circuit that detects the current flowing through the DUT. It consists of The characteristics of these internal circuits are influenced by the characteristics of electronic components such as a reference voltage source, reference resistor, gain setting resistor, transistor, and capacitor that constitute the circuit.
  • the present invention has been made in view of the above-mentioned problems, and an object of the present invention is to make it possible to easily know errors in measurement by a measuring device.
  • a measuring device includes a first external terminal for connecting one terminal of a test object, and a second external terminal for connecting the other terminal of the test object.
  • a voltage detection circuit that detects a voltage between the first internal terminal and the second internal terminal based on the voltage detected by the voltage detection circuit and the current flowing between the first internal terminal and the second internal terminal. and the second internal terminal; a reference circuit having two terminals and having a predetermined impedance; and a reference circuit that connects the first internal terminal to the first external terminal.
  • the data processing control circuit under a first condition, one terminal of the reference circuit and the first internal terminal are connected by the switch section, and the other terminal of the reference circuit is connected to the second internal terminal.
  • the impedance of the reference circuit is measured under a second condition different from the first condition, in which one terminal of the reference circuit and the first internal terminal are connected by the switch unit, and the impedance of the reference circuit is Measure the impedance of the reference circuit when the other terminal of the circuit and the second internal terminal are connected, and compare the impedance measurement result of the reference circuit under the first condition and the reference circuit under the second condition.
  • the first external terminal and the first internal terminal are connected by the switch section, and the second external terminal and the second internal terminal are connected.
  • the method is characterized in that a measurement result of impedance between the first internal terminal and the second internal terminal when the terminals are connected is corrected.
  • the measuring device According to the measuring device according to the present invention, it is possible to easily know the error in measurement by the measuring device.
  • FIG. 1 is a diagram showing the configuration of a measuring device according to Embodiment 1.
  • FIG. FIG. 3 is a diagram illustrating a connection example of each switch configuring the switch section.
  • FIG. 3 is a diagram illustrating a connection example of each switch configuring the switch section.
  • 1 is a diagram showing the configuration of a data processing control circuit according to Embodiment 1.
  • FIG. 5 is a flowchart showing the flow of impedance measurement by the measuring device according to the first embodiment.
  • FIG. 3 is a diagram showing the configuration of a measuring device according to a second embodiment.
  • 7 is a diagram showing an example of a reference circuit according to Embodiment 2.
  • FIG. 3 is a diagram showing the configuration of a data processing control circuit according to a second embodiment.
  • FIG. 7 is a flowchart showing the flow of impedance measurement by the measuring device according to Embodiment 2.
  • FIG. 3 is a diagram showing the configuration of a measuring device according to Embodiment 3.
  • FIG. 7 is a diagram showing an example of a reference circuit according to Embodiment 3;
  • FIG. 7 is a diagram showing the configuration of a data processing control circuit according to a third embodiment.
  • 12 is a flowchart showing the flow of impedance measurement by the measuring device according to Embodiment 3.
  • 1 is a diagram showing the configuration of a measuring device capable of measuring impedance using a two-terminal method.
  • FIG. 7 is a diagram showing another example of a reference circuit.
  • the measuring device (100, 100A, 100B, 100C) has a first external terminal (HC, HP) for connecting one terminal of the test object (200). , H), and a second external terminal (LC, LP, L) for connecting the other terminal of the test object, a first internal terminal (hci, hpi, hi) and a second internal terminal (lci, lpi, li), a generating circuit (1) that applies a voltage or current between the first internal terminal and the second internal terminal, and a generating circuit (1) that applies a voltage or current between the first internal terminal and the second internal terminal.
  • a voltage detection circuit (3) that detects a voltage
  • a voltage detection circuit (3) that detects a voltage
  • a voltage detection circuit (3) that detects a voltage between the first internal terminal and the second internal terminal based on the voltage detected by the voltage detection circuit and the current flowing between the first internal terminal and the second internal terminal.
  • a data processing control circuit (4, 4A, 4B) that measures impedance with the second internal terminal
  • a reference circuit (8, 8A, 8B, 8C) having two terminals and a predetermined impedance; , the connection destination of the first internal terminal is switched between the first external terminal and one terminal of the reference circuit, and the connection destination of the second internal terminal is switched between the second external terminal and the other terminal of the reference circuit.
  • a switch unit (5, 5C) for switching between one terminal of the reference circuit and the first internal terminal by the switch unit under a first condition. and the measurement result of the impedance of the reference circuit when the other terminal of the reference circuit and the second internal terminal are connected (see FIG. 2A), and under a second condition different from the first condition. , when one terminal of the reference circuit and the first internal terminal are connected by the switch unit, and the other terminal of the reference circuit and the second internal terminal are connected (see FIG. 2A).
  • a correction coefficient is calculated based on the error with the impedance measurement result of the reference circuit, and under the second condition, the first external terminal and the first internal terminal are connected by the switch unit, and the second external
  • the measurement result of the impedance between the first internal terminal and the second internal terminal when the terminal and the second internal terminal are connected is corrected based on the correction coefficient. shall be.
  • the generation circuit transmits an AC signal based on a reference signal (Sb) having a constant frequency and a constant amplitude to the first internal terminal and the second internal terminal.
  • the data processing control circuit detects the amplitude (
  • the value of the resistance component (R
  • the data processing control circuit (4, 4A, 4B) is configured to perform the measurement under the first condition. 8A, 8B, 8C) and the value (Rr2) of the impedance of the reference circuit measured under the second condition. The value of the resistance component of the measured impedance of the test object may be corrected.
  • the data processing control circuit includes, as the correction coefficient, a value (Rr1) of the resistance component of the impedance of the reference circuit measured under the first condition;
  • a first correction coefficient (Gfix) is calculated based on the ratio of the impedance of the reference circuit measured under the two conditions to the value of the resistance component (Rr2), and using the first correction coefficient, the measurement is performed under the second condition.
  • the value of the resistance component of the impedance of the test object may be corrected.
  • the data processing control circuit (4A, 4B) is configured to perform the measurement under the first condition.
  • the test measured under the second condition based on the error between the value of the phase angle of the impedance of the reference circuit ( ⁇ r1) and the value of the phase angle of the impedance of the reference circuit ( ⁇ r2) measured under the second condition.
  • the value of the phase angle of the impedance of the object may be corrected.
  • the data processing control circuit includes, as the correction coefficient, a phase angle value ( ⁇ r1) of the impedance of the reference circuit measured under the first condition;
  • a second correction coefficient ( ⁇ fix) is calculated based on the difference between the phase angle value ( ⁇ r2) of the impedance of the reference circuit measured under the two conditions, and using the second correction coefficient, the impedance of the reference circuit measured under the second condition is calculated.
  • the value of the phase angle of the impedance of the test object may be corrected.
  • the data processing control circuit includes an instruction receiving unit that receives instructions to the measuring device. (40, 40B), the impedance value (Rr1, ⁇ r1) of the reference circuit measured under the first condition, and correction coefficient information (Gfix, ⁇ fix) including the correction coefficient ( 46, 46A, 46B), a switch control unit (41) that controls the switch unit, and an impedance calculation unit (43, 43A) that calculates the value of impedance between the first internal terminal and the second internal terminal.
  • a correction unit (44, 44A, 44B) that corrects the impedance value calculated by the impedance calculation unit based on the correction coefficient information
  • a correction unit (44, 44A, 44B) that corrects the impedance value corrected by the correction unit as a measurement result.
  • a correction coefficient updating unit (42, 42A, 42B) that updates the correction coefficient information, and when the instruction receiving unit receives a predetermined instruction,
  • the switch unit connects one terminal of the reference circuit to the first internal terminal, and connects the other terminal of the reference circuit to the second internal terminal, and the impedance calculation unit connects the first internal terminal to the second internal terminal.
  • the correction coefficient updating unit updates the impedance values (Rr1, ⁇ r1) of the reference circuit measured under the first condition, which are stored in the storage unit, and the impedance values (Rr1, ⁇ r1) of the reference circuit measured under the second condition.
  • the correction coefficient information (Gfix, ⁇ fix) may be updated based on the impedance value (Rr2, ⁇ r2).
  • the reference circuit (8, 8A, 8C) may include a resistor (Rref).
  • the first internal terminal is connected to a high side internal application terminal (hci) to which a voltage or current is applied from the generation circuit, and to the voltage detection circuit.
  • a high-side internal detection terminal (hpi) connected to the second internal terminal, and the second internal terminal is connected to a low-side internal application terminal (lci) to which a voltage or current is applied from the generation circuit and the voltage detection circuit.
  • the first external terminal includes a high side external application terminal (HC) and a high side external detection terminal (HP); the second external terminal includes a low side internal detection terminal (lpi);
  • the reference circuit (8B) includes a low side external application terminal (LC) and a low side external detection terminal (LP), and the reference circuit (8B) has a high side input terminal (hcr) as one terminal of the reference circuit and a high side output terminal. (hpr), a low side input terminal (lcr) and a low side output terminal (lpr) as the other terminal of the reference circuit, and a first resistor connected between the high side input terminal and the low side input terminal.
  • a selection circuit (81) that outputs an output between the high side internal application terminal (hci) and the high side external application terminal (HC) and the high side of the reference circuit.
  • the terminal may be switched between the low side external detection terminal (LP) and the low side output terminal (lpr) of the reference circuit.
  • the reference circuit further includes a third resistor (Rc) connected in parallel with at least one resistor among the plurality of second resistors. You can stay there.
  • Rc third resistor
  • a selection signal (Ss) specifying a measurement range is input to the selection circuit, and the selection circuit Among them, a voltage corresponding to the measurement range designated by the selection signal may be selected and output.
  • the plurality of second resistors may be network resistors.
  • the standard resistor (8B) has a high side input terminal (hcr) and a high side output terminal (hpr), and a low side input terminal (lcr) and a low side output terminal ( lpr), a first resistor (Rm) connected between the high-side input terminal and the low-side input terminal, and a plurality of resistors (Rm) connected in series between the high-side input terminal and the low-side input terminal.
  • a second resistor (Ra0 to Ran) a third resistor (Rc) connected in parallel with at least one resistor among the plurality of second resistors, and a third resistor (Rc) connected to the high side input terminal and the low side input terminal.
  • FIG. 1 is a diagram showing the configuration of a measuring device 100 according to the first embodiment.
  • a measuring device 100 shown in FIG. 1 is a device for measuring the electrical characteristics of a DUT.
  • Examples of the measuring device 100 include a resistance meter, an LCR meter, and a capacitance meter that can measure impedance using a two-terminal method or a four-terminal method, a battery tester for measuring battery characteristics, and the like.
  • the measuring device 100 may be any device that can measure electrical characteristics such as impedance of the DUT, and is not limited to the above-mentioned example.
  • the measuring device 100 has a function of correcting measurement errors caused by changes in circuit characteristics within the measuring device 100 due to temperature or aging.
  • the measuring device 100 includes, for example, external terminals, internal terminals, a generation circuit 1, a current detection circuit 2, a voltage detection circuit 3, a data processing control circuit 4, a switch section 5, It has an output section 6, an operation section 7, and a reference circuit (REF) 8.
  • REF reference circuit
  • the external terminal is a terminal for connecting the DUT.
  • the measuring device 100 has, as external terminals, a high side external application terminal HC, a high side external detection terminal HP, a low side external detection terminal LP, and a low side external application terminal LC.
  • a high side external application terminal HC a high side external detection terminal HP
  • a low side external detection terminal LP a low side external application terminal LC
  • one terminal of the DUT is connected to the high side external application terminal HC and the high side external detection terminal HP
  • the low side external detection terminal LP and the low side external application terminal LC are connected to one terminal of the DUT.
  • the other terminal of the DUT is connected to.
  • high-side external application terminal HC high-side external detection terminal HP
  • low-side external detection terminal LP low-side external application terminal LC
  • the internal terminal is a terminal connected to the circuits (generating circuit 1, current detecting circuit 2, and voltage detecting circuit 3) within the measuring device 100.
  • the measuring device 100 has, as internal terminals, a high-side internal application terminal hci, a high-side internal detection terminal hpi, a low-side internal application terminal lci, and a low-side internal detection terminal lpi.
  • the high-side internal application terminal hci is connected to the positive output terminal of the generation circuit 1, and the low-side internal application terminal lci is connected to the negative output terminal of the generation circuit 1 via the current detection circuit 2.
  • the high-side internal detection terminal hpi is connected to the positive input terminal of the voltage detection circuit 3, and the low-side internal detection terminal lpi is connected to the negative input terminal of the voltage detection circuit 3.
  • the high-side internal application terminal hci, high-side internal detection terminal hpi, low-side internal application terminal lci, and low-side internal detection terminal lpi are simply expressed as "internal terminals hci, hpi, lci, lpi.”
  • the internal terminals hci, lci, hpi, lpi are connectable to external terminals HC, LC, HP, LP or a terminal of the reference circuit 8 by the switch section 5.
  • the generating circuit 1 is a circuit that generates a voltage or current to be applied to an object to be measured in order to measure impedance.
  • Generation circuit 1 applies a voltage or current between internal terminal hci and internal terminal lci.
  • the generating circuit 1 is, for example, a constant current generating circuit that generates a constant current or a voltage generating circuit that generates a voltage. In the first embodiment, as an example, the generation circuit 1 will be described as a constant current generation circuit.
  • the generation circuit 1 generates a constant current signal in response to the signal Sb from the data processing control circuit 4, for example, and outputs it from the positive output terminal and the negative output terminal.
  • the output terminal on the positive side of the generating circuit 1 is connected to the internal terminal hci, and the output terminal on the negative side of the generating circuit 1 is connected via the current detection circuit 2 to the internal terminal lci.
  • the constant current signal output from the generating circuit 1 may be an alternating current signal or a direct current signal, and can be changed depending on the purpose of the measuring device 100, for example.
  • the current detection circuit 2 is a circuit that detects the current flowing between the internal terminal hci and the internal terminal lci.
  • the current detection circuit 2 is connected in series between the positive output terminal of the generating circuit 1 and the internal terminal hci, or between the negative output terminal of the generating circuit 1 and the internal terminal lci.
  • FIG. 1 shows, as an example, a case where the current detection circuit 2 is connected in series between the negative output terminal of the generation circuit 1 and the internal terminal lci.
  • the current detection circuit 2 includes, for example, a resistor connected in series between the negative output terminal of the generation circuit 1 and the internal terminal lci, and amplifies the voltage across the resistor and outputs it as a current signal. It is configured to include an operational amplifier.
  • the voltage detection circuit 3 is a circuit that has a positive input terminal and a negative input terminal, and detects the voltage between the positive input terminal and the negative input terminal.
  • the positive input terminal of the voltage detection circuit 3 is connected to the internal terminal hpi
  • the negative input terminal of the voltage detection circuit 3 is connected to the internal terminal lpi.
  • Voltage detection circuit 3 detects and outputs the voltage between internal terminals hpi and lpi.
  • the voltage detection circuit 3 includes, for example, an operational amplifier, and amplifies the detected voltage between the external terminal HP and the external terminal LP with the operational amplifier and outputs it as a voltage signal.
  • the operation unit 7 is an input interface for a user to operate the measuring device 100.
  • Examples of the operation unit 7 include various buttons, a touch panel, and the like.
  • the user can set various measurement conditions for measuring the DUT in the measurement device 100, and can instruct the measurement device 100 to execute and stop measurement.
  • the user can instruct the measuring device 100 to update the correction coefficients, which will be described later.
  • the operation unit 7 generates a signal Sd that instructs execution of processing according to various commands input by the user by operating the operation unit 7, and provides the signal Sd to each functional unit.
  • the output unit 6 is a device that outputs various information such as measurement conditions and measurement results in the measurement device 100.
  • the output unit 6 is, for example, a display device such as an LCD (Liquid Crystal Display) or an organic EL display.
  • a display device such as an LCD (Liquid Crystal Display) or an organic EL display.
  • the output unit 6 displays information such as the measurement result of the DUT impedance calculated by the data processing control circuit 4 on the screen. indicate.
  • the output unit 6 may be a display device equipped with a touch panel that implements some of the functions of the operation unit 7. Further, the output unit 6 may include a communication circuit or the like that outputs data such as measurement results to the outside by wire or wirelessly.
  • the communication circuit may have not only the function of transmitting data to the outside but also the function of receiving data etc. from the outside.
  • the communication circuit receives various commands output from an external device (for example, an information processing device such as a PC), such as execution and stop of measurement, update of correction coefficients, etc.
  • an external device for example, an information processing device such as a PC
  • a signal Sd for instructing execution of processing according to various received commands may be generated and given to each functional unit.
  • the output unit 6 may include a speaker or the like that notifies the start of measurement, the end of measurement, etc. by sound.
  • the data processing control circuit 4 is a circuit that centrally controls each functional section within the measuring device 100.
  • the data processing control circuit 4 is, for example, an MCU (Micro Controller Unit) having a processor such as a CPU, a storage device such as a ROM, RAM, or a flash memory, and various peripheral circuits such as a timer or an A/D conversion circuit, or A program processing device such as an FPGA (Field-Programmable Gate Array) can be exemplified.
  • MCU Micro Controller Unit
  • the data processing control circuit 4 controls each functional unit in the measuring device 100 in accordance with the signal Sd from the operation unit 7, thereby calculating, for example, the measured value of the impedance of the DUT 200 or the reference circuit 8, as will be described later.
  • the correction coefficients are updated and the measured values are corrected using the correction coefficients. Details of the data processing control circuit 4 will be described later.
  • the reference circuit 8 is a circuit whose impedance can be measured by connecting it to the generation circuit 1 and the voltage detection circuit 3 in the same way as the DUT.
  • the reference circuit 8 can be used to calculate and correct measurement errors by the measuring device 100.
  • the reference circuit 8 includes, for example, a high side terminal and a low side terminal.
  • the reference circuit 8 has a high-side input terminal hcr and a high-side output terminal hpr as high-side terminals, and a low-side input terminal lcr and a low-side output terminal lpr as low-side terminals.
  • the high-side input terminal hcr, high-side output terminal hpr, low-side input terminal lcr, and low-side output terminal lpr of the reference circuit 8 are simply expressed as "terminals hcr, hpr, lcr, lpr.” There are cases.
  • the reference circuit 8 includes, for example, a resistor.
  • the reference circuit 8 is realized by a resistor having a predetermined resistance value, and the resistor is referred to as a "reference resistor Rref.”
  • One terminal of the reference resistor Rref is connected to a high-side input terminal hcr and a high-side output terminal hpr, and the other terminal of the reference resistor Rref is connected to a low-side input terminal lcr and a low-side output terminal lpr.
  • the reference resistor Rref is preferably a resistor with high precision and high reliability.
  • a precision resistor as the reference resistor Rref, which has a temperature coefficient of resistance of ⁇ 5 ppm/° C. or less and a long-term stability (change over time) of resistance value of ⁇ 100 ppm/year or less.
  • the above numerical values are just an example, and can be changed as appropriate depending on the specifications required of the measuring device 100.
  • the resistance value of the reference resistor Rref may be appropriately set according to the measurable range of impedance by the measuring device 100.
  • the switch section 5 is a functional section that switches the connection destinations of the internal terminals hci, hpi, lci, and lpi.
  • Each of the switches 51 to 54 constituting the switch unit 5 is, for example, a double-throw switch element.
  • the switch element include components such as semiconductor switches (for example, transistors) and relays (for example, mechanical relays) whose connection destinations can be switched in response to electrical signals.
  • the switch unit 5 switches the connection destinations of the internal terminals hci, hpi between the external terminal HC and one terminal hcr, hpr of the reference circuit 8, and switches the connection destinations of the internal terminals lci, lpi between the external terminal LC and the reference circuit. 8 and the other terminals lcr and lpr.
  • the switch section 5 switches the connection destinations of the internal terminals hci, hpi, lci, and lpi according to the signal Sc from the data processing control circuit 4.
  • FIGS. 2A and 2B are diagrams showing connection examples of the switches 51 to 54 that make up the switch section 5.
  • FIG. 2A shows a case where internal terminals hci, hpi, lci, lpi are connected to the reference circuit 8 when measuring the impedance of the reference circuit 8
  • FIG. 2B shows a case where the internal terminals hci, hpi, lci, lpi are connected to the reference circuit 8 when measuring the impedance of the DUT 200.
  • the case where internal terminals hci, hpi, lci, lpi are connected to external terminals HC, HP, LC, LP is shown.
  • the switch unit 5 sets the switches 51 to 54 to the state shown in FIG. 2A in response to the signal Sc from the data processing control circuit 4. That is, the switch 51 connects the internal terminal hci to the terminal hcr of the reference circuit 8, the switch 52 connects the internal terminal hpi to the terminal hpr of the reference circuit 8, and the switch 53 connects the internal terminal lci to the terminal lcr of the reference circuit 8.
  • the switch 54 connects the internal terminal lpi to the terminal lpr of the reference circuit 8. Thereby, the internal terminals hci, hpi, lci, and lpi are connected to the reference resistor Rref as the reference circuit 8.
  • the switch unit 5 sets the switches 51 to 54 to the state shown in FIG. 2B in response to the signal Sc from the data processing control circuit 4. That is, the switch 51 connects the internal terminal hci to the external terminal HC, the switch 52 connects the internal terminal hpi to the external terminal HP, the switch 53 connects the internal terminal lci to the external terminal LC, and the switch 54 connects the internal terminal hpi to the external terminal HP. Connect lpi to external terminal LP. As a result, the internal terminals hci, hpi, lci, and lpi are connected to the DUT 200.
  • the data processing control circuit 4 measures the value of impedance between the internal terminal hpi and the internal terminal lpi based on the voltage detected by the voltage detection circuit 3 and the current detected by the current detection circuit 2.
  • the data processing control circuit 4 connects one terminal hcr, hpr of the reference circuit 8 to the internal terminals hci, hpi by the switch unit 5, and connects the other terminal lcr of the reference circuit 8 to the internal terminals hci, hpi. , lpr and the internal terminals lci, lpi are connected (see FIG. 2A), the impedance measurement result of the reference circuit 8 is obtained. Further, in the data processing control circuit 4, under a second condition different from the first condition, one terminal hcr, hpr of the reference circuit is connected to the internal terminal hci, hpi by the switch section 5, and the other terminal of the reference circuit 8 is connected.
  • the impedance measurement result of the reference circuit 8 when the terminals lcr, lpr and the internal terminals lci, lpi are connected is obtained. Further, in the data processing control circuit 4, under the second condition, the external terminals HC and HP are connected to the internal terminals hci and hpi, and the external terminals LC and LP are connected to the internal terminals lci and lpi. The impedance measurement results between the internal terminals hci, hpi and the internal terminals lci, lpi at the time (see FIG. 2B) are obtained.
  • the data processing control circuit 4 uses the switch unit 5 to connect an external terminal under the second condition based on the error between the impedance measurement result of the reference circuit 8 under the first condition and the impedance measurement result of the reference circuit 8 under the second condition.
  • the impedance between internal terminals hci, hpi and internal terminals lci, lpi when HC, HP and internal terminals hci, hpi are connected, and external terminals LC, LP are connected to internal terminals lci, lpi. Correct the measurement results.
  • the data processing control circuit 4 determines the value Rr1 of the resistance component of the impedance of the reference circuit 8 measured under the first condition, and the value Rr2 of the resistance component of the impedance of the reference circuit 8 measured under the second condition.
  • the value of the resistance component of the impedance of the DUT 200 measured under the second condition is corrected based on the error.
  • the data processing control circuit 4 calculates a correction coefficient for correcting the measured (calculated) impedance value of the DUT 200. Specifically, the data processing control circuit 4 determines the ratio between the value Rr1 of the resistance component of the impedance of the reference circuit 8 measured under the first condition and the resistance component Rr2 of the impedance of the reference circuit 8 measured under the second condition. A first correction coefficient Gfix based on the first correction coefficient Gfix is calculated.
  • the data processing control circuit 4 uses the calculated first correction coefficient Gfix to correct the measurement result of the resistance component of the impedance of the DUT 200 measured under the second condition. For example, the data processing control circuit 4 multiplies the value R of the resistance component of the impedance of the DUT 200 measured under the second condition by the first correction coefficient Gfix. Correct R.
  • FIG. 3 is a diagram showing the configuration of the data processing control circuit 4 according to the first embodiment.
  • the data processing control circuit 4 includes, as functional blocks for realizing the above-mentioned functions, an instruction receiving section 40, a switch control section 41, a correction coefficient updating section 42, an impedance calculation section 43, a correction It has a measurement result output section 44, a measurement result output section 45, and a storage section 46.
  • These functional blocks are realized, for example, in a program processing unit (MCU) as the data processing control circuit 4, by a processor executing various arithmetic operations according to programs stored in a storage device and controlling peripheral circuits. Ru. Note that some or all of the above functional blocks may be realized by a dedicated logic circuit.
  • MCU program processing unit
  • the instruction receiving unit 40 is a functional unit that receives instructions to the measuring device 100.
  • the instruction receiving unit 40 receives a signal Sd from the operation unit 7 and instructs other functional unit locks and the like to execute processing according to the signal Sd.
  • the instruction receiving unit 40 sends the switch control unit 41, the correction The coefficient updating unit 42, the impedance calculating unit 43, and the like are instructed to execute processing for measuring the impedance of the DUT 200.
  • the user may operate the operation unit 7 to instruct the update of the correction coefficient.
  • the instruction receiving unit 40 instructs the switch control unit 41, the correction coefficient updating unit 42, the impedance calculation unit 43, etc. to execute processing for updating the correction coefficient.
  • the user may operate the operation unit 7 to instruct measurement of the impedance of the reference circuit 8 (reference resistor Rref).
  • the instruction receiving unit 40 instructs the switch control unit 41, the correction coefficient updating unit 42, the impedance calculation unit 43, etc. instructs execution of processing to measure.
  • information on the impedance measurement result of the reference circuit 8 may be displayed on the screen by the output unit 6, or may be output as measurement data to an external device.
  • the output unit 6 also outputs not only information on the latest impedance measurement results of the reference circuit 8 but also information on previously measured impedance measurement results of the reference circuit 8 under the first condition described below. The measurement results) may also be output (displayed).
  • the storage unit 46 is a functional unit that stores arithmetic expressions, various parameters, measurement results, correction coefficients, etc. necessary for measuring electrical characteristics of the DUT, calculating correction coefficients, etc.
  • the storage unit 46 stores a reference measurement result (first condition) 401 including the value Rr1 of the reference resistance Rref measured under the first condition, and a value Rr2 of the reference resistance Rref measured under the second condition, which will be described later.
  • a corrected DUT 200 measurement result 405 including a value Rf obtained by correcting the value R of the resistance component of the DUT 200 measured under the second condition is stored.
  • the storage unit 46 also stores various calculation formulas necessary for impedance measurement, such as calculation formulas for calculating impedance values, calculation formulas for calculating correction coefficients, and calculation formulas for correcting measurement results. remembered.
  • the switch control section 41 is a functional section for controlling the switch section 5.
  • the switch control unit 41 switches the connection destinations of the internal terminals hci, hpi, lci, and lpi by controlling the switch unit 5 according to an instruction from the instruction receiving unit 40, for example.
  • the impedance calculation unit 43 is a functional unit that calculates the value of impedance between the internal terminal hpi and the internal terminal lpi.
  • the impedance calculation unit 43 calculates an impedance value between the internal terminal hpi and the internal terminal lpi based on the voltage value V detected by the voltage detection circuit 3 and the current value I detected by the current detection circuit 2. Calculate.
  • the calculation formula for calculating the value of the resistance component of impedance is stored in the storage unit 46, and the impedance calculation unit 43 uses the calculation formula stored in the storage unit 46. is used to calculate the value of the resistance component of impedance.
  • the arithmetic expression for calculating impedance is not limited to the above example, and can be changed as appropriate depending on the specifications required for the measuring device 100.
  • a correction coefficient etc. obtained by the initial adjustment may be included in the above equation.
  • the correction coefficient update unit 42 is a functional unit that calculates a correction coefficient and updates the correction coefficient stored in the storage unit 46.
  • the correction coefficient updating unit 42 calculates a first value based on the ratio of the value Rr1 of the resistance component of the impedance of the reference circuit 8 measured under the first condition and the value Rr2 of the resistance component of the impedance of the reference circuit 8 measured under the second condition.
  • a correction coefficient Gfix is calculated and stored in the storage unit 46 as correction coefficient information 403. For example, every time the first correction coefficient Gfix is calculated, the correction coefficient updating unit 42 updates the correction coefficient information 403 (first correction coefficient Gfix) stored in the storage unit 46 to the latest value.
  • the method for calculating the first correction coefficient Gfix will be described in detail below.
  • the measuring device 100 switches the connection destinations of the internal terminals hci, hpi, lci, and lpi to the reference resistor Rref using the switch section 5, and the impedance calculating section 43 switches the connection destinations of the internal terminals hci, hpi, lci, and lpi to the reference resistor Rref. Measure the value Rr1.
  • first conditions the conditions after the initial adjustment (for example, temperature, humidity, elapsed time from the time of production of the measuring device 100, operating time, etc.) will be referred to as "first conditions.”
  • the measuring device 100 stores the value Rr1 of the reference resistance Rref measured under the first condition in the storage unit 46 as the reference measurement result (first condition) 401. After that, the measuring device 100 is shipped.
  • second conditions the conditions under which the user performs the measurement (for example, conditions different from the first conditions, such as temperature, humidity, elapsed time since production of the measuring device 100, and operating time) will be referred to as "second conditions.”
  • the measuring device 100 first uses the switch unit 5 to connect the internal terminals hci, hpi, lci, lpi to the reference resistor Rref. , the value Rr2 of the reference resistance Rref is measured by the impedance calculation unit 43, and is stored in the storage unit 46 as a reference measurement result (second condition) 402.
  • the value Rr2 of the reference resistance Rref measured under the second condition is the value obtained by multiplying the value Rr1 of the reference resistance Rref measured under the first condition by the error component "Er". Become. Therefore, by setting the reciprocal of the error Er as the first correction coefficient Gfix and multiplying the resistance component value Rr2 of the impedance of the DUT 200 measured under the second condition by the first correction coefficient Gfix, the impedance of the DUT 200 measured under the second condition is It becomes possible to remove the error component included in the value Rr2 of the resistance component.
  • the correction coefficient updating unit 42 uses the value Rr1 of the reference resistance Rref measured under the first condition, the value Rr2 of the reference resistance Rref measured under the second condition, and the following values stored in the storage unit 46.
  • the first correction coefficient Gfix is calculated based on equation (2).
  • Calculation (updating) of the correction coefficient (first correction coefficient Gfix) by the correction coefficient updating unit 42 may be performed, for example, when the instruction receiving unit 40 receives an instruction to perform measurement of the DUT 200, or when the instruction receiving unit The process may be executed when 40 receives an instruction to update the correction coefficient or an instruction to measure the reference circuit 8 .
  • the correction unit 44 is a functional unit that corrects the impedance value calculated by the impedance calculation unit 43 based on correction coefficient information.
  • the correction unit 44 uses the first correction coefficient Gfix stored in the storage unit 46 to correct the value R of the resistance component of the impedance of the DUT 200 calculated by the impedance calculation unit 43, and calculates the corrected DUT measurement result ( The second condition) is stored in the storage unit 46 as 404.
  • the correction unit 44 corrects the value R of the resistance component of the impedance by performing calculation based on the following equation (3).
  • the measurement result output unit 45 is a functional unit that outputs measurement results. For example, when the impedance of the DUT 200 is measured, the measurement result output section 45 outputs the impedance measurement result (corrected resistance component value Rf) So corrected by the correction section 44 to the output section 6. do.
  • the output unit 6 displays information corresponding to the received measurement result So on the screen, or transmits it to an external device as measurement data, for example.
  • FIG. 4 is a flowchart showing the flow of impedance measurement by the measuring device 100 according to the first embodiment.
  • the reference measurement result (Rr1) 401 under the first condition is stored in the storage unit 46 of the data processing control circuit 4 in advance. Further, it is assumed that the DUT 200 is connected between the external terminals HC, HP and the external terminals LC, LP, as shown in FIG. 2B.
  • the data processing control circuit 4 first controls the switch unit 5 to refer to the internal terminals hci, hpi, lci, lpi. Connect to the circuit 8 (step S1).
  • the instruction receiving unit 40 when the instruction receiving unit 40 receives a signal Sd from the operation unit 7 that instructs to measure the impedance of the DUT 200, the instruction receiving unit 40 instructs the switch control unit 41 to output the internal terminals hci, hpi, Instructs to connect lci and lpi to reference resistor Rref.
  • the switch control section 41 controls the switch section 5 to connect the internal terminal hci to the terminal hcr of the reference circuit, connect the internal terminal hpi to the terminal hpr of the reference circuit, and connect the internal terminal lci to the terminal hpr of the reference circuit. It is connected to the terminal lcr of the reference circuit, and the internal terminal lpi is connected to the terminal lpr of the reference circuit.
  • the data processing control circuit 4 measures the resistance component Rr2 of the impedance of the reference circuit 8 (reference resistor Rref) (step S2).
  • the instruction receiving section 40 instructs the generating circuit 1 to output voltage or current, and instructs the impedance calculating section 43 to measure impedance.
  • the impedance calculation unit 43 acquires the value of the voltage detected by the voltage detection circuit 3 and the value of the current detected by the current detection circuit 2, calculates the resistance component Rr2 of the reference resistance Rref by the method described above, and calculates the resistance component Rr2 of the reference resistor Rref. It is stored in the storage unit 46 as a reference measurement result 402 under the conditions.
  • the data processing control circuit 4 calculates (updates) the first correction coefficient Gfix (step S3).
  • the correction coefficient updating unit 42 uses the resistance component value Rr1 as the reference measurement result 401 under the first condition, which is stored in the storage unit 46, and the resistance component as the reference measurement result 402 under the second condition. Based on the value Rr2, the first correction coefficient Gfix is calculated by the method described above and stored in the storage unit 46. Note that when the correction coefficient Gfix is already stored in the storage unit 46, the correction coefficient updating unit 42 updates the first correction coefficient Gfix stored in the storage unit 46 using the newly calculated first correction coefficient Gfix. Rewrite.
  • the data processing control circuit 4 controls the switch section 5 to connect the internal terminals hci, hpi, lci, lpi to the external terminals HC, HP, LC, LP (step S4).
  • the instruction receiving unit 40 instructs the switch control unit 41 to connect the internal terminals hci, hpi, lci, lpi to the external terminals HC, HP, LC, LP.
  • the switch control section 41 controls the switch section 5 to connect the internal terminal hci to the external terminal HC, connect the internal terminal hpi to the external terminal HP, and connect the internal terminal lci to the external terminal LC.
  • the internal terminal lpi is connected to the external terminal LP.
  • the internal terminals hci, hpi, lci, and lpi are connected to the DUT 200.
  • the data processing control circuit 4 measures the resistance component of the DUT 200 (step S5). Specifically, similarly to step S2, the instruction receiving section 40 instructs the generating circuit 1 to output voltage or current, and instructs the impedance calculating section 43 to measure impedance.
  • the impedance calculation unit 43 acquires the voltage value detected by the voltage detection circuit 3 and the current value detected by the current detection circuit 2, calculates the value R of the resistance component of the DUT 200 using the method described above, and performs the DUT measurement. It is stored in the storage unit 46 as a result 405.
  • the data processing control circuit 4 corrects the value R of the resistance component of the DUT 200 measured in step S5 (step S6).
  • the correction unit 44 uses the method described above based on the value R of the resistance component of the DUT 200 stored in the storage unit 46 and the first correction coefficient Gfix stored in the storage unit 46.
  • the value Rf of the resistance component of the DUT 200 after the correction is calculated and stored in the storage unit 46 as the DUT measurement result 405 after the correction.
  • the data processing control circuit 4 outputs the corrected DUT measurement result 405 (Rf) to the output unit 6 as the measurement result of the resistance component of the impedance of the DUT 200 (step S7).
  • the output unit 6 displays information on the impedance measurement results (Rf, etc.) of the DUT 200 on the screen.
  • the measuring device 100 has a built-in reference circuit 8 having a predetermined impedance that can be connected to the internal terminals hci, hpi, lci, and lpi. According to this, the user can easily know the error in the measurement by the measuring device 100 by measuring the impedance of the reference circuit 8 with the measuring device 100 under various conditions and comparing the measurement results.
  • the measuring device 100 also measures the impedance of the reference circuit 8 under the second condition based on the error between the impedance measurement result of the reference circuit 8 under the first condition and the impedance measurement result of the reference circuit 8 under a second condition different from the first condition.
  • the impedance measurement result of the measurement target (DUT) 200 is corrected.
  • the measuring device 100 even if an error occurs in measurement by the measuring device 100 due to changes in the characteristics of the internal circuit of the measuring device 100 due to temperature and aging, the measuring device 100 itself corrects the error. , it becomes possible to measure impedance with higher precision. For example, if the user performs the initial adjustment at a room temperature of 18°C as the first condition, and the user measures the DUT 200 at a room temperature of 28°C as the second condition, a conventional measurement device would take into account the effect of a temperature difference of 10°C. Must.
  • the measuring device 100 for example, when updating the first correction coefficient Gfix at a room temperature of 27°C, the user can , it is sufficient to consider the influence of a temperature difference of 1° C., and more accurate measurement becomes possible.
  • the data processing control circuit 4 of the measuring device 100 uses the value Rr1 of the resistance component of the impedance of the reference circuit 8 (reference resistor Rref) measured under the first condition and the value Rr1 of the resistance component of the impedance of the reference circuit 8 (reference resistor Rref) measured under the second condition.
  • the value R of the resistance component of the impedance of the DUT 200 measured under the second condition is corrected based on the error from the value Rr2 of the resistance component of the impedance of the reference resistor Rref). According to this, even if an error occurs in the measurement of the resistance component of impedance by the measuring device 100 due to temperature and age, it is possible to measure the resistance component of impedance with higher accuracy.
  • the data processing control circuit 4 of the measuring device 100 calculates the value Rr1 of the resistance component of the impedance of the reference circuit 8 measured under the first condition and the resistance component of the impedance of the reference circuit 8 measured under the second condition.
  • the switch unit 5 connects one terminal hcr, hpr of the reference circuit 8 to the internal terminals hci, hpi, and The other terminal lcr, lpr of the reference circuit 8 is connected to the internal terminal lci, lpi, and the impedance calculation unit 43 calculates the resistance component value Rr2 of the impedance of the reference circuit 8 under the second condition and stores it in the storage unit 46. do.
  • the correction coefficient updating unit 42 then updates the value Rr1 of the resistance component of the impedance of the reference circuit 8 under the first condition and the value Rr2 of the resistance component of the impedance of the reference circuit 8 under the second condition, which are stored in the storage unit 46.
  • the first correction coefficient Gfix may be updated based on the above.
  • the predetermined instruction may be, for example, an instruction to perform measurement of the DUT 200, an instruction to update the correction coefficient, or an instruction to perform measurement of the impedance of the reference circuit 8. You can.
  • the first correction coefficient Gfix can be updated at the timing desired by the user, so it is possible to realize a measuring device that is easy to use for the user.
  • some conventional measurement devices such as LCR meters, resistance meters, and battery testers have a so-called self-calibration function.
  • errors in some circuits such as a voltage detection circuit and a current detection circuit are to be corrected, and only a limited correction effect can be obtained.
  • a reference signal output circuit consisting of a regulator IC that generates a voltage as a reference, an attenuator, a D/A conversion circuit, etc. is required depending on the circuit to be corrected. It is necessary to provide it separately, which increases the complexity of the circuit and the cost.
  • the reference circuit 8 itself has impedance and functions as a measurement target like the DUT. Therefore, by using the measurement error of the impedance of the reference circuit 8, it is possible to calibrate the entire measuring device without having to individually measure errors in the current detection circuit, errors in the voltage detection circuit, etc., and perform self-calibration for each circuit. It becomes possible to comprehensively correct measurement errors. Furthermore, by adopting a simple circuit configuration as the reference circuit 8 as described above (see FIG. 2A), circuit complexity and cost increases due to adding a measurement error correction function to the measuring device 100 can be minimized. can be kept to a limit.
  • FIG. 5 is a diagram showing the configuration of a measuring device 100A according to the second embodiment.
  • the measuring device 100A according to the second embodiment shown in FIG. is similar to the measuring device 100 according to the first embodiment.
  • circuits such as voltage detection circuits and current detection circuits that constitute measurement devices such as the LCR meters described above each have unique phase characteristics. That is, when a signal is input to a circuit, a phase shift occurs between the signal input to the circuit and the signal output from the circuit. The amount of this phase shift is also called "phase characteristic.”
  • phase characteristics of a circuit depend on the characteristics of electronic components such as operational amplifier circuits and capacitors that make up the circuit. Therefore, when the characteristics of electronic components change due to temperature and age, the phase characteristics of the internal circuits that make up the measuring device also change.
  • the measuring device 100A has a function of reducing not only the measurement error of the resistance component of impedance but also the influence of the phase measurement error due to temperature and aging. Specifically, the measuring device 100A calculates a correction coefficient based on a reference circuit 8A having a predetermined impedance and the measurement result of the phase angle of the impedance of the reference circuit 8A, and measures the phase angle of the impedance of the object to be measured. The data processing control circuit 4A corrects the results.
  • phase angle of impedance is the difference between the phase of the current flowing through the object to be measured (DUT, reference circuit 8A, etc.) and the phase of the voltage of the object to be measured.
  • the resistance component of the impedance is R and the reactance component of the impedance is X
  • FIG. 6 is a diagram showing an example of a reference circuit 8A according to the second embodiment.
  • the reference circuit 8A is configured to include electronic components having a predetermined impedance.
  • the reference circuit 8A is configured to include a reference resistor Rref, similarly to the reference circuit 8 according to the first embodiment. That is, as shown in FIG. 6, one terminal of the reference resistor Rref is connected to the terminals hcr and hpr of the reference circuit 8A, and the other terminal of the reference resistor Rref is connected to the terminals lcr and lpr of the reference circuit 8A. .
  • the reference circuit 8A is not limited to the reference resistor Rref described above, and may include a capacitor, an inductor, etc. having a highly accurate reactance component.
  • the data processing control circuit 4A has a function of reducing the influence of errors in phase measurement in addition to the functions of the data processing control circuit 4 according to the first embodiment.
  • the data processing control circuit 4A calculates the value of the phase angle of the impedance of the reference circuit 8 (reference resistor Rref) measured under the first condition and the reference circuit measured under the second condition.
  • the measurement result of the phase angle of the impedance of the DUT 200 measured under the second condition is corrected based on the error with the value of the phase angle of the impedance of No. 8.
  • the data processing control circuit 4A determines the value ⁇ r1 of the phase angle of the impedance of the reference circuit 8A (reference resistor Rref) measured under the first condition and the phase angle of the impedance of the reference circuit 8A measured under the second condition.
  • a second correction coefficient ⁇ fix is calculated based on the difference from the value ⁇ r2, and the value of the phase angle of the impedance of the DUT 200 measured under the second condition is corrected based on the second correction coefficient ⁇ fix.
  • FIG. 7 is a diagram showing the configuration of the data processing control circuit 4A according to the second embodiment.
  • the data processing control circuit 4A is, for example, a program processing device like the data processing control circuit 4 according to the first embodiment.
  • the data processing control circuit 4A includes, as functional blocks for realizing the above-mentioned functions, an instruction reception section 40, a switch control section 41, a correction coefficient update section 42A, an impedance calculation section 43A, a correction section 44A, a measurement result output section 45, and a storage section 46A.
  • These functional blocks are realized, for example, in a program processing unit (MCU) as the data processing control circuit 4A, by a processor executing various arithmetic operations according to programs stored in a storage device and controlling peripheral circuits. Ru. Note that some or all of the above functional blocks may be realized by a dedicated logic circuit.
  • the storage unit 46A stores calculation formulas, various parameters, measurement results, correction coefficients, etc. necessary for measuring electrical characteristics of the DUT, calculating correction coefficients, etc. This is a functional unit that stores information.
  • the storage unit 46A stores a reference measurement result (first condition) 401A including the value (Rr1, ⁇ r1) of the reference resistance Rref measured under the first condition, which will be described later, and a reference resistance Rref measured under the second condition.
  • a DUT measurement result (second condition) 404A including (R, ⁇ ) and a corrected DUT measurement result (second condition) 405A including the corrected impedance value (Rf, ⁇ f) of the DUT 200 are stored.
  • the impedance calculation unit 43A is a functional unit that calculates the value of impedance between the internal terminal hpi and the internal terminal lpi.
  • the impedance calculation unit 43A calculates the impedance value between the internal terminal hpi and the internal terminal lpi based on the voltage value detected by the voltage detection circuit 3 and the current value detected by the current detection circuit 2. do.
  • the impedance calculation unit 43A has a function of calculating the value of the phase angle of impedance between the internal terminal hpi and the internal terminal lpi.
  • the instruction receiving unit 40 instructs to measure the phase angle of the impedance of the DUT 200, update the correction coefficient, or measure the reference circuit 8A
  • the generating circuit 1 generates an AC signal (for example, a constant current signal). is applied between the internal terminals hci and lci, and the current detection circuit 2 detects the current flowing between the internal terminals hci and lci at this time, and the voltage detection circuit 3 detects the voltage between the internal terminals hcp and lcp.
  • the instruction reception unit 40 of the data processing control circuit 4A provides the generation circuit 1 with a reference signal (for example, a sine wave signal) that is a signal having a constant frequency and a constant amplitude as the signal Sb.
  • a reference signal for example, a sine wave signal
  • a generating circuit 1 generates an AC signal based on a reference signal.
  • the generation circuit 1 generates an alternating current signal (constant current) having a frequency and a constant amplitude according to the reference signal, and supplies it between internal terminals hci and lci.
  • the impedance calculation unit 43A calculates the value of the phase angle of the impedance between the internal terminal hpi and the internal terminal lpi based on the current detected by the current detection circuit 2 and the voltage detected by the voltage detection circuit 3 using a known method. and the value R of the resistance component of the impedance is calculated.
  • the impedance calculation unit 43A calculates the amplitude
  • ⁇ cos ⁇ r1) of the impedance of the reference circuit 8A measured by the above-described method under the first condition and the phase angle value ⁇ r1 ( ⁇ v1 ⁇ i1). ) is stored in the storage unit 46.
  • ⁇ cos ⁇ r2) and phase angle ⁇ r2 ( ⁇ v2 ⁇ i2) of the impedance of the reference circuit 8A measured by the above-described method under the second condition. The information is stored in the storage unit 46.
  • the correction coefficient etc. obtained by the initial adjustment are calculated using the above formula (
  • , ⁇ ⁇ v - ⁇ i).
  • the impedance calculation method based on the synchronous detection described above is just one example, and the impedance calculation unit 43A may calculate the impedance using other known calculation methods.
  • the correction coefficient update unit 42A is a functional unit that updates the correction coefficient.
  • the method for calculating the first correction coefficient Gfix is the same as the method according to the first embodiment. Further, the correction coefficient updating unit 42A calculates and updates the second correction coefficient ⁇ fix.
  • the second correction coefficient ⁇ fix is a coefficient for correcting the measured value of the phase angle of the impedance of the object to be measured.
  • the correction coefficient updating unit 42A updates the impedance phase angle value ⁇ r1 of the reference circuit 8A (reference resistor Rref) measured under the first condition, which is stored in the storage unit 46, and the value ⁇ r1 of the impedance phase angle of the reference circuit 8A measured under the second condition.
  • a second correction coefficient ⁇ fix is calculated based on the difference between the impedance and the phase angle value ⁇ r2, and is stored in the storage unit 46A. The method for calculating the second correction coefficient ⁇ fix will be described in detail below.
  • a standard resistor with a highly accurate phase angle or an ideal reactance element with a highly accurate phase angle is connected to the measuring device 100A as a DUT, and the measuring device 100A Measure the phase angle of impedance.
  • the impedance calculation unit 43 is configured so that the difference (phase difference) between the theoretical phase angle of the DUT (or the calibrated (known) phase angle) and the measured phase angle of the DUT becomes "zero".
  • the measuring device 100A may also adjust the arithmetic expression for calculating the resistance component, as in the first embodiment.
  • the measuring device 100A switches the connection destination of the internal terminals hci, hpi, lci, lpi to the reference circuit 8 (reference resistance Rref) by the switch unit 5, and the impedance calculation unit 43A Accordingly, the phase value ⁇ r1 of the reference resistor Rref is measured using the method described above.
  • first conditions the conditions after the initial adjustment will be referred to as "first conditions.”
  • the measuring device 100A stores the phase value ⁇ r1 of the reference resistance Rref measured under the first condition in the storage unit 46 as the reference measurement result (first condition) 401A.
  • the phase value ⁇ r1 of the reference resistor Rref measured under the first condition is expressed by the following equation (4).
  • ⁇ v is a voltage phase difference
  • ⁇ i is a current phase difference.
  • the measuring device 100A uses the amplitude
  • of the current signal i, and the phase angle ⁇ r1 ( ⁇ v1 ⁇ i1) to determine the reference resistance Rref.
  • second conditions the conditions under which the user performs measurement will be referred to as "second conditions.”
  • the measuring device 100A first uses the switch unit 5 to connect the internal terminals hci, hpi, lci, lpi to the reference resistor Rref. , the impedance calculation unit 43A measures the phase value ⁇ r2 of the reference resistor Rref, and stores it in the storage unit 46A as a reference measurement result (second condition) 402A.
  • the measuring device 100A uses the amplitude
  • phase characteristics of the current detection circuit 2 and the voltage detection circuit 3 change due to temperature changes and changes over time from the time of initial adjustment (first condition), and the output signal of the current detection circuit 2 and voltage detection under the second condition change.
  • a phase error ⁇ e occurs between the output signal of the circuit 3 and the output signal of the circuit 3.
  • the phase value ⁇ r2 of the reference resistor Rref measured under the second condition can be expressed by the following equation (5).
  • the phase value ⁇ r2 of the reference resistance Rref measured under the second condition is the sum of the phase error ⁇ e from the phase value ⁇ r1 of the reference resistance Rref measured under the first condition. value.
  • the phase error ⁇ e between the output signal of the current detection circuit 2 and the output signal of the voltage detection circuit 3 is the difference between the phase value ⁇ r1 of the reference resistor Rref measured under the first condition and the reference resistor Rref measured under the second condition. This appears as an error between the phase value ⁇ r2 of the resistor Rref and the phase value ⁇ r2. Therefore, the phase error ⁇ e is expressed by the following equation (6) from the above equation (5).
  • the phase error ⁇ e can be calculated.
  • Calculation (updating) of the correction coefficients (first correction coefficient Gfix and second correction coefficient ⁇ fix) by the correction coefficient updating unit 42A may be performed, for example, when the instruction receiving unit 40 receives an instruction to perform measurement of the DUT 200. Alternatively, the process may be executed when the instruction receiving unit 40 receives an instruction to update the correction coefficient or an instruction to measure the reference circuit 8 .
  • the correction unit 44A is a functional unit that corrects the impedance value calculated by the impedance calculation unit 43A based on the correction coefficient information 403A.
  • the correction unit 44A uses the first correction coefficient Gfix included in the correction coefficient information 403A to calculate the resistance component of the impedance of the DUT 200 calculated by the impedance calculation unit 43A using the same method as the correction unit 44. Correct the value R.
  • the value ⁇ is corrected and stored in the storage unit 46 as a corrected DUT measurement result (second condition) 405A.
  • the correction unit 44A corrects the value ⁇ of the phase angle of the impedance of the DUT 200 by performing calculation based on the following equation (7).
  • the measurement result output unit 45 outputs the impedance measurement result (corrected resistance component value Rf, phase angle ⁇ f, etc.) So corrected by the correction unit 44A. Output for 6.
  • the output unit 6 displays information corresponding to the received measurement result So on the screen, or transmits it to an external device as measurement data, for example.
  • FIG. 8 is a flowchart showing the flow of impedance measurement by the measuring device 100A according to the second embodiment.
  • the flow of measuring the phase of the DUT 200 will be explained, and the flow of measuring the resistance component of the DUT 200 will be omitted. Note that the flow of measuring the resistance component is the same as that in FIG. 4 described above.
  • the reference measurement result ( ⁇ r1) 401A under the first condition is stored in advance in the storage unit 46A of the data processing control circuit 4A. Further, it is assumed that the DUT 200 is connected between external terminals HC and HP and external terminals LC and LP.
  • the data processing control circuit 4A controls the switch unit 5 as in step S1 according to the first embodiment described above. Then, the internal terminals hci, hpi, lci, and lpi are connected to the reference circuit 8 (step S1A).
  • the data processing control circuit 4A measures the phase angle ⁇ r2 of the impedance of the reference circuit 8A (reference resistor Rref) (step S2A).
  • the instruction receiving section 40 instructs the generating circuit 1 to output voltage or current, and instructs the impedance calculating section 43A to measure impedance.
  • the impedance calculation unit 43A calculates the phase angle ⁇ r2 of the reference resistor Rref based on the voltage signal output from the voltage detection circuit 3 and the current signal output from the current detection circuit 2 by the method described above, and It is stored in the storage unit 46A as a reference measurement result 402A of the conditions.
  • the data processing control circuit 4A calculates (updates) the second correction coefficient ⁇ fix (step S3A). Specifically, the correction coefficient updating unit 42A updates the phase value ⁇ r1 as the reference measurement result 401A under the first condition and the phase value ⁇ r1 as the reference measurement result 402A under the second condition, which are stored in the storage unit 46A. Based on ⁇ r2, the second correction coefficient ⁇ fix is calculated by the method described above and is stored in the storage unit 46A. Note that if the second correction coefficient ⁇ fix is already stored in the storage unit 46A, the correction coefficient update unit 42A updates the second correction coefficient ⁇ fix stored in the storage unit 46A using the newly calculated second correction coefficient ⁇ fix. Rewrite the correction coefficient ⁇ fix.
  • the data processing control circuit 4A controls the switch unit 5 to connect the internal terminals hci, hpi, lci, lpi to the external terminals HC, HP, LC, LP (step S4A).
  • the internal terminals hci, hpi, lci, and lpi are connected to the DUT 200.
  • the data processing control circuit 4A measures the phase of the DUT 200 (step S5A). Specifically, similarly to step S2A, the instruction receiving section 40 instructs the generating circuit 1 to output voltage or current, and instructs the impedance calculating section 43A to measure impedance.
  • the impedance calculation unit 43A calculates the phase value ⁇ of the DUT 200 by the method described above based on the voltage signal output from the voltage detection circuit 3 and the current signal output from the current detection circuit 2, and calculates the DUT measurement result. It is stored in the storage unit 46A as 404A.
  • the data processing control circuit 4 outputs the corrected DUT measurement result 405A ( ⁇ f) to the output unit 6 as the measurement result of the phase angle of the impedance of the DUT 200 (step S7A).
  • the output unit 6 displays information on the impedance measurement results (phase angle ⁇ f, etc.) of the DUT 200 on the screen, for example.
  • the data processing control circuit 4A calculates the value ⁇ r1 of the phase angle of the impedance of the reference circuit 8A measured under the first condition and the impedance of the reference circuit 8A measured under the second condition.
  • the measurement result ( ⁇ ) of the phase angle of the impedance of the DUT 200 measured under the second condition is corrected based on the difference (phase error ⁇ e) from the phase angle value ⁇ r2. According to this, even if an error occurs in the measurement of the impedance phase angle by the measuring device 100A due to temperature and age, it is possible to measure the impedance phase angle with higher accuracy.
  • the data processing control circuit 4A of the measuring device 100A determines the value ⁇ r1 of the phase angle of the impedance of the reference circuit 8A measured under the first condition and the phase angle of the impedance of the reference circuit 8A measured under the second condition.
  • the switch unit 5 connects one terminal hcr, hpr of the reference circuit 8A to the internal terminals hci, hpi, and The other terminals lcr and lpr of the reference circuit 8A are connected to the internal terminals lci and lpi, and the impedance calculation unit 43A stores this in the storage unit 46 as the phase angle value ( ⁇ r2) of the impedance of the reference circuit 8A under the second condition. .
  • the correction coefficient updating unit 42A updates the value ( ⁇ r1) of the impedance phase angle of the reference circuit 8A under the first condition, which is stored in the storage unit 46A, and the value ( ⁇ r1) of the impedance phase angle of the reference circuit 8A under the second condition.
  • the second correction coefficient ⁇ fix ( ⁇ r1 ⁇ r2) may be updated based on the value ( ⁇ r2).
  • the predetermined instruction may be an instruction to measure the DUT 200, an instruction to update a correction coefficient, or an instruction to measure the impedance of the reference circuit 8A. According to this, the second correction coefficient ⁇ fix can be updated at a timing desired by the user, so that it is possible to realize a measuring device that is easy to use for the user.
  • FIG. 9 is a diagram showing the configuration of a measuring device 100B according to the third embodiment.
  • a measuring device 100B according to Embodiment 3 shown in FIG. 9 differs from measuring devices 100 and 100A according to Embodiments 1 and 2 in that impedance measurement can be corrected according to the measurement range. In this respect, it is the same as the measuring devices 100 and 100A according to the first and second embodiments.
  • a measuring device such as the above-mentioned LCR meter has a plurality of measurement ranges. For example, when measuring a resistor with a resistance value of several m ⁇ , the user can select a measurement range that corresponds to “m ⁇ ” and measure the resistance value in that measurement range. becomes possible.
  • the embodiments are implemented using a resistor with a resistance value in "m ⁇ " units as a reference circuit. It is preferable to correct the measurement error using a method similar to 1 and 2. However, it is not easy to obtain a "m ⁇ " resistor with sufficiently excellent temperature characteristics and long-term stability as a reference circuit. Even if such a resistor were available, it would increase component cost. Therefore, the reference circuit 8B according to the third embodiment can achieve a pseudo-desired resistance value without using a highly stable resistor having a low resistance value of several m ⁇ , and can achieve a low resistance measurement range. It is possible to correct measurement errors in
  • FIG. 10 is a diagram showing an example of the reference circuit 8B according to the third embodiment.
  • the reference circuit 8B includes a high-side input terminal hcr, a high-side output terminal hpr, a low-side input terminal lcr, a low-side output terminal lpr, a voltage dividing circuit 80, a selection circuit (MUX) 81, It has a buffer 82.
  • terminals hcr, hpr, lcr, and lpr are shown outside the dotted line indicating the reference circuit 8B.
  • the high side input terminal hcr can be connected to the internal terminal hci by a switch 51.
  • the high side output terminal hpr can be connected to the internal terminal hpi by a switch 52.
  • the low-side input terminal lcr can be connected to the internal terminal lci by a switch 53.
  • the low-side output terminal lpr can be connected to the internal terminal lpi by a switch 54.
  • the voltage dividing circuit 80 is a circuit that divides (attenuates) the voltage between the high side input terminal hcr and the low side input terminal lcr and outputs the divided voltage.
  • many measurement devices that measure the resistance value of a DUT using the four-terminal method such as an LCR meter, generate a voltage across the DUT by applying a constant current signal or voltage signal to the DUT, as described above.
  • the resistance value calculated based on Ohm's law becomes a value proportional to the detected voltage.
  • the reference circuit 8B is realized using a voltage dividing circuit 80 composed of a plurality of resistors, and the voltage generated in the reference circuit 8B is transferred to the voltage dividing circuit 80.
  • the voltage is divided by 80 and input to the voltage detection circuit 3.
  • the measuring device 100B calculates the resistance value
  • the reference circuit 8B behaves like a resistor having a predetermined resistance value.
  • the voltage dividing circuit 80 includes a first resistor Rm and a plurality of second resistors Ra1 to Ran (n is an integer of 2 or more) connected in parallel with the first resistor Rm. It has .
  • the first resistor Rm is connected between the high-side input terminal hcr and the low-side input terminal lcr. It is preferable that the first resistor Rm is a precision resistor having high accuracy and high reliability, similar to the reference resistor Rref according to the first and second embodiments.
  • the plurality of second resistors Ra1 to Ran are connected in series between the high side input terminal hcr and the low side input terminal lcr.
  • the number of second resistors Ra1 to Ran connected in series may be determined according to the number n of resistance measurement ranges of the measuring device 100A.
  • the following explanation assumes that the two are connected in series.
  • the second resistors Ra1 to Ran are, for example, so-called network resistors that include a plurality of resistors connected in series and are sealed in one package.
  • some of the second resistors Ra1 to Ran may be connected in parallel. That is, the network resistor may have a configuration in which not only a series circuit of resistors but also a resistor is connected in parallel to a series circuit.
  • the second resistors Ra1 to Ran may be collectively referred to as "network resistor Ratt.”
  • the second resistors Ra1 to Ran are highly accurate and highly reliable resistors like the first resistor Rm.
  • each of the second resistors Ra1 to Ran has the same degree of precision and reliability as the first resistor Rm, and at least the second resistors Ra1 to Ran are As long as it is highly accurate and reliable, it is sufficient.
  • the second resistors Ra1, Ra2, and Ra3 have a relative temperature coefficient of resistance value of ⁇ 5 ppm/°C or less between each resistor, and a relative long-term stability of the resistance value between each resistor.
  • it is a precision network resistor with a value of ⁇ 100 ppm/year or less.
  • the series resistance value of the network resistor Ratt that is, the series resistance value from the second resistor Ra1 to the second resistor Ran is sufficiently larger than the resistance value of the first resistor Rm (Rm ⁇ Ratt).
  • the series resistance value of the network resistor Ratt is 100 times or more the resistance value of the first resistor Rm.
  • the resistance value of the voltage divider circuit 80 that is, the resistance value of the first resistor Rm and the network resistor Ratt is The combined resistance value Rcomb is expressed by the following formula (8).
  • the resistance value Rref of the reference circuit 8B can be set to a desired value by adjusting the combined resistance value Rcomb and the voltage division coefficient Xatt.
  • the network resistor Ratt a precision network resistor with relatively high resistance value between each second resistor Ra1 to Ran and high reliability (high stability) is adopted. By doing so, the partial pressure coefficient Xatt also exhibits high precision and high reliability.
  • a reference resistor having a desired resistance value, high accuracy, and high reliability can be realized in a pseudo manner.
  • the first resistor Rm is set to 1 ⁇ .
  • the second resistor Ra1 is 9 k ⁇
  • the second resistor Ra2 is 900 ⁇
  • the second resistor Ra3 is 100 ⁇ .
  • the selection circuit 81 is a circuit that selects and outputs one voltage from among a plurality of input voltages.
  • the selection circuit 81 is, for example, a multiplexer.
  • the selection circuit 81 is configured by, for example, an IC including a plurality of transistors, a mechanical relay, or the like.
  • the selection circuit 81 selects the voltage between the high-side input terminal hcr and the low-side input terminal lcr (the voltage at the terminal Pa1) and the plurality of voltages divided by the voltage dividing circuit 80 (the voltages at the terminals Pa2 and Pa3). One of the input voltages is selected and output between the high-side output terminal hpr and the low-side output terminal lpr.
  • a selection signal Ss specifying the measurement range of the measurement device 100 is input to the selection circuit 81.
  • the selection circuit 81 selects and outputs a voltage corresponding to the measurement range designated by the selection signal Ss from among the plurality of input voltages.
  • the selection circuit 81 selects and outputs the voltage (equivalent to 1 ohm) at the terminal Pa1 of the network resistor Ratt.
  • the selection circuit 81 selects and outputs the voltage (equivalent to 100 m ⁇ ) at the terminal Pa2 of the network resistor Ratt.
  • the selection circuit 81 selects and outputs the voltage (equivalent to 10 m ⁇ ) at the terminal Pa3 of the network resistor Ratt.
  • the buffer 82 is a circuit that receives a signal with high input impedance and outputs a signal with low output impedance.
  • an operational amplifier can be used as the buffer 82.
  • the buffer 82 outputs the voltage output from the selection circuit 81 between the high-side output terminal hpr and the low-side output terminal lpr. As a result, the voltage output from the reference circuit 8B (voltage dividing circuit 80) is input to the voltage detection circuit 3.
  • the reference circuit 8B does not need to include the buffer 82. That is, the voltage output from the selection circuit 81 may be directly input between the high-side output terminal hpr and the low-side output terminal lpr (between the input terminals of the voltage detection circuit 3).
  • FIG. 11 is a diagram showing the configuration of the data processing control circuit 4B according to the third embodiment.
  • the data processing control circuit 4B calculates (updates) a correction coefficient and corrects impedance measurement results for each specified measurement range. It has the function to perform
  • the data processing control circuit 4B is, for example, a program processing device like the data processing control circuits 4 and 4A according to the first and second embodiments. As shown in FIG. 11, the data processing control circuit 4B includes, as functional blocks for realizing the above-mentioned functions, an instruction reception section 40B, a switch control section 41, a correction coefficient update section 42B, an impedance calculation section 43A, a correction It has a section 44B, a measurement result output section 45, and a storage section 46B. These functional blocks are realized, for example, in a program processing unit (MCU) as the data processing control circuit 4B, by a processor executing various arithmetic processes according to programs stored in a storage device and controlling peripheral circuits. Ru. Note that some or all of the above functional blocks may be realized by a dedicated logic circuit.
  • MCU program processing unit
  • the instruction receiving unit 40B receives a signal Sd from the operation unit 7 and transmits a signal instructing execution of processing according to the signal Sd to other functional units. Output for.
  • the instruction receiving unit 40 in response to the signal Sd output from the operation unit 7, Provides a selection signal Ss specifying a measurement range to the reference circuit 8B, and instructs the switch control unit 41, correction coefficient update unit 42B, impedance calculation unit 43B, etc. to execute processing for measuring the impedance of the DUT 200. do.
  • the instruction reception unit 40 provides the generation circuit 1 with a reference signal (for example, a sine wave signal) having a constant frequency and a constant amplitude as the signal Sb. generates an alternating current signal based on the reference signal.
  • the generation circuit 1 supplies an alternating current signal (constant current) having a frequency synchronized with a reference signal and a constant amplitude between internal terminals hci and lci.
  • the impedance calculation unit 43B is based on the voltage value detected by the voltage detection circuit 3 and the current value detected by the current detection circuit 2, similarly to the impedance calculation units 43 and 43A according to the first and second embodiments. Then, the value of the impedance between the internal terminal hpi and the internal terminal lpi is calculated.
  • the instruction receiving section 40B when measuring the impedance of the reference circuit 8B using the measurement range k (1 ⁇ k ⁇ n), the instruction receiving section 40B outputs the selection signal Ss specifying the measurement range k, and the reference circuit 8B A voltage corresponding to the measurement range k specified by the selection signal Ss is input to the voltage detection circuit 3.
  • the impedance calculation section 43B uses the same method as the impedance calculation sections 43 and 43A according to the first embodiment or the second embodiment, based on the current detected by the current detection circuit 2 and the voltage detected by the voltage detection circuit 3.
  • the impedance values (Rr1_k, ⁇ r1_k) of the reference circuit 8B are calculated and stored in the storage unit 46B as the reference measurement result 401_k (first condition) of the measurement range k.
  • the impedance calculation section 43B uses the same method as the impedance calculation sections 43 and 43A according to the first embodiment or the second embodiment.
  • the impedance value (Rr2_k, ⁇ r2_k) of the reference circuit 8B according to the measurement range k under the second condition is calculated and stored in the storage unit 46B as the reference measurement result 402_k (second condition) of the measurement range k.
  • the impedance calculation unit 43B measures the impedance of the reference circuit 8B for each measurement range 1 to n, and generates reference measurement results (first conditions) 401B_1 to 401B_n and reference measurement results (second conditions) 402B_1 to 402B_n. is stored in the storage unit 46B.
  • the correction coefficient update unit 42B calculates the first correction coefficient Gfix and the second correction coefficient ⁇ fix for each measurement range 1 to n using the same method as the correction coefficient update units 42 and 42 according to the first and second embodiments, It is stored in the storage unit 46 as correction coefficient information 403_1 to 403_n, and the values of correction coefficient information 403_1 to 403_n are updated.
  • the correction coefficient update unit 42B uses the reference measurement result 401B_k (Rr1_k, ⁇ r1_k) under the first condition in the measurement range k stored in the storage unit 46B.
  • the first correction coefficient Gfix_k and the second correction coefficient ⁇ fix_k are determined by the same method as in the first and second embodiments based on the difference from the reference measurement result 402B_k (Rr2_k, ⁇ r2_k) under the second condition in the measurement range k. It is calculated and stored in the storage unit 46B as correction coefficient information 403_k.
  • the correction unit 44B is a functional unit that corrects the impedance value calculated by the impedance calculation unit 43B using the correction coefficient information 403B_1 to 403B_n.
  • the correction unit 44B corrects the measured value (R, ⁇ ) of the impedance of the DUT 200 calculated by the impedance calculation unit 43B based on the correction coefficient information 403_1 to 403_n stored in the storage unit 46B, and the corrected DUT
  • the measurement result (second condition) is stored in the storage unit 46B as a measurement result (second condition) 405B.
  • correction unit 44B uses correction coefficient information 403_k (Gfix_k, ⁇ fix_k) corresponding to measurement range k to correct correction unit 44, 44A according to Embodiments 1 and 2.
  • the impedance measurement value (R_k, ⁇ _k) of the DUT 200 in the measurement range k is corrected using the same method as that of the DUT 200 impedance measurement value (Rf_k, ⁇ f_k) after the correction.
  • Condition) 405B is stored in the storage unit 46B.
  • the storage unit 46B stores calculation formulas, various parameters, measurement results, etc. necessary for measuring electrical characteristics of the DUT, calculating correction coefficients, etc. This is a functional unit that stores correction coefficients and the like.
  • the storage unit 46B stores reference measurement results (first conditions) 401B_1 to 401B_n and reference measurement results (second conditions) 402B_1 to 402B_n for each measurement range. Further, the storage unit 46B stores correction coefficient information 403B_1 to 403B_n including a first correction coefficient Gfix and a second correction coefficient ⁇ fix for each measurement range. Furthermore, the storage unit 46B stores the DUT measurement results (second condition) 404B including the impedance measurement values (R, ⁇ ) of the DUT 200 under the second condition, and the corrected impedance measurement values (Rf, ⁇ f) of the DUT 200. ) The corrected DUT measurement result (second condition) 405B is stored.
  • FIG. 12 is a flowchart showing the flow of impedance measurement by the measuring device 100B according to the third embodiment.
  • a reference measurement result 401B_k (Rr1_k, ⁇ r1_k) based on a predetermined measurement range k is stored in advance in the storage unit 46B of the data processing control circuit 4B under the first condition (for example, initial adjustment). Further, it is assumed that the DUT 200 is connected between external terminals HC and HP and external terminals LC and LP.
  • step S1 when the user operates the operation unit 7 to specify the measurement range k and instructs to measure the impedance of the DUT 200, first, as in step S1 according to the first embodiment described above, the data processing control circuit 4B controls the switch section 5 to connect the internal terminals hci, hpi, lci, and lpi to the reference circuit 8 (step S1B).
  • the data processing control circuit 4B controls the reference circuit 8B so that the voltage corresponding to the specified measurement range k is output from the reference circuit 8B (step S10B).
  • the instruction receiving unit 40 outputs a selection signal Ss instructing the measurement range k specified by the user
  • the data processing control circuit 4B measures the impedance (R, ⁇ ) of the reference circuit 8B (step S2B). Specifically, the instruction receiving section 40B instructs the generating circuit 1 to output voltage or current, and instructs the impedance calculating section 43B to measure impedance in the measurement range k. As a result, a voltage corresponding to the measurement range k is output from the reference circuit 8B and input to the voltage detection circuit 3.
  • the impedance calculation unit 43B calculates the resistance component Rr2_k and phase angle ⁇ r2_k of the reference circuit 8B based on the voltage signal output from the voltage detection circuit 3 and the current signal output from the current detection circuit 2 using the method described above. Then, it is stored in the storage unit 46B as a reference measurement result 402B_k (second condition) in the measurement range k.
  • the data processing control circuit 4B calculates correction coefficient information 403_k corresponding to measurement range k (step S3B).
  • the correction coefficient updating unit 42B uses the reference measurement result 401B_k (Rr1_k, ⁇ r1_k) of the measurement range k under the first condition, which is stored in the storage unit 46B, and the measurement under the second condition measured in step S2B.
  • the reference measurement result 402B_k (Rr2_k, ⁇ r2_k) of range k Based on the reference measurement result 402B_k (Rr2_k, ⁇ r2_k) of range k, the first correction coefficient Gfix_k and second correction coefficient ⁇ fix_k of measurement range k are calculated by the method described above, and stored in the storage unit 46B as correction coefficient information 403_k.
  • the correction coefficient update unit 42B stores the newly calculated first correction coefficient Gfix_k and second correction coefficient ⁇ fix_k in the storage unit 46B.
  • the first correction coefficient Gfix_k and the second correction coefficient ⁇ fix_k that have been set are rewritten.
  • the data processing control circuit 4B controls the switch section 5 to connect the internal terminals hci, hpi, lci, lpi to the external terminals HC, HP, LC, LP (step S4B).
  • the internal terminals hci, hpi, lci, and lpi are connected to the DUT 200.
  • the data processing control circuit 4B measures the phase value ⁇ of the DUT 200 in the measurement range k (step S5B). Specifically, similarly to step S2B, the instruction receiving unit 40B instructs the generating circuit 1 to output voltage or current, and instructs the impedance calculating unit 43A to measure impedance in the measurement range k. .
  • the impedance calculation unit 43B calculates the resistance component value R_k and the phase value ⁇ _k of the DUT 200 based on the voltage signal output from the voltage detection circuit 3 and the current signal output from the current detection circuit 2 using the method described above. It is calculated and stored in the storage unit 46B, for example, as a DUT measurement result 404B (second condition).
  • the correction unit 44B stores the calculated corrected resistance component value Rf_k and phase value ⁇ f_k in the storage unit 46B as a corrected DUT measurement result 405B_k.
  • the data processing control circuit 4B outputs the corrected DUT measurement result 405B_k (Rf_k, ⁇ f_k) to the output unit 6 as the measurement result of the phase angle of the impedance of the DUT 200 (step S7A).
  • the output unit 6 displays, for example, information on the impedance measurement result (resistance component value Rf_k, phase angle ⁇ f_k, etc.) of the DUT 200 in the measurement range k on the screen.
  • the reference circuit 8B includes the first resistor Rm and the plurality of second resistors Ra1 to Ran (network resistor Ratt) connected in parallel with the first resistor Rm. ), and a selection circuit 81 that selects and outputs one voltage from a plurality of voltages output from the voltage divider circuit 80.
  • the resistance value of the first resistor Rm and each resistance value (voltage division coefficient Xatt) of the plurality of second resistors Ra1 to Ran constituting the network resistor Ratt are appropriately set.
  • a reference circuit (resistance) having a desired resistance value can be virtually realized without using a highly stable resistor having a low resistance value of several m ⁇ .
  • the selection circuit 81 selects and outputs the voltage corresponding to the selection signal Ss that specifies the measurement range from among the plurality of voltages output from the voltage dividing circuit 80. It becomes possible to correct measurement errors using the correction coefficient, and it becomes possible to measure impedance with higher precision in each measurement range.
  • the measurement apparatuses 100 and 100A measure the impedance of the DUT 200 using the four-terminal method, but the present invention is not limited to this. Good too.
  • FIG. 13 is a diagram showing the configuration of a measuring device 100C capable of measuring impedance using a two-terminal method.
  • the measuring device 100C has, for example, an external terminal H as a first external terminal, an external terminal L as a second external terminal, an internal terminal hi as a first internal terminal, and a second internal terminal. It has an internal terminal li as a terminal.
  • the reference circuit 8C has, for example, a terminal hr as a high-side terminal and a terminal lr as a low-side terminal. Note that the reference circuit 8C may have the same internal configuration as the reference circuits 8 and 8A, for example.
  • the generating circuit 1 applies a voltage or current between the internal terminal hi and the internal terminal li.
  • Current detection circuit 2 detects a current flowing between internal terminal hi and internal terminal li.
  • the current detection circuit 2 is connected in series between the positive output terminal of the generating circuit 1 and the internal terminal hi, or between the negative output terminal of the generating circuit 1 and the internal terminal li.
  • FIG. 13 shows, as an example, a case where the current detection circuit 2 is connected in series between the negative output terminal of the generation circuit 1 and the internal terminal li.
  • the positive input terminal of the voltage detection circuit 3 is connected to the internal terminal hi, and the negative input terminal of the voltage detection circuit 3 is connected to the internal terminal li.
  • Voltage detection circuit 3 detects and outputs the voltage between internal terminals hi and li.
  • the switch section 5C switches the connection destination of the internal terminals hi, hi between the external terminal H and one terminal hr of the reference circuit 8C in accordance with the signal Sc from the data processing control circuit 4, and also switches the connection destination of the internal terminal li between the external terminal H and one terminal hr of the reference circuit 8C.
  • the connection destination is switched between the external terminal L and the other terminal lr of the reference circuit 8C.
  • Each of the switches 51C and 53C constituting the switch section 5C is configured, for example, by a double-throw switch element, similar to the switch 51 and the like described above.
  • the data processing control circuit 4, output section 6, and operation section 7 are the same as those in the first and second embodiments.
  • the user can measure the impedance of the reference circuit 8C with the measurement device 100C under various conditions and compare the measurement results. By doing so, it is possible to easily know the error in measurement by the measuring device 100C, and it is also possible to measure impedance with higher accuracy.
  • the data processing control circuit 4A corrects the measured value of impedance using the first correction coefficient Gfix and the second correction coefficient ⁇ fix, but the present invention is not limited to this.
  • the data processing control circuit 4A may only correct the measured value of the phase angle of impedance using the second correction coefficient ⁇ fix.
  • the data processing control circuit 4B according to the third embodiment may correct the measured value of impedance using only one of the first correction coefficient Gfix and the second correction coefficient ⁇ fix.
  • the measurement device 100B includes the reference circuit 8B, but the reference circuit 8B is not limited to this, and the reference circuit 8B may be implemented as a “standard resistor” separate from the measurement device 100B. good.
  • the reference circuit 8B as a standard resistor includes a high-side input terminal hcr, a high-side output terminal hpr, a low-side input terminal lcr, a low-side output terminal lpr, a voltage dividing circuit 80, and a selection circuit 81. It is one device.
  • the reference circuit 8B standard resistor
  • the present invention is not limited to this.
  • the arithmetic circuits 4, 4A, 4B may calculate the impedance using the method described above using current values stored in advance in the storage units 46, 46A, etc.
  • the above-mentioned flowchart shows an example for explaining the operation, and is not limited thereto. That is, the steps shown in each figure of the flowchart are specific examples, and the flowchart is not limited to this flow. For example, the order of some processes may be changed, other processes may be inserted between each process, or some processes may be performed in parallel.
  • the voltage dividing circuit 80 includes a first resistor Rm and a plurality of second resistors Ra1 to Ran (n is 2) connected in parallel with the first resistor Rm. (the above integer), but the present invention is not limited to this, and various circuit configurations that can realize the function as a voltage dividing circuit can be adopted.
  • FIG. 14 shows another example of the reference circuit.
  • the reference circuit 8B shown in FIG. 14 includes a first resistor Rm, a plurality of second resistors Ra0 to Ra3 connected in parallel with the first resistor Rm, and a third resistor Rc.
  • the first resistor Rm is 1 ⁇
  • the second resistor Ra0 is 2k ⁇
  • the second resistor Ra1 is 900 ⁇
  • the second resistor Ra2 is 900 ⁇
  • the second resistor Ra3 is 100 ⁇
  • the third resistor Rc is 100 ⁇ .
  • the third resistor Rc is connected in parallel with at least one resistor among the second resistors Ra0 to Ra3 connected in series.
  • the third resistor Rc is connected in parallel with at least two resistors connected in series among the second resistors Ra0 to Ra3.
  • one end of the third resistor Rc is connected to a node Nc to which the low-side input terminal lcr and the low-side output terminal lpr are commonly connected, and the other end of the third resistor Rc is It is connected to one of the connected nodes.
  • FIG. 14 shows a case where one end of the third resistor Rc is connected to the node Nc, and the other end of the third resistor Rc is connected to the terminal Pa2.
  • connection destination of the resistor Rc is not limited to the example shown in FIG. 14, and can be variously changed depending on the desired resistance value.
  • SYMBOLS 1... Generation circuit 2... Current detection circuit, 3... Voltage detection circuit, 4... Data processing control circuit, 5... Switch section, 6... Output section, 7... Operation section, 8, 8A, 8B... Reference circuit, 40, 40B...Instruction reception unit, 41...Switch control unit, 42, 42A, 42B...Correction coefficient update unit, 43, 43A, 43B...Impedance calculation unit, 44, 44A, 44B...Correction unit, 45...Measurement result output unit, 51 ⁇ 54... Switch, 80... Voltage divider circuit, 81... Selection circuit, 82... Buffer, 401, 401A, 401B_1 to 401B_n...

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measurement Of Resistance Or Impedance (AREA)

Abstract

The present invention makes it possible to easily know an error of measurement by this measurement device. A measurement device (100) is characterized by comprising: a data processing control circuit (4) that measures impedance between first internal terminals (hci, hpi) and second internal terminals (lci, lpi) on the basis of voltage and current between the first internal terminals (hci, hpi) and the second internal terminals (lci, lpi) upon application of the voltage or the current between the first internal terminals (hci, hpi) and the second internal terminals (lci, lpi); a reference circuit (8) that has a prescribed impedance; and a switch (5) that switches the connection destination of the first internal terminals (hci, hpi) between first external terminals (HC, HP) and one terminal of the reference circuit (8), and switches the connection destination of the second internal terminals (lci, lpi) between second external terminals (LC, LP) and the other terminal of the reference circuit (8).

Description

測定装置および標準抵抗器Measuring equipment and standard resistors
 本発明は、測定装置および標準抵抗器に関し、例えば、測定対象物の電気的特性を測定する測定装置に関する。 The present invention relates to a measuring device and a standard resistor, and for example, to a measuring device that measures the electrical characteristics of an object to be measured.
 測定対象物(以下、「DUT:Device Under Test」とも称する。)のインピーダンス等の電気的特性を測定するLCRメータ、抵抗計、およびバッテリテスタ等の測定装置が知られている(特許文献1参照)。 Measuring devices such as LCR meters, resistance meters, and battery testers that measure electrical characteristics such as impedance of an object to be measured (hereinafter also referred to as "DUT: Device Under Test") are known (see Patent Document 1). ).
特開2020-76600号公報Japanese Patent Application Publication No. 2020-76600
 上述した測定装置は、DUTに印加する電圧または電流を発生させる発生回路、DUTに発生した電圧を検出する電圧検出回路、およびDUTに流れる電流を検出する電流検出回路等の各種の内部回路を含んで構成されている。これらの内部回路の特性は、当該回路を構成する基準電圧源、基準抵抗器、ゲイン設定抵抗器、トランジスタ、およびキャパシタ等の電子部品の特性の影響を受ける。 The measurement device described above includes various internal circuits such as a generation circuit that generates a voltage or current to be applied to the DUT, a voltage detection circuit that detects the voltage generated in the DUT, and a current detection circuit that detects the current flowing through the DUT. It consists of The characteristics of these internal circuits are influenced by the characteristics of electronic components such as a reference voltage source, reference resistor, gain setting resistor, transistor, and capacitor that constitute the circuit.
 一般に、電子部品の特性は、温度および経年によって変動することが知られている。温度および経年によって電子部品の特性が変化した場合、測定装置を構成する種々の内部回路の特性が変化し、DUTのインピーダンスの真値と測定装置によるDUTのインピーダンスの測定結果との間に誤差が生じる可能性がある。 It is generally known that the characteristics of electronic components change depending on temperature and aging. When the characteristics of electronic components change due to temperature and age, the characteristics of the various internal circuits that make up the measurement device change, causing an error between the true value of the DUT's impedance and the measurement result of the DUT's impedance by the measurement device. may occur.
 より高精度な測定を実現するためには、測定装置による測定の誤差を知ることが重要である。しかしながら、従来の測定装置の多くは、測定装置自身の誤差を容易に知ることができる機能を備えていなかった。 In order to achieve more accurate measurements, it is important to know the measurement errors made by the measuring device. However, many conventional measuring devices do not have a function that allows the user to easily know the error of the measuring device itself.
 本発明は、上述した課題に鑑みてなされたものであり、測定装置による測定の誤差を容易に知ることができるようにすることを目的とする。 The present invention has been made in view of the above-mentioned problems, and an object of the present invention is to make it possible to easily know errors in measurement by a measuring device.
 本発明の代表的な実施の形態に係る測定装置は、試験対象物の一方の端子を接続するための第1外部端子、および前記試験対象物の他方の端子を接続するための第2外部端子と、第1内部端子および第2内部端子と、前記第1内部端子と前記第2内部端子との間に、電圧または電流を印加する発生回路と、前記第1内部端子と前記第2内部端子との間の電圧を検出する電圧検出回路と、前記電圧検出回路によって検出された電圧と前記第1内部端子と前記第2内部端子との間に流れる電流とに基づいて、前記第1内部端子と前記第2内部端子との間のインピーダンスを測定するデータ処理制御回路と、2つの端子を有し、所定のインピーダンスを有するリファレンス回路と、前記第1内部端子の接続先を前記第1外部端子と前記リファレンス回路の一方の端子との間で切り替えるとともに、前記第2内部端子の接続先を前記第2外部端子と前記リファレンス回路の他方の端子との間で切り替えるスイッチ部と、を備え、前記データ処理制御回路は、第1条件において、前記スイッチ部によって前記リファレンス回路の一方の端子と前記第1内部端子とが接続され、且つ前記リファレンス回路の他方の端子と前記第2内部端子とが接続されたときの前記リファレンス回路のインピーダンスを測定し、前記第1条件とは異なる第2条件において、前記スイッチ部によって前記リファレンス回路の一方の端子と前記第1内部端子とが接続され、且つ前記リファレンス回路の他方の端子と前記第2内部端子とが接続されたときの前記リファレンス回路のインピーダンスを測定し、前記第1条件での前記リファレンス回路のインピーダンスの測定結果と前記第2条件での前記リファレンス回路のインピーダンスの測定結果との誤差に基づいて、前記第2条件において、前記スイッチ部によって前記第1外部端子と前記第1内部端子とが接続され、且つ前記第2外部端子と前記第2内部端子とが接続されたときの前記第1内部端子と前記第2内部端子との間のインピーダンスの測定結果を補正することを特徴とする。 A measuring device according to a typical embodiment of the present invention includes a first external terminal for connecting one terminal of a test object, and a second external terminal for connecting the other terminal of the test object. a first internal terminal, a second internal terminal, a generation circuit that applies a voltage or current between the first internal terminal and the second internal terminal, and the first internal terminal and the second internal terminal. a voltage detection circuit that detects a voltage between the first internal terminal and the second internal terminal based on the voltage detected by the voltage detection circuit and the current flowing between the first internal terminal and the second internal terminal. and the second internal terminal; a reference circuit having two terminals and having a predetermined impedance; and a reference circuit that connects the first internal terminal to the first external terminal. and one terminal of the reference circuit, and a switch unit that switches the connection destination of the second internal terminal between the second external terminal and the other terminal of the reference circuit, In the data processing control circuit, under a first condition, one terminal of the reference circuit and the first internal terminal are connected by the switch section, and the other terminal of the reference circuit is connected to the second internal terminal. The impedance of the reference circuit is measured under a second condition different from the first condition, in which one terminal of the reference circuit and the first internal terminal are connected by the switch unit, and the impedance of the reference circuit is Measure the impedance of the reference circuit when the other terminal of the circuit and the second internal terminal are connected, and compare the impedance measurement result of the reference circuit under the first condition and the reference circuit under the second condition. Based on the error with the measurement result of the impedance of the circuit, under the second condition, the first external terminal and the first internal terminal are connected by the switch section, and the second external terminal and the second internal terminal are connected. The method is characterized in that a measurement result of impedance between the first internal terminal and the second internal terminal when the terminals are connected is corrected.
 本発明に係る測定装置によれば、測定装置による測定の誤差を容易に知ることができる。 According to the measuring device according to the present invention, it is possible to easily know the error in measurement by the measuring device.
実施の形態1に係る測定装置の構成を示す図である。1 is a diagram showing the configuration of a measuring device according to Embodiment 1. FIG. スイッチ部を構成する各スイッチの接続例を示す図である。FIG. 3 is a diagram illustrating a connection example of each switch configuring the switch section. スイッチ部を構成する各スイッチの接続例を示す図である。FIG. 3 is a diagram illustrating a connection example of each switch configuring the switch section. 実施の形態1に係るデータ処理制御回路の構成を示す図である。1 is a diagram showing the configuration of a data processing control circuit according to Embodiment 1. FIG. 実施の形態1に係る測定装置によるインピーダンス測定の流れを示すフローチャートである。5 is a flowchart showing the flow of impedance measurement by the measuring device according to the first embodiment. 実施の形態2に係る測定装置の構成を示す図である。FIG. 3 is a diagram showing the configuration of a measuring device according to a second embodiment. 実施の形態2に係るリファレンス回路の一例を示す図である。7 is a diagram showing an example of a reference circuit according to Embodiment 2. FIG. 実施の形態2に係るデータ処理制御回路の構成を示す図である。3 is a diagram showing the configuration of a data processing control circuit according to a second embodiment. FIG. 実施の形態2に係る測定装置によるインピーダンス測定の流れを示すフローチャートである。7 is a flowchart showing the flow of impedance measurement by the measuring device according to Embodiment 2. FIG. 実施の形態3に係る測定装置の構成を示す図である。3 is a diagram showing the configuration of a measuring device according to Embodiment 3. FIG. 実施の形態3に係るリファレンス回路の一例を示す図である。FIG. 7 is a diagram showing an example of a reference circuit according to Embodiment 3; 実施の形態3に係るデータ処理制御回路の構成を示す図である。FIG. 7 is a diagram showing the configuration of a data processing control circuit according to a third embodiment. 実施の形態3に係る測定装置によるインピーダンス測定の流れを示すフローチャートである。12 is a flowchart showing the flow of impedance measurement by the measuring device according to Embodiment 3. 2端子法によるインピーダンス測定が可能な測定装置の構成を示す図である。1 is a diagram showing the configuration of a measuring device capable of measuring impedance using a two-terminal method. リファレンス回路の別の一例を示す図である。FIG. 7 is a diagram showing another example of a reference circuit.
1.実施の形態の概要
 先ず、本願において開示される発明の代表的な実施の形態について概要を説明する。なお、以下の説明では、一例として、発明の構成要素に対応する図面上の参照符号を、括弧を付して記載している。
1. Overview of Embodiments First, an overview of typical embodiments of the invention disclosed in this application will be described. In the following description, as an example, reference numerals on the drawings corresponding to constituent elements of the invention are written in parentheses.
 〔1〕本発明の代表的な実施の形態に係る測定装置(100,100A,100B,100C)は、試験対象物(200)の一方の端子を接続するための第1外部端子(HC,HP,H)、および前記試験対象物の他方の端子を接続するための第2外部端子(LC,LP,L)と、第1内部端子(hci,hpi,hi)および第2内部端子(lci,lpi,li)と、前記第1内部端子と前記第2内部端子との間に、電圧または電流を印加する発生回路(1)と、前記第1内部端子と前記第2内部端子との間の電圧を検出する電圧検出回路(3)と、前記電圧検出回路によって検出された電圧と前記第1内部端子と前記第2内部端子との間に流れる電流とに基づいて、前記第1内部端子と前記第2内部端子との間のインピーダンスを測定するデータ処理制御回路(4,4A,4B)と、2つの端子を有し、所定のインピーダンスを有するリファレンス回路(8,8A,8B,8C)と、前記第1内部端子の接続先を前記第1外部端子と前記リファレンス回路の一方の端子との間で切り替えるとともに、前記第2内部端子の接続先を前記第2外部端子と前記リファレンス回路の他方の端子との間で切り替えるスイッチ部(5,5C)と、を備え、前記データ処理制御回路は、第1条件において、前記スイッチ部によって前記リファレンス回路の一方の端子と前記第1内部端子とが接続され、且つ前記リファレンス回路の他方の端子と前記第2内部端子とが接続されたとき(図2A参照)の前記リファレンス回路のインピーダンスの測定結果と、前記第1条件とは異なる第2条件において、前記スイッチ部によって前記リファレンス回路の一方の端子と前記第1内部端子とが接続され、且つ前記リファレンス回路の他方の端子と前記第2内部端子とが接続されたとき(図2A参照)の前記リファレンス回路のインピーダンスの測定結果との誤差に基づいて補正係数を算出し、前記第2条件において、前記スイッチ部によって前記第1外部端子と前記第1内部端子とが接続され、且つ前記第2外部端子と前記第2内部端子とが接続されたとき(図2B参照)の前記第1内部端子と前記第2内部端子との間のインピーダンスの測定結果を前記補正係数に基づいて補正することを特徴とする。 [1] The measuring device (100, 100A, 100B, 100C) according to a typical embodiment of the present invention has a first external terminal (HC, HP) for connecting one terminal of the test object (200). , H), and a second external terminal (LC, LP, L) for connecting the other terminal of the test object, a first internal terminal (hci, hpi, hi) and a second internal terminal (lci, lpi, li), a generating circuit (1) that applies a voltage or current between the first internal terminal and the second internal terminal, and a generating circuit (1) that applies a voltage or current between the first internal terminal and the second internal terminal. a voltage detection circuit (3) that detects a voltage; and a voltage detection circuit (3) that detects a voltage between the first internal terminal and the second internal terminal based on the voltage detected by the voltage detection circuit and the current flowing between the first internal terminal and the second internal terminal. a data processing control circuit (4, 4A, 4B) that measures impedance with the second internal terminal; a reference circuit (8, 8A, 8B, 8C) having two terminals and a predetermined impedance; , the connection destination of the first internal terminal is switched between the first external terminal and one terminal of the reference circuit, and the connection destination of the second internal terminal is switched between the second external terminal and the other terminal of the reference circuit. a switch unit (5, 5C) for switching between one terminal of the reference circuit and the first internal terminal by the switch unit under a first condition. and the measurement result of the impedance of the reference circuit when the other terminal of the reference circuit and the second internal terminal are connected (see FIG. 2A), and under a second condition different from the first condition. , when one terminal of the reference circuit and the first internal terminal are connected by the switch unit, and the other terminal of the reference circuit and the second internal terminal are connected (see FIG. 2A). A correction coefficient is calculated based on the error with the impedance measurement result of the reference circuit, and under the second condition, the first external terminal and the first internal terminal are connected by the switch unit, and the second external The measurement result of the impedance between the first internal terminal and the second internal terminal when the terminal and the second internal terminal are connected (see FIG. 2B) is corrected based on the correction coefficient. shall be.
 〔2〕上記〔1〕に記載の測定装置において、前記発生回路は、一定の周波数および一定の振幅を有する参照信号(Sb)に基づく交流信号を前記第1内部端子と前記第2内部端子との間に供給し、前記データ処理制御回路は、同期検波により、前記電圧検出回路によって検出された電圧信号の振幅(|V|)と、前記参照信号と前記電圧信号との間の電圧位相差(θv)と、前記第1内部端子と前記第2内部端子との間に流れる電流信号の振幅(|I|)と、前記参照信号と前記電流信号との間の電流位相差(θi)とをそれぞれ算出し、算出した、前記電圧信号の振幅、前記電圧位相差、前記電流信号の振幅、および前記電流位相差に基づいて、前記第1内部端子と前記第2内部端子との間のインピーダンスの抵抗成分の値(R=|V|/|I|×cosθ)と、前記電圧位相差と前記電流位相差との差である前記第1内部端子と前記第2内部端子との間のインピーダンスの位相角の値(θ=θv-θi)とをそれぞれ算出してもよい。 [2] In the measuring device according to [1] above, the generation circuit transmits an AC signal based on a reference signal (Sb) having a constant frequency and a constant amplitude to the first internal terminal and the second internal terminal. and the data processing control circuit detects the amplitude (|V|) of the voltage signal detected by the voltage detection circuit and the voltage phase difference between the reference signal and the voltage signal by synchronous detection. (θv), the amplitude (|I|) of the current signal flowing between the first internal terminal and the second internal terminal, and the current phase difference (θi) between the reference signal and the current signal. and the impedance between the first internal terminal and the second internal terminal based on the amplitude of the voltage signal, the voltage phase difference, the amplitude of the current signal, and the current phase difference, respectively. the value of the resistance component (R=|V|/|I|×cosθ) and the impedance between the first internal terminal and the second internal terminal, which is the difference between the voltage phase difference and the current phase difference. The value of the phase angle (θ=θv−θi) may be calculated.
 〔3〕上記〔2〕に記載の測定装置(100,100A,100B,100C)において、前記データ処理制御回路(4,4A,4B)は、前記第1条件において測定した前記リファレンス回路(8,8A,8B,8C)のインピーダンスの抵抗成分の値(Rr1)と、前記第2条件において測定した前記リファレンス回路のインピーダンスの抵抗成分の値(Rr2)との誤差に基づいて、前記第2条件において測定した前記試験対象物のインピーダンスの抵抗成分の値を補正してもよい。 [3] In the measuring device (100, 100A, 100B, 100C) described in [2] above, the data processing control circuit (4, 4A, 4B) is configured to perform the measurement under the first condition. 8A, 8B, 8C) and the value (Rr2) of the impedance of the reference circuit measured under the second condition. The value of the resistance component of the measured impedance of the test object may be corrected.
 〔4〕上記〔3〕に記載の測定装置において、前記データ処理制御回路は、前記補正係数として、前記第1条件において測定した前記リファレンス回路のインピーダンスの抵抗成分の値(Rr1)と、前記第2条件において測定した前記リファレンス回路のインピーダンスの抵抗成分の値(Rr2)との比に基づく第1補正係数(Gfix)を算出し、前記第1補正係数を用いて、前記第2条件において測定した前記試験対象物のインピーダンスの抵抗成分の値を補正してもよい。 [4] In the measuring device according to [3] above, the data processing control circuit includes, as the correction coefficient, a value (Rr1) of the resistance component of the impedance of the reference circuit measured under the first condition; A first correction coefficient (Gfix) is calculated based on the ratio of the impedance of the reference circuit measured under the two conditions to the value of the resistance component (Rr2), and using the first correction coefficient, the measurement is performed under the second condition. The value of the resistance component of the impedance of the test object may be corrected.
 〔5〕上記〔2〕乃至〔4〕の何れか一つに記載の測定装置(100A,100B,100C)において、前記データ処理制御回路(4A,4B)は、前記第1条件において測定した前記リファレンス回路のインピーダンスの位相角の値(θr1)と、前記第2条件において測定した前記リファレンス回路のインピーダンスの位相角の値(θr2)との誤差に基づいて、前記第2条件において測定した前記試験対象物のインピーダンスの位相角の値を補正してもよい。 [5] In the measuring device (100A, 100B, 100C) according to any one of [2] to [4] above, the data processing control circuit (4A, 4B) is configured to perform the measurement under the first condition. The test measured under the second condition based on the error between the value of the phase angle of the impedance of the reference circuit (θr1) and the value of the phase angle of the impedance of the reference circuit (θr2) measured under the second condition. The value of the phase angle of the impedance of the object may be corrected.
 〔6〕上記〔5〕に記載の測定装置において、前記データ処理制御回路は、前記補正係数として、前記第1条件において測定した前記リファレンス回路のインピーダンスの位相角の値(θr1)と、前記第2条件において測定した前記リファレンス回路のインピーダンスの位相角の値(θr2)との差に基づく第2補正係数(θfix)を算出し、前記第2補正係数を用いて、前記第2条件において測定した前記試験対象物のインピーダンスの位相角の値を補正してもよい。 [6] In the measuring device according to [5] above, the data processing control circuit includes, as the correction coefficient, a phase angle value (θr1) of the impedance of the reference circuit measured under the first condition; A second correction coefficient (θfix) is calculated based on the difference between the phase angle value (θr2) of the impedance of the reference circuit measured under the two conditions, and using the second correction coefficient, the impedance of the reference circuit measured under the second condition is calculated. The value of the phase angle of the impedance of the test object may be corrected.
 〔7〕上記〔2〕乃至〔6〕の何れか一つに記載の測定装置(100,100A,100B,100C)において、前記データ処理制御回路は、前記測定装置への指示を受け付ける指示受付部(40,40B)と、前記第1条件において測定された前記リファレンス回路のインピーダンスの値(Rr1,θr1)と、前記補正係数を含む補正係数情報(Gfix,θfix)と、を記憶する記憶部(46,46A,46B)と、前記スイッチ部を制御するスイッチ制御部(41)と、前記第1内部端子と前記第2内部端子との間のインピーダンスの値を算出するインピーダンス算出部(43,43A,43B)と、前記インピーダンス算出部によって算出されたインピーダンスの値を前記補正係数情報に基づいて補正する補正部(44,44A,44B)と、前記補正部によって補正されたインピーダンスの値を測定結果として出力する測定結果出力部(45)と、前記補正係数情報を更新する補正係数更新部(42,42A,42B)と、を有し、前記指示受付部が所定の指示を受け付けた場合に、前記スイッチ部が、前記リファレンス回路の一方の端子と前記第1内部端子とを接続し、且つ前記リファレンス回路の他方の端子と前記第2内部端子とを接続するとともに、前記インピーダンス算出部が、前記第1内部端子と前記第2内部端子との間のインピーダンスの値を算出して、前記第2条件において測定された前記リファレンス回路のインピーダンスの値(Rr2,θr2)として前記記憶部に記憶し、前記補正係数更新部が、前記記憶部に記憶されている、前記第1条件において測定された前記リファレンス回路のインピーダンスの値(Rr1,θr1)と、前記第2条件において測定された前記リファレンス回路のインピーダンスの値(Rr2,θr2)とに基づいて、前記補正係数情報(Gfix,θfix)を更新してもよい。 [7] In the measuring device (100, 100A, 100B, 100C) according to any one of [2] to [6] above, the data processing control circuit includes an instruction receiving unit that receives instructions to the measuring device. (40, 40B), the impedance value (Rr1, θr1) of the reference circuit measured under the first condition, and correction coefficient information (Gfix, θfix) including the correction coefficient ( 46, 46A, 46B), a switch control unit (41) that controls the switch unit, and an impedance calculation unit (43, 43A) that calculates the value of impedance between the first internal terminal and the second internal terminal. , 43B), a correction unit (44, 44A, 44B) that corrects the impedance value calculated by the impedance calculation unit based on the correction coefficient information, and a correction unit (44, 44A, 44B) that corrects the impedance value corrected by the correction unit as a measurement result. and a correction coefficient updating unit (42, 42A, 42B) that updates the correction coefficient information, and when the instruction receiving unit receives a predetermined instruction, The switch unit connects one terminal of the reference circuit to the first internal terminal, and connects the other terminal of the reference circuit to the second internal terminal, and the impedance calculation unit connects the first internal terminal to the second internal terminal. Calculating the impedance value between the first internal terminal and the second internal terminal and storing it in the storage unit as the impedance value (Rr2, θr2) of the reference circuit measured under the second condition; The correction coefficient updating unit updates the impedance values (Rr1, θr1) of the reference circuit measured under the first condition, which are stored in the storage unit, and the impedance values (Rr1, θr1) of the reference circuit measured under the second condition. The correction coefficient information (Gfix, θfix) may be updated based on the impedance value (Rr2, θr2).
 〔8〕上記〔1〕乃至〔7〕の何れか一つに記載の測定装置において、前記リファレンス回路(8,8A,8C)は、抵抗器(Rref)を含んでもよい。 [8] In the measuring device according to any one of [1] to [7] above, the reference circuit (8, 8A, 8C) may include a resistor (Rref).
 〔9〕上記〔1〕に記載の測定装置(100B)において、前記第1内部端子は、前記発生回路から電圧または電流が印加されるハイサイド内部印加端子(hci)と、前記電圧検出回路に接続されたハイサイド内部検出端子(hpi)と、を含み、前記第2内部端子は、前記発生回路から電圧または電流が印加されるローサイド内部印加端子(lci)と、前記電圧検出回路に接続されたローサイド内部検出端子(lpi)と、を含み、前記第1外部端子は、ハイサイド外部印加端子(HC)と、ハイサイド外部検出端子(HP)と、を含み、前記第2外部端子は、ローサイド外部印加端子(LC)と、ローサイド外部検出端子(LP)と、を含み、前記リファレンス回路(8B)は、前記リファレンス回路の一方の端子としてのハイサイド入力端子(hcr)およびハイサイド出力端子(hpr)と、前記リファレンス回路の他方の端子としてのローサイド入力端子(lcr)およびローサイド出力端子(lpr)と、前記ハイサイド入力端子と前記ローサイド入力端子との間に接続された第1抵抗器(Rm)と、前記ハイサイド入力端子と前記ローサイド入力端子との間に直列に接続された複数の第2抵抗器(Ra0~Ran)と、前記ハイサイド入力端子と前記ローサイド入力端子との間の電圧と、前記複数の第2抵抗器によって分圧された複数の電圧とを入力し、入力された電圧のうち何れか一つの電圧を選択して前記ハイサイド出力端子と前記ローサイド出力端子との間に出力する選択回路(81)と、を含み、前記スイッチ部は、前記ハイサイド内部印加端子(hci)の接続先を前記ハイサイド外部印加端子(HC)と前記リファレンス回路の前記ハイサイド入力端子(hcr)との間で切り替え、前記ローサイド内部印加端子(lci)の接続先を前記ローサイド外部印加端子(LC)と前記リファレンス回路の前記ローサイド入力端子(lcr)との間で切り替え、前記ハイサイド内部検出端子(hpi)の接続先を前記ハイサイド外部検出端子(HP)と前記リファレンス回路の前記ハイサイド出力端子(hpr)との間で切り替え、前記ローサイド内部検出端子(lpi)の接続先を前記ローサイド外部検出端子(LP)と前記リファレンス回路の前記ローサイド出力端子(lpr)との間で切り替えてもよい。 [9] In the measuring device (100B) according to [1] above, the first internal terminal is connected to a high side internal application terminal (hci) to which a voltage or current is applied from the generation circuit, and to the voltage detection circuit. a high-side internal detection terminal (hpi) connected to the second internal terminal, and the second internal terminal is connected to a low-side internal application terminal (lci) to which a voltage or current is applied from the generation circuit and the voltage detection circuit. the first external terminal includes a high side external application terminal (HC) and a high side external detection terminal (HP); the second external terminal includes a low side internal detection terminal (lpi); The reference circuit (8B) includes a low side external application terminal (LC) and a low side external detection terminal (LP), and the reference circuit (8B) has a high side input terminal (hcr) as one terminal of the reference circuit and a high side output terminal. (hpr), a low side input terminal (lcr) and a low side output terminal (lpr) as the other terminal of the reference circuit, and a first resistor connected between the high side input terminal and the low side input terminal. (Rm), a plurality of second resistors (Ra0 to Ran) connected in series between the high side input terminal and the low side input terminal, and between the high side input terminal and the low side input terminal. and a plurality of voltages divided by the plurality of second resistors, select any one of the input voltages, and output the voltage to the high-side output terminal and the low-side output terminal. a selection circuit (81) that outputs an output between the high side internal application terminal (hci) and the high side external application terminal (HC) and the high side of the reference circuit. switching the connection destination of the low-side internal application terminal (lci) between the low-side external application terminal (LC) and the low-side input terminal (lcr) of the reference circuit; Switching the connection destination of the high side internal detection terminal (hpi) between the high side external detection terminal (HP) and the high side output terminal (hpr) of the reference circuit, and connecting the low side internal detection terminal (lpi). The terminal may be switched between the low side external detection terminal (LP) and the low side output terminal (lpr) of the reference circuit.
 〔10〕上記〔9〕に記載の測定装置において、前記リファレンス回路は、前記複数の第2抵抗器のうち少なくとも一つの抵抗器と並列に接続された第3抵抗器(Rc)を更に含んでいてもよい。 [10] In the measuring device according to [9] above, the reference circuit further includes a third resistor (Rc) connected in parallel with at least one resistor among the plurality of second resistors. You can stay there.
 〔11〕上記〔9〕または〔10〕に記載の測定装置(100B)において、前記選択回路には、測定レンジを指定する選択信号(Ss)が入力され、前記選択回路は、入力された電圧のうち、前記選択信号によって指定された測定レンジに対応する電圧を選択して出力してもよい。 [11] In the measuring device (100B) according to [9] or [10] above, a selection signal (Ss) specifying a measurement range is input to the selection circuit, and the selection circuit Among them, a voltage corresponding to the measurement range designated by the selection signal may be selected and output.
 〔12〕上記〔9〕乃至〔11〕の何れか一つに記載の測定装置(100B)において、前記複数の第2抵抗器(Ra1~Ran)は、ネットワーク抵抗器であってもよい。 [12] In the measuring device (100B) according to any one of [9] to [11] above, the plurality of second resistors (Ra1 to Ran) may be network resistors.
 〔13〕本発明の代表的な実施の形態に係る標準抵抗器(8B)は、ハイサイド入力端子(hcr)およびハイサイド出力端子(hpr)と、ローサイド入力端子(lcr)およびローサイド出力端子(lpr)と、前記ハイサイド入力端子と前記ローサイド入力端子との間に接続された第1抵抗器(Rm)と、前記ハイサイド入力端子と前記ローサイド入力端子との間に直列に接続された複数の第2抵抗器(Ra0~Ran)と、前記複数の第2抵抗器のうち少なくとも一つの抵抗器と並列に接続された第3抵抗器(Rc)と、前記ハイサイド入力端子と前記ローサイド入力端子との間の電圧と、前記複数の第2抵抗器によって分圧された複数の電圧とを入力し、入力された電圧のうち何れか一つの電圧を選択して前記ハイサイド出力端子と前記ローサイド出力端子との間に出力する選択回路(81)と、を含むことを特徴とする。 [13] The standard resistor (8B) according to the typical embodiment of the present invention has a high side input terminal (hcr) and a high side output terminal (hpr), and a low side input terminal (lcr) and a low side output terminal ( lpr), a first resistor (Rm) connected between the high-side input terminal and the low-side input terminal, and a plurality of resistors (Rm) connected in series between the high-side input terminal and the low-side input terminal. a second resistor (Ra0 to Ran), a third resistor (Rc) connected in parallel with at least one resistor among the plurality of second resistors, and a third resistor (Rc) connected to the high side input terminal and the low side input terminal. input the voltage between the terminal and the plurality of voltages divided by the plurality of second resistors, select any one of the input voltages, and select the voltage between the high side output terminal and the plurality of voltages divided by the plurality of second resistors. It is characterized by including a selection circuit (81) that outputs between the low side output terminal and the low side output terminal.
2.実施の形態の具体例
 以下、本発明の実施の形態の具体例について図を参照して説明する。なお、以下の説明において、各実施の形態において共通する構成要素には同一の参照符号を付し、繰り返しの説明を省略する。また、図面は模式的なものであり、各要素の寸法の関係、各要素の比率などは、現実と異なる場合があることに留意する必要がある。図面の相互間においても、互いの寸法の関係や比率が異なる部分が含まれている場合がある。
2. Specific Examples of Embodiments Hereinafter, specific examples of embodiments of the present invention will be described with reference to the drawings. In addition, in the following description, the same reference numerals are given to the same component in each embodiment, and repeated description is omitted. Furthermore, it should be noted that the drawings are schematic, and the dimensional relationship of each element, the ratio of each element, etc. may differ from reality. Drawings may also include portions that differ in dimensional relationships and ratios.
 ≪実施の形態1≫
 図1は、実施の形態1に係る測定装置100の構成を示す図である。
Embodiment 1≫
FIG. 1 is a diagram showing the configuration of a measuring device 100 according to the first embodiment.
 図1に示す測定装置100は、DUTの電気的特性を測定するための装置である。測定装置100としては、2端子法または4端子法によるインピーダンスの測定が可能な抵抗計、LCRメータ、およびキャパシタンスメータや、バッテリの特性を測定するためのバッテリテスタ等を例示することができる。なお、測定装置100は、DUTのインピーダンス等の電気的特性を測定可能な装置であればよく、上述の例に限定されない。 A measuring device 100 shown in FIG. 1 is a device for measuring the electrical characteristics of a DUT. Examples of the measuring device 100 include a resistance meter, an LCR meter, and a capacitance meter that can measure impedance using a two-terminal method or a four-terminal method, a battery tester for measuring battery characteristics, and the like. Note that the measuring device 100 may be any device that can measure electrical characteristics such as impedance of the DUT, and is not limited to the above-mentioned example.
 測定装置100は、DUTの電気的特性を測定する機能に加えて、測定装置100内の回路特性の温度や経年による変化に起因する測定の誤差を補正する機能を有している。 In addition to the function of measuring the electrical characteristics of the DUT, the measuring device 100 has a function of correcting measurement errors caused by changes in circuit characteristics within the measuring device 100 due to temperature or aging.
 測定装置100は、上述した各機能を実現するための構成要素として、例えば、外部端子、内部端子、発生回路1、電流検出回路2、電圧検出回路3、データ処理制御回路4、スイッチ部5、出力部6、操作部7、およびリファレンス回路(REF)8を有する。 The measuring device 100 includes, for example, external terminals, internal terminals, a generation circuit 1, a current detection circuit 2, a voltage detection circuit 3, a data processing control circuit 4, a switch section 5, It has an output section 6, an operation section 7, and a reference circuit (REF) 8.
 外部端子は、DUTを接続するための端子である。測定装置100は、外部端子としては、ハイサイド外部印加端子HC、ハイサイド外部検出端子HP、ローサイド外部検出端子LP、およびローサイド外部印加端子LCを有している。例えば、測定装置100によってDUTのインピーダンスを測定するとき、ハイサイド外部印加端子HCおよびハイサイド外部検出端子HPには、DUTの一方の端子が接続され、ローサイド外部検出端子LPおよびローサイド外部印加端子LCには、DUTの他方の端子が接続される。
 なお、以下の説明では、ハイサイド外部印加端子HC、ハイサイド外部検出端子HP、ローサイド外部検出端子LP、およびローサイド外部印加端子LCを、単に、「外部端子HC,HP,LC,LP」と表記する場合がある。
The external terminal is a terminal for connecting the DUT. The measuring device 100 has, as external terminals, a high side external application terminal HC, a high side external detection terminal HP, a low side external detection terminal LP, and a low side external application terminal LC. For example, when measuring the impedance of a DUT using the measuring device 100, one terminal of the DUT is connected to the high side external application terminal HC and the high side external detection terminal HP, and the low side external detection terminal LP and the low side external application terminal LC are connected to one terminal of the DUT. The other terminal of the DUT is connected to.
In the following description, the high-side external application terminal HC, high-side external detection terminal HP, low-side external detection terminal LP, and low-side external application terminal LC are simply expressed as "external terminals HC, HP, LC, LP." There are cases where
 内部端子は、測定装置100内の回路(発生回路1、電流検出回路2、および電圧検出回路3)に接続される端子である。測定装置100は、内部端子としては、ハイサイド内部印加端子hci、ハイサイド内部検出端子hpi、ローサイド内部印加端子lci、およびローサイド内部検出端子lpiを有している。 The internal terminal is a terminal connected to the circuits (generating circuit 1, current detecting circuit 2, and voltage detecting circuit 3) within the measuring device 100. The measuring device 100 has, as internal terminals, a high-side internal application terminal hci, a high-side internal detection terminal hpi, a low-side internal application terminal lci, and a low-side internal detection terminal lpi.
 ハイサイド内部印加端子hciは、発生回路1の正極側の出力端子に接続され、ローサイド内部印加端子lciは、電流検出回路2を介して発生回路1の負極側の出力端子に接続されている。ハイサイド内部検出端子hpiは、電圧検出回路3の正極側の入力端子に接続され、ローサイド内部検出端子lpiは、電圧検出回路3の負極側の入力端子に接続されている。 The high-side internal application terminal hci is connected to the positive output terminal of the generation circuit 1, and the low-side internal application terminal lci is connected to the negative output terminal of the generation circuit 1 via the current detection circuit 2. The high-side internal detection terminal hpi is connected to the positive input terminal of the voltage detection circuit 3, and the low-side internal detection terminal lpi is connected to the negative input terminal of the voltage detection circuit 3.
 なお、以下の説明では、ハイサイド内部印加端子hci、ハイサイド内部検出端子hpi、ローサイド内部印加端子lci、およびローサイド内部検出端子lpiを、単に、「内部端子hci,hpi,lci,lpi」と表記する場合がある。 In the following description, the high-side internal application terminal hci, high-side internal detection terminal hpi, low-side internal application terminal lci, and low-side internal detection terminal lpi are simply expressed as "internal terminals hci, hpi, lci, lpi." There are cases where
 詳細は後述するが、内部端子hci,lci,hpi,lpiは、スイッチ部5によって外部端子HC,LC,HP,LPまたはリファレンス回路8の端子に接続可能にされている。 Although details will be described later, the internal terminals hci, lci, hpi, lpi are connectable to external terminals HC, LC, HP, LP or a terminal of the reference circuit 8 by the switch section 5.
 発生回路1は、インピーダンスを測定するために測定対象物に印加する電圧または電流を発生させる回路である。発生回路1は、内部端子hciと内部端子lciとの間に電圧または電流を印加する。発生回路1は、例えば、定電流を発生させる定電流発生回路、または電圧を発生させる電圧発生回路である。実施の形態1では、一例として、発生回路1が定電流発生回路であるとして説明する。 The generating circuit 1 is a circuit that generates a voltage or current to be applied to an object to be measured in order to measure impedance. Generation circuit 1 applies a voltage or current between internal terminal hci and internal terminal lci. The generating circuit 1 is, for example, a constant current generating circuit that generates a constant current or a voltage generating circuit that generates a voltage. In the first embodiment, as an example, the generation circuit 1 will be described as a constant current generation circuit.
 発生回路1は、例えば、データ処理制御回路4からの信号Sbに応じて定電流信号を発生させ、正極側の出力端子および負極側の出力端子から出力する。例えば、発生回路1の正極側の出力端子は、内部端子hciに接続され、発生回路1の負極側の出力端子は、電流検出回路2を介して内部端子lciに接続されている。 The generation circuit 1 generates a constant current signal in response to the signal Sb from the data processing control circuit 4, for example, and outputs it from the positive output terminal and the negative output terminal. For example, the output terminal on the positive side of the generating circuit 1 is connected to the internal terminal hci, and the output terminal on the negative side of the generating circuit 1 is connected via the current detection circuit 2 to the internal terminal lci.
 発生回路1から出力される定電流信号は、交流信号であってもよいし、直流信号であってもよく、例えば、測定装置100の用途によって変更可能である。 The constant current signal output from the generating circuit 1 may be an alternating current signal or a direct current signal, and can be changed depending on the purpose of the measuring device 100, for example.
 電流検出回路2は、内部端子hciと内部端子lciとの間に流れる電流を検出する回路である。例えば、電流検出回路2は、発生回路1の正極側の出力端子と内部端子hciとの間、または発生回路1の負極側の出力端子と内部端子lciとの間に直列に接続されている。図1には、一例として、電流検出回路2が発生回路1の負極側の出力端子と内部端子lciとの間に直列に接続される場合が示されている。 The current detection circuit 2 is a circuit that detects the current flowing between the internal terminal hci and the internal terminal lci. For example, the current detection circuit 2 is connected in series between the positive output terminal of the generating circuit 1 and the internal terminal hci, or between the negative output terminal of the generating circuit 1 and the internal terminal lci. FIG. 1 shows, as an example, a case where the current detection circuit 2 is connected in series between the negative output terminal of the generation circuit 1 and the internal terminal lci.
 電流検出回路2は、例えば、発生回路1の負極側の出力端子と内部端子lciとの間に直列に接続された抵抗器と、当該抵抗器の両端の電圧を増幅して電流信号として出力する演算増幅器とを含んで構成されている。 The current detection circuit 2 includes, for example, a resistor connected in series between the negative output terminal of the generation circuit 1 and the internal terminal lci, and amplifies the voltage across the resistor and outputs it as a current signal. It is configured to include an operational amplifier.
 電圧検出回路3は、正極側の入力端子と負極側の入力端子を有し、正極側の入力端子と負極側の入力端子との間の電圧を検出する回路である。電圧検出回路3の正極側の入力端子は内部端子hpiに接続され、電圧検出回路3の負極側の入力端子は内部端子lpiに接続されている。電圧検出回路3は、内部端子hpi,lpi間の電圧を検出して、出力する。電圧検出回路3は、例えば、演算増幅器を有しており、検出した外部端子HPと外部端子LPとの間の電圧を演算増幅器によって増幅し、電圧信号として出力する。 The voltage detection circuit 3 is a circuit that has a positive input terminal and a negative input terminal, and detects the voltage between the positive input terminal and the negative input terminal. The positive input terminal of the voltage detection circuit 3 is connected to the internal terminal hpi, and the negative input terminal of the voltage detection circuit 3 is connected to the internal terminal lpi. Voltage detection circuit 3 detects and outputs the voltage between internal terminals hpi and lpi. The voltage detection circuit 3 includes, for example, an operational amplifier, and amplifies the detected voltage between the external terminal HP and the external terminal LP with the operational amplifier and outputs it as a voltage signal.
 操作部7は、ユーザが測定装置100を操作するための入力インターフェースである。操作部7としては、各種のボタンやタッチパネル等を例示することができる。例えば、ユーザが操作部7を操作することにより、DUTを測定するための各種測定条件等を測定装置100に設定するとともに、測定の実行および停止を測定装置100に指示することができる。また、ユーザが操作部7を操作することにより、後述する補正係数の更新を測定装置100に指示することができる。操作部7は、ユーザが操作部7を操作することによって入力された各種指令に応じた処理の実行を指示する信号Sdを生成し、各機能部に与える。 The operation unit 7 is an input interface for a user to operate the measuring device 100. Examples of the operation unit 7 include various buttons, a touch panel, and the like. For example, by operating the operation unit 7, the user can set various measurement conditions for measuring the DUT in the measurement device 100, and can instruct the measurement device 100 to execute and stop measurement. Furthermore, by operating the operation unit 7, the user can instruct the measuring device 100 to update the correction coefficients, which will be described later. The operation unit 7 generates a signal Sd that instructs execution of processing according to various commands input by the user by operating the operation unit 7, and provides the signal Sd to each functional unit.
 出力部6は、測定装置100における測定条件や測定結果などの各種情報を出力する装置である。出力部6は、例えば、LCD(Liquid Crystal Display)や有機EL等の表示装置である。例えば、出力部6は、ユーザの操作部7への入力により、DUTのインピーダンスの測定が指示された場合に、データ処理制御回路4によって算出されたDUTのインピーダンスの測定結果等の情報を画面に表示する。 The output unit 6 is a device that outputs various information such as measurement conditions and measurement results in the measurement device 100. The output unit 6 is, for example, a display device such as an LCD (Liquid Crystal Display) or an organic EL display. For example, when measurement of the impedance of the DUT is instructed by a user's input to the operation unit 7, the output unit 6 displays information such as the measurement result of the DUT impedance calculated by the data processing control circuit 4 on the screen. indicate.
 なお、出力部6は、操作部7としての一部の機能を実現するタッチパネルを備えた表示装置であってもよい。また、出力部6は、測定結果等のデータを有線または無線によって外部に出力する通信回路等を含んでいてもよい。 Note that the output unit 6 may be a display device equipped with a touch panel that implements some of the functions of the operation unit 7. Further, the output unit 6 may include a communication circuit or the like that outputs data such as measurement results to the outside by wire or wirelessly.
 ここで、通信回路は、外部にデータを送信する機能のみならず、外部からデータ等を受信する機能を有していてもよい。例えば、上記通信回路は、外部の装置(例えば、PC等の情報処理装置)から出力された、測定の実行および停止、補正係数の更新等の各種指令を受信した場合に、操作部7と同様に、受信した各種指令に応じた処理の実行を指示する信号Sdを生成して、各機能部に与えてもよい。また、出力部6は、測定の開始や測定の終了等を音によって報知するスピーカー等を含んでいてもよい。 Here, the communication circuit may have not only the function of transmitting data to the outside but also the function of receiving data etc. from the outside. For example, when the communication circuit receives various commands output from an external device (for example, an information processing device such as a PC), such as execution and stop of measurement, update of correction coefficients, etc. Additionally, a signal Sd for instructing execution of processing according to various received commands may be generated and given to each functional unit. Further, the output unit 6 may include a speaker or the like that notifies the start of measurement, the end of measurement, etc. by sound.
 データ処理制御回路4は、測定装置100内の各機能部を統括的に制御する回路である。データ処理制御回路4は、例えば、CPU等のプロセッサと、ROMやRAM、フラッシュメモリ等の記憶装置と、タイマやA/D変換回路等の各種周辺回路とを有するMCU(Micro Controller Unit)や、FPGA(Field-Programmable Gate Array)等のプログラム処理装置を例示することができる。 The data processing control circuit 4 is a circuit that centrally controls each functional section within the measuring device 100. The data processing control circuit 4 is, for example, an MCU (Micro Controller Unit) having a processor such as a CPU, a storage device such as a ROM, RAM, or a flash memory, and various peripheral circuits such as a timer or an A/D conversion circuit, or A program processing device such as an FPGA (Field-Programmable Gate Array) can be exemplified.
 データ処理制御回路4は、操作部7からの信号Sdに応じて、測定装置100内の各機能部を制御することにより、例えば、DUT200またはリファレンス回路8のインピーダンスの測定値の算出と、後述する補正係数の更新と、補正係数を用いた測定値の補正と、を行う。データ処理制御回路4の詳細については、後述する。 The data processing control circuit 4 controls each functional unit in the measuring device 100 in accordance with the signal Sd from the operation unit 7, thereby calculating, for example, the measured value of the impedance of the DUT 200 or the reference circuit 8, as will be described later. The correction coefficients are updated and the measured values are corrected using the correction coefficients. Details of the data processing control circuit 4 will be described later.
 リファレンス回路8は、DUTと同じように、発生回路1および電圧検出回路3に接続することにより、インピーダンスの測定可能な回路である。リファレンス回路8は、測定装置100による測定の誤差の算出および補正に用いることができる。リファレンス回路8は、例えば、ハイサイド端子およびローサイド端子を備える。例えば、リファレンス回路8は、ハイサイド端子としてのハイサイド入力端子hcrおよびハイサイド出力端子hprと、ローサイド端子としてのローサイド入力端子lcrおよびローサイド出力端子lprと、を有している。 The reference circuit 8 is a circuit whose impedance can be measured by connecting it to the generation circuit 1 and the voltage detection circuit 3 in the same way as the DUT. The reference circuit 8 can be used to calculate and correct measurement errors by the measuring device 100. The reference circuit 8 includes, for example, a high side terminal and a low side terminal. For example, the reference circuit 8 has a high-side input terminal hcr and a high-side output terminal hpr as high-side terminals, and a low-side input terminal lcr and a low-side output terminal lpr as low-side terminals.
 なお、以下の説明において、リファレンス回路8のハイサイド入力端子hcr、ハイサイド出力端子hpr、ローサイド入力端子lcr、およびローサイド出力端子lprを、単に、「端子hcr、hpr、lcr、lpr」と表記する場合がある。 In the following description, the high-side input terminal hcr, high-side output terminal hpr, low-side input terminal lcr, and low-side output terminal lpr of the reference circuit 8 are simply expressed as "terminals hcr, hpr, lcr, lpr." There are cases.
 リファレンス回路8は、例えば、抵抗器を含む。実施の形態1では、一例として、リファレンス回路8が、所定の抵抗値を有する抵抗器によって実現されているものとし、当該抵抗器を「リファレンス抵抗Rref」と称する。 The reference circuit 8 includes, for example, a resistor. In the first embodiment, as an example, it is assumed that the reference circuit 8 is realized by a resistor having a predetermined resistance value, and the resistor is referred to as a "reference resistor Rref."
 リファレンス抵抗Rrefの一方の端子は、ハイサイド入力端子hcrおよびハイサイド出力端子hprに接続され、リファレンス抵抗Rrefの他方の端子は、ローサイド入力端子lcrおよびローサイド出力端子lprに接続されている。 One terminal of the reference resistor Rref is connected to a high-side input terminal hcr and a high-side output terminal hpr, and the other terminal of the reference resistor Rref is connected to a low-side input terminal lcr and a low-side output terminal lpr.
 リファレンス抵抗Rrefは、高精度且つ高信頼性を有する抵抗器であることが好ましい。例えば、抵抗値の温度係数が±5ppm/℃以下であり、且つ抵抗値の長期安定性(経年変化)が±100ppm/年以下である精密抵抗器をリファレンス抵抗Rrefとして用いることが好ましい。なお、上記数値は、あくまで一例であり、測定装置100に求められる仕様に応じて、適宜変更可能である。また、リファレンス抵抗Rrefの抵抗値は、測定装置100によるインピーダンスの測定可能範囲に応じて、適宜設定すればよい。 The reference resistor Rref is preferably a resistor with high precision and high reliability. For example, it is preferable to use a precision resistor as the reference resistor Rref, which has a temperature coefficient of resistance of ±5 ppm/° C. or less and a long-term stability (change over time) of resistance value of ±100 ppm/year or less. Note that the above numerical values are just an example, and can be changed as appropriate depending on the specifications required of the measuring device 100. Further, the resistance value of the reference resistor Rref may be appropriately set according to the measurable range of impedance by the measuring device 100.
 スイッチ部5は、内部端子hci,hpi,lci,lpiの接続先を切り替える機能部である。
 スイッチ部5を構成する各スイッチ51~54は、例えば、双投式のスイッチ素子によってそれぞれ構成されている。スイッチ素子としては、半導体スイッチ(例えば、トランジスタ)やリレー(例えば、メカニカルリレー)等の電気信号に応じて接続先が切り替え可能な部品を例示することができる。
The switch section 5 is a functional section that switches the connection destinations of the internal terminals hci, hpi, lci, and lpi.
Each of the switches 51 to 54 constituting the switch unit 5 is, for example, a double-throw switch element. Examples of the switch element include components such as semiconductor switches (for example, transistors) and relays (for example, mechanical relays) whose connection destinations can be switched in response to electrical signals.
 スイッチ部5は、内部端子hci,hpiの接続先を外部端子HCとリファレンス回路8の一方の端子hcr,hprとの間で切り替えるとともに、内部端子lci,lpiの接続先を外部端子LCとリファレンス回路8の他方の端子lcr,lprとの間で切り替える。スイッチ部5は、データ処理制御回路4からの信号Scに応じて、内部端子hci,hpi,lci,lpiの接続先を切り替える。 The switch unit 5 switches the connection destinations of the internal terminals hci, hpi between the external terminal HC and one terminal hcr, hpr of the reference circuit 8, and switches the connection destinations of the internal terminals lci, lpi between the external terminal LC and the reference circuit. 8 and the other terminals lcr and lpr. The switch section 5 switches the connection destinations of the internal terminals hci, hpi, lci, and lpi according to the signal Sc from the data processing control circuit 4.
 図2Aおよび図2Bは、スイッチ部5を構成する各スイッチ51~54の接続例を示す図である。 FIGS. 2A and 2B are diagrams showing connection examples of the switches 51 to 54 that make up the switch section 5.
 図2Aには、リファレンス回路8のインピーダンスを測定する際に、内部端子hci,hpi,lci,lpiをリファレンス回路8に接続する場合が示され、図2Bには、DUT200のインピーダンスを測定する際に、内部端子hci,hpi,lci,lpiを外部端子HC,HP,LC,LPに接続する場合が示されている。 2A shows a case where internal terminals hci, hpi, lci, lpi are connected to the reference circuit 8 when measuring the impedance of the reference circuit 8, and FIG. 2B shows a case where the internal terminals hci, hpi, lci, lpi are connected to the reference circuit 8 when measuring the impedance of the DUT 200. , the case where internal terminals hci, hpi, lci, lpi are connected to external terminals HC, HP, LC, LP is shown.
 リファレンス回路8のインピーダンスを測定するとき、スイッチ部5は、データ処理制御回路4からの信号Scに応じて、スイッチ51~54を図2Aに示す状態にする。すなわち、スイッチ51が内部端子hciをリファレンス回路8の端子hcrに接続し、スイッチ52が内部端子hpiをリファレンス回路8の端子hprに接続し、スイッチ53が内部端子lciをリファレンス回路8の端子lcrに接続し、スイッチ54が内部端子lpiをリファレンス回路8の端子lprに接続する。これにより、内部端子hci,hpi,lci,lpiがリファレンス回路8としてのリファレンス抵抗Rrefに接続される。 When measuring the impedance of the reference circuit 8, the switch unit 5 sets the switches 51 to 54 to the state shown in FIG. 2A in response to the signal Sc from the data processing control circuit 4. That is, the switch 51 connects the internal terminal hci to the terminal hcr of the reference circuit 8, the switch 52 connects the internal terminal hpi to the terminal hpr of the reference circuit 8, and the switch 53 connects the internal terminal lci to the terminal lcr of the reference circuit 8. The switch 54 connects the internal terminal lpi to the terminal lpr of the reference circuit 8. Thereby, the internal terminals hci, hpi, lci, and lpi are connected to the reference resistor Rref as the reference circuit 8.
 一方、DUT200のインピーダンスを測定するとき、スイッチ部5は、データ処理制御回路4からの信号Scに応じて、スイッチ51~54を図2Bに示す状態にする。すなわち、スイッチ51が内部端子hciを外部端子HCに接続し、スイッチ52が内部端子hpiを外部端子HPに接続するとともに、スイッチ53が内部端子lciを外部端子LCに接続し、スイッチ54が内部端子lpiを外部端子LPに接続する。これにより、内部端子hci,hpi,lci,lpiがDUT200に接続される。 On the other hand, when measuring the impedance of the DUT 200, the switch unit 5 sets the switches 51 to 54 to the state shown in FIG. 2B in response to the signal Sc from the data processing control circuit 4. That is, the switch 51 connects the internal terminal hci to the external terminal HC, the switch 52 connects the internal terminal hpi to the external terminal HP, the switch 53 connects the internal terminal lci to the external terminal LC, and the switch 54 connects the internal terminal hpi to the external terminal HP. Connect lpi to external terminal LP. As a result, the internal terminals hci, hpi, lci, and lpi are connected to the DUT 200.
 ここで、データ処理制御回路4について詳細に説明する。 Here, the data processing control circuit 4 will be explained in detail.
 データ処理制御回路4は、電圧検出回路3によって検出された電圧と電流検出回路2によって検出された電流とに基づいて、内部端子hpiと内部端子lpiとの間のインピーダンスの値を測定する。 The data processing control circuit 4 measures the value of impedance between the internal terminal hpi and the internal terminal lpi based on the voltage detected by the voltage detection circuit 3 and the current detected by the current detection circuit 2.
 具体的には、データ処理制御回路4は、第1条件において、スイッチ部5によってリファレンス回路8の一方の端子hcr,hprと内部端子hci,hpiとが接続され、且つリファレンス回路の他方の端子lcr,lprと内部端子lci,lpiとが接続されたとき(図2A参照)のリファレンス回路8のインピーダンスの測定結果を取得する。また、データ処理制御回路4は、第1条件とは異なる第2条件において、スイッチ部5によってリファレンス回路の一方の端子hcr,hprと内部端子hci,hpiとが接続され、且つリファレンス回路8の他方の端子lcr,lprと内部端子lci,lpiとが接続されたとき(図2A参照)のリファレンス回路8のインピーダンスの測定結果を取得する。更に、データ処理制御回路4は、第2条件において、スイッチ部5によって外部端子HC,HPと内部端子hci,hpiとが接続され、且つ外部端子LC,LPと内部端子lci,lpiとが接続されたとき(図2B参照)の内部端子hci,hpiと内部端子lci,lpiとの間のインピーダンスの測定結果を取得する。 Specifically, under the first condition, the data processing control circuit 4 connects one terminal hcr, hpr of the reference circuit 8 to the internal terminals hci, hpi by the switch unit 5, and connects the other terminal lcr of the reference circuit 8 to the internal terminals hci, hpi. , lpr and the internal terminals lci, lpi are connected (see FIG. 2A), the impedance measurement result of the reference circuit 8 is obtained. Further, in the data processing control circuit 4, under a second condition different from the first condition, one terminal hcr, hpr of the reference circuit is connected to the internal terminal hci, hpi by the switch section 5, and the other terminal of the reference circuit 8 is connected. The impedance measurement result of the reference circuit 8 when the terminals lcr, lpr and the internal terminals lci, lpi are connected (see FIG. 2A) is obtained. Further, in the data processing control circuit 4, under the second condition, the external terminals HC and HP are connected to the internal terminals hci and hpi, and the external terminals LC and LP are connected to the internal terminals lci and lpi. The impedance measurement results between the internal terminals hci, hpi and the internal terminals lci, lpi at the time (see FIG. 2B) are obtained.
 データ処理制御回路4は、第1条件におけるリファレンス回路8のインピーダンスの測定結果と第2条件におけるリファレンス回路8のインピーダンスの測定結果との誤差に基づいて、第2条件において、スイッチ部5によって外部端子HC,HPと内部端子hci,hpiとが接続され、且つ外部端子LC,LPと内部端子lci,lpiとが接続されたときの内部端子hci,hpiと内部端子lci,lpiとの間のインピーダンスの測定結果を補正する。 The data processing control circuit 4 uses the switch unit 5 to connect an external terminal under the second condition based on the error between the impedance measurement result of the reference circuit 8 under the first condition and the impedance measurement result of the reference circuit 8 under the second condition. The impedance between internal terminals hci, hpi and internal terminals lci, lpi when HC, HP and internal terminals hci, hpi are connected, and external terminals LC, LP are connected to internal terminals lci, lpi. Correct the measurement results.
 より具体的には、データ処理制御回路4は、第1条件において測定したリファレンス回路8のインピーダンスの抵抗成分の値Rr1と、第2条件において測定したリファレンス回路8のインピーダンスの抵抗成分の値Rr2との誤差に基づいて、第2条件において測定したDUT200のインピーダンスの抵抗成分の値を補正する。 More specifically, the data processing control circuit 4 determines the value Rr1 of the resistance component of the impedance of the reference circuit 8 measured under the first condition, and the value Rr2 of the resistance component of the impedance of the reference circuit 8 measured under the second condition. The value of the resistance component of the impedance of the DUT 200 measured under the second condition is corrected based on the error.
 例えば、データ処理制御回路4は、測定(算出)したDUT200のインピーダンスの値を補正するための補正係数を算出する。具体的には、データ処理制御回路4は、第1条件で測定したリファレンス回路8のインピーダンスの抵抗成分の値Rr1と、第2条件で測定したリファレンス回路8のインピーダンスの抵抗成分Rr2との比に基づく第1補正係数Gfixを算出する。 For example, the data processing control circuit 4 calculates a correction coefficient for correcting the measured (calculated) impedance value of the DUT 200. Specifically, the data processing control circuit 4 determines the ratio between the value Rr1 of the resistance component of the impedance of the reference circuit 8 measured under the first condition and the resistance component Rr2 of the impedance of the reference circuit 8 measured under the second condition. A first correction coefficient Gfix based on the first correction coefficient Gfix is calculated.
 データ処理制御回路4は、算出した第1補正係数Gfixを用いて、第2条件において測定したDUT200のインピーダンスの抵抗成分の測定結果を補正する。例えば、データ処理制御回路4は、第1補正係数Gfixを第2条件で測定したDUT200のインピーダンスの抵抗成分の値Rに乗算することにより、第2条件において測定したDUT200のインピーダンスの抵抗成分の値Rを補正する。 The data processing control circuit 4 uses the calculated first correction coefficient Gfix to correct the measurement result of the resistance component of the impedance of the DUT 200 measured under the second condition. For example, the data processing control circuit 4 multiplies the value R of the resistance component of the impedance of the DUT 200 measured under the second condition by the first correction coefficient Gfix. Correct R.
 図3は、実施の形態1に係るデータ処理制御回路4の構成を示す図である。 FIG. 3 is a diagram showing the configuration of the data processing control circuit 4 according to the first embodiment.
 図3に示すように、データ処理制御回路4は、上述した機能を実現するための機能ブロックとして、例えば、指示受付部40、スイッチ制御部41、補正係数更新部42、インピーダンス算出部43、補正部44、測定結果出力部45、および記憶部46を有している。これらの機能ブロックは、例えば、データ処理制御回路4としてのプログラム処理装置(MCU)において、プロセッサが、記憶装置に記憶されたプログラムに従って各種演算処理を実行し、周辺回路を制御することによって実現される。なお、上記機能ブロックのうち一部または全部が専用ロジック回路によって実現されていてもよい。 As shown in FIG. 3, the data processing control circuit 4 includes, as functional blocks for realizing the above-mentioned functions, an instruction receiving section 40, a switch control section 41, a correction coefficient updating section 42, an impedance calculation section 43, a correction It has a measurement result output section 44, a measurement result output section 45, and a storage section 46. These functional blocks are realized, for example, in a program processing unit (MCU) as the data processing control circuit 4, by a processor executing various arithmetic operations according to programs stored in a storage device and controlling peripheral circuits. Ru. Note that some or all of the above functional blocks may be realized by a dedicated logic circuit.
 指示受付部40は、測定装置100への指示を受け付ける機能部である。指示受付部40は、操作部7からの信号Sdを受け付けて、信号Sdに応じた処理の実行を他の機能部ロック等に対して指示する。 The instruction receiving unit 40 is a functional unit that receives instructions to the measuring device 100. The instruction receiving unit 40 receives a signal Sd from the operation unit 7 and instructs other functional unit locks and the like to execute processing according to the signal Sd.
 例えば、ユーザが操作部7を操作することにより、DUT200のインピーダンスの測定の実行を指示した場合、指示受付部40は、操作部7から出力された信号Sdに応じて、スイッチ制御部41、補正係数更新部42、およびインピーダンス算出部43等に対して、DUT200のインピーダンスを測定するための処理の実行を指示する。 For example, when the user instructs execution of the impedance measurement of the DUT 200 by operating the operation unit 7, the instruction receiving unit 40 sends the switch control unit 41, the correction The coefficient updating unit 42, the impedance calculating unit 43, and the like are instructed to execute processing for measuring the impedance of the DUT 200.
 また、例えば、ユーザが操作部7を操作することにより、補正係数の更新が指示されてもよい。この場合には、指示受付部40は、スイッチ制御部41、補正係数更新部42、およびインピーダンス算出部43等に対して、補正係数を更新するための処理の実行を指示する。 Furthermore, for example, the user may operate the operation unit 7 to instruct the update of the correction coefficient. In this case, the instruction receiving unit 40 instructs the switch control unit 41, the correction coefficient updating unit 42, the impedance calculation unit 43, etc. to execute processing for updating the correction coefficient.
 また、例えば、ユーザが操作部7を操作することにより、リファレンス回路8(リファレンス抵抗Rref)のインピーダンスの測定が指示されてもよい。この場合には、指示受付部40は、操作部7から出力された信号Sdに応じて、スイッチ制御部41、補正係数更新部42、およびインピーダンス算出部43等に対して、リファレンス回路8のインピーダンスを測定するための処理の実行を指示する。この場合、リファレンス回路8のインピーダンスの測定結果の情報は、出力部6により、画面に表示されてもよいし、外部機器に測定データとして出力されてもよい。また、出力部6は、最新のリファレンス回路8のインピーダンスの測定結果の情報のみならず、過去に測定されたリファレンス回路8のインピーダンスの測定結果の情報(後述する第1条件でのリファレンス回路8の測定結果)も合わせて出力(表示)してもよい。 Furthermore, for example, the user may operate the operation unit 7 to instruct measurement of the impedance of the reference circuit 8 (reference resistor Rref). In this case, the instruction receiving unit 40 instructs the switch control unit 41, the correction coefficient updating unit 42, the impedance calculation unit 43, etc. instructs execution of processing to measure. In this case, information on the impedance measurement result of the reference circuit 8 may be displayed on the screen by the output unit 6, or may be output as measurement data to an external device. The output unit 6 also outputs not only information on the latest impedance measurement results of the reference circuit 8 but also information on previously measured impedance measurement results of the reference circuit 8 under the first condition described below. The measurement results) may also be output (displayed).
 記憶部46は、DUTの電気的特性の測定や補正係数の算出等を行うために必要な演算式や各種パラメータ、測定結果、および補正係数等を記憶する機能部である。 The storage unit 46 is a functional unit that stores arithmetic expressions, various parameters, measurement results, correction coefficients, etc. necessary for measuring electrical characteristics of the DUT, calculating correction coefficients, etc.
 例えば、記憶部46には、後述する、第1条件において測定されたリファレンス抵抗Rrefの値Rr1を含むリファレンス測定結果(第1条件)401、第2条件において測定されたリファレンス抵抗Rrefの値Rr2を含むリファレンス測定結果(第2条件)402、第1補正係数Gfixを含む補正係数情報403、第2条件において測定されたDUT200の抵抗成分の値Rを含むDUT測定結果(第2条件)404、および第2条件において測定されたDUT200の抵抗成分の値Rを補正した値Rfを含む補正後のDUT200測定結果405が記憶される。また、記憶部46には、インピーダンスの値を算出するための演算式、補正係数を算出するための演算式、および測定結果を補正するための演算式等のインピーダンス測定に必要な各種演算式が記憶されている。 For example, the storage unit 46 stores a reference measurement result (first condition) 401 including the value Rr1 of the reference resistance Rref measured under the first condition, and a value Rr2 of the reference resistance Rref measured under the second condition, which will be described later. Reference measurement result (second condition) 402 including, correction coefficient information 403 including first correction coefficient Gfix, DUT measurement result (second condition) 404 including value R of the resistance component of DUT 200 measured under the second condition, and A corrected DUT 200 measurement result 405 including a value Rf obtained by correcting the value R of the resistance component of the DUT 200 measured under the second condition is stored. The storage unit 46 also stores various calculation formulas necessary for impedance measurement, such as calculation formulas for calculating impedance values, calculation formulas for calculating correction coefficients, and calculation formulas for correcting measurement results. remembered.
 スイッチ制御部41は、スイッチ部5を制御するための機能部である。
 スイッチ制御部41は、例えば、指示受付部40からの指示に応じてスイッチ部5を制御することにより、内部端子hci,hpi,lci,lpiの接続先を切り替える。
The switch control section 41 is a functional section for controlling the switch section 5.
The switch control unit 41 switches the connection destinations of the internal terminals hci, hpi, lci, and lpi by controlling the switch unit 5 according to an instruction from the instruction receiving unit 40, for example.
 インピーダンス算出部43は、内部端子hpiと内部端子lpiとの間のインピーダンスの値を算出する機能部である。インピーダンス算出部43は、電圧検出回路3によって検出された電圧の値Vと電流検出回路2によって検出された電流の値Iとに基づいて、内部端子hpiと内部端子lpiとの間のインピーダンスの値を算出する。 The impedance calculation unit 43 is a functional unit that calculates the value of impedance between the internal terminal hpi and the internal terminal lpi. The impedance calculation unit 43 calculates an impedance value between the internal terminal hpi and the internal terminal lpi based on the voltage value V detected by the voltage detection circuit 3 and the current value I detected by the current detection circuit 2. Calculate.
 具体的には、上述したように、インピーダンスの抵抗成分の値を算出するための演算式が記憶部46に記憶されており、インピーダンス算出部43は、記憶部46に記憶されている演算式を用いて、インピーダンスの抵抗成分の値を算出する。 Specifically, as described above, the calculation formula for calculating the value of the resistance component of impedance is stored in the storage unit 46, and the impedance calculation unit 43 uses the calculation formula stored in the storage unit 46. is used to calculate the value of the resistance component of impedance.
 例えば、DUT200が内部端子hci,hpi,lci,lpiに接続されている状態において発生回路1からDUT200に電流を印加し、電圧検出回路3によって検出された電圧がV、電流検出回路2によって検出された電流がIであるとき、インピーダンス算出部43は、記憶部46に記憶されている“R=V/I”の演算式を用いて、DUT200のインピーダンスの抵抗成分の値Rを算出し、DUT測定結果404として記憶部46に記憶する。 For example, when the DUT 200 is connected to the internal terminals hci, hpi, lci, and lpi, a current is applied from the generation circuit 1 to the DUT 200, and the voltage detected by the voltage detection circuit 3 is V, and the voltage detected by the current detection circuit 2 is When the current input is I, the impedance calculation unit 43 calculates the value R of the resistance component of the impedance of the DUT 200 using the calculation formula “R=V/I” stored in the storage unit 46, and It is stored in the storage unit 46 as a measurement result 404.
 なお、インピーダンスを算出するための演算式は、上述の例に限定されず、測定装置100として要求される仕様等によって適宜変更可能である。例えば、後述する初期調整を行う場合には、初期調整によって得た補正係数等が上記式に含まれていてもよい。 Note that the arithmetic expression for calculating impedance is not limited to the above example, and can be changed as appropriate depending on the specifications required for the measuring device 100. For example, when performing the initial adjustment described later, a correction coefficient etc. obtained by the initial adjustment may be included in the above equation.
 補正係数更新部42は、補正係数を算出し、記憶部46に記憶されている補正係数を更新する機能部である。
 補正係数更新部42は、第1条件において測定したリファレンス回路8のインピーダンスの抵抗成分の値Rr1と、第2条件において測定したリファレンス回路8のインピーダンスの抵抗成分の値Rr2との比に基づく第1補正係数Gfixを算出し、補正係数情報403として記憶部46に記憶する。補正係数更新部42は、例えば、第1補正係数Gfixを算出する度に、記憶部46に記憶されている補正係数情報403(第1補正係数Gfix)を最新の値に更新する。
The correction coefficient update unit 42 is a functional unit that calculates a correction coefficient and updates the correction coefficient stored in the storage unit 46.
The correction coefficient updating unit 42 calculates a first value based on the ratio of the value Rr1 of the resistance component of the impedance of the reference circuit 8 measured under the first condition and the value Rr2 of the resistance component of the impedance of the reference circuit 8 measured under the second condition. A correction coefficient Gfix is calculated and stored in the storage unit 46 as correction coefficient information 403. For example, every time the first correction coefficient Gfix is calculated, the correction coefficient updating unit 42 updates the correction coefficient information 403 (first correction coefficient Gfix) stored in the storage unit 46 to the latest value.
 以下、第1補正係数Gfixの算出方法について詳述する。
 例えば、測定装置100の生産時または出荷時に、高精度な抵抗値を有する標準抵抗器(理論抵抗値=Rrとする)をDUT200として測定装置100に接続し、測定装置100がその標準抵抗器の抵抗値を測定する。そして、測定装置100によって測定された標準抵抗器の抵抗の値Rが理論抵抗値Rrと一致するように、抵抗成分を算出するための演算式(R=V/I)を補正する(初期調整)。
The method for calculating the first correction coefficient Gfix will be described in detail below.
For example, when the measuring device 100 is manufactured or shipped, a standard resistor with a highly accurate resistance value (theoretical resistance value = Rr) is connected to the measuring device 100 as the DUT 200, and the measuring device 100 Measure the resistance value. Then, the arithmetic expression (R=V/I) for calculating the resistance component is corrected so that the resistance value R of the standard resistor measured by the measuring device 100 matches the theoretical resistance value Rr (initial adjustment ).
 次に、例えば、初期調整の直後のタイミングにおいて、測定装置100が、スイッチ部5によって内部端子hci,hpi,lci,lpiの接続先をリファレンス抵抗Rrefに切り替え、インピーダンス算出部43によってリファレンス抵抗Rrefの値Rr1を測定する。以下、初期調整後の条件(例えば、温度、湿度、測定装置100の生産時からの経過時間や運転時間等)を「第1条件」と称する。測定装置100は、第1条件において測定したリファレンス抵抗Rrefの値Rr1をリファレンス測定結果(第1条件)401として記憶部46に記憶する。その後、測定装置100が出荷される。 Next, for example, at a timing immediately after the initial adjustment, the measuring device 100 switches the connection destinations of the internal terminals hci, hpi, lci, and lpi to the reference resistor Rref using the switch section 5, and the impedance calculating section 43 switches the connection destinations of the internal terminals hci, hpi, lci, and lpi to the reference resistor Rref. Measure the value Rr1. Hereinafter, the conditions after the initial adjustment (for example, temperature, humidity, elapsed time from the time of production of the measuring device 100, operating time, etc.) will be referred to as "first conditions." The measuring device 100 stores the value Rr1 of the reference resistance Rref measured under the first condition in the storage unit 46 as the reference measurement result (first condition) 401. After that, the measuring device 100 is shipped.
 測定装置100の出荷後、ユーザが測定装置100を用いてDUT200のインピーダンスを測定する場合を考える。以下、ユーザが測定を行うときの条件(例えば、温度、湿度、測定装置100の生産時からの経過時間や運転時間等の、第1条件とは異なる条件)を「第2条件」と称する。 Consider a case where a user uses the measurement device 100 to measure the impedance of the DUT 200 after the measurement device 100 is shipped. Hereinafter, the conditions under which the user performs the measurement (for example, conditions different from the first conditions, such as temperature, humidity, elapsed time since production of the measuring device 100, and operating time) will be referred to as "second conditions."
 第2条件において、ユーザが測定装置100を操作して測定の実行が指示されたとき、測定装置100は、先ず、スイッチ部5によって内部端子hci,hpi,lci,lpiの接続先をリファレンス抵抗Rrefに切り替え、インピーダンス算出部43によってリファレンス抵抗Rrefの値Rr2を測定し、リファレンス測定結果(第2条件)402として記憶部46に記憶する。 Under the second condition, when the user operates the measuring device 100 to instruct measurement execution, the measuring device 100 first uses the switch unit 5 to connect the internal terminals hci, hpi, lci, lpi to the reference resistor Rref. , the value Rr2 of the reference resistance Rref is measured by the impedance calculation unit 43, and is stored in the storage unit 46 as a reference measurement result (second condition) 402.
 ここで、初期調整時(第1条件)からの温度変化および経時変化により、第2条件において、電流検出回路2を構成する演算増幅器の増幅率にEiの誤差が生じ、電圧検出回路3を構成する演算増幅器の増幅率にEvの誤差が生じていたとする。このとき、電圧検出回路3によって検出した電流がIであり、第1条件で測定されたリファレンス抵抗Rrefの値がRr1であったとすると、第2条件において測定されたリファレンス抵抗Rrefの値Rr2は、下記式(1)によって表すことができる。 Here, due to temperature changes and changes over time from the time of initial adjustment (first condition), an error of Ei occurs in the amplification factor of the operational amplifier that constitutes the current detection circuit 2 under the second condition, and the voltage detection circuit 3 Suppose that an error of Ev occurs in the amplification factor of the operational amplifier. At this time, if the current detected by the voltage detection circuit 3 is I and the value of the reference resistance Rref measured under the first condition is Rr1, then the value Rr2 of the reference resistance Rref measured under the second condition is: It can be expressed by the following formula (1).
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 上記式(1)において、Er(=Ev/Ei)は、第1条件と第2条件との間の測定の誤差を表している。 In the above formula (1), Er (=Ev/Ei) represents the measurement error between the first condition and the second condition.
 上記式(1)から理解されるように、第2条件において測定したリファレンス抵抗Rrefの値Rr2は、第1条件において測定したリファレンス抵抗Rrefの値Rr1に誤差成分“Er”が乗算された値となる。したがって、誤差Erの逆数を第1補正係数Gfixとし、第2条件において測定したDUT200のインピーダンスの抵抗成分の値Rr2に第1補正係数Gfixを乗算することにより、第2条件において測定したDUT200のインピーダンスの抵抗成分の値Rr2に含まれる誤差成分を除去することが可能となる。 As understood from the above equation (1), the value Rr2 of the reference resistance Rref measured under the second condition is the value obtained by multiplying the value Rr1 of the reference resistance Rref measured under the first condition by the error component "Er". Become. Therefore, by setting the reciprocal of the error Er as the first correction coefficient Gfix and multiplying the resistance component value Rr2 of the impedance of the DUT 200 measured under the second condition by the first correction coefficient Gfix, the impedance of the DUT 200 measured under the second condition is It becomes possible to remove the error component included in the value Rr2 of the resistance component.
 具体的には、補正係数更新部42は、記憶部46に記憶されている、第1条件で測定したリファレンス抵抗Rrefの値Rr1と、第2条件で測定したリファレンス抵抗Rrefの値Rr2と、下記式(2)とに基づいて、第1補正係数Gfixを算出する。 Specifically, the correction coefficient updating unit 42 uses the value Rr1 of the reference resistance Rref measured under the first condition, the value Rr2 of the reference resistance Rref measured under the second condition, and the following values stored in the storage unit 46. The first correction coefficient Gfix is calculated based on equation (2).
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 補正係数更新部42による補正係数(第1補正係数Gfix)の算出(更新)は、例えば、指示受付部40がDUT200の測定実行の指示を受け付けた場合に実行されてもよいし、指示受付部40が補正係数の更新実行の指示、またはリファレンス回路8の測定実行の指示を受け付けた場合に、実行されてもよい。 Calculation (updating) of the correction coefficient (first correction coefficient Gfix) by the correction coefficient updating unit 42 may be performed, for example, when the instruction receiving unit 40 receives an instruction to perform measurement of the DUT 200, or when the instruction receiving unit The process may be executed when 40 receives an instruction to update the correction coefficient or an instruction to measure the reference circuit 8 .
 補正部44は、インピーダンス算出部43によって算出されたインピーダンスの値を補正係数情報に基づいて補正する機能部である。補正部44は、記憶部46に記憶されている第1補正係数Gfixを用いて、インピーダンス算出部43によって算出されたDUT200のインピーダンスの抵抗成分の値Rを補正し、補正後のDUT測定結果(第2条件)404として記憶部46に記憶する。例えば、補正部44は、下記式(3)に基づく演算を行うことにより、インピーダンスの抵抗成分の値Rを補正する。 The correction unit 44 is a functional unit that corrects the impedance value calculated by the impedance calculation unit 43 based on correction coefficient information. The correction unit 44 uses the first correction coefficient Gfix stored in the storage unit 46 to correct the value R of the resistance component of the impedance of the DUT 200 calculated by the impedance calculation unit 43, and calculates the corrected DUT measurement result ( The second condition) is stored in the storage unit 46 as 404. For example, the correction unit 44 corrects the value R of the resistance component of the impedance by performing calculation based on the following equation (3).
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
 すなわち、補正部44は、インピーダンス算出部43によって算出されたDUT200のインピーダンスの抵抗成分の値をRに第1補正係数Gfixを乗算して得られた値Rf(=R×Gfix)を、補正後のDUT測定結果(第2条件)404として記憶部46に記憶する。 That is, the correction unit 44 calculates the value Rf (=R×Gfix) obtained by multiplying R by the first correction coefficient Gfix by the value of the resistance component of the impedance of the DUT 200 calculated by the impedance calculation unit 43, after correction. is stored in the storage unit 46 as the DUT measurement result (second condition) 404.
 測定結果出力部45は、測定結果を出力する機能部である。
 例えば、DUT200のインピーダンスの測定が行われたとき、測定結果出力部45は、補正部44によって補正されたインピーダンスの測定結果(補正された抵抗成分の値Rf)Soを出力部6に対して出力する。出力部6は、例えば、受け取った測定結果Soに応じた情報を画面に表示し、または、外部機器に測定データとして送信する。
The measurement result output unit 45 is a functional unit that outputs measurement results.
For example, when the impedance of the DUT 200 is measured, the measurement result output section 45 outputs the impedance measurement result (corrected resistance component value Rf) So corrected by the correction section 44 to the output section 6. do. The output unit 6 displays information corresponding to the received measurement result So on the screen, or transmits it to an external device as measurement data, for example.
 次に、実施の形態1に係る測定装置100によるインピーダンス測定の流れについて説明する。 Next, the flow of impedance measurement by the measuring device 100 according to the first embodiment will be explained.
 図4は、実施の形態1に係る測定装置100によるインピーダンス測定の流れを示すフローチャートである。 FIG. 4 is a flowchart showing the flow of impedance measurement by the measuring device 100 according to the first embodiment.
 ここでは、予め、第1条件におけるリファレンス測定結果(Rr1)401がデータ処理制御回路4の記憶部46に記憶されているものとする。また、DUT200が、図2Bに示すように、外部端子HC,HPと外部端子LC,LPとの間に接続されているものとする。 Here, it is assumed that the reference measurement result (Rr1) 401 under the first condition is stored in the storage unit 46 of the data processing control circuit 4 in advance. Further, it is assumed that the DUT 200 is connected between the external terminals HC, HP and the external terminals LC, LP, as shown in FIG. 2B.
 例えば、ユーザが操作部7を操作して、DUT200のインピーダンスの測定を指示したとき、先ず、データ処理制御回路4が、スイッチ部5を制御して、内部端子hci,hpi,lci,lpiをリファレンス回路8に接続する(ステップS1)。 For example, when the user operates the operation unit 7 to instruct measurement of the impedance of the DUT 200, the data processing control circuit 4 first controls the switch unit 5 to refer to the internal terminals hci, hpi, lci, lpi. Connect to the circuit 8 (step S1).
 具体的には、指示受付部40が操作部7からDUT200のインピーダンスの測定の実行を指示する信号Sdを受け取ったとき、指示受付部40がスイッチ制御部41に対して、内部端子hci,hpi,lci,lpiをリファレンス抵抗Rrefに接続するように指示する。スイッチ制御部41は、その指示に応じて、スイッチ部5を制御して、内部端子hciをリファレンス回路の端子hcrに接続するとともに内部端子hpiをリファレンス回路の端子hprに接続し、内部端子lciをリファレンス回路の端子lcrに接続するとともに内部端子lpiをリファレンス回路の端子lprに接続する。 Specifically, when the instruction receiving unit 40 receives a signal Sd from the operation unit 7 that instructs to measure the impedance of the DUT 200, the instruction receiving unit 40 instructs the switch control unit 41 to output the internal terminals hci, hpi, Instructs to connect lci and lpi to reference resistor Rref. According to the instruction, the switch control section 41 controls the switch section 5 to connect the internal terminal hci to the terminal hcr of the reference circuit, connect the internal terminal hpi to the terminal hpr of the reference circuit, and connect the internal terminal lci to the terminal hpr of the reference circuit. It is connected to the terminal lcr of the reference circuit, and the internal terminal lpi is connected to the terminal lpr of the reference circuit.
 次に、データ処理制御回路4が、リファレンス回路8(リファレンス抵抗Rref)のインピーダンスの抵抗成分Rr2を測定する(ステップS2)。具体的には、指示受付部40が発生回路1に対して電圧または電流の出力を指示するとともに、インピーダンス算出部43に対してインピーダンスの測定を指示する。インピーダンス算出部43は、電圧検出回路3によって検出した電圧の値と電流検出回路2によって検出した電流の値とを取得し、上述した手法により、リファレンス抵抗Rrefの抵抗成分Rr2を算出し、第2条件におけるリファレンス測定結果402として記憶部46に記憶する。 Next, the data processing control circuit 4 measures the resistance component Rr2 of the impedance of the reference circuit 8 (reference resistor Rref) (step S2). Specifically, the instruction receiving section 40 instructs the generating circuit 1 to output voltage or current, and instructs the impedance calculating section 43 to measure impedance. The impedance calculation unit 43 acquires the value of the voltage detected by the voltage detection circuit 3 and the value of the current detected by the current detection circuit 2, calculates the resistance component Rr2 of the reference resistance Rref by the method described above, and calculates the resistance component Rr2 of the reference resistor Rref. It is stored in the storage unit 46 as a reference measurement result 402 under the conditions.
 次に、データ処理制御回路4が、第1補正係数Gfixを算出(更新)する(ステップS3)。具体的には、補正係数更新部42が、記憶部46に記憶されている、第1条件におけるリファレンス測定結果401としての抵抗成分の値Rr1と、第2条件におけるリファレンス測定結果402としての抵抗成分の値Rr2とに基づいて、上述した手法により、第1補正係数Gfixを算出し、記憶部46に記憶する。なお、既に補正係数Gfixが記憶部46に記憶されている場合には、補正係数更新部42は、新たに算出した第1補正係数Gfixによって、記憶部46に記憶されている第1補正係数Gfixを書き換える。 Next, the data processing control circuit 4 calculates (updates) the first correction coefficient Gfix (step S3). Specifically, the correction coefficient updating unit 42 uses the resistance component value Rr1 as the reference measurement result 401 under the first condition, which is stored in the storage unit 46, and the resistance component as the reference measurement result 402 under the second condition. Based on the value Rr2, the first correction coefficient Gfix is calculated by the method described above and stored in the storage unit 46. Note that when the correction coefficient Gfix is already stored in the storage unit 46, the correction coefficient updating unit 42 updates the first correction coefficient Gfix stored in the storage unit 46 using the newly calculated first correction coefficient Gfix. Rewrite.
 次に、データ処理制御回路4が、スイッチ部5を制御して、内部端子hci,hpi,lci,lpiを外部端子HC,HP,LC,LPに接続する(ステップS4)。具体的には、指示受付部40が、スイッチ制御部41に対して、内部端子hci,hpi,lci,lpiを外部端子HC,HP,LC,LPに接続するように指示する。スイッチ制御部41は、その指示に応じて、スイッチ部5を制御して、内部端子hciを外部端子HCに接続するとともに内部端子hpiを外部端子HPに接続し、内部端子lciを外部端子LCに接続するとともに内部端子lpiを外部端子LPに接続する。これにより、内部端子hci,hpi,lci,lpiがDUT200に接続されることになる。 Next, the data processing control circuit 4 controls the switch section 5 to connect the internal terminals hci, hpi, lci, lpi to the external terminals HC, HP, LC, LP (step S4). Specifically, the instruction receiving unit 40 instructs the switch control unit 41 to connect the internal terminals hci, hpi, lci, lpi to the external terminals HC, HP, LC, LP. According to the instruction, the switch control section 41 controls the switch section 5 to connect the internal terminal hci to the external terminal HC, connect the internal terminal hpi to the external terminal HP, and connect the internal terminal lci to the external terminal LC. At the same time, the internal terminal lpi is connected to the external terminal LP. As a result, the internal terminals hci, hpi, lci, and lpi are connected to the DUT 200.
 次に、データ処理制御回路4が、DUT200の抵抗成分を測定する(ステップS5)。具体的には、ステップS2と同様に、指示受付部40が、発生回路1に対して電圧または電流の出力を指示するとともに、インピーダンス算出部43に対してインピーダンスの測定を指示する。インピーダンス算出部43は、電圧検出回路3によって検出した電圧の値と電流検出回路2によって検出した電流の値とを取得し、上述した手法により、DUT200の抵抗成分の値Rを算出し、DUT測定結果405として記憶部46に記憶する。 Next, the data processing control circuit 4 measures the resistance component of the DUT 200 (step S5). Specifically, similarly to step S2, the instruction receiving section 40 instructs the generating circuit 1 to output voltage or current, and instructs the impedance calculating section 43 to measure impedance. The impedance calculation unit 43 acquires the voltage value detected by the voltage detection circuit 3 and the current value detected by the current detection circuit 2, calculates the value R of the resistance component of the DUT 200 using the method described above, and performs the DUT measurement. It is stored in the storage unit 46 as a result 405.
 次に、データ処理制御回路4が、ステップS5において測定されたDUT200の抵抗成分の値Rを補正する(ステップS6)。具体的には、補正部44が、記憶部46に記憶されているDUT200の抵抗成分の値Rと、記憶部46に記憶されている第1補正係数Gfixとに基づいて、上述した手法により、補正後のDUT200の抵抗成分の値Rfを算出し、補正後のDUT測定結果405として記憶部46に記憶する。 Next, the data processing control circuit 4 corrects the value R of the resistance component of the DUT 200 measured in step S5 (step S6). Specifically, the correction unit 44 uses the method described above based on the value R of the resistance component of the DUT 200 stored in the storage unit 46 and the first correction coefficient Gfix stored in the storage unit 46. The value Rf of the resistance component of the DUT 200 after the correction is calculated and stored in the storage unit 46 as the DUT measurement result 405 after the correction.
 次に、データ処理制御回路4が、補正後のDUT測定結果405(Rf)をDUT200のインピーダンスの抵抗成分の測定結果として、出力部6に出力する(ステップS7)。例えば、出力部6は、DUT200のインピーダンスの測定結果(Rf等)の情報を画面に表示させる。 Next, the data processing control circuit 4 outputs the corrected DUT measurement result 405 (Rf) to the output unit 6 as the measurement result of the resistance component of the impedance of the DUT 200 (step S7). For example, the output unit 6 displays information on the impedance measurement results (Rf, etc.) of the DUT 200 on the screen.
 以上、実施の形態1に係る測定装置100は、内部端子hci,hpi,lci,lpiに接続可能な所定のインピーダンスを有するリファレンス回路8を内蔵している。これによれば、ユーザは、種々の条件下において測定装置100によってリファレンス回路8のインピーダンスを測定し、その測定結果を比較することにより、測定装置100による測定の誤差を容易に知ることができる。 As described above, the measuring device 100 according to the first embodiment has a built-in reference circuit 8 having a predetermined impedance that can be connected to the internal terminals hci, hpi, lci, and lpi. According to this, the user can easily know the error in the measurement by the measuring device 100 by measuring the impedance of the reference circuit 8 with the measuring device 100 under various conditions and comparing the measurement results.
 また、測定装置100は、第1条件におけるリファレンス回路8のインピーダンスの測定結果と、第1条件とは異なる第2条件におけるリファレンス回路8のインピーダンスの測定結果との誤差に基づいて、第2条件における測定対象物(DUT)200のインピーダンスの測定結果を補正する。 The measuring device 100 also measures the impedance of the reference circuit 8 under the second condition based on the error between the impedance measurement result of the reference circuit 8 under the first condition and the impedance measurement result of the reference circuit 8 under a second condition different from the first condition. The impedance measurement result of the measurement target (DUT) 200 is corrected.
 これによれば、温度および経年による測定装置100の内部回路の特性の変化に起因して測定装置100による測定に誤差が生じた場合であっても、測定装置100自身がその誤差を補正するので、より高精度なインピーダンスの測定が可能となる。
 例えば、第1条件として室温18℃において初期調整を行い、第2条件として室温28℃においてユーザがDUT200の測定を実行した場合、従来の測定装置であれば、温度差10℃分の影響を考慮しなければならない。これに対し、実施の形態1に係る測定装置100によれば、例えば、室温27℃において第1補正係数Gfixの更新を行った場合、ユーザは、第2条件(室温28℃)における測定結果について、温度差1℃分の影響を考慮すれば足りることになり、より正確な測定が可能となる。
According to this, even if an error occurs in measurement by the measuring device 100 due to changes in the characteristics of the internal circuit of the measuring device 100 due to temperature and aging, the measuring device 100 itself corrects the error. , it becomes possible to measure impedance with higher precision.
For example, if the user performs the initial adjustment at a room temperature of 18°C as the first condition, and the user measures the DUT 200 at a room temperature of 28°C as the second condition, a conventional measurement device would take into account the effect of a temperature difference of 10°C. Must. On the other hand, according to the measuring device 100 according to the first embodiment, for example, when updating the first correction coefficient Gfix at a room temperature of 27°C, the user can , it is sufficient to consider the influence of a temperature difference of 1° C., and more accurate measurement becomes possible.
 具体的には、測定装置100のデータ処理制御回路4は、第1条件において測定したリファレンス回路8(リファレンス抵抗Rref)のインピーダンスの抵抗成分の値Rr1と、第2条件において測定したリファレンス回路8(リファレンス抵抗Rref)のインピーダンスの抵抗成分の値Rr2との誤差に基づいて、第2条件において測定したDUT200のインピーダンスの抵抗成分の値Rを補正する。
 これによれば、温度および経年によって測定装置100によるインピーダンスの抵抗成分の測定に誤差が生じている場合であっても、より高精度なインピーダンスの抵抗成分の測定が可能となる。
Specifically, the data processing control circuit 4 of the measuring device 100 uses the value Rr1 of the resistance component of the impedance of the reference circuit 8 (reference resistor Rref) measured under the first condition and the value Rr1 of the resistance component of the impedance of the reference circuit 8 (reference resistor Rref) measured under the second condition. The value R of the resistance component of the impedance of the DUT 200 measured under the second condition is corrected based on the error from the value Rr2 of the resistance component of the impedance of the reference resistor Rref).
According to this, even if an error occurs in the measurement of the resistance component of impedance by the measuring device 100 due to temperature and age, it is possible to measure the resistance component of impedance with higher accuracy.
 より具体的には、測定装置100のデータ処理制御回路4は、第1条件において測定したリファレンス回路8のインピーダンスの抵抗成分の値Rr1と、第2条件において測定したリファレンス回路8のインピーダンスの抵抗成分の値Rr2との比に基づく第1補正係数Gfix(=Rr1/Rr2)を算出し、第1補正係数Gfixを用いて第2条件において測定したDUT200のインピーダンスの抵抗成分の値Rを補正する(Rf=R×Gfix)。
 これによれば、複雑な演算式を用いることなく、インピーダンスの抵抗成分の測定値を容易に補正することができる。
More specifically, the data processing control circuit 4 of the measuring device 100 calculates the value Rr1 of the resistance component of the impedance of the reference circuit 8 measured under the first condition and the resistance component of the impedance of the reference circuit 8 measured under the second condition. A first correction coefficient Gfix (=Rr1/Rr2) is calculated based on the ratio to the value Rr2, and the value R of the resistance component of the impedance of the DUT 200 measured under the second condition is corrected using the first correction coefficient Gfix ( Rf=R×Gfix).
According to this, the measured value of the resistance component of impedance can be easily corrected without using a complicated calculation formula.
 また、測定装置100において、指示受付部40が所定の指示を受け付けた場合に、スイッチ部5が、リファレンス回路8の一方の端子hcr,hprと内部端子hci,hpiとを接続し、且つリファレンス回路8の他方の端子lcr,lprと内部端子lci,lpiとを接続するとともに、インピーダンス算出部43が、第2条件におけるリファレンス回路8のインピーダンスの抵抗成分の値Rr2を算出して記憶部46に記憶する。そして、補正係数更新部42が、記憶部46に記憶されている、第1条件におけるリファレンス回路8のインピーダンスの抵抗成分の値Rr1と、第2条件におけるリファレンス回路8のインピーダンスの抵抗成分の値Rr2とに基づいて、第1補正係数Gfixを更新してもよい。 In addition, in the measuring device 100, when the instruction receiving unit 40 receives a predetermined instruction, the switch unit 5 connects one terminal hcr, hpr of the reference circuit 8 to the internal terminals hci, hpi, and The other terminal lcr, lpr of the reference circuit 8 is connected to the internal terminal lci, lpi, and the impedance calculation unit 43 calculates the resistance component value Rr2 of the impedance of the reference circuit 8 under the second condition and stores it in the storage unit 46. do. The correction coefficient updating unit 42 then updates the value Rr1 of the resistance component of the impedance of the reference circuit 8 under the first condition and the value Rr2 of the resistance component of the impedance of the reference circuit 8 under the second condition, which are stored in the storage unit 46. The first correction coefficient Gfix may be updated based on the above.
 ここで、上記所定の指示は、例えば、DUT200の測定実行の指示であってもよいし、補正係数の更新実行の指示であってもよいし、リファレンス回路8のインピーダンスの測定実行の指示であってもよい。 Here, the predetermined instruction may be, for example, an instruction to perform measurement of the DUT 200, an instruction to update the correction coefficient, or an instruction to perform measurement of the impedance of the reference circuit 8. You can.
 これによれば、ユーザの所望のタイミングにおいて、第1補正係数Gfixを更新することができるので、ユーザにとって使い勝手のよい測定装置を実現することができる。 According to this, the first correction coefficient Gfix can be updated at the timing desired by the user, so it is possible to realize a measuring device that is easy to use for the user.
 ところで、従来のLCRメータ、抵抗計、およびバッテリテスタ等の測定装置には、所謂セルフキャリブレーションの機能を有しているものがある。しかしながら、従来のセルフキャリブレーションは、例えば、電圧検出回路や電流検出回路などの一部の回路の誤差が補正対象であり、限定的な補正の効果しか得られない。また、セルフキャリブレーション機能を実現するためには、補正対象となる回路に応じて、リファレンスとしての電圧を発生させるレギュレータIC、アッテネータ、およびD/A変換回路等から構成されるリファレンス信号出力回路を別途設ける必要があり、回路の複雑化およびコストの増大を招く。 By the way, some conventional measurement devices such as LCR meters, resistance meters, and battery testers have a so-called self-calibration function. However, in conventional self-calibration, errors in some circuits such as a voltage detection circuit and a current detection circuit are to be corrected, and only a limited correction effect can be obtained. In addition, in order to realize the self-calibration function, a reference signal output circuit consisting of a regulator IC that generates a voltage as a reference, an attenuator, a D/A conversion circuit, etc. is required depending on the circuit to be corrected. It is necessary to provide it separately, which increases the complexity of the circuit and the cost.
 これに対し、上記実施の形態に係る測定装置100によれば、リファレンス回路8自身がインピーダンスを有し、DUTと同様に測定対象として機能する。そのため、電流検出回路の誤差や電圧検出回路の誤差等を個別に測定して回路毎にセルフキャリブレーションを行わなくても、リファレンス回路8のインピーダンスの測定誤差を用いることにより、測定装置全体での測定誤差を網羅的に補正することが可能になる。また、上述したようにリファレンス回路8として簡易な回路構成を採用することにより(図2A参照)、測定装置100に測定誤差の補正の機能を追加することによる回路の複雑化およびコストの増大を最小限に留めることができる。 On the other hand, according to the measurement device 100 according to the embodiment described above, the reference circuit 8 itself has impedance and functions as a measurement target like the DUT. Therefore, by using the measurement error of the impedance of the reference circuit 8, it is possible to calibrate the entire measuring device without having to individually measure errors in the current detection circuit, errors in the voltage detection circuit, etc., and perform self-calibration for each circuit. It becomes possible to comprehensively correct measurement errors. Furthermore, by adopting a simple circuit configuration as the reference circuit 8 as described above (see FIG. 2A), circuit complexity and cost increases due to adding a measurement error correction function to the measuring device 100 can be minimized. can be kept to a limit.
 ≪実施の形態2≫
 図5は、実施の形態2に係る測定装置100Aの構成を示す図である。
Embodiment 2≫
FIG. 5 is a diagram showing the configuration of a measuring device 100A according to the second embodiment.
 図5に示す実施の形態2に係る測定装置100Aは、測定対象物のインピーダンスの位相角の測定値を補正する機能を有する点において、実施の形態1に係る測定装置100と相違し、その他の点においては、実施の形態1に係る測定装置100と同様である。 The measuring device 100A according to the second embodiment shown in FIG. In this respect, it is similar to the measuring device 100 according to the first embodiment.
 一般に、上述したLCRメータ等の測定装置を構成する電圧検出回路や電流検出回路等の回路は、それぞれ固有の位相特性を有している。すなわち、回路に信号を入力したとき、当該回路に入力された信号と当該回路から出力される信号との間に位相のずれが発生する。この位相のずれの量は、「位相特性」とも称される。 In general, circuits such as voltage detection circuits and current detection circuits that constitute measurement devices such as the LCR meters described above each have unique phase characteristics. That is, when a signal is input to a circuit, a phase shift occurs between the signal input to the circuit and the signal output from the circuit. The amount of this phase shift is also called "phase characteristic."
 回路の位相特性は、当該回路を構成する演算増幅回路やキャパシタ等の電子部品の特性に依存する。そのため、温度および経年によって電子部品の特性が変化した場合、測定装置を構成する内部回路の位相特性も変化する。 The phase characteristics of a circuit depend on the characteristics of electronic components such as operational amplifier circuits and capacitors that make up the circuit. Therefore, when the characteristics of electronic components change due to temperature and age, the phase characteristics of the internal circuits that make up the measuring device also change.
 そこで、実施の形態2に係る測定装置100Aは、インピーダンスの抵抗成分の測定誤差のみならず、温度および経年による位相の測定誤差の影響を低減する機能を備える。具体的には、測定装置100Aは、所定のインピーダンスを有するリファレンス回路8Aと、リファレンス回路8Aのインピーダンスの位相角の測定結果に基づいて補正係数を算出し、測定対象物のインピーダンスの位相角の測定結果を補正するデータ処理制御回路4Aと、を有している。 Therefore, the measuring device 100A according to the second embodiment has a function of reducing not only the measurement error of the resistance component of impedance but also the influence of the phase measurement error due to temperature and aging. Specifically, the measuring device 100A calculates a correction coefficient based on a reference circuit 8A having a predetermined impedance and the measurement result of the phase angle of the impedance of the reference circuit 8A, and measures the phase angle of the impedance of the object to be measured. The data processing control circuit 4A corrects the results.
 ここで、インピーダンスの位相角とは、測定対象(DUTやリファレンス回路8A等)に流れる電流の位相と測定対象の電圧の位相との差である。インピーダンスの抵抗成分をR、インピーダンスのリアクタンス成分をXとしたとき、位相角θは、“θ=tan-1(X/R)”で表される。 Here, the phase angle of impedance is the difference between the phase of the current flowing through the object to be measured (DUT, reference circuit 8A, etc.) and the phase of the voltage of the object to be measured. When the resistance component of the impedance is R and the reactance component of the impedance is X, the phase angle θ is expressed as “θ=tan −1 (X/R)”.
 図6は、実施の形態2に係るリファレンス回路8Aの一例を示す図である。 FIG. 6 is a diagram showing an example of a reference circuit 8A according to the second embodiment.
 図6に示すように、リファレンス回路8Aは、所定のインピーダンスを有する電子部品を含んで構成されている。実施の形態2では、リファレンス回路8Aが、実施の形態1に係るリファレンス回路8と同様に、リファレンス抵抗Rrefを含んで構成されているものとする。すなわち、図6に示すように、リファレンス抵抗Rrefの一方の端子がリファレンス回路8Aの端子hcr,hprに接続され、リファレンス抵抗Rrefの他方の端子がリファレンス回路8Aの端子lcr,lprに接続されている。 As shown in FIG. 6, the reference circuit 8A is configured to include electronic components having a predetermined impedance. In the second embodiment, it is assumed that the reference circuit 8A is configured to include a reference resistor Rref, similarly to the reference circuit 8 according to the first embodiment. That is, as shown in FIG. 6, one terminal of the reference resistor Rref is connected to the terminals hcr and hpr of the reference circuit 8A, and the other terminal of the reference resistor Rref is connected to the terminals lcr and lpr of the reference circuit 8A. .
 なお、リファレンス回路8Aは、上述したリファレンス抵抗Rrefに限定されず、高精度なリアクタンス成分を有するキャパシタやインダクタ等を含んで構成されていてもよい。 Note that the reference circuit 8A is not limited to the reference resistor Rref described above, and may include a capacitor, an inductor, etc. having a highly accurate reactance component.
 実施の形態2に係る測定装置100Aにおいて、データ処理制御回路4Aは、実施の形態1に係るデータ処理制御回路4の機能に加えて、位相測定の誤差の影響を低減する機能を有する。 In the measuring device 100A according to the second embodiment, the data processing control circuit 4A has a function of reducing the influence of errors in phase measurement in addition to the functions of the data processing control circuit 4 according to the first embodiment.
 データ処理制御回路4Aは、位相測定の誤差の影響を低減する機能として、第1条件において測定したリファレンス回路8(リファレンス抵抗Rref)のインピーダンスの位相角の値と、第2条件において測定したリファレンス回路8のインピーダンスの位相角の値との誤差に基づいて、第2条件において測定したDUT200のインピーダンスの位相角の測定結果を補正する。 As a function of reducing the influence of phase measurement errors, the data processing control circuit 4A calculates the value of the phase angle of the impedance of the reference circuit 8 (reference resistor Rref) measured under the first condition and the reference circuit measured under the second condition. The measurement result of the phase angle of the impedance of the DUT 200 measured under the second condition is corrected based on the error with the value of the phase angle of the impedance of No. 8.
 具体的には、データ処理制御回路4Aは、第1条件において測定したリファレンス回路8A(リファレンス抵抗Rref)のインピーダンスの位相角の値θr1と、第2条件において測定したリファレンス回路8Aのインピーダンスの位相角の値θr2との差に基づく第2補正係数θfixを算出し、第2補正係数θfixに基づいて、第2条件において測定したDUT200のインピーダンスの位相角の値を補正する。 Specifically, the data processing control circuit 4A determines the value θr1 of the phase angle of the impedance of the reference circuit 8A (reference resistor Rref) measured under the first condition and the phase angle of the impedance of the reference circuit 8A measured under the second condition. A second correction coefficient θfix is calculated based on the difference from the value θr2, and the value of the phase angle of the impedance of the DUT 200 measured under the second condition is corrected based on the second correction coefficient θfix.
 図7は、実施の形態2に係るデータ処理制御回路4Aの構成を示す図である。 FIG. 7 is a diagram showing the configuration of the data processing control circuit 4A according to the second embodiment.
 データ処理制御回路4Aは、例えば、実施の形態1に係るデータ処理制御回路4と同様に、プログラム処理装置である。データ処理制御回路4Aは、上述した機能を実現するための機能ブロックとして、指示受付部40、スイッチ制御部41、補正係数更新部42A、インピーダンス算出部43A、補正部44A、測定結果出力部45、および記憶部46Aを有している。これらの機能ブロックは、例えば、データ処理制御回路4Aとしてのプログラム処理装置(MCU)において、プロセッサが、記憶装置に記憶されたプログラムに従って各種演算処理を実行し、周辺回路を制御することによって実現される。なお、上記機能ブロックのうち一部または全部が専用ロジック回路によって実現されていてもよい。 The data processing control circuit 4A is, for example, a program processing device like the data processing control circuit 4 according to the first embodiment. The data processing control circuit 4A includes, as functional blocks for realizing the above-mentioned functions, an instruction reception section 40, a switch control section 41, a correction coefficient update section 42A, an impedance calculation section 43A, a correction section 44A, a measurement result output section 45, and a storage section 46A. These functional blocks are realized, for example, in a program processing unit (MCU) as the data processing control circuit 4A, by a processor executing various arithmetic operations according to programs stored in a storage device and controlling peripheral circuits. Ru. Note that some or all of the above functional blocks may be realized by a dedicated logic circuit.
 記憶部46Aは、実施の形態1に係る記憶部46と同様に、DUTの電気的特性の測定や補正係数の算出等を行うために必要な演算式や各種パラメータ、測定結果、および補正係数等を記憶する機能部である。 Similar to the storage unit 46 according to the first embodiment, the storage unit 46A stores calculation formulas, various parameters, measurement results, correction coefficients, etc. necessary for measuring electrical characteristics of the DUT, calculating correction coefficients, etc. This is a functional unit that stores information.
 例えば、記憶部46Aには、後述する、第1条件において測定されたリファレンス抵抗Rrefの値(Rr1,θr1)を含むリファレンス測定結果(第1条件)401A、第2条件において測定されたリファレンス抵抗Rrefの測定値(Rr2,θr2)を含むリファレンス測定結果(第2条件)402A、第1補正係数Gfixおよび第2補正係数θfixを含む補正係数情報403A、第2条件において測定されたDUT200のインピーダンスの値(R,θ)を含むDUT測定結果(第2条件)404A、および補正されたDUT200のインピーダンスの値(Rf,θf)を含む補正後のDUT測定結果(第2条件)405Aが記憶される。 For example, the storage unit 46A stores a reference measurement result (first condition) 401A including the value (Rr1, θr1) of the reference resistance Rref measured under the first condition, which will be described later, and a reference resistance Rref measured under the second condition. Reference measurement results (second condition) 402A including the measured values (Rr2, θr2), correction coefficient information 403A including the first correction coefficient Gfix and the second correction coefficient θfix, and the value of the impedance of the DUT 200 measured under the second condition. A DUT measurement result (second condition) 404A including (R, θ) and a corrected DUT measurement result (second condition) 405A including the corrected impedance value (Rf, θf) of the DUT 200 are stored.
 インピーダンス算出部43Aは、内部端子hpiと内部端子lpiとの間のインピーダンスの値を算出する機能部である。インピーダンス算出部43Aは、電圧検出回路3によって検出された電圧の値と電流検出回路2によって検出された電流の値とに基づいて、内部端子hpiと内部端子lpiとの間のインピーダンスの値を算出する。 The impedance calculation unit 43A is a functional unit that calculates the value of impedance between the internal terminal hpi and the internal terminal lpi. The impedance calculation unit 43A calculates the impedance value between the internal terminal hpi and the internal terminal lpi based on the voltage value detected by the voltage detection circuit 3 and the current value detected by the current detection circuit 2. do.
 インピーダンス算出部43Aは、実施の形態1に係るインピーダンス算出部43の機能に加えて、内部端子hpiと内部端子lpiとの間のインピーダンスの位相角の値を算出する機能を有している。 In addition to the function of the impedance calculation unit 43 according to the first embodiment, the impedance calculation unit 43A has a function of calculating the value of the phase angle of impedance between the internal terminal hpi and the internal terminal lpi.
 例えば、指示受付部40からDUT200のインピーダンスの位相角の測定の実行、補正係数の更新実行、またはリファレンス回路8Aの測定実行が指示された場合、発生回路1が交流信号(例えば、定電流信号)を内部端子hci,lciの間に印加し、このときの内部端子hci,lci間に流れる電流を電流検出回路2が検出するとともに、内部端子hcp,lcp間の電圧を電圧検出回路3が検出する。
 例えば、データ処理制御回路4Aの指示受付部40が、信号Sbとして、一定の周波数および一定の振幅を有する信号である参照信号(例えば、正弦波信号)を発生回路1に与える。発生回路1は、参照信号に基づいて交流信号を生成する。例えば、発生回路1は、参照信号に応じた周波数および一定の振幅を有する交流信号(定電流)を生成し、内部端子hci,lciの間に供給する。
For example, when the instruction receiving unit 40 instructs to measure the phase angle of the impedance of the DUT 200, update the correction coefficient, or measure the reference circuit 8A, the generating circuit 1 generates an AC signal (for example, a constant current signal). is applied between the internal terminals hci and lci, and the current detection circuit 2 detects the current flowing between the internal terminals hci and lci at this time, and the voltage detection circuit 3 detects the voltage between the internal terminals hcp and lcp. .
For example, the instruction reception unit 40 of the data processing control circuit 4A provides the generation circuit 1 with a reference signal (for example, a sine wave signal) that is a signal having a constant frequency and a constant amplitude as the signal Sb. A generating circuit 1 generates an AC signal based on a reference signal. For example, the generation circuit 1 generates an alternating current signal (constant current) having a frequency and a constant amplitude according to the reference signal, and supplies it between internal terminals hci and lci.
 インピーダンス算出部43Aは、電流検出回路2によって検出した電流と電圧検出回路3によって検出した電圧とに基づいて、公知の手法により、内部端子hpiと内部端子lpiとの間のインピーダンスの位相角の値および当該インピーダンスの抵抗成分の値Rをそれぞれ算出する。 The impedance calculation unit 43A calculates the value of the phase angle of the impedance between the internal terminal hpi and the internal terminal lpi based on the current detected by the current detection circuit 2 and the voltage detected by the voltage detection circuit 3 using a known method. and the value R of the resistance component of the impedance is calculated.
 例えば、インピーダンス算出部43Aは、同期検波により、電圧検出回路3によって検出された電圧信号vの振幅|V|と、同期検波における参照信号と電圧信号vとの間の電圧位相差θvと、電流検出回路2によって検出されて電流信号iの振幅|I|と、同期検波における参照信号と電流信号iとの間の電流位相差θiと、をそれぞれ算出する。そして、インピーダンス算出部43Aは、算出した、電圧信号vの振幅|V|、電圧位相差θv、電流信号iの振幅|I|、および電流位相差θiを用いて、内部端子hpiと内部端子lpiとの間のインピーダンスの大きさ|Z|=|V|/|I|と、電圧位相差θvと電流位相差θiとの差である位相角θ=θv-θiと、をそれぞれ算出する。これにより、インピーダンスの抵抗成分の値Rは、“R=Zcosθ”によって算出でき、インピーダンスのリアクタンス成分Xは、“X=Zsinθ”によって算出できる。 For example, the impedance calculation unit 43A calculates the amplitude |V| of the voltage signal v detected by the voltage detection circuit 3 by synchronous detection, the voltage phase difference θv between the reference signal and the voltage signal v in synchronous detection, and the current The amplitude |I| of the current signal i detected by the detection circuit 2 and the current phase difference θi between the reference signal and the current signal i in synchronous detection are respectively calculated. Then, the impedance calculation unit 43A uses the calculated amplitude |V| of the voltage signal v, voltage phase difference θv, amplitude |I| of the current signal i, and current phase difference θi to connect the internal terminal hpi and the internal terminal lpi. |Z|=|V|/|I| and the phase angle θ=θv−θi, which is the difference between the voltage phase difference θv and the current phase difference θi, are calculated. Thereby, the value R of the resistance component of the impedance can be calculated by "R=Zcosθ", and the reactance component X of the impedance can be calculated by "X=Zsinθ".
 インピーダンス算出部43Aは、第1条件において上述の手法により測定したリファレンス回路8Aのインピーダンスの抵抗成分の値Rr1(=|V1|/|I1|×cosθr1)および位相角の値θr1(=θv1-θi1)を記憶部46に記憶する。インピーダンス算出部43Aは、第2条件において上述の手法により測定したリファレンス回路8Aのインピーダンスの抵抗成分の値Rr2(=|V2|/|I2|×cosθr2)および位相角θr2(=θv2-θi2)を記憶部46に記憶する。 The impedance calculation unit 43A calculates the resistance component value Rr1 (=|V1|/|I1|×cosθr1) of the impedance of the reference circuit 8A measured by the above-described method under the first condition and the phase angle value θr1 (=θv1−θi1). ) is stored in the storage unit 46. The impedance calculation unit 43A calculates the resistance component value Rr2 (=|V2|/|I2|×cosθr2) and phase angle θr2 (=θv2−θi2) of the impedance of the reference circuit 8A measured by the above-described method under the second condition. The information is stored in the storage unit 46.
 なお、後述するように、実施の形態1と同様に初期調整を行う場合には、初期調整によって得られた補正係数等が上記式(|Z|=|V|/|I|,θ=φv-φi)に含まれていてもよい。また、上述した同期検波に基づくインピーダンスの算出手法は、一例であって、インピーダンス算出部43Aは、その他の公知の算出手法によってインピーダンスを算出してもよい。 As will be described later, when initial adjustment is performed in the same manner as in Embodiment 1, the correction coefficient etc. obtained by the initial adjustment are calculated using the above formula (|Z|=|V|/|I|, θ=φv -φi). Further, the impedance calculation method based on the synchronous detection described above is just one example, and the impedance calculation unit 43A may calculate the impedance using other known calculation methods.
 補正係数更新部42Aは、補正係数を更新する機能部である。
 補正係数更新部42Aは、実施の形態1に係る補正係数更新部42と同様に、第1補正係数Gfixを算出し、更新する。
 具体的には、補正係数更新部42Aは、記憶部46に記憶されている、第1条件において測定したリファレンス回路8Aのインピーダンスの抵抗成分の値Rr1(=|V1|/|I1|×cosθr1)と第2条件で測定したリファレンス回路8Aのインピーダンスの抵抗成分の値Rr2(=|V2|/|I2|×cosθr2)とに基づいて第1補正係数Gfixを算出し、記憶部46Aに記憶する。第1補正係数Gfixの算出方法は、実施の形態1に係る方法と同様である。更に、補正係数更新部42Aは、第2補正係数θfixを算出し、更新する。
The correction coefficient update unit 42A is a functional unit that updates the correction coefficient.
The correction coefficient update unit 42A calculates and updates the first correction coefficient Gfix, similarly to the correction coefficient update unit 42 according to the first embodiment.
Specifically, the correction coefficient updating unit 42A updates the value Rr1 (=|V1|/|I1|×cosθr1) of the resistance component of the impedance of the reference circuit 8A measured under the first condition, which is stored in the storage unit 46. The first correction coefficient Gfix is calculated based on the value Rr2 (=|V2|/|I2|×cosθr2) of the resistance component of the impedance of the reference circuit 8A measured under the second condition, and is stored in the storage unit 46A. The method for calculating the first correction coefficient Gfix is the same as the method according to the first embodiment. Further, the correction coefficient updating unit 42A calculates and updates the second correction coefficient θfix.
 第2補正係数θfixは、測定対象物のインピーダンスの位相角の測定値を補正するための係数である。補正係数更新部42Aは、記憶部46に記憶されている、第1条件において測定したリファレンス回路8A(リファレンス抵抗Rref)のインピーダンスの位相角の値θr1と、第2条件で測定したリファレンス回路8Aのインピーダンスの位相角の値θr2との差に基づく第2補正係数θfixを算出し、記憶部46Aに記憶する。以下、第2補正係数θfixの算出方法について詳述する。 The second correction coefficient θfix is a coefficient for correcting the measured value of the phase angle of the impedance of the object to be measured. The correction coefficient updating unit 42A updates the impedance phase angle value θr1 of the reference circuit 8A (reference resistor Rref) measured under the first condition, which is stored in the storage unit 46, and the value θr1 of the impedance phase angle of the reference circuit 8A measured under the second condition. A second correction coefficient θfix is calculated based on the difference between the impedance and the phase angle value θr2, and is stored in the storage unit 46A. The method for calculating the second correction coefficient θfix will be described in detail below.
 例えば、測定装置100Aの生産時または出荷時に、高精度な位相角を有する標準抵抗器または高精度な位相角を有する理想リアクタンス素子をDUTとして測定装置100Aに接続し、測定装置100Aが、DUTのインピーダンスの位相角を測定する。そして、DUTの理論上の位相角(または、校正済み(既知)の位相角)と測定されたDUTの位相角との差(位相差)が“ゼロ”になるように、インピーダンス算出部43が演算に用いる、インピーダンスの位相角を算出するための演算式(θ=θv-θi)を補正する(初期調整)。このとき、測定装置100Aは、実施の形態1と同様に、抵抗成分を算出するための演算式も併せて調整してもよい。 For example, during production or shipment of the measuring device 100A, a standard resistor with a highly accurate phase angle or an ideal reactance element with a highly accurate phase angle is connected to the measuring device 100A as a DUT, and the measuring device 100A Measure the phase angle of impedance. Then, the impedance calculation unit 43 is configured so that the difference (phase difference) between the theoretical phase angle of the DUT (or the calibrated (known) phase angle) and the measured phase angle of the DUT becomes "zero". The arithmetic expression (θ=θv−θi) for calculating the phase angle of impedance used in the calculation is corrected (initial adjustment). At this time, the measuring device 100A may also adjust the arithmetic expression for calculating the resistance component, as in the first embodiment.
 次に、例えば、初期調整の直後のタイミングにおいて、測定装置100Aが、スイッチ部5によって内部端子hci,hpi,lci,lpiの接続先をリファレンス回路8(リファレンス抵抗Rref)に切り替え、インピーダンス算出部43Aによって、上述した手法により、リファレンス抵抗Rrefの位相の値θr1を測定する。以下、初期調整後の条件を「第1条件」と称する。測定装置100Aは、第1条件において測定したリファレンス抵抗Rrefの位相の値θr1をリファレンス測定結果(第1条件)401Aとして記憶部46に記憶する。このとき、第1条件において測定したリファレンス抵抗Rrefの位相の値θr1は、下記式(4)によって表される。ここで、θvは電圧位相差であり、θiは電流位相差である。 Next, for example, at a timing immediately after the initial adjustment, the measuring device 100A switches the connection destination of the internal terminals hci, hpi, lci, lpi to the reference circuit 8 (reference resistance Rref) by the switch unit 5, and the impedance calculation unit 43A Accordingly, the phase value θr1 of the reference resistor Rref is measured using the method described above. Hereinafter, the conditions after the initial adjustment will be referred to as "first conditions." The measuring device 100A stores the phase value θr1 of the reference resistance Rref measured under the first condition in the storage unit 46 as the reference measurement result (first condition) 401A. At this time, the phase value θr1 of the reference resistor Rref measured under the first condition is expressed by the following equation (4). Here, θv is a voltage phase difference, and θi is a current phase difference.
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
 なお、測定装置100Aは、実施の形態1と同様に、電圧信号vの振幅|V1|、電流信号iの振幅|I1|、および位相角θr1(=θv1-θi1)を用いて、リファレンス抵抗Rrefの抵抗成分の値Rr1(=|V1|/|I1|×cosθr1)も測定し、位相の測定値と合わせて記憶部46Aに記憶する。
 その後、測定装置100Aが出荷される。
Note that, similarly to the first embodiment, the measuring device 100A uses the amplitude |V1| of the voltage signal v, the amplitude |I1| of the current signal i, and the phase angle θr1 (=θv1−θi1) to determine the reference resistance Rref. The resistance component value Rr1 (=|V1|/|I1|×cosθr1) is also measured and stored in the storage unit 46A together with the phase measurement value.
After that, the measuring device 100A is shipped.
 測定装置100Aの出荷後、ユーザが測定装置100Aを用いてDUT200のインピーダンスを測定する場合を考える。以下、ユーザが測定を行うときの条件を「第2条件」と称する。 Consider a case where a user measures the impedance of the DUT 200 using the measuring device 100A after the measuring device 100A is shipped. Hereinafter, the conditions under which the user performs measurement will be referred to as "second conditions."
 第2条件において、ユーザが測定装置100を操作して測定の実行が指示されたとき、測定装置100Aは、先ず、スイッチ部5によって内部端子hci,hpi,lci,lpiの接続先をリファレンス抵抗Rrefに切り替え、インピーダンス算出部43Aによってリファレンス抵抗Rrefの位相の値θr2を測定し、リファレンス測定結果(第2条件)402Aとして記憶部46Aに記憶する。このとき、測定装置100Aは、実施の形態1と同様に、電圧信号vの振幅|V2|、電流信号iの振幅|I2|、および位相角θr2(=θv2-θi2)を用いて、リファレンス抵抗Rrefの抵抗成分の値Rr2(=|V2|/|I2|×cosθr2)も測定し、位相の測定値と合わせて記憶部46Aに記憶する。 Under the second condition, when the user operates the measuring device 100 to instruct measurement execution, the measuring device 100A first uses the switch unit 5 to connect the internal terminals hci, hpi, lci, lpi to the reference resistor Rref. , the impedance calculation unit 43A measures the phase value θr2 of the reference resistor Rref, and stores it in the storage unit 46A as a reference measurement result (second condition) 402A. At this time, the measuring device 100A uses the amplitude |V2| of the voltage signal v, the amplitude |I2| of the current signal i, and the phase angle θr2 (=θv2−θi2) to The value Rr2 (=|V2|/|I2|×cosθr2) of the resistance component of Rref is also measured and stored in the storage unit 46A together with the measured value of the phase.
 ここで、初期調整時(第1条件)からの温度変化および経時変化により、電流検出回路2および電圧検出回路3の位相特性が変化し、第2条件において電流検出回路2の出力信号と電圧検出回路3の出力信号との間に位相誤差θeが生じていたとする。このとき、第2条件において測定されたリファレンス抵抗Rrefの位相の値θr2は、下記式(5)によって表すことができる。 Here, the phase characteristics of the current detection circuit 2 and the voltage detection circuit 3 change due to temperature changes and changes over time from the time of initial adjustment (first condition), and the output signal of the current detection circuit 2 and voltage detection under the second condition change. Assume that a phase error θe occurs between the output signal of the circuit 3 and the output signal of the circuit 3. At this time, the phase value θr2 of the reference resistor Rref measured under the second condition can be expressed by the following equation (5).
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000005
 上記式(5)から理解されるように、第2条件において測定したリファレンス抵抗Rrefの位相の値θr2は、第1条件において測定したリファレンス抵抗Rrefの位相の値θr1から位相誤差θeが加算された値となる。換言すれば、電流検出回路2の出力信号と電圧検出回路3の出力信号との間の位相誤差θeは、第1条件において測定したリファレンス抵抗Rrefの位相の値θr1と第2条件において測定したリファレンス抵抗Rrefの位相の値θr2との間の誤差として現れる。したがって、位相誤差θeは、上記式(5)より、下記式(6)によって表される。 As understood from the above equation (5), the phase value θr2 of the reference resistance Rref measured under the second condition is the sum of the phase error θe from the phase value θr1 of the reference resistance Rref measured under the first condition. value. In other words, the phase error θe between the output signal of the current detection circuit 2 and the output signal of the voltage detection circuit 3 is the difference between the phase value θr1 of the reference resistor Rref measured under the first condition and the reference resistor Rref measured under the second condition. This appears as an error between the phase value θr2 of the resistor Rref and the phase value θr2. Therefore, the phase error θe is expressed by the following equation (6) from the above equation (5).
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000006
 上記式(6)から理解されるように、第1条件において測定したリファレンス抵抗Rrefの位相の値θr1と第2条件において測定したリファレンス抵抗Rrefの位相の値θr2を取得することにより、位相誤差θeを算出することができる。 As understood from the above equation (6), by obtaining the phase value θr1 of the reference resistance Rref measured under the first condition and the phase value θr2 of the reference resistance Rref measured under the second condition, the phase error θe can be calculated.
 そこで、位相誤差θe(=θr2-θr1)を第2補正係数θfix(=θr2-θr1)とし、第2条件で測定したDUT200のインピーダンスの位相角の値θ(=θv-θi+θe)から第2補正係数θfix(=θe)を減算することにより、第2条件において測定したDUT200のインピーダンスの位相角の値θに含まれる誤差成分(θe)を除去することが可能となる。 Therefore, the phase error θe (=θr2-θr1) is set as the second correction coefficient θfix (=θr2-θr1), and the second correction is made from the phase angle value θ (=θv-θi+θe) of the impedance of the DUT 200 measured under the second condition. By subtracting the coefficient θfix (=θe), it is possible to remove the error component (θe) included in the value θ of the phase angle of the impedance of the DUT 200 measured under the second condition.
 補正係数更新部42Aによる補正係数(第1補正係数Gfixおよび第2補正係数θfix)の算出(更新)は、例えば、指示受付部40がDUT200の測定実行の指示を受け付けた場合に実行されてもよいし、指示受付部40が補正係数の更新実行の指示、またはリファレンス回路8の測定実行の指示を受け付けた場合に、実行されてもよい。 Calculation (updating) of the correction coefficients (first correction coefficient Gfix and second correction coefficient θfix) by the correction coefficient updating unit 42A may be performed, for example, when the instruction receiving unit 40 receives an instruction to perform measurement of the DUT 200. Alternatively, the process may be executed when the instruction receiving unit 40 receives an instruction to update the correction coefficient or an instruction to measure the reference circuit 8 .
 補正部44Aは、インピーダンス算出部43Aによって算出されたインピーダンスの値を補正係数情報403Aに基づいて補正する機能部である。 The correction unit 44A is a functional unit that corrects the impedance value calculated by the impedance calculation unit 43A based on the correction coefficient information 403A.
 具体的には、補正部44Aは、補正係数情報403Aに含まれる第1補正係数Gfixを用いて、補正部44と同様の手法により、インピーダンス算出部43Aによって算出されたDUT200のインピーダンスの抵抗成分の値Rを補正する。 Specifically, the correction unit 44A uses the first correction coefficient Gfix included in the correction coefficient information 403A to calculate the resistance component of the impedance of the DUT 200 calculated by the impedance calculation unit 43A using the same method as the correction unit 44. Correct the value R.
 また、補正部44Aは、記憶部46Aに記憶されている補正係数情報403Aに含まれる第2補正係数θfix(=θe)を用いて、インピーダンス算出部43Aによって算出されたDUT200のインピーダンスの位相角の値θを補正し、補正後のDUT測定結果(第2条件)405Aとして記憶部46に記憶する。例えば、補正部44Aは、下記式(7)に基づく演算を行うことにより、DUT200のインピーダンスの位相角の値θを補正する。 Further, the correction unit 44A uses the second correction coefficient θfix (=θe) included in the correction coefficient information 403A stored in the storage unit 46A to adjust the phase angle of the impedance of the DUT 200 calculated by the impedance calculation unit 43A. The value θ is corrected and stored in the storage unit 46 as a corrected DUT measurement result (second condition) 405A. For example, the correction unit 44A corrects the value θ of the phase angle of the impedance of the DUT 200 by performing calculation based on the following equation (7).
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000007
 すなわち、補正部44Aは、インピーダンス算出部43Aによって算出されたDUT200のインピーダンスの位相角の値θから第2補正係数θfix(=θe)を減算して得られた値θf(=θ-θfix)を、補正後のDUT測定結果(第2条件)405Aとして記憶部46Aに記憶する。 That is, the correction unit 44A subtracts the second correction coefficient θfix (=θe) from the value θ of the phase angle of the impedance of the DUT 200 calculated by the impedance calculation unit 43A, and calculates the value θf (=θ−θfix). , is stored in the storage unit 46A as a corrected DUT measurement result (second condition) 405A.
 測定結果出力部45は、例えば、DUT200のインピーダンスの測定が行われたとき、補正部44Aによって補正されたインピーダンスの測定結果(補正された抵抗成分の値Rf、位相角θf等)Soを出力部6に対して出力する。出力部6は、例えば、受け取った測定結果Soに応じた情報を画面に表示し、または、外部機器に測定データとして送信する。 For example, when the impedance of the DUT 200 is measured, the measurement result output unit 45 outputs the impedance measurement result (corrected resistance component value Rf, phase angle θf, etc.) So corrected by the correction unit 44A. Output for 6. The output unit 6 displays information corresponding to the received measurement result So on the screen, or transmits it to an external device as measurement data, for example.
 次に、実施の形態2に係る測定装置100Aによるインピーダンス測定の流れについて説明する。 Next, the flow of impedance measurement by the measuring device 100A according to the second embodiment will be explained.
 図8は、実施の形態2に係る測定装置100Aによるインピーダンス測定の流れを示すフローチャートである。 FIG. 8 is a flowchart showing the flow of impedance measurement by the measuring device 100A according to the second embodiment.
 以下では、一例として、DUT200の位相の測定の流れについて説明し、DUT200の抵抗成分の測定の流れについては省略する。なお、抵抗成分の測定の流れは、既に説明した図4と同様である。 Below, as an example, the flow of measuring the phase of the DUT 200 will be explained, and the flow of measuring the resistance component of the DUT 200 will be omitted. Note that the flow of measuring the resistance component is the same as that in FIG. 4 described above.
 ここでは、予め、第1条件のリファレンス測定結果(θr1)401Aがデータ処理制御回路4Aの記憶部46Aに記憶されているものとする。また、DUT200が、外部端子HC,HPと外部端子LC,LPとの間に接続されているものとする。 Here, it is assumed that the reference measurement result (θr1) 401A under the first condition is stored in advance in the storage unit 46A of the data processing control circuit 4A. Further, it is assumed that the DUT 200 is connected between external terminals HC and HP and external terminals LC and LP.
 例えば、ユーザが操作部7を操作して、DUT200のインピーダンスの測定を指示した場合、先ず、データ処理制御回路4Aが、上述した実施の形態1に係るステップS1と同様に、スイッチ部5を制御して内部端子hci,hpi,lci,lpiをリファレンス回路8に接続する(ステップS1A)。 For example, when the user operates the operation unit 7 to instruct measurement of the impedance of the DUT 200, first, the data processing control circuit 4A controls the switch unit 5 as in step S1 according to the first embodiment described above. Then, the internal terminals hci, hpi, lci, and lpi are connected to the reference circuit 8 (step S1A).
 次に、データ処理制御回路4Aが、リファレンス回路8A(リファレンス抵抗Rref)のインピーダンスの位相角θr2を測定する(ステップS2A)。具体的には、指示受付部40が発生回路1に対して電圧または電流の出力を指示するとともに、インピーダンス算出部43Aに対してインピーダンスの測定を指示する。インピーダンス算出部43Aは、電圧検出回路3から出力された電圧信号と電流検出回路2から出力された電流信号とに基づいて、上述した手法により、リファレンス抵抗Rrefの位相角θr2を算出し、第2条件のリファレンス測定結果402Aとして記憶部46Aに記憶する。 Next, the data processing control circuit 4A measures the phase angle θr2 of the impedance of the reference circuit 8A (reference resistor Rref) (step S2A). Specifically, the instruction receiving section 40 instructs the generating circuit 1 to output voltage or current, and instructs the impedance calculating section 43A to measure impedance. The impedance calculation unit 43A calculates the phase angle θr2 of the reference resistor Rref based on the voltage signal output from the voltage detection circuit 3 and the current signal output from the current detection circuit 2 by the method described above, and It is stored in the storage unit 46A as a reference measurement result 402A of the conditions.
 次に、データ処理制御回路4Aが、第2補正係数θfixを算出(更新)する(ステップS3A)。具体的には、補正係数更新部42Aが、記憶部46Aに記憶されている、第1条件におけるリファレンス測定結果401Aとしての位相の値θr1と、第2条件におけるリファレンス測定結果402Aとしての位相の値θr2とに基づいて、上述した手法により、第2補正係数θfixを算出し、記憶部46Aに記憶する。なお、既に、第2補正係数θfixが記憶部46Aに記憶されている場合には、補正係数更新部42Aは、新たに算出した第2補正係数θfixによって、記憶部46Aに記憶されている第2補正係数θfixを書き換える。 Next, the data processing control circuit 4A calculates (updates) the second correction coefficient θfix (step S3A). Specifically, the correction coefficient updating unit 42A updates the phase value θr1 as the reference measurement result 401A under the first condition and the phase value θr1 as the reference measurement result 402A under the second condition, which are stored in the storage unit 46A. Based on θr2, the second correction coefficient θfix is calculated by the method described above and is stored in the storage unit 46A. Note that if the second correction coefficient θfix is already stored in the storage unit 46A, the correction coefficient update unit 42A updates the second correction coefficient θfix stored in the storage unit 46A using the newly calculated second correction coefficient θfix. Rewrite the correction coefficient θfix.
 次に、データ処理制御回路4Aが、スイッチ部5を制御して、内部端子hci,hpi,lci,lpiを外部端子HC,HP,LC,LPに接続する(ステップS4A)。これにより、内部端子hci,hpi,lci,lpiがDUT200に接続されることになる。 Next, the data processing control circuit 4A controls the switch unit 5 to connect the internal terminals hci, hpi, lci, lpi to the external terminals HC, HP, LC, LP (step S4A). As a result, the internal terminals hci, hpi, lci, and lpi are connected to the DUT 200.
 次に、データ処理制御回路4Aが、DUT200の位相を測定する(ステップS5A)。具体的には、ステップS2Aと同様に、指示受付部40が、発生回路1に対して電圧または電流の出力を指示するとともに、インピーダンス算出部43Aに対してインピーダンスの測定を指示する。インピーダンス算出部43Aは、電圧検出回路3から出力された電圧信号と電流検出回路2から出力された電流信号とに基づいて、上述した手法により、DUT200の位相の値θを算出し、DUT測定結果404Aとして記憶部46Aに記憶する。 Next, the data processing control circuit 4A measures the phase of the DUT 200 (step S5A). Specifically, similarly to step S2A, the instruction receiving section 40 instructs the generating circuit 1 to output voltage or current, and instructs the impedance calculating section 43A to measure impedance. The impedance calculation unit 43A calculates the phase value θ of the DUT 200 by the method described above based on the voltage signal output from the voltage detection circuit 3 and the current signal output from the current detection circuit 2, and calculates the DUT measurement result. It is stored in the storage unit 46A as 404A.
 次に、データ処理制御回路4Aが、ステップS5Aにおいて測定されたDUT200の位相の値θを補正する(ステップS6A)。具体的には、補正部44Aが、記憶部46Aに記憶されている第2補正係数θfixを用いて、上述した手法により、ステップS5Aにおいて測定されたDUT200の位相の値θを補正し、補正後のDUT200の位相の値θf(=θ-θfix)を、補正後のDUT測定結果405Aとして記憶部46Aに記憶する。 Next, the data processing control circuit 4A corrects the phase value θ of the DUT 200 measured in step S5A (step S6A). Specifically, the correction unit 44A corrects the phase value θ of the DUT 200 measured in step S5A by the method described above using the second correction coefficient θfix stored in the storage unit 46A, The phase value θf (=θ−θfix) of the DUT 200 is stored in the storage unit 46A as the corrected DUT measurement result 405A.
 次に、データ処理制御回路4が、補正後のDUT測定結果405A(θf)をDUT200のインピーダンスの位相角の測定結果として、出力部6に出力する(ステップS7A)。出力部6は、例えば、DUT200のインピーダンスの測定結果(位相角θf等)の情報を画面に表示させる。 Next, the data processing control circuit 4 outputs the corrected DUT measurement result 405A (θf) to the output unit 6 as the measurement result of the phase angle of the impedance of the DUT 200 (step S7A). The output unit 6 displays information on the impedance measurement results (phase angle θf, etc.) of the DUT 200 on the screen, for example.
 以上、実施の形態2に係る測定装置100Aにおいて、データ処理制御回路4Aは、第1条件において測定したリファレンス回路8Aのインピーダンスの位相角の値θr1と、第2条件において測定したリファレンス回路8Aのインピーダンスの位相角の値θr2との差(位相誤差θe)に基づいて、第2条件において測定したDUT200のインピーダンスの位相角の測定結果(θ)を補正する。
 これによれば、温度および経年によって測定装置100Aによるインピーダンスの位相角の測定に誤差が生じている場合であっても、より高精度なインピーダンスの位相角の測定が可能となる。
As described above, in the measuring device 100A according to the second embodiment, the data processing control circuit 4A calculates the value θr1 of the phase angle of the impedance of the reference circuit 8A measured under the first condition and the impedance of the reference circuit 8A measured under the second condition. The measurement result (θ) of the phase angle of the impedance of the DUT 200 measured under the second condition is corrected based on the difference (phase error θe) from the phase angle value θr2.
According to this, even if an error occurs in the measurement of the impedance phase angle by the measuring device 100A due to temperature and age, it is possible to measure the impedance phase angle with higher accuracy.
 具体的には、測定装置100Aのデータ処理制御回路4Aは、第1条件において測定したリファレンス回路8Aのインピーダンスの位相角の値θr1と、第2条件において測定したリファレンス回路8Aのインピーダンスの位相角の値θr2との差に基づく第2補正係数θfix(=θr1-θr2)を算出し、第2補正係数θfixを用いて第2条件において測定したDUT200のインピーダンスの位相角の値θを補正する。
 これによれば、複雑な演算式を用いることなく、インピーダンスの位相角の測定値を容易に補正することができる。
Specifically, the data processing control circuit 4A of the measuring device 100A determines the value θr1 of the phase angle of the impedance of the reference circuit 8A measured under the first condition and the phase angle of the impedance of the reference circuit 8A measured under the second condition. A second correction coefficient θfix (=θr1−θr2) is calculated based on the difference from the value θr2, and the value θ of the phase angle of the impedance of the DUT 200 measured under the second condition is corrected using the second correction coefficient θfix.
According to this, the measured value of the phase angle of impedance can be easily corrected without using a complicated calculation formula.
 また、測定装置100Aにおいて、指示受付部40が所定の指示を受け付けた場合に、スイッチ部5が、リファレンス回路8Aの一方の端子hcr,hprと内部端子hci,hpiとを接続し、且つリファレンス回路8Aの他方の端子lcr,lprと内部端子lci,lpiとを接続するとともに、インピーダンス算出部43Aが、第2条件におけるリファレンス回路8Aのインピーダンスの位相角の値(θr2)として記憶部46に記憶する。そして、補正係数更新部42Aが、記憶部46Aに記憶されている、第1条件におけるリファレンス回路8Aのインピーダンスの位相角の値(θr1)と、第2条件におけるリファレンス回路8Aのインピーダンスの位相角の値(θr2)とに基づいて、第2補正係数θfix(θr1-θr2)を更新してもよい。
 ここで、上記所定の指示は、DUT200の測定の指示であってもよいし、補正係数の更新の指示であってもよいし、リファレンス回路8Aのインピーダンスの測定指示であってもよい。
 これによれば、ユーザの所望のタイミングにおいて、第2補正係数θfixを更新することができるので、ユーザにとって使い勝手のよい測定装置を実現することができる。
In addition, in the measuring device 100A, when the instruction receiving unit 40 receives a predetermined instruction, the switch unit 5 connects one terminal hcr, hpr of the reference circuit 8A to the internal terminals hci, hpi, and The other terminals lcr and lpr of the reference circuit 8A are connected to the internal terminals lci and lpi, and the impedance calculation unit 43A stores this in the storage unit 46 as the phase angle value (θr2) of the impedance of the reference circuit 8A under the second condition. . Then, the correction coefficient updating unit 42A updates the value (θr1) of the impedance phase angle of the reference circuit 8A under the first condition, which is stored in the storage unit 46A, and the value (θr1) of the impedance phase angle of the reference circuit 8A under the second condition. The second correction coefficient θfix (θr1−θr2) may be updated based on the value (θr2).
Here, the predetermined instruction may be an instruction to measure the DUT 200, an instruction to update a correction coefficient, or an instruction to measure the impedance of the reference circuit 8A.
According to this, the second correction coefficient θfix can be updated at a timing desired by the user, so that it is possible to realize a measuring device that is easy to use for the user.
 ≪実施の形態3≫
 図9は、実施の形態3に係る測定装置100Bの構成を示す図である。
 図9に示す実施の形態3に係る測定装置100Bは、測定レンジに応じたインピーダンスの測定の補正が可能である点において、実施の形態1,2に係る測定装置100,100Aと相違し、その他の点においては、実施の形態1,2に係る測定装置100,100Aと同様である。
Embodiment 3≫
FIG. 9 is a diagram showing the configuration of a measuring device 100B according to the third embodiment.
A measuring device 100B according to Embodiment 3 shown in FIG. 9 differs from measuring devices 100 and 100A according to Embodiments 1 and 2 in that impedance measurement can be corrected according to the measurement range. In this respect, it is the same as the measuring devices 100 and 100A according to the first and second embodiments.
 一般に、上述したLCRメータ等の測定装置は、複数の測定レンジを有している。例えば、数mΩの抵抗値を有する抵抗器を測定する場合、ユーザが“mΩ”に対応する測定レンジを選択し、その測定レンジにおいて抵抗値を測定することにより、より高精度な抵抗値の測定が可能となる。 Generally, a measuring device such as the above-mentioned LCR meter has a plurality of measurement ranges. For example, when measuring a resistor with a resistance value of several mΩ, the user can select a measurement range that corresponds to “mΩ” and measure the resistance value in that measurement range. becomes possible.
 一方で、測定装置の“mΩ”の測定レンジにおける、温度および経年による測定誤差を適切に補正するためには、“mΩ”単位の抵抗値を有する抵抗器をリファレンス回路として用いて、実施の形態1,2と同様の手法により、測定誤差の補正を行うことが好ましい。しかしながら、リファレンス回路として、温度特性および長期安定性が十分に優れた“mΩ”単位の抵抗器を入手することは容易ではない。仮にそのような抵抗器が入手可能であったとしても、部品コストの増加を招く。
 そこで、実施の形態3に係るリファレンス回路8Bは、数mΩのような低い抵抗値を有する高安定性の抵抗器を用いることなく、擬似的に所望の抵抗値を実現し、低抵抗の測定レンジにおける測定誤差の補正を可能とする。
On the other hand, in order to appropriately correct measurement errors due to temperature and aging in the "mΩ" measurement range of the measuring device, the embodiments are implemented using a resistor with a resistance value in "mΩ" units as a reference circuit. It is preferable to correct the measurement error using a method similar to 1 and 2. However, it is not easy to obtain a "mΩ" resistor with sufficiently excellent temperature characteristics and long-term stability as a reference circuit. Even if such a resistor were available, it would increase component cost.
Therefore, the reference circuit 8B according to the third embodiment can achieve a pseudo-desired resistance value without using a highly stable resistor having a low resistance value of several mΩ, and can achieve a low resistance measurement range. It is possible to correct measurement errors in
 図10は、実施の形態3に係るリファレンス回路8Bの一例を示す図である。 FIG. 10 is a diagram showing an example of the reference circuit 8B according to the third embodiment.
 図10に示すように、リファレンス回路8Bは、ハイサイド入力端子hcr、ハイサイド出力端子hpr、ローサイド入力端子lcr、およびローサイド出力端子lprと、分圧回路80と、選択回路(MUX)81と、バッファ82と、を有している。 As shown in FIG. 10, the reference circuit 8B includes a high-side input terminal hcr, a high-side output terminal hpr, a low-side input terminal lcr, a low-side output terminal lpr, a voltage dividing circuit 80, a selection circuit (MUX) 81, It has a buffer 82.
 なお、図10では、図示の都合上、リファレンス回路8Bを示す点線の外に各端子hcr,hpr,lcr,lprが示されている。 Note that in FIG. 10, for convenience of illustration, the terminals hcr, hpr, lcr, and lpr are shown outside the dotted line indicating the reference circuit 8B.
 ハイサイド入力端子hcrは、スイッチ51によって内部端子hciと接続可能にされている。ハイサイド出力端子hprは、スイッチ52によって内部端子hpiと接続可能にされている。ローサイド入力端子lcrは、スイッチ53によって内部端子lciと接続可能にされている。ローサイド出力端子lprは、スイッチ54によって内部端子lpiと接続可能にされている。 The high side input terminal hcr can be connected to the internal terminal hci by a switch 51. The high side output terminal hpr can be connected to the internal terminal hpi by a switch 52. The low-side input terminal lcr can be connected to the internal terminal lci by a switch 53. The low-side output terminal lpr can be connected to the internal terminal lpi by a switch 54.
 分圧回路80は、ハイサイド入力端子hcrとローサイド入力端子lcrとの間の電圧を分圧(アッテネート)して出力する回路である。 The voltage dividing circuit 80 is a circuit that divides (attenuates) the voltage between the high side input terminal hcr and the low side input terminal lcr and outputs the divided voltage.
 一般に、LCRメータ等の4端子法によってDUTの抵抗値を測定する測定装置の多くは、上述したように、DUTに定電流信号または電圧信号を印加することにより、DUTに電圧を発生させ、その電圧を検出し、オームの法則に基づいてDUTの抵抗値(=電圧/電流)を算出する。このとき、オームの法則に基づき算出される抵抗値は、検出した電圧に比例した値になる。 In general, many measurement devices that measure the resistance value of a DUT using the four-terminal method, such as an LCR meter, generate a voltage across the DUT by applying a constant current signal or voltage signal to the DUT, as described above. The voltage is detected and the resistance value (=voltage/current) of the DUT is calculated based on Ohm's law. At this time, the resistance value calculated based on Ohm's law becomes a value proportional to the detected voltage.
 この点に着眼し、実施の形態3に係る測定装置100Bでは、複数の抵抗器から構成される分圧回路80を用いてリファレンス回路8Bを実現し、リファレンス回路8Bに発生した電圧を分圧回路80によって分圧して電圧検出回路3に入力する。これにより、測定装置100Bが抵抗値を算出する際に、リファレンス回路8Bは、所定の抵抗値を有する抵抗器のようにふるまう。 Focusing on this point, in the measuring device 100B according to the third embodiment, the reference circuit 8B is realized using a voltage dividing circuit 80 composed of a plurality of resistors, and the voltage generated in the reference circuit 8B is transferred to the voltage dividing circuit 80. The voltage is divided by 80 and input to the voltage detection circuit 3. Thereby, when the measuring device 100B calculates the resistance value, the reference circuit 8B behaves like a resistor having a predetermined resistance value.
 例えば、分圧回路80は、図10に示すように、第1抵抗器Rmと、第1抵抗器Rmと並列に接続された複数の第2抵抗器Ra1~Ran(nは2以上の整数)と、を有している。 For example, as shown in FIG. 10, the voltage dividing circuit 80 includes a first resistor Rm and a plurality of second resistors Ra1 to Ran (n is an integer of 2 or more) connected in parallel with the first resistor Rm. It has .
 第1抵抗器Rmは、ハイサイド入力端子hcrとローサイド入力端子lcrとの間に接続されている。第1抵抗器Rmは、実施の形態1,2に係るリファレンス抵抗Rrefと同様に、高精度且つ高信頼性を有する精密抵抗器であることが好ましい。 The first resistor Rm is connected between the high-side input terminal hcr and the low-side input terminal lcr. It is preferable that the first resistor Rm is a precision resistor having high accuracy and high reliability, similar to the reference resistor Rref according to the first and second embodiments.
 複数の第2抵抗器Ra1~Ranは、ハイサイド入力端子hcrとローサイド入力端子lcrとの間に直列に接続されている。直列に接続する第2抵抗器Ra1~Ranの個数は、測定装置100Aの抵抗の測定レンジの数nに応じて決定すればよい。実施の形態3では、一例として、測定装置100Bが3つ(n=3)の抵抗の測定レンジを有し、3つの第2抵抗器Ra1~Ra3がハイサイド入力端子hcrとローサイド入力端子lcrとの間に直列に接続されているものとして説明する。 The plurality of second resistors Ra1 to Ran are connected in series between the high side input terminal hcr and the low side input terminal lcr. The number of second resistors Ra1 to Ran connected in series may be determined according to the number n of resistance measurement ranges of the measuring device 100A. In Embodiment 3, as an example, the measurement device 100B has three (n=3) resistance measurement ranges, and the three second resistors Ra1 to Ra3 connect to the high side input terminal hcr and the low side input terminal lcr. The following explanation assumes that the two are connected in series.
 第2抵抗器Ra1~Ranは、例えば、直列にされた複数の抵抗器を含み、一つのパッケージに封止された、所謂ネットワーク抵抗器である。ここで、第2抵抗器Ra1~Ranの一部が並列に接続されていてもよい。すなわち、上記ネットワーク抵抗器は、抵抗の直列回路のみならず、直列回路に並列に抵抗が接続された構成であってもよい。以下、第2抵抗器Ra1~Ranを総称して「ネットワーク抵抗器Ratt」と表記する場合がある。 The second resistors Ra1 to Ran are, for example, so-called network resistors that include a plurality of resistors connected in series and are sealed in one package. Here, some of the second resistors Ra1 to Ran may be connected in parallel. That is, the network resistor may have a configuration in which not only a series circuit of resistors but also a resistor is connected in parallel to a series circuit. Hereinafter, the second resistors Ra1 to Ran may be collectively referred to as "network resistor Ratt."
 第2抵抗器Ra1~Ranは、第1抵抗器Rmと同様に、高精度且つ高信頼性を有する抵抗器であることが好ましい。ただし、必ずしも、第2抵抗器Ra1~Ranのそれぞれが第1抵抗器Rmと同程度の高精度且つ高信頼性を有している必要はなく、少なくとも、第2抵抗器Ra1~Ran同士が相対的に高精度且つ高信頼性であればよい。例えば、第2抵抗器Ra1,Ra2,Ra3は、各抵抗器間の抵抗値の相対的な温度係数が±5ppm/℃以下であり、且つ、各抵抗器間の抵抗値の長期安定性の相対値が±100ppm/年以下である精密なネットワーク抵抗器であることが好ましい。 It is preferable that the second resistors Ra1 to Ran are highly accurate and highly reliable resistors like the first resistor Rm. However, it is not necessarily necessary that each of the second resistors Ra1 to Ran has the same degree of precision and reliability as the first resistor Rm, and at least the second resistors Ra1 to Ran are As long as it is highly accurate and reliable, it is sufficient. For example, the second resistors Ra1, Ra2, and Ra3 have a relative temperature coefficient of resistance value of ±5 ppm/℃ or less between each resistor, and a relative long-term stability of the resistance value between each resistor. Preferably, it is a precision network resistor with a value of ±100 ppm/year or less.
 分圧回路80において、ネットワーク抵抗器Rattの直列抵抗値、すなわち、第2抵抗器Ra1から第2抵抗器Ranまでの直列抵抗値は、第1抵抗器Rmの抵抗値よりも十分に大きい(Rm<<Ratt)。例えば、ネットワーク抵抗器Rattの直列抵抗値は、第1抵抗器Rmの抵抗値の100倍以上である。これにより、Rm<<Rattであるので、内部端子hci,lci,hpi,lpiにリファレンス回路8Bを接続したときに、分圧回路80に流れる電流は、第1抵抗器Rmに流れる電流が支配的となる。 In the voltage divider circuit 80, the series resistance value of the network resistor Ratt, that is, the series resistance value from the second resistor Ra1 to the second resistor Ran is sufficiently larger than the resistance value of the first resistor Rm (Rm <<Ratt). For example, the series resistance value of the network resistor Ratt is 100 times or more the resistance value of the first resistor Rm. As a result, since Rm<<Ratt, when the reference circuit 8B is connected to the internal terminals hci, lci, hpi, lpi, the current flowing through the voltage dividing circuit 80 is dominated by the current flowing through the first resistor Rm. becomes.
 第1抵抗器Rmの抵抗値をRm、ネットワーク抵抗器Rattの抵抗値(直列抵抗値)をRattとしたとき、分圧回路80の抵抗値、すなわち第1抵抗器Rmとネットワーク抵抗器Rattとの合成抵抗値Rcombは、下記式(8)によって表される。 When the resistance value of the first resistor Rm is Rm and the resistance value (series resistance value) of the network resistor Ratt is Ratt, the resistance value of the voltage divider circuit 80, that is, the resistance value of the first resistor Rm and the network resistor Ratt is The combined resistance value Rcomb is expressed by the following formula (8).
Figure JPOXMLDOC01-appb-M000008
Figure JPOXMLDOC01-appb-M000008
 発生回路1によって分圧回路80に定電流信号を印加することによって分圧回路80に流れる電流(電流検出回路2によって検出される電流)をIとしたとき、分圧回路80に発生する電圧Vは、“V=I×Rcomb”となる。 When the current flowing through the voltage dividing circuit 80 (the current detected by the current detecting circuit 2) by applying a constant current signal to the voltage dividing circuit 80 by the generating circuit 1 is I, the voltage V generated in the voltage dividing circuit 80 is becomes “V=I×Rcomb”.
 また、ネットワーク抵抗器Rattの分圧係数Xatt(≦1)としたとき、分圧回路80によって分圧される電圧Vattは、“Vatt=Xatt×V”となる。 Further, when the voltage division coefficient Xatt (≦1) of the network resistor Ratt is set, the voltage Vatt divided by the voltage dividing circuit 80 is “Vatt=Xatt×V”.
 したがって、測定装置100Bによって算出されるリファレンス回路8B(リファレンス抵抗)の抵抗値をRrefとしたとき、下記式(9)が得られる。 Therefore, when the resistance value of the reference circuit 8B (reference resistance) calculated by the measuring device 100B is Rref, the following formula (9) is obtained.
Figure JPOXMLDOC01-appb-M000009
Figure JPOXMLDOC01-appb-M000009
 上記式(9)から理解されるように、リファレンス回路8Bの抵抗値Rrefは、合成抵抗値Rcombと分圧係数Xattを調整することにより、所望の値に設定することが可能である。 As understood from the above equation (9), the resistance value Rref of the reference circuit 8B can be set to a desired value by adjusting the combined resistance value Rcomb and the voltage division coefficient Xatt.
 ここで、Rm<<Rattであるので、Rcomb≒Rmとなる。したがって、温度や経時に伴う合成抵抗値Rcombの変動は、第1抵抗器Rmの変動が支配的となり、ネットワーク抵抗器Rattの変動は無視できる。したがって、上述したように、第1抵抗器Rmとして高精度、且つ高信頼性(高安定性)を有する精密抵抗器を採用することにより、合成抵抗値Rcombも高精度、且つ高信頼性を示すことになる。 Here, since Rm<<Ratt, Rcomb≈Rm. Therefore, fluctuations in the combined resistance value Rcomb due to temperature and time are dominated by fluctuations in the first resistor Rm, and fluctuations in the network resistor Ratt can be ignored. Therefore, as described above, by employing a precision resistor with high accuracy and high reliability (high stability) as the first resistor Rm, the composite resistance value Rcomb also exhibits high accuracy and high reliability. It turns out.
 また、上述したように、ネットワーク抵抗器Rattとして、各第2抵抗器Ra1~Ran間の抵抗値が相対的に高精度、且つ高信頼性(高安定性)を有する精密なネットワーク抵抗器を採用することにより、分圧係数Xattも高精度、且つ高信頼性を示すことになる。 In addition, as mentioned above, as the network resistor Ratt, a precision network resistor with relatively high resistance value between each second resistor Ra1 to Ran and high reliability (high stability) is adopted. By doing so, the partial pressure coefficient Xatt also exhibits high precision and high reliability.
 このように、分圧回路80によれば、所望の抵抗値を有し、高精度、且つ高信頼性を有するリファレンス抵抗を擬似的に実現することができる。 In this way, according to the voltage dividing circuit 80, a reference resistor having a desired resistance value, high accuracy, and high reliability can be realized in a pseudo manner.
 以下、リファレンス回路8Bの具体的な構成例について説明する。ここでは、リファレンス回路8Bによって、擬似的に、10mΩの抵抗器と100mΩの抵抗器を実現する場合を説明する。 Hereinafter, a specific example of the configuration of the reference circuit 8B will be described. Here, a case will be described in which a 10 mΩ resistor and a 100 mΩ resistor are simulated by the reference circuit 8B.
 例えば、図10に示すように、第1抵抗器Rmを1Ωとする。また、ネットワーク抵抗器Rattにおける、第2抵抗器Ra1を9kΩ、第2抵抗器Ra2を900Ω、第2抵抗器Ra3を100Ω、とする。 For example, as shown in FIG. 10, the first resistor Rm is set to 1Ω. Further, in the network resistor Ratt, the second resistor Ra1 is 9 kΩ, the second resistor Ra2 is 900Ω, and the second resistor Ra3 is 100Ω.
 この場合において、スイッチ部5によって内部端子hci,lci,hpi,lpiをリファレンス回路8Bに接続し、発生回路1からリファレンス回路8Bに定電流信号を印加したとき、ネットワーク抵抗器Rattの端子Pa3の電圧(Xatt=0.01)は、“10mΩ”のリファレンス抵抗に定電流信号を印加したときに当該リファレンス抵抗において発生する電圧と同等となる。 In this case, when the internal terminals hci, lci, hpi, lpi are connected to the reference circuit 8B by the switch unit 5 and a constant current signal is applied from the generation circuit 1 to the reference circuit 8B, the voltage at the terminal Pa3 of the network resistor Ratt is (Xatt=0.01) is equivalent to the voltage generated in the reference resistor of "10 mΩ" when a constant current signal is applied to the reference resistor.
 同様に、ネットワーク抵抗器Rattの端子Pa2の電圧(Xatt=0.1)は、“100mΩ”のリファレンス抵抗に定電流信号を印加したときに当該リファレンス抵抗において発生する電圧と同等となり、ネットワーク抵抗器Rattの端子Pa1の電圧(Xatt=1)は、“1Ω”のリファレンス抵抗に定電流信号を印加したときに当該リファレンス抵抗において発生する電圧と同等となる。 Similarly, the voltage at terminal Pa2 (Xatt=0.1) of the network resistor Ratt is equivalent to the voltage generated at the reference resistor when a constant current signal is applied to the reference resistor of "100 mΩ", and the network resistor Ratt The voltage at the terminal Pa1 of Ratt (Xatt=1) is equivalent to the voltage generated in the reference resistor of "1 Ω" when a constant current signal is applied to the reference resistor.
 このように、分圧回路80を構成する各抵抗器の抵抗値を設定することにより、1Ωよりも低い抵抗値の抵抗器を用いることなく、擬似的に10mΩおよび100mΩの抵抗器を実現することができる。 In this way, by setting the resistance value of each resistor constituting the voltage dividing circuit 80, it is possible to realize pseudo resistors of 10 mΩ and 100 mΩ without using a resistor with a resistance value lower than 1Ω. Can be done.
 選択回路81は、入力された複数の電圧の中から一つの電圧を選択して出力する回路である。選択回路81は、例えば、マルチプレクサである。選択回路81は、例えば、複数のトランジスタを含むIC、または機械式リレー等によって構成されている。 The selection circuit 81 is a circuit that selects and outputs one voltage from among a plurality of input voltages. The selection circuit 81 is, for example, a multiplexer. The selection circuit 81 is configured by, for example, an IC including a plurality of transistors, a mechanical relay, or the like.
 選択回路81は、ハイサイド入力端子hcrとローサイド入力端子lcrとの間の電圧(端子Pa1の電圧)と、分圧回路80によって分圧された複数の電圧(端子Pa2,Pa3の電圧)とを入力し、入力された電圧のうち何れか一つの電圧を選択して、ハイサイド出力端子hprとローサイド出力端子lprとの間に出力する。 The selection circuit 81 selects the voltage between the high-side input terminal hcr and the low-side input terminal lcr (the voltage at the terminal Pa1) and the plurality of voltages divided by the voltage dividing circuit 80 (the voltages at the terminals Pa2 and Pa3). One of the input voltages is selected and output between the high-side output terminal hpr and the low-side output terminal lpr.
 具体的には、選択回路81に、測定装置100の測定レンジを指定する選択信号Ssが入力される。選択回路81は、入力された複数の電圧のうち、選択信号Ssによって指定された測定レンジに対応した電圧を選択して出力する。 Specifically, a selection signal Ss specifying the measurement range of the measurement device 100 is input to the selection circuit 81. The selection circuit 81 selects and outputs a voltage corresponding to the measurement range designated by the selection signal Ss from among the plurality of input voltages.
 例えば、選択信号Ssによって“1Ω”の抵抗の測定レンジが選択された場合、選択回路81は、ネットワーク抵抗器Rattの端子Pa1の電圧(1Ω相当)を選択して出力する。選択信号Ssによって“100mΩ”の抵抗の測定レンジが選択された場合、選択回路81は、ネットワーク抵抗器Rattの端子Pa2の電圧(100mΩ相当)を選択して出力する。選択信号Ssによって“10mΩ”の抵抗の測定レンジが選択された場合、選択回路81は、ネットワーク抵抗器Rattの端子Pa3の電圧(10mΩ相当)を選択して出力する。 For example, when the selection signal Ss selects a resistance measurement range of "1 ohm", the selection circuit 81 selects and outputs the voltage (equivalent to 1 ohm) at the terminal Pa1 of the network resistor Ratt. When the resistance measurement range of "100 mΩ" is selected by the selection signal Ss, the selection circuit 81 selects and outputs the voltage (equivalent to 100 mΩ) at the terminal Pa2 of the network resistor Ratt. When the resistance measurement range of "10 mΩ" is selected by the selection signal Ss, the selection circuit 81 selects and outputs the voltage (equivalent to 10 mΩ) at the terminal Pa3 of the network resistor Ratt.
 バッファ82は、高入力インピーダンスで信号を受け、低出力インピーダンスで信号を出力する回路である。バッファ82としては、例えば、演算増幅器を用いることができる。 The buffer 82 is a circuit that receives a signal with high input impedance and outputs a signal with low output impedance. As the buffer 82, for example, an operational amplifier can be used.
 バッファ82は、選択回路81から出力された電圧をハイサイド出力端子hprとローサイド出力端子lprとの間に出力する。これにより、リファレンス回路8B(分圧回路80)から出力された電圧が電圧検出回路3に入力される。 The buffer 82 outputs the voltage output from the selection circuit 81 between the high-side output terminal hpr and the low-side output terminal lpr. As a result, the voltage output from the reference circuit 8B (voltage dividing circuit 80) is input to the voltage detection circuit 3.
 なお、例えば、選択回路81の出力インピーダンスが十分に低い場合、あるいは電圧検出回路3の入力インピーダンスが十分に高い場合には、リファレンス回路8Bは、バッファ82を有していなくてもよい。すなわち、選択回路81から出力された電圧が、ハイサイド出力端子hprとローサイド出力端子lprとの間(電圧検出回路3の入力端子間)に直接入力されてもよい。 Note that, for example, if the output impedance of the selection circuit 81 is sufficiently low, or if the input impedance of the voltage detection circuit 3 is sufficiently high, the reference circuit 8B does not need to include the buffer 82. That is, the voltage output from the selection circuit 81 may be directly input between the high-side output terminal hpr and the low-side output terminal lpr (between the input terminals of the voltage detection circuit 3).
 次に、データ処理制御回路4Bによるリファレンス回路8Bを用いた測定誤差の補正について説明する。 Next, correction of measurement errors using the reference circuit 8B by the data processing control circuit 4B will be explained.
 図11は、実施の形態3に係るデータ処理制御回路4Bの構成を示す図である。 FIG. 11 is a diagram showing the configuration of the data processing control circuit 4B according to the third embodiment.
 データ処理制御回路4Bは、実施の形態1,2に係るデータ処理制御回路4,4Aの機能に加えて、指定された測定レンジ毎に、補正係数の算出(更新)とインピーダンスの測定結果の補正を行う機能を有している。 In addition to the functions of the data processing control circuits 4 and 4A according to the first and second embodiments, the data processing control circuit 4B calculates (updates) a correction coefficient and corrects impedance measurement results for each specified measurement range. It has the function to perform
 データ処理制御回路4Bは、例えば、実施の形態1,2に係るデータ処理制御回路4,4Aと同様に、プログラム処理装置である。図11に示すように、データ処理制御回路4Bは、上述した機能を実現するための機能ブロックとして、例えば、指示受付部40B、スイッチ制御部41、補正係数更新部42B、インピーダンス算出部43A、補正部44B、測定結果出力部45、および記憶部46Bを有している。これらの機能ブロックは、例えば、データ処理制御回路4Bとしてのプログラム処理装置(MCU)において、プロセッサが、記憶装置に記憶されたプログラムに従って各種演算処理を実行し、周辺回路を制御することによって実現される。なお、上記機能ブロックのうち一部または全部が専用ロジック回路によって実現されていてもよい。 The data processing control circuit 4B is, for example, a program processing device like the data processing control circuits 4 and 4A according to the first and second embodiments. As shown in FIG. 11, the data processing control circuit 4B includes, as functional blocks for realizing the above-mentioned functions, an instruction reception section 40B, a switch control section 41, a correction coefficient update section 42B, an impedance calculation section 43A, a correction It has a section 44B, a measurement result output section 45, and a storage section 46B. These functional blocks are realized, for example, in a program processing unit (MCU) as the data processing control circuit 4B, by a processor executing various arithmetic processes according to programs stored in a storage device and controlling peripheral circuits. Ru. Note that some or all of the above functional blocks may be realized by a dedicated logic circuit.
 指示受付部40Bは、実施の形態1,2に係る指示受付部40と同様に、操作部7からの信号Sdを受け付けて、信号Sdに応じた処理の実行を指示する信号を他の機能部に対して出力する。 Similar to the instruction receiving unit 40 according to the first and second embodiments, the instruction receiving unit 40B receives a signal Sd from the operation unit 7 and transmits a signal instructing execution of processing according to the signal Sd to other functional units. Output for.
 例えば、ユーザが操作部7を操作することにより、測定レンジを指定してDUT200のインピーダンスの測定の実行を指示した場合、指示受付部40は、操作部7から出力された信号Sdに応じて、測定レンジを指定する選択信号Ssをリファレンス回路8Bに与えるとともに、スイッチ制御部41、補正係数更新部42B、およびインピーダンス算出部43B等に対して、DUT200のインピーダンスを測定するための処理の実行を指示する。また、実施の形態2と同様に、指示受付部40は、信号Sbとして、一定の周波数および一定の振幅を有する参照信号(例えば、正弦波信号)を発生回路1に与えることにより、発生回路1は、参照信号に基づく交流信号を生成する。例えば、発生回路1は、参照信号に同期した周波数および一定の振幅を有する交流信号(定電流)を内部端子hci,lciの間に供給する。 For example, when the user specifies a measurement range and instructs execution of the impedance measurement of the DUT 200 by operating the operation unit 7, the instruction receiving unit 40, in response to the signal Sd output from the operation unit 7, Provides a selection signal Ss specifying a measurement range to the reference circuit 8B, and instructs the switch control unit 41, correction coefficient update unit 42B, impedance calculation unit 43B, etc. to execute processing for measuring the impedance of the DUT 200. do. Further, as in the second embodiment, the instruction reception unit 40 provides the generation circuit 1 with a reference signal (for example, a sine wave signal) having a constant frequency and a constant amplitude as the signal Sb. generates an alternating current signal based on the reference signal. For example, the generation circuit 1 supplies an alternating current signal (constant current) having a frequency synchronized with a reference signal and a constant amplitude between internal terminals hci and lci.
 インピーダンス算出部43Bは、実施の形態1,2に係るインピーダンス算出部43,43Aと同様に、電圧検出回路3によって検出された電圧の値と電流検出回路2によって検出された電流の値とに基づいて、内部端子hpiと内部端子lpiとの間のインピーダンスの値を算出する。 The impedance calculation unit 43B is based on the voltage value detected by the voltage detection circuit 3 and the current value detected by the current detection circuit 2, similarly to the impedance calculation units 43 and 43A according to the first and second embodiments. Then, the value of the impedance between the internal terminal hpi and the internal terminal lpi is calculated.
 例えば、第1条件において、測定レンジk(1<k≦n)によってリファレンス回路8Bのインピーダンスを測定する場合、指示受付部40Bが測定レンジkを指定する選択信号Ssを出力し、リファレンス回路8Bが選択信号Ssで指定された測定レンジkに対応する電圧を電圧検出回路3に入力する。インピーダンス算出部43Bは、電流検出回路2によって検出した電流と電圧検出回路3によって検出した電圧とに基づいて、実施の形態1または実施の形態2に係るインピーダンス算出部43,43Aと同様の手法により、リファレンス回路8Bのインピーダンスの値(Rr1_k,θr1_k)を算出し、測定レンジkのリファレンス測定結果401_k(第1条件)として記憶部46Bに記憶する。第2条件において、測定レンジkによってリファレンス回路8Bのインピーダンスを測定する場合も同様に、インピーダンス算出部43Bは、実施の形態1または実施の形態2に係るインピーダンス算出部43,43Aと同様の手法により、第2条件における測定レンジkによるリファレンス回路8Bのインピーダンスの値(Rr2_k,θr2_k)を算出し、測定レンジkのリファレンス測定結果402_k(第2条件)として記憶部46Bに記憶する。 For example, in the first condition, when measuring the impedance of the reference circuit 8B using the measurement range k (1<k≦n), the instruction receiving section 40B outputs the selection signal Ss specifying the measurement range k, and the reference circuit 8B A voltage corresponding to the measurement range k specified by the selection signal Ss is input to the voltage detection circuit 3. The impedance calculation section 43B uses the same method as the impedance calculation sections 43 and 43A according to the first embodiment or the second embodiment, based on the current detected by the current detection circuit 2 and the voltage detected by the voltage detection circuit 3. , the impedance values (Rr1_k, θr1_k) of the reference circuit 8B are calculated and stored in the storage unit 46B as the reference measurement result 401_k (first condition) of the measurement range k. Similarly, when measuring the impedance of the reference circuit 8B using the measurement range k under the second condition, the impedance calculation section 43B uses the same method as the impedance calculation sections 43 and 43A according to the first embodiment or the second embodiment. , the impedance value (Rr2_k, θr2_k) of the reference circuit 8B according to the measurement range k under the second condition is calculated and stored in the storage unit 46B as the reference measurement result 402_k (second condition) of the measurement range k.
 このように、インピーダンス算出部43Bは、測定レンジ1~n毎に、リファレンス回路8Bのインピーダンスを測定し、リファレンス測定結果(第1条件)401B_1~401B_nおよびリファレンス測定結果(第2条件)402B_1~402B_nを記憶部46Bに記憶する。 In this way, the impedance calculation unit 43B measures the impedance of the reference circuit 8B for each measurement range 1 to n, and generates reference measurement results (first conditions) 401B_1 to 401B_n and reference measurement results (second conditions) 402B_1 to 402B_n. is stored in the storage unit 46B.
 補正係数更新部42Bは、実施の形態1,2に係る補正係数更新部42,42と同様の手法により、測定レンジ1~n毎に第1補正係数Gfixおよび第2補正係数θfixを算出し、補正係数情報403_1~403_nとして記憶部46に記憶するとともに、補正係数情報403_1~403_nの値を更新する。 The correction coefficient update unit 42B calculates the first correction coefficient Gfix and the second correction coefficient θfix for each measurement range 1 to n using the same method as the correction coefficient update units 42 and 42 according to the first and second embodiments, It is stored in the storage unit 46 as correction coefficient information 403_1 to 403_n, and the values of correction coefficient information 403_1 to 403_n are updated.
 例えば、測定レンジkの補正係数情報403_kを算出する場合、補正係数更新部42Bは、記憶部46Bに記憶されている、測定レンジkにおける第1条件でのリファレンス測定結果401B_k(Rr1_k,θr1_k)と、測定レンジkにおける第2条件でのリファレンス測定結果402B_k(Rr2_k,θr2_k)との差に基づいて、実施の形態1,2と同様の手法により、第1補正係数Gfix_kおよび第2補正係数θfix_kを算出し、補正係数情報403_kとして記憶部46Bに記憶する。 For example, when calculating the correction coefficient information 403_k for the measurement range k, the correction coefficient update unit 42B uses the reference measurement result 401B_k (Rr1_k, θr1_k) under the first condition in the measurement range k stored in the storage unit 46B. , the first correction coefficient Gfix_k and the second correction coefficient θfix_k are determined by the same method as in the first and second embodiments based on the difference from the reference measurement result 402B_k (Rr2_k, θr2_k) under the second condition in the measurement range k. It is calculated and stored in the storage unit 46B as correction coefficient information 403_k.
 補正部44Bは、インピーダンス算出部43Bによって算出されたインピーダンスの値を補正係数情報403B_1~403B_nを用いて補正する機能部である。補正部44Bは、記憶部46Bに記憶されている補正係数情報403_1~403_nに基づいて、インピーダンス算出部43Bによって算出されたDUT200のインピーダンスの測定値(R,θ)を補正し、補正後のDUT測定結果(第2条件)405Bとして記憶部46Bに記憶する。 The correction unit 44B is a functional unit that corrects the impedance value calculated by the impedance calculation unit 43B using the correction coefficient information 403B_1 to 403B_n. The correction unit 44B corrects the measured value (R, θ) of the impedance of the DUT 200 calculated by the impedance calculation unit 43B based on the correction coefficient information 403_1 to 403_n stored in the storage unit 46B, and the corrected DUT The measurement result (second condition) is stored in the storage unit 46B as a measurement result (second condition) 405B.
 例えば、測定レンジkにおける測定結果を補正する場合、補正部44Bは、測定レンジkに対応する補正係数情報403_k(Gfix_k,θfix_k)に基づいて、実施の形態1,2に係る補正部44,44Aと同様の手法により、測定レンジkにおけるDUT200のインピーダンスの測定値(R_k,θ_k)を補正し、補正後のDUT200のインピーダンスの測定値(Rf_k,θf_k)を、補正後のDUT測定結果(第2条件)405Bとして記憶部46Bに記憶する。 For example, when correcting the measurement result in measurement range k, correction unit 44B uses correction coefficient information 403_k (Gfix_k, θfix_k) corresponding to measurement range k to correct correction unit 44, 44A according to Embodiments 1 and 2. The impedance measurement value (R_k, θ_k) of the DUT 200 in the measurement range k is corrected using the same method as that of the DUT 200 impedance measurement value (Rf_k, θf_k) after the correction. Condition) 405B is stored in the storage unit 46B.
 記憶部46Bは、実施の形態1,2に係る記憶部46,46Aと同様に、DUTの電気的特性の測定や補正係数の算出等を行うために必要な演算式や各種パラメータ、測定結果、および補正係数等を記憶する機能部である。 Similar to the storage units 46 and 46A according to Embodiments 1 and 2, the storage unit 46B stores calculation formulas, various parameters, measurement results, etc. necessary for measuring electrical characteristics of the DUT, calculating correction coefficients, etc. This is a functional unit that stores correction coefficients and the like.
 例えば、記憶部46Bには、上述したように、測定レンジ毎のリファレンス測定結果(第1条件)401B_1~401B_nおよびリファレンス測定結果(第2条件)402B_1~402B_nが記憶される。また、記憶部46Bには、測定レンジ毎の第1補正係数Gfixおよび第2補正係数θfixを含む補正係数情報403B_1~403B_nが記憶される。更に、記憶部46Bには、第2条件でのDUT200のインピーダンスの測定値(R,θ)を含むDUT測定結果(第2条件)404Bと、補正されたDUT200のインピーダンスの測定値(Rf,θf)を含む補正後のDUT測定結果(第2条件)405Bが記憶される。 For example, as described above, the storage unit 46B stores reference measurement results (first conditions) 401B_1 to 401B_n and reference measurement results (second conditions) 402B_1 to 402B_n for each measurement range. Further, the storage unit 46B stores correction coefficient information 403B_1 to 403B_n including a first correction coefficient Gfix and a second correction coefficient θfix for each measurement range. Furthermore, the storage unit 46B stores the DUT measurement results (second condition) 404B including the impedance measurement values (R, θ) of the DUT 200 under the second condition, and the corrected impedance measurement values (Rf, θf) of the DUT 200. ) The corrected DUT measurement result (second condition) 405B is stored.
 図12は、実施の形態3に係る測定装置100Bによるインピーダンス測定の流れを示すフローチャートである。 FIG. 12 is a flowchart showing the flow of impedance measurement by the measuring device 100B according to the third embodiment.
 ここでは、予め、第1条件(例えば、初期調整)において所定の測定レンジkによるリファレンス測定結果401B_k(Rr1_k,θr1_k)がデータ処理制御回路4Bの記憶部46Bに記憶されているものとする。また、DUT200が、外部端子HC,HPと外部端子LC,LPとの間に接続されているものとする。 Here, it is assumed that a reference measurement result 401B_k (Rr1_k, θr1_k) based on a predetermined measurement range k is stored in advance in the storage unit 46B of the data processing control circuit 4B under the first condition (for example, initial adjustment). Further, it is assumed that the DUT 200 is connected between external terminals HC and HP and external terminals LC and LP.
 例えば、ユーザが操作部7を操作して、測定レンジkを指定してDUT200のインピーダンスの測定を指示した場合、先ず、上述した実施の形態1に係るステップS1と同様に、データ処理制御回路4Bが、スイッチ部5を制御して、内部端子hci,hpi,lci,lpiをリファレンス回路8に接続する(ステップS1B)。 For example, when the user operates the operation unit 7 to specify the measurement range k and instructs to measure the impedance of the DUT 200, first, as in step S1 according to the first embodiment described above, the data processing control circuit 4B controls the switch section 5 to connect the internal terminals hci, hpi, lci, and lpi to the reference circuit 8 (step S1B).
 次に、データ処理制御回路4Bが、指定された測定レンジkに対応する電圧がリファレンス回路8Bから出力されるようにリファレンス回路8Bを制御する(ステップS10B)。具体的には、指示受付部40が、ユーザによって指定された測定レンジkを指示する選択信号Ssを出力し、リファレンス回路8Bの選択回路81が選択信号Ssによって指定された測定レンジkに対応する電圧を出力可能にする。例えば、測定レンジkが“100mΩ”であった場合、選択回路81は、ネットワーク抵抗器Rattの端子Pa2(Xatt=0.1)の電圧を出力可能にする。 Next, the data processing control circuit 4B controls the reference circuit 8B so that the voltage corresponding to the specified measurement range k is output from the reference circuit 8B (step S10B). Specifically, the instruction receiving unit 40 outputs a selection signal Ss instructing the measurement range k specified by the user, and the selection circuit 81 of the reference circuit 8B corresponds to the measurement range k specified by the selection signal Ss. Enable voltage output. For example, when the measurement range k is "100 mΩ", the selection circuit 81 enables output of the voltage at the terminal Pa2 (Xatt=0.1) of the network resistor Ratt.
 次に、データ処理制御回路4Bが、リファレンス回路8Bのインピーダンス(R,θ)を測定する(ステップS2B)。具体的には、指示受付部40Bが発生回路1に対して電圧または電流の出力を指示するとともに、インピーダンス算出部43Bに対して、測定レンジkにおけるインピーダンスの測定を指示する。これにより、リファレンス回路8Bから測定レンジkに対応する電圧が出力されて、電圧検出回路3に入力される。インピーダンス算出部43Bは、電圧検出回路3から出力された電圧信号と電流検出回路2から出力された電流信号とに基づいて、上述した手法により、リファレンス回路8Bの抵抗成分Rr2_kおよび位相角θr2_kを算出し、測定レンジkにおけるリファレンス測定結果402B_k(第2条件)として記憶部46Bに記憶する。 Next, the data processing control circuit 4B measures the impedance (R, θ) of the reference circuit 8B (step S2B). Specifically, the instruction receiving section 40B instructs the generating circuit 1 to output voltage or current, and instructs the impedance calculating section 43B to measure impedance in the measurement range k. As a result, a voltage corresponding to the measurement range k is output from the reference circuit 8B and input to the voltage detection circuit 3. The impedance calculation unit 43B calculates the resistance component Rr2_k and phase angle θr2_k of the reference circuit 8B based on the voltage signal output from the voltage detection circuit 3 and the current signal output from the current detection circuit 2 using the method described above. Then, it is stored in the storage unit 46B as a reference measurement result 402B_k (second condition) in the measurement range k.
 次に、データ処理制御回路4Bが、測定レンジkに対応する補正係数情報403_kを算出する(ステップS3B)。具体的には、補正係数更新部42Bが、記憶部46Bに記憶されている、第1条件における測定レンジkのリファレンス測定結果401B_k(Rr1_k,θr1_k)と、ステップS2Bにおいて測定した第2条件における測定レンジkのリファレンス測定結果402B_k(Rr2_k,θr2_k)とに基づいて、上述した手法により、測定レンジkの第1補正係数Gfix_kおよび第2補正係数θfix_kを算出し、補正係数情報403_kとして記憶部46Bに記憶する。 Next, the data processing control circuit 4B calculates correction coefficient information 403_k corresponding to measurement range k (step S3B). Specifically, the correction coefficient updating unit 42B uses the reference measurement result 401B_k (Rr1_k, θr1_k) of the measurement range k under the first condition, which is stored in the storage unit 46B, and the measurement under the second condition measured in step S2B. Based on the reference measurement result 402B_k (Rr2_k, θr2_k) of range k, the first correction coefficient Gfix_k and second correction coefficient θfix_k of measurement range k are calculated by the method described above, and stored in the storage unit 46B as correction coefficient information 403_k. Remember.
 なお、既に、補正係数情報403_kが記憶部46Bに記憶されている場合には、補正係数更新部42Bは、新たに算出した第1補正係数Gfix_kおよび第2補正係数θfix_kによって、記憶部46Bに記憶されている第1補正係数Gfix_kおよび第2補正係数θfix_kを書き換える。 Note that if the correction coefficient information 403_k is already stored in the storage unit 46B, the correction coefficient update unit 42B stores the newly calculated first correction coefficient Gfix_k and second correction coefficient θfix_k in the storage unit 46B. The first correction coefficient Gfix_k and the second correction coefficient θfix_k that have been set are rewritten.
 次に、データ処理制御回路4Bが、スイッチ部5を制御して、内部端子hci,hpi,lci,lpiを外部端子HC,HP,LC,LPに接続する(ステップS4B)。これにより、内部端子hci,hpi,lci,lpiがDUT200に接続されることになる。 Next, the data processing control circuit 4B controls the switch section 5 to connect the internal terminals hci, hpi, lci, lpi to the external terminals HC, HP, LC, LP (step S4B). As a result, the internal terminals hci, hpi, lci, and lpi are connected to the DUT 200.
 次に、データ処理制御回路4Bが、測定レンジkにおいてDUT200の位相の値θを測定する(ステップS5B)。具体的には、ステップS2Bと同様に、指示受付部40Bが、発生回路1に対して電圧または電流の出力を指示するとともに、インピーダンス算出部43Aに対して測定レンジkにおけるインピーダンスの測定を指示する。インピーダンス算出部43Bは、電圧検出回路3から出力された電圧信号と電流検出回路2から出力された電流信号とに基づいて、上述した手法により、DUT200の抵抗成分の値R_kおよび位相の値θ_kを算出し、例えば、DUT測定結果404B(第2条件)として記憶部46Bに記憶する。 Next, the data processing control circuit 4B measures the phase value θ of the DUT 200 in the measurement range k (step S5B). Specifically, similarly to step S2B, the instruction receiving unit 40B instructs the generating circuit 1 to output voltage or current, and instructs the impedance calculating unit 43A to measure impedance in the measurement range k. . The impedance calculation unit 43B calculates the resistance component value R_k and the phase value θ_k of the DUT 200 based on the voltage signal output from the voltage detection circuit 3 and the current signal output from the current detection circuit 2 using the method described above. It is calculated and stored in the storage unit 46B, for example, as a DUT measurement result 404B (second condition).
 次に、データ処理制御回路4Bが、ステップS5Bにおいて測定された、測定レンジkにおけるDUT200のインピーダンスの測定値(R_k,θ_k)を補正する(ステップS6B)。具体的には、補正部44Bが、ステップS5Bにおいて測定された、測定レンジkにおけるDUT200の抵抗成分の値R_kに、記憶部46Bに記憶されている測定レンジkの第1補正係数Gfix_kを乗算することによって、補正後の抵抗成分の値Rf_k(=R_k×Gfix_k)を算出する。また、補正部44Bが、ステップS5Bにおいて測定されたDUT200の位相の値θ_kから、記憶部46Bに記憶されている測定レンジkの第2補正係数θfix_kを減算することによって補正後の位相の値θf_k(=θ_k-θfix)を算出する。補正部44Bは、算出した補正後の抵抗成分の値Rf_kおよび位相の値θf_kを、補正後のDUT測定結果405B_kとして記憶部46Bに記憶する。 Next, the data processing control circuit 4B corrects the measured value (R_k, θ_k) of the impedance of the DUT 200 in the measurement range k, which was measured in step S5B (step S6B). Specifically, the correction unit 44B multiplies the value R_k of the resistance component of the DUT 200 in the measurement range k measured in step S5B by the first correction coefficient Gfix_k of the measurement range k stored in the storage unit 46B. Accordingly, the corrected resistance component value Rf_k (=R_k×Gfix_k) is calculated. Further, the correction unit 44B subtracts the second correction coefficient θfix_k of the measurement range k stored in the storage unit 46B from the phase value θ_k of the DUT 200 measured in step S5B, so that the corrected phase value θf_k (=θ_k−θfix) is calculated. The correction unit 44B stores the calculated corrected resistance component value Rf_k and phase value θf_k in the storage unit 46B as a corrected DUT measurement result 405B_k.
 次に、データ処理制御回路4Bは、補正後のDUT測定結果405B_k(Rf_k,θf_k)をDUT200のインピーダンスの位相角の測定結果として、出力部6に出力する(ステップS7A)。出力部6は、例えば、測定レンジkにおけるDUT200のインピーダンスの測定結果(抵抗成分の値Rf_k、位相角θf_k等)の情報を画面に表示させる。 Next, the data processing control circuit 4B outputs the corrected DUT measurement result 405B_k (Rf_k, θf_k) to the output unit 6 as the measurement result of the phase angle of the impedance of the DUT 200 (step S7A). The output unit 6 displays, for example, information on the impedance measurement result (resistance component value Rf_k, phase angle θf_k, etc.) of the DUT 200 in the measurement range k on the screen.
 以上、実施の形態3に係るリファレンス回路8Bは、上述したように、第1抵抗器Rm、および第1抵抗器Rmと並列に接続された複数の第2抵抗器Ra1~Ran(ネットワーク抵抗器Ratt)を含む分圧回路80と、分圧回路80から出力された複数の電圧から一つの電圧を選択して出力する選択回路81とを含む。 As described above, the reference circuit 8B according to the third embodiment includes the first resistor Rm and the plurality of second resistors Ra1 to Ran (network resistor Ratt) connected in parallel with the first resistor Rm. ), and a selection circuit 81 that selects and outputs one voltage from a plurality of voltages output from the voltage divider circuit 80.
 これによれば、上述したように、第1抵抗器Rmの抵抗値とネットワーク抵抗器Rattを構成する複数の第2抵抗器Ra1~Ranの各抵抗値(分圧係数Xatt)を適切に設定することにより、数mΩのような低抵抗値を有する高安定性の抵抗器を用いなくても、所望の抵抗値を有するリファレンス回路(抵抗)を擬似的に実現することができる。 According to this, as described above, the resistance value of the first resistor Rm and each resistance value (voltage division coefficient Xatt) of the plurality of second resistors Ra1 to Ran constituting the network resistor Ratt are appropriately set. As a result, a reference circuit (resistance) having a desired resistance value can be virtually realized without using a highly stable resistor having a low resistance value of several mΩ.
 また、上述したように、選択回路81が、分圧回路80から出力される複数の電圧のうち、測定レンジを指定する選択信号Ssに応じた電圧を選択して出力することにより、測定レンジ毎の補正係数を用いた測定誤差の補正が可能となり、各測定レンジにおいて、より高精度なインピーダンスの測定が可能となる。 In addition, as described above, the selection circuit 81 selects and outputs the voltage corresponding to the selection signal Ss that specifies the measurement range from among the plurality of voltages output from the voltage dividing circuit 80. It becomes possible to correct measurement errors using the correction coefficient, and it becomes possible to measure impedance with higher precision in each measurement range.
 ≪実施の形態の拡張≫
 以上、本願発明者によってなされた発明を実施の形態に基づいて具体的に説明したが、本発明はそれに限定されるものではなく、各実施の形態間で構成要素の組み合わせを変更してもよいし、発明の要旨を逸脱しない範囲において発明の構成要素を種々変更してもよい。
≪Expansion of the embodiment≫
Although the invention made by the present inventor has been specifically explained based on the embodiments above, the present invention is not limited thereto, and the combination of components may be changed between each embodiment. However, various changes may be made to the constituent elements of the invention without departing from the gist of the invention.
 例えば、実施の形態1,2では、測定装置100,100Aが4端子法によってDUT200のインピーダンスを測定する場合を一例として説明したが、これに限られず、2端子法によってDUT200のインピーダンスを測定してもよい。 For example, in Embodiments 1 and 2, the measurement apparatuses 100 and 100A measure the impedance of the DUT 200 using the four-terminal method, but the present invention is not limited to this. Good too.
 図13は、2端子法によるインピーダンス測定が可能な測定装置100Cの構成を示す図である。 FIG. 13 is a diagram showing the configuration of a measuring device 100C capable of measuring impedance using a two-terminal method.
 図13に示すように、測定装置100Cは、例えば、第1外部端子としての外部端子Hと、第2外部端子としての外部端子Lと、第1内部端子としての内部端子hiと、第2内部端子としての内部端子liと、を有している。また、リファレンス回路8Cは、例えば、ハイサイド端子としての端子hrと、ローサイド端子としての端子lrとを有している。なお、リファレンス回路8Cは、例えば、リファレンス回路8,8Aと同一の内部構成を有していてもよい。 As shown in FIG. 13, the measuring device 100C has, for example, an external terminal H as a first external terminal, an external terminal L as a second external terminal, an internal terminal hi as a first internal terminal, and a second internal terminal. It has an internal terminal li as a terminal. Further, the reference circuit 8C has, for example, a terminal hr as a high-side terminal and a terminal lr as a low-side terminal. Note that the reference circuit 8C may have the same internal configuration as the reference circuits 8 and 8A, for example.
 発生回路1は、内部端子hiと内部端子liとの間に電圧または電流を印加する。電流検出回路2は、内部端子hiと内部端子liとの間に流れる電流を検出する。例えば、電流検出回路2は、発生回路1の正極側の出力端子と内部端子hiとの間、または発生回路1の負極側の出力端子と内部端子liとの間に直列に接続されている。図13には、一例として、電流検出回路2が発生回路1の負極側の出力端子と内部端子liとの間に直列に接続される場合が示されている。 The generating circuit 1 applies a voltage or current between the internal terminal hi and the internal terminal li. Current detection circuit 2 detects a current flowing between internal terminal hi and internal terminal li. For example, the current detection circuit 2 is connected in series between the positive output terminal of the generating circuit 1 and the internal terminal hi, or between the negative output terminal of the generating circuit 1 and the internal terminal li. FIG. 13 shows, as an example, a case where the current detection circuit 2 is connected in series between the negative output terminal of the generation circuit 1 and the internal terminal li.
 電圧検出回路3の正極側の入力端子は内部端子hiに接続され、電圧検出回路3の負極側の入力端子は内部端子liに接続されている。電圧検出回路3は、内部端子hi,li間の電圧を検出して、出力する。 The positive input terminal of the voltage detection circuit 3 is connected to the internal terminal hi, and the negative input terminal of the voltage detection circuit 3 is connected to the internal terminal li. Voltage detection circuit 3 detects and outputs the voltage between internal terminals hi and li.
 スイッチ部5Cは、データ処理制御回路4からの信号Scに応じて、内部端子hi,hiの接続先を外部端子Hとリファレンス回路8Cの一方の端子hrとの間で切り替えるとともに、内部端子liの接続先を外部端子Lとリファレンス回路8Cの他方の端子lrとの間で切り替える。スイッチ部5Cを構成する各スイッチ51C,53Cは、例えば、上述したスイッチ51等と同様に、双投式のスイッチ素子によってそれぞれ構成されている。 The switch section 5C switches the connection destination of the internal terminals hi, hi between the external terminal H and one terminal hr of the reference circuit 8C in accordance with the signal Sc from the data processing control circuit 4, and also switches the connection destination of the internal terminal li between the external terminal H and one terminal hr of the reference circuit 8C. The connection destination is switched between the external terminal L and the other terminal lr of the reference circuit 8C. Each of the switches 51C and 53C constituting the switch section 5C is configured, for example, by a double-throw switch element, similar to the switch 51 and the like described above.
 測定装置100Cにおいて、データ処理制御回路4、出力部6、および操作部7は実施の形態1,2と同様である。 In the measuring device 100C, the data processing control circuit 4, output section 6, and operation section 7 are the same as those in the first and second embodiments.
 上述した測定装置100Cによれば、2端子法によってインピーダンスの測定を行う場合であっても、ユーザは、種々の条件下において測定装置100Cによってリファレンス回路8Cのインピーダンスを測定し、その測定結果を比較することにより、測定装置100Cによる測定の誤差を容易に知ることができるとともに、より高精度なインピーダンスの測定が可能となる。 According to the measurement device 100C described above, even when measuring impedance using the two-terminal method, the user can measure the impedance of the reference circuit 8C with the measurement device 100C under various conditions and compare the measurement results. By doing so, it is possible to easily know the error in measurement by the measuring device 100C, and it is also possible to measure impedance with higher accuracy.
 また、実施の形態2では、データ処理制御回路4Aが第1補正係数Gfixおよび第2補正係数θfixを用いたインピーダンスの測定値の補正を行う場合を例示したが、これに限られない。例えば、データ処理制御回路4Aは、第2補正係数θfixを用いたインピーダンスの位相角の測定値の補正のみを行ってもよい。同様に、実施の形態3に係るデータ処理制御回路4Bは、第1補正係数Gfixと第2補正係数θfixの何れか一方のみを用いたインピーダンスの測定値の補正を行ってもよい。 Furthermore, in the second embodiment, the data processing control circuit 4A corrects the measured value of impedance using the first correction coefficient Gfix and the second correction coefficient θfix, but the present invention is not limited to this. For example, the data processing control circuit 4A may only correct the measured value of the phase angle of impedance using the second correction coefficient θfix. Similarly, the data processing control circuit 4B according to the third embodiment may correct the measured value of impedance using only one of the first correction coefficient Gfix and the second correction coefficient θfix.
 また、実施の形態3では、測定装置100Bがリファレンス回路8Bを内蔵する場合を例示したが、これに限られず、リファレンス回路8Bを測定装置100Bとは別の“標準抵抗器”として実現してもよい。この場合、標準抵抗器としてのリファレンス回路8Bは、ハイサイド入力端子hcr、ハイサイド出力端子hpr、ローサイド入力端子lcr、およびローサイド出力端子lprと、分圧回路80と、選択回路81とを備えた一つの装置である。 Further, in the third embodiment, the measurement device 100B includes the reference circuit 8B, but the reference circuit 8B is not limited to this, and the reference circuit 8B may be implemented as a “standard resistor” separate from the measurement device 100B. good. In this case, the reference circuit 8B as a standard resistor includes a high-side input terminal hcr, a high-side output terminal hpr, a low-side input terminal lcr, a low-side output terminal lpr, a voltage dividing circuit 80, and a selection circuit 81. It is one device.
 これによれば、リファレンス回路8Bを内蔵していない既存の測定装置の外部端子HC,HP,LC,LPに、標準抵抗器としてのリファレンス回路8Bのハイサイド入力端子hcr、ハイサイド出力端子hpr、ローサイド入力端子lcr、およびローサイド出力端子lprを接続することにより、既存の測定装置においてもリファレンス回路8B(標準抵抗器)を用いた測定誤差の補正が可能となる。 According to this, the high-side input terminal hcr, high-side output terminal hpr, and By connecting the low-side input terminal lcr and the low-side output terminal lpr, it is possible to correct measurement errors using the reference circuit 8B (standard resistor) even in existing measuring devices.
 なお、実施の形態1乃至3において、測定装置100,100A,100B,100Cが電流検出回路2を有する場合を例示したが、これに限られない。例えば、発生回路1が定電流を出力する場合のように、測定対象(DUTまたはリファレンス回路8,8A,8B)に流れる電流値が既知である場合には、電流検出回路2を設けなくてもよい。この場合、演算回路4,4A,4Bは、記憶部46,46A等に予め記憶されている電流値を用いて、上述した手法により、インピーダンスを算出してもよい。 Note that in Embodiments 1 to 3, the case where the measuring devices 100, 100A, 100B, and 100C have the current detection circuit 2 is illustrated, but the present invention is not limited to this. For example, when the current value flowing through the measurement target (DUT or reference circuit 8, 8A, 8B) is known, such as when the generation circuit 1 outputs a constant current, the current detection circuit 2 may not be provided. good. In this case, the arithmetic circuits 4, 4A, 4B may calculate the impedance using the method described above using current values stored in advance in the storage units 46, 46A, etc.
 また、上述のフローチャートは、動作を説明するための一例を示すものであって、これに限定されない。すなわち、フローチャートの各図に示したステップは具体例であって、このフローに限定されるものではない。例えば、一部の処理の順番が変更されてもよいし、各処理間に他の処理が挿入されてもよいし、一部の処理が並列に行われてもよい。 Furthermore, the above-mentioned flowchart shows an example for explaining the operation, and is not limited thereto. That is, the steps shown in each figure of the flowchart are specific examples, and the flowchart is not limited to this flow. For example, the order of some processes may be changed, other processes may be inserted between each process, or some processes may be performed in parallel.
 また、実施の形態3に係るリファレンス回路8Bにおいて、分圧回路80が、第1抵抗器Rmと、第1抵抗器Rmと並列に接続された複数の第2抵抗器Ra1~Ran(nは2以上の整数)とを含む場合を例示したが、これに限られず、分圧回路としての機能を実現することが可能な種々の回路構成を採用することができる。図14にリファレンス回路の別の一例を示す。 Further, in the reference circuit 8B according to the third embodiment, the voltage dividing circuit 80 includes a first resistor Rm and a plurality of second resistors Ra1 to Ran (n is 2) connected in parallel with the first resistor Rm. (the above integer), but the present invention is not limited to this, and various circuit configurations that can realize the function as a voltage dividing circuit can be adopted. FIG. 14 shows another example of the reference circuit.
 図14に示すリファレンス回路8Bは、第1抵抗器Rmと、第1抵抗器Rmと並列に接続された複数の第2抵抗器Ra0~Ra3と、第3抵抗Rcとを含む。例えば、第1抵抗Rmは1Ω、第2抵抗Ra0は2kΩ、第2抵抗Ra1は900Ω、第2抵抗Ra2は900Ω、第2抵抗Ra3は100Ω、第3抵抗Rcは100Ωである。 The reference circuit 8B shown in FIG. 14 includes a first resistor Rm, a plurality of second resistors Ra0 to Ra3 connected in parallel with the first resistor Rm, and a third resistor Rc. For example, the first resistor Rm is 1Ω, the second resistor Ra0 is 2kΩ, the second resistor Ra1 is 900Ω, the second resistor Ra2 is 900Ω, the second resistor Ra3 is 100Ω, and the third resistor Rc is 100Ω.
 第3抵抗Rcは、直列に接続された第2抵抗器Ra0~Ra3のうち少なくとも一つの抵抗と並列に接続されている。好ましくは、第3抵抗Rcは、第2抵抗器Ra0~Ra3のうち直列に接続された少なくとも二つの抵抗と並列に接続されている。例えば、第3抵抗Rcの一端は、ローサイド入力端子lcrおよびローサイド出力端子lprが共通に接続されたノードNcに接続され、第3抵抗Rcの他端は、第2抵抗器Ra0~Ran同士が互いに接続されるノードのうち何れか一つのノードに接続されている。図14には、一例として、第3抵抗Rcの一端がノードNcに接続され、第3抵抗Rcの他端が端子Pa2に接続された場合が示されている。
 これによれば、より小さな分圧比を得ることができるので、所望の抵抗値をより高精度に実現することが可能となる。なお、抵抗Rcの接続先は、図14の例に限定されず、所望の抵抗値に応じて種々変更可能である。
The third resistor Rc is connected in parallel with at least one resistor among the second resistors Ra0 to Ra3 connected in series. Preferably, the third resistor Rc is connected in parallel with at least two resistors connected in series among the second resistors Ra0 to Ra3. For example, one end of the third resistor Rc is connected to a node Nc to which the low-side input terminal lcr and the low-side output terminal lpr are commonly connected, and the other end of the third resistor Rc is It is connected to one of the connected nodes. As an example, FIG. 14 shows a case where one end of the third resistor Rc is connected to the node Nc, and the other end of the third resistor Rc is connected to the terminal Pa2.
According to this, it is possible to obtain a smaller voltage division ratio, and therefore it is possible to realize a desired resistance value with higher precision. Note that the connection destination of the resistor Rc is not limited to the example shown in FIG. 14, and can be variously changed depending on the desired resistance value.
 1…発生回路、2…電流検出回路、3…電圧検出回路、4…データ処理制御回路、5…スイッチ部、6…出力部、7…操作部、8,8A,8B…リファレンス回路、40,40B…指示受付部、41…スイッチ制御部、42,42A,42B…補正係数更新部、43,43A,43B…インピーダンス算出部、44,44A,44B…補正部、45…測定結果出力部、51~54…スイッチ、80…分圧回路、81…選択回路、82…バッファ、401,401A,401B_1~401B_n…リファレンス測定結果(第1条件)、402,402A,402B_1~402B_n…リファレンス測定結果(第2条件)、403,403A,403B_1~403B_n…補正係数情報、404,404A,404B…DUT測定結果、405,405A,405B…補正後のDUT測定結果、HC…ハイサイド外部印加端子、LC…ローサイド外部印加端子、HP…ハイサイド外部検出端子、LP…ローサイド外部検出端子、hci…ハイサイド内部印加端子、hpi…ハイサイド内部検出端子、lci…ローサイド内部印加端子、lpi…ローサイド内部検出端子、hcr…ハイサイド入力端子、hpr…ハイサイド出力端子、lcr…ローサイド入力端子、lpr…ローサイド出力端子、Rref…リファレンス抵抗、Rm…第1抵抗器、Ra0~Ran…第2抵抗器、Rc…第3抵抗器、Ratt…ネットワーク抵抗器、Sb…信号(参照信号)、Sc…信号、Ss…選択信号、So…測定結果。 DESCRIPTION OF SYMBOLS 1... Generation circuit, 2... Current detection circuit, 3... Voltage detection circuit, 4... Data processing control circuit, 5... Switch section, 6... Output section, 7... Operation section, 8, 8A, 8B... Reference circuit, 40, 40B...Instruction reception unit, 41...Switch control unit, 42, 42A, 42B...Correction coefficient update unit, 43, 43A, 43B...Impedance calculation unit, 44, 44A, 44B...Correction unit, 45...Measurement result output unit, 51 ~54... Switch, 80... Voltage divider circuit, 81... Selection circuit, 82... Buffer, 401, 401A, 401B_1 to 401B_n... Reference measurement result (first condition), 402, 402A, 402B_1 to 402B_n... Reference measurement result (first condition) 2 conditions), 403, 403A, 403B_1 to 403B_n... Correction coefficient information, 404, 404A, 404B... DUT measurement results, 405, 405A, 405B... DUT measurement results after correction, HC... High side external application terminal, LC... Low side External application terminal, HP...High side external detection terminal, LP...Low side external detection terminal, hci...High side internal application terminal, hpi...High side internal detection terminal, lci...Low side internal application terminal, lpi...Low side internal detection terminal, hcr ...high side input terminal, hpr...high side output terminal, lcr...low side input terminal, lpr...low side output terminal, Rref...reference resistor, Rm...first resistor, Ra0 to Ran...second resistor, Rc...third Resistor, Ratt...network resistor, Sb...signal (reference signal), Sc...signal, Ss...selection signal, So...measurement result.

Claims (13)

  1.  試験対象物の一方の端子を接続するための第1外部端子、および前記試験対象物の他方の端子を接続するための第2外部端子と、
     第1内部端子および第2内部端子と、
     前記第1内部端子と前記第2内部端子との間に、電圧または電流を印加する発生回路と、
     前記第1内部端子と前記第2内部端子との間の電圧を検出する電圧検出回路と、
     前記電圧検出回路によって検出された電圧と前記第1内部端子と前記第2内部端子との間に流れる電流とに基づいて、前記第1内部端子と前記第2内部端子との間のインピーダンスを測定するデータ処理制御回路と、
     2つの端子を有し、所定のインピーダンスを有するリファレンス回路と、
     前記第1内部端子の接続先を前記第1外部端子と前記リファレンス回路の一方の端子との間で切り替えるとともに、前記第2内部端子の接続先を前記第2外部端子と前記リファレンス回路の他方の端子との間で切り替えるスイッチ部と、を備え、
     前記データ処理制御回路は、第1条件において、前記スイッチ部によって前記リファレンス回路の一方の端子と前記第1内部端子とが接続され、且つ前記リファレンス回路の他方の端子と前記第2内部端子とが接続されたときの前記リファレンス回路のインピーダンスの測定結果と、前記第1条件とは異なる第2条件において、前記スイッチ部によって前記リファレンス回路の一方の端子と前記第1内部端子とが接続され、且つ前記リファレンス回路の他方の端子と前記第2内部端子とが接続されたときの前記リファレンス回路のインピーダンスの測定結果との誤差に基づいて補正係数を算出し、前記第2条件において、前記スイッチ部によって前記第1外部端子と前記第1内部端子とが接続され、且つ前記第2外部端子と前記第2内部端子とが接続されたときの前記第1内部端子と前記第2内部端子との間のインピーダンスの測定結果を前記補正係数に基づいて補正する
     測定装置。
    a first external terminal for connecting one terminal of the test object, and a second external terminal for connecting the other terminal of the test object;
    a first internal terminal and a second internal terminal;
    a generating circuit that applies a voltage or current between the first internal terminal and the second internal terminal;
    a voltage detection circuit that detects a voltage between the first internal terminal and the second internal terminal;
    Measuring impedance between the first internal terminal and the second internal terminal based on the voltage detected by the voltage detection circuit and the current flowing between the first internal terminal and the second internal terminal. a data processing control circuit to
    a reference circuit having two terminals and a predetermined impedance;
    The connection destination of the first internal terminal is switched between the first external terminal and one terminal of the reference circuit, and the connection destination of the second internal terminal is switched between the second external terminal and the other terminal of the reference circuit. A switch section for switching between the terminal and the terminal,
    In the data processing control circuit, under a first condition, one terminal of the reference circuit and the first internal terminal are connected by the switch unit, and the other terminal of the reference circuit and the second internal terminal are connected. One terminal of the reference circuit and the first internal terminal are connected by the switch unit under a second condition different from the first condition and a measurement result of the impedance of the reference circuit when connected, and A correction coefficient is calculated based on an error between the impedance measurement result of the reference circuit when the other terminal of the reference circuit and the second internal terminal are connected, and the correction coefficient is calculated by the switch unit under the second condition. between the first internal terminal and the second internal terminal when the first external terminal and the first internal terminal are connected, and the second external terminal and the second internal terminal are connected; A measuring device that corrects impedance measurement results based on the correction coefficient.
  2.  請求項1に記載の測定装置において、
     前記発生回路は、一定の周波数および一定の振幅を有する参照信号に基づく交流信号を前記第1内部端子と前記第2内部端子との間に供給し、
     前記データ処理制御回路は、同期検波により、前記電圧検出回路によって検出された電圧信号の振幅と、前記参照信号と前記電圧信号との間の電圧位相差と、前記第1内部端子と前記第2内部端子との間に流れる電流信号の振幅と、前記参照信号と前記電流信号との間の電流位相差とをそれぞれ算出し、算出した、前記電圧信号の振幅、前記電圧位相差、前記電流信号の振幅、および前記電流位相差に基づいて、前記第1内部端子と前記第2内部端子との間のインピーダンスの抵抗成分の値と、前記電圧位相差と前記電流位相差との差である前記第1内部端子と前記第2内部端子との間のインピーダンスの位相角の値とをそれぞれ算出する
     測定装置。
    The measuring device according to claim 1,
    The generation circuit supplies an AC signal based on a reference signal having a constant frequency and a constant amplitude between the first internal terminal and the second internal terminal,
    The data processing control circuit detects, through synchronous detection, the amplitude of the voltage signal detected by the voltage detection circuit, the voltage phase difference between the reference signal and the voltage signal, and the first internal terminal and the second internal terminal. The amplitude of the voltage signal, the voltage phase difference, and the current signal are calculated by respectively calculating the amplitude of the current signal flowing between the internal terminal and the current phase difference between the reference signal and the current signal. and the current phase difference, the value of the resistance component of the impedance between the first internal terminal and the second internal terminal, and the difference between the voltage phase difference and the current phase difference. A measuring device that calculates values of phase angles of impedance between the first internal terminal and the second internal terminal.
  3.  請求項2に記載の測定装置において、
     前記データ処理制御回路は、前記第1条件において測定した前記リファレンス回路のインピーダンスの抵抗成分の値と、前記第2条件において測定した前記リファレンス回路のインピーダンスの抵抗成分の値との誤差に基づいて、前記第2条件において測定した前記試験対象物のインピーダンスの抵抗成分の値を補正する
     測定装置。
    The measuring device according to claim 2,
    The data processing control circuit, based on the error between the value of the resistance component of the impedance of the reference circuit measured under the first condition and the value of the resistance component of the impedance of the reference circuit measured under the second condition, A measuring device that corrects a value of a resistance component of impedance of the test object measured under the second condition.
  4.  請求項3に記載の測定装置において、
     前記データ処理制御回路は、前記補正係数として、前記第1条件において測定した前記リファレンス回路のインピーダンスの抵抗成分の値と、前記第2条件において測定した前記リファレンス回路のインピーダンスの抵抗成分の値との比に基づく第1補正係数を算出し、前記第1補正係数を用いて、前記第2条件において測定した前記試験対象物のインピーダンスの抵抗成分の値を補正する
     測定装置。
    The measuring device according to claim 3,
    The data processing control circuit calculates, as the correction coefficient, a value of a resistance component of the impedance of the reference circuit measured under the first condition and a value of a resistance component of the impedance of the reference circuit measured under the second condition. A measuring device that calculates a first correction coefficient based on the ratio, and uses the first correction coefficient to correct a value of a resistance component of the impedance of the test object measured under the second condition.
  5.  請求項2に記載の測定装置において、
     前記データ処理制御回路は、前記第1条件において測定した前記リファレンス回路のインピーダンスの位相角の値と、前記第2条件において測定した前記リファレンス回路のインピーダンスの位相角の値との誤差に基づいて、前記第2条件において測定した前記試験対象物のインピーダンスの位相角の値を補正する
     測定装置。
    The measuring device according to claim 2,
    The data processing control circuit, based on the error between the value of the phase angle of the impedance of the reference circuit measured under the first condition and the value of the phase angle of the impedance of the reference circuit measured under the second condition, A measuring device that corrects a phase angle value of impedance of the test object measured under the second condition.
  6.  請求項5に記載の測定装置において、
     前記データ処理制御回路は、前記補正係数として、前記第1条件において測定した前記リファレンス回路のインピーダンスの位相角の値と、前記第2条件において測定した前記リファレンス回路のインピーダンスの位相角の値との差に基づく第2補正係数を算出し、前記第2補正係数を用いて、前記第2条件において測定した前記試験対象物のインピーダンスの位相角の値を補正する
     測定装置。
    The measuring device according to claim 5,
    The data processing control circuit calculates, as the correction coefficient, a value of the phase angle of the impedance of the reference circuit measured under the first condition and a value of the phase angle of the impedance of the reference circuit measured under the second condition. A measuring device that calculates a second correction coefficient based on the difference, and uses the second correction coefficient to correct a phase angle value of the impedance of the test object measured under the second condition.
  7.  請求項2に記載の測定装置において、
     前記データ処理制御回路は、
     前記測定装置への指示を受け付ける指示受付部と、
     前記第1条件において測定された前記リファレンス回路のインピーダンスの値と、前記補正係数を含む補正係数情報と、を記憶する記憶部と、
     前記スイッチ部を制御するスイッチ制御部と、
     前記第1内部端子と前記第2内部端子との間のインピーダンスの値を算出するインピーダンス算出部と、
     前記インピーダンス算出部によって算出されたインピーダンスの値を前記補正係数情報に基づいて補正する補正部と、
     前記補正部によって補正されたインピーダンスの値を測定結果として出力する測定結果出力部と、
     前記補正係数情報を更新する補正係数更新部と、を有し、
     前記指示受付部が所定の指示を受け付けた場合に、前記スイッチ部が、前記リファレンス回路の一方の端子と前記第1内部端子とを接続し、且つ前記リファレンス回路の他方の端子と前記第2内部端子とを接続するとともに、前記インピーダンス算出部が、前記第1内部端子と前記第2内部端子との間のインピーダンスの値を算出して、前記第2条件において測定された前記リファレンス回路のインピーダンスの値として前記記憶部に記憶し、前記補正係数更新部が、前記記憶部に記憶されている、前記第1条件において測定された前記リファレンス回路のインピーダンスの値と、前記第2条件において測定された前記リファレンス回路のインピーダンスの値とに基づいて、前記補正係数情報を更新する
     測定装置。
    The measuring device according to claim 2,
    The data processing control circuit includes:
    an instruction receiving unit that receives instructions to the measuring device;
    a storage unit that stores an impedance value of the reference circuit measured under the first condition and correction coefficient information including the correction coefficient;
    a switch control section that controls the switch section;
    an impedance calculation unit that calculates an impedance value between the first internal terminal and the second internal terminal;
    a correction unit that corrects the impedance value calculated by the impedance calculation unit based on the correction coefficient information;
    a measurement result output unit that outputs the impedance value corrected by the correction unit as a measurement result;
    a correction coefficient updating unit that updates the correction coefficient information;
    When the instruction receiving unit receives a predetermined instruction, the switch unit connects one terminal of the reference circuit to the first internal terminal, and connects the other terminal of the reference circuit to the second internal terminal. The impedance calculation section calculates the impedance value between the first internal terminal and the second internal terminal, and calculates the impedance of the reference circuit measured under the second condition. The correction coefficient updating unit stores the impedance value of the reference circuit measured under the first condition, which is stored in the storage unit, as a value, and the impedance value measured under the second condition. A measuring device that updates the correction coefficient information based on the impedance value of the reference circuit.
  8.  請求項1に記載の測定装置において、
     前記リファレンス回路は、抵抗器を含む
     測定装置。
    The measuring device according to claim 1,
    The reference circuit includes a resistor. Measuring device.
  9.  請求項1に記載の測定装置において、
     前記第1内部端子は、前記発生回路から電圧または電流が印加されるハイサイド内部印加端子と、前記電圧検出回路に接続されたハイサイド内部検出端子と、を含み、
     前記第2内部端子は、前記発生回路から電圧または電流が印加されるローサイド内部印加端子と、前記電圧検出回路に接続されたローサイド内部検出端子と、を含み、
     前記第1外部端子は、ハイサイド外部印加端子と、ハイサイド外部検出端子と、を含み、
     前記第2外部端子は、ローサイド外部印加端子と、ローサイド外部検出端子と、を含み、
     前記リファレンス回路は、
     前記リファレンス回路の一方の端子としてのハイサイド入力端子およびハイサイド出力端子と、前記リファレンス回路の他方の端子としてのローサイド入力端子およびローサイド出力端子と、
     前記ハイサイド入力端子と前記ローサイド入力端子との間に接続された第1抵抗器と、前記ハイサイド入力端子と前記ローサイド入力端子との間に直列に接続された複数の第2抵抗器と、
     前記ハイサイド入力端子と前記ローサイド入力端子との間の電圧と、前記複数の第2抵抗器によって分圧された複数の電圧とを入力し、入力された電圧のうち何れか一つの電圧を選択して前記ハイサイド出力端子と前記ローサイド出力端子との間に出力する選択回路と、を含み
     前記スイッチ部は、前記ハイサイド内部印加端子の接続先を前記ハイサイド外部印加端子と前記リファレンス回路の前記ハイサイド入力端子との間で切り替え、前記ローサイド内部印加端子の接続先を前記ローサイド外部印加端子と前記リファレンス回路の前記ローサイド入力端子との間で切り替え、前記ハイサイド内部検出端子の接続先を前記ハイサイド外部検出端子と前記リファレンス回路の前記ハイサイド出力端子との間で切り替え、前記ローサイド内部検出端子の接続先を前記ローサイド外部検出端子と前記リファレンス回路の前記ローサイド出力端子との間で切り替える
     測定装置。
    The measuring device according to claim 1,
    The first internal terminal includes a high-side internal application terminal to which a voltage or current is applied from the generation circuit, and a high-side internal detection terminal connected to the voltage detection circuit,
    The second internal terminal includes a low-side internal application terminal to which a voltage or current is applied from the generation circuit, and a low-side internal detection terminal connected to the voltage detection circuit,
    The first external terminal includes a high side external application terminal and a high side external detection terminal,
    The second external terminal includes a low side external application terminal and a low side external detection terminal,
    The reference circuit is
    A high side input terminal and a high side output terminal as one terminal of the reference circuit, and a low side input terminal and a low side output terminal as the other terminal of the reference circuit,
    a first resistor connected between the high-side input terminal and the low-side input terminal; a plurality of second resistors connected in series between the high-side input terminal and the low-side input terminal;
    A voltage between the high-side input terminal and the low-side input terminal and a plurality of voltages divided by the plurality of second resistors are input, and one of the input voltages is selected. a selection circuit for outputting between the high-side output terminal and the low-side output terminal; the switch section selects a connection destination of the high-side internal application terminal between the high-side external application terminal and the reference circuit; switching the connection destination of the low-side internal application terminal between the low-side external application terminal and the low-side input terminal of the reference circuit; and switching the connection destination of the high-side internal detection terminal between the low-side external application terminal and the low-side input terminal of the reference circuit. Switching between the high side external detection terminal and the high side output terminal of the reference circuit, and switching the connection destination of the low side internal detection terminal between the low side external detection terminal and the low side output terminal of the reference circuit. measuring device.
  10.  請求項9に記載の測定装置において、
     前記リファレンス回路は、前記複数の第2抵抗器のうち少なくとも一つの抵抗器と並列に接続された第3抵抗器を更に含む
     測定装置。
    The measuring device according to claim 9,
    The reference circuit further includes a third resistor connected in parallel with at least one resistor among the plurality of second resistors. The measuring device.
  11.  請求項10に記載の測定装置において、
     前記選択回路には、測定レンジを指定する選択信号が入力され、
     前記選択回路は、入力された電圧のうち、前記選択信号によって指定された測定レンジに対応する電圧を選択して出力する
     測定装置。
    The measuring device according to claim 10,
    A selection signal specifying a measurement range is input to the selection circuit,
    The selection circuit selects and outputs a voltage corresponding to a measurement range designated by the selection signal from among the input voltages.
  12.  請求項9に記載の測定装置において、
     前記複数の第2抵抗器は、ネットワーク抵抗器である
     測定装置。
    The measuring device according to claim 9,
    The plurality of second resistors are network resistors. Measuring device.
  13.  ハイサイド入力端子およびハイサイド出力端子と、
     ローサイド入力端子およびローサイド出力端子と、
     前記ハイサイド入力端子と前記ローサイド入力端子との間に接続された第1抵抗器と、
     前記ハイサイド入力端子と前記ローサイド入力端子との間に直列に接続された複数の第2抵抗器と、
     前記複数の第2抵抗器のうち少なくとも一つの抵抗器と並列に接続された第3抵抗器と、
     前記ハイサイド入力端子と前記ローサイド入力端子との間の電圧と、前記複数の第2抵抗器によって分圧された複数の電圧とを入力し、入力された電圧のうち何れか一つの電圧を選択して前記ハイサイド出力端子と前記ローサイド出力端子との間に出力する選択回路と、を含む
     標準抵抗器。
    A high side input terminal and a high side output terminal,
    A low side input terminal and a low side output terminal,
    a first resistor connected between the high side input terminal and the low side input terminal;
    a plurality of second resistors connected in series between the high side input terminal and the low side input terminal;
    a third resistor connected in parallel with at least one resistor among the plurality of second resistors;
    A voltage between the high-side input terminal and the low-side input terminal and a plurality of voltages divided by the plurality of second resistors are input, and one of the input voltages is selected. a selection circuit that outputs between the high side output terminal and the low side output terminal.
PCT/JP2023/023200 2022-06-24 2023-06-22 Measurement device and standard resistor WO2023249094A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-101649 2022-06-24
JP2022101649 2022-06-24

Publications (1)

Publication Number Publication Date
WO2023249094A1 true WO2023249094A1 (en) 2023-12-28

Family

ID=89380066

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/023200 WO2023249094A1 (en) 2022-06-24 2023-06-22 Measurement device and standard resistor

Country Status (1)

Country Link
WO (1) WO2023249094A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008157911A (en) * 2006-11-28 2008-07-10 Hioki Ee Corp Impedance measuring device
JP2012173182A (en) * 2011-02-23 2012-09-10 Hioki Ee Corp Inspection device and inspection method
WO2017061036A1 (en) * 2015-10-09 2017-04-13 日産自動車株式会社 Impedance measurement device and processing method therefor
JP2019060767A (en) * 2017-09-27 2019-04-18 日本電産リード株式会社 Calibration method of resistance measuring device, resistance measuring device, substrate inspection device, and reference resistor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008157911A (en) * 2006-11-28 2008-07-10 Hioki Ee Corp Impedance measuring device
JP2012173182A (en) * 2011-02-23 2012-09-10 Hioki Ee Corp Inspection device and inspection method
WO2017061036A1 (en) * 2015-10-09 2017-04-13 日産自動車株式会社 Impedance measurement device and processing method therefor
JP2019060767A (en) * 2017-09-27 2019-04-18 日本電産リード株式会社 Calibration method of resistance measuring device, resistance measuring device, substrate inspection device, and reference resistor

Similar Documents

Publication Publication Date Title
JP4282897B2 (en) Automated microwave test system with improved accuracy
JP4300253B2 (en) Vector network analyzer calibration method
CA2965538C (en) Systems and methods of measuring and determining noise parameters
KR102185888B1 (en) Conductive liquid property measurement using variable phase mixing
US7652484B2 (en) Self calibration apparatus and methods
WO2023249094A1 (en) Measurement device and standard resistor
KR100709353B1 (en) Integrated circuit and method for automatically tuning process and temperature variation
Wong Complete power sensor calibration using a VNA
CN113514703B (en) Capacitance measuring circuit and measuring method
JP2007132897A (en) Measuring instrument
KR101883199B1 (en) Binary multiple resistance using the increased resistance and measurement devices and measurement calibration device and resistance using the calibration methods
WO2020155068A1 (en) Current measuring device, method, and apparatus
JP2001201524A (en) Ratio measuring device of electric signal, electric element measuring device, calibration method of electric element measuring device and ratio measuring method of electric signal
JP2001074795A (en) Instrument and method for measuring resistance of communication line and storing medium
CN102175937B (en) Terminal operating current debugging system and method
US7868624B2 (en) Method and system for correcting the feedback from electrical measurement converters to a device under test
Malarić et al. Method for nonlinear fitting and impedance analysis with lcr meter
CN115951756A (en) Clock signal calibration device and method, electronic device, and storage medium
JP6330049B2 (en) Method, calibration unit and system for determining system error and power values for network analyzer calibration
JP3628789B2 (en) Automatic calibration system for semiconductor test system
JPH05133997A (en) Method for calibrating ic testing device
JP7117340B2 (en) Measuring system and measuring method
US3416084A (en) Precision potentiometer circuit and method for establishing same
JP7472903B2 (en) Measurement method and inspection device
JPH04276561A (en) Frequency-characteristic calibrating apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23827276

Country of ref document: EP

Kind code of ref document: A1