WO2017061036A1 - Impedance measurement device and processing method therefor - Google Patents

Impedance measurement device and processing method therefor Download PDF

Info

Publication number
WO2017061036A1
WO2017061036A1 PCT/JP2015/078780 JP2015078780W WO2017061036A1 WO 2017061036 A1 WO2017061036 A1 WO 2017061036A1 JP 2015078780 W JP2015078780 W JP 2015078780W WO 2017061036 A1 WO2017061036 A1 WO 2017061036A1
Authority
WO
WIPO (PCT)
Prior art keywords
component
output
circuit
power supply
signal
Prior art date
Application number
PCT/JP2015/078780
Other languages
French (fr)
Japanese (ja)
Inventor
隆宏 藤井
酒井 政信
青木 哲也
Original Assignee
日産自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産自動車株式会社 filed Critical 日産自動車株式会社
Priority to PCT/JP2015/078780 priority Critical patent/WO2017061036A1/en
Publication of WO2017061036A1 publication Critical patent/WO2017061036A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R27/00Arrangements for measuring resistance, reactance, impedance, or electric characteristics derived therefrom
    • G01R27/02Measuring real or complex resistance, reactance, impedance, or other two-pole characteristics derived therefrom, e.g. time constant
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]

Definitions

  • the present invention relates to an impedance measuring apparatus including a passive element for specifying an impedance measurement error of a measurement object and a processing method thereof.
  • the internal resistance of a laminated battery is detected by outputting an alternating current to the laminated battery to be measured in a state in which power is supplied from the laminated battery to the load, and detecting the alternating potential difference generated in the laminated battery.
  • Measuring devices for measuring have been proposed.
  • an electronic component such as an operational amplifier is used for a circuit that outputs an alternating current, a circuit that detects an alternating potential difference, or the like. For this reason, the accuracy of measuring the impedance of the laminated battery is reduced due to manufacturing variations of electronic parts, deterioration with time, output fluctuation accompanying temperature rise, and the like. Therefore, it is possible to provide a passive element in the measurement device, measure the impedance of the passive element, and specify a measurement error that occurs in the measurement device.
  • the measurement error of the resistance component and the capacitance component is specified as described above.
  • a passive element not only a resistor but also a capacitor is required. Since the capacitor has a large volume, there is a problem that if the measuring device is provided with two passive elements, the measuring device becomes large.
  • the present invention has been made paying attention to such problems, and an impedance measuring apparatus and a processing method thereof capable of suppressing an increase in scale while suppressing a decrease in measurement accuracy due to an electronic component.
  • the purpose is to provide.
  • an impedance measuring device is configured to calculate an impedance of the measurement target based on a power supply circuit that outputs an alternating current to the measurement target, an AC potential difference generated in the measurement target, and an output current of the power supply circuit.
  • An arithmetic unit for calculation, a passive element of any one of a resistor, a capacitor, and a coil for specifying the impedance error, a measurement state in which the measurement target is connected to the power supply circuit, and the passive element And a switch for switching a diagnosis state connected to the power supply circuit.
  • the processing method of the impedance measuring apparatus includes an output step of outputting an alternating current to the measurement target by the power supply circuit, and a detection step of detecting an AC potential difference generated in the measurement target.
  • This processing method includes a first oscillation step for outputting an AC signal having the same frequency as the output current of the power supply circuit, and an AC detected in the detection step based on the output signal in the first oscillation step.
  • the processing method includes: a second oscillation step for outputting an AC signal whose phase is orthogonal to the output signal at the first oscillation step; and the detection step based on the output signal at the second oscillation step.
  • this processing method is an arithmetic operation for calculating a resistance component or reactance component of the impedance of the measurement object based on the component extracted in the first or second extraction step and the alternating current output in the output step. Includes steps. Further, in the processing method, when the reactance component is extracted in the second extraction step when the switch is switched to the diagnosis state, the processing method is compared with the case where the resistance component is extracted in the first extraction step. An output step, and a phase shifting step of shifting the phase of the output signal corresponding to the passive element among the output signals in the first oscillation step and the second oscillation step.
  • FIG. 1 is a configuration diagram showing an example of the configuration of the impedance measuring apparatus according to the first embodiment of the present invention.
  • FIG. 2 is an explanatory diagram showing measurement results of resistance components and reactance components when the phase of a power supply circuit that outputs an alternating current to one diagnostic element is operated by 90 degrees.
  • FIG. 3 is an explanatory diagram showing the relationship between the type of diagnostic element and the oscillation circuit that is the target of the phase operation.
  • FIG. 4 is a circuit diagram illustrating a configuration of a circuit that extracts a resistance component and a reactance component of an AC potential difference generated in a measurement target.
  • FIG. 5 is a flowchart illustrating an example of a processing procedure regarding the phase control method of the impedance measuring apparatus according to the present embodiment.
  • FIG. 1 is a configuration diagram showing an example of the configuration of the impedance measuring apparatus according to the first embodiment of the present invention.
  • FIG. 2 is an explanatory diagram showing measurement results of resistance components and reactance components when the phase of a
  • FIG. 6 is a time chart showing an example of a phase operation method for operating the phase of the alternating current during the diagnosis period of the impedance measuring device.
  • FIG. 7 is a diagram showing a basic configuration of an impedance measuring apparatus according to the second embodiment of the present invention.
  • FIG. 8 is a circuit diagram illustrating a configuration of a blocking unit that blocks direct current and a detection unit that detects a potential difference.
  • FIG. 9 is a circuit diagram showing a configuration of a power supply unit that outputs an alternating current to the positive electrode and the negative electrode of the laminated battery to be measured.
  • FIG. 10 is a configuration diagram illustrating a configuration of an AC adjustment unit that adjusts the amplitude of the AC current output to the positive electrode and the negative electrode of the laminated battery.
  • FIG. 11 is a configuration diagram illustrating a configuration of an AC detection circuit provided in the AC adjustment unit.
  • FIG. 12 is a circuit diagram illustrating a configuration of a circuit that extracts a resistance component and a reactance component of an AC potential difference generated in the stacked battery.
  • FIG. 13 is a configuration diagram illustrating a configuration of a calculation unit that calculates the resistance component and reactance component of the impedance of the stacked battery.
  • FIG. 14 is a flowchart showing an example of an equipotential control method for controlling the AC potentials generated at the positive electrode and the negative electrode of the laminated battery equally.
  • FIG. 15 is a time chart showing the state of the impedance measuring apparatus when equipotential control is executed.
  • FIG. 12 is a circuit diagram illustrating a configuration of a circuit that extracts a resistance component and a reactance component of an AC potential difference generated in the stacked battery.
  • FIG. 13 is a configuration diagram illustrating a configuration of a calculation unit that calculates the resistance component and
  • FIG. 16 is an explanatory diagram showing an AC potential generated at the positive electrode and the negative electrode of the laminated battery by equipotential control.
  • FIG. 17 is a configuration diagram illustrating a detailed configuration of the impedance measuring apparatus according to the present embodiment.
  • FIG. 18 is a connection diagram illustrating a connection state in the impedance measuring apparatus when a measurement error is specified using a diagnostic element.
  • FIG. 19 is a diagram illustrating an example of a correction method for correcting a measurement result using a diagnostic element.
  • FIG. 20 is a flowchart illustrating an example of a processing procedure regarding the phase control method of the impedance measuring apparatus according to the present embodiment.
  • FIG. 1 is a configuration diagram showing an example of the configuration of the impedance measuring apparatus according to the first embodiment of the present invention.
  • the measurement object 10 is an object having a resistance (electric resistance) R component and a reactance X component.
  • the measurement object 10 of the present embodiment is equivalent to an electric circuit in which a capacitor constituting the reactance X and a resistor having a resistance R are connected in parallel to each other.
  • Examples of the measurement object 10 include a secondary battery and a fuel cell.
  • the impedance measuring device 5a is a device that measures the resistance component and reactance component of the impedance of the measurement object 10.
  • the impedance measuring device 5a has a self-diagnosis function in order to suppress impedance measurement errors caused by fluctuations in the output of electronic components provided in the impedance measuring device 5a itself.
  • the impedance measuring device 5a includes a detection circuit 20, an R component extraction circuit 21, an X component extraction circuit 22, a power supply circuit 30, oscillation circuits 40a to 40c, a quadrature phase shifter 41, and an arithmetic unit 50. . Furthermore, the impedance measuring device 5a includes a diagnostic element 60, a diagnostic element information holding unit 61, a switch 70, and a diagnostic control unit 80.
  • the oscillation circuits 40a to 40c are circuits that oscillate an AC signal having a reference frequency fb that is a predetermined frequency.
  • the oscillation circuits 40a to 40c are circuits that can change the phase of the AC signal.
  • the oscillation circuit 40 a outputs an AC signal having a reference frequency to the power supply circuit 30.
  • the oscillation circuit 40 b outputs an AC signal having the reference frequency fb to the R component extraction circuit 21.
  • the oscillation circuit 40 c outputs an AC signal having a reference frequency to the quadrature phase shifter 41.
  • the quadrature phase shifter 41 advances the phase of the output signal, which is an AC signal output from the oscillation circuit 40c, by 90 degrees.
  • the quadrature phase shifter 41 outputs an AC signal obtained by advancing the phase of the output signal of the oscillation circuit 40c by 90 degrees to the X component extraction circuit 22.
  • the oscillation circuit 40c and the quadrature phase shifter 41 constitute an orthogonal signal oscillation circuit that outputs an AC signal whose phase is orthogonal to the output signal of the oscillation circuit 40b.
  • the power supply circuit 30 is a circuit that outputs an alternating current having a reference frequency fb at one end of the measurement object 10 based on the alternating current signal output from the oscillation circuit 40a.
  • the power supply circuit 30 is realized by a plurality of operational amplifiers, for example.
  • the detection circuit 20 is a circuit that detects an AC potential difference (voltage) generated in the measurement object 10 to which an AC current is applied by the power supply circuit 30.
  • the detection circuit 20 is realized by, for example, a differential amplifier or an instrumentation amplifier.
  • the detection circuit 20 outputs an AC potential difference signal V indicating a value obtained by detecting the AC potential difference to the R component extraction circuit 21 and the X component extraction circuit 22, respectively.
  • the R component extraction circuit 21 extracts a real part component of the AC potential difference signal V, that is, a resistance component, based on the AC signal output from the oscillation circuit 40b.
  • the oscillation circuit 40 b constitutes a reference signal oscillation circuit that outputs an AC signal having the same frequency with respect to the output current of the power supply circuit 30.
  • the R component extraction circuit 21 extracts the resistance component Vr of the AC potential difference signal based on the AC signal having the same phase with respect to the output current of the power supply circuit 30.
  • the configuration of the R component extraction circuit 21 will be described with reference to the following diagram.
  • the R component extraction circuit 21 outputs the extracted resistance component Vr of the AC potential difference signal to the calculator 50.
  • the X component extraction circuit 22 extracts the imaginary part component of the AC potential difference signal V, that is, the reactance component, based on the AC signal output from the quadrature phase shifter 41.
  • the X component extraction circuit 22 extracts the reactance component Vx of the AC potential difference signal based on the AC signal whose phase is advanced by 90 degrees with respect to the output current of the power supply circuit 30.
  • the configuration of the X component extraction circuit 22 will be described with reference to the next figure.
  • the X component extraction circuit 22 outputs the reactance component Vx of the extracted AC potential difference signal to the calculator 50.
  • the computing unit 50 computes the resistance component R and reactance component X of the impedance of the measurement object 10 based on the alternating current I output from the power supply circuit 30 and the resistance component Vr and reactance component Vx of the AC potential difference signal. To do.
  • the arithmetic unit 50 calculates the impedance resistance component R by dividing the resistance component Vr of the AC potential difference signal by the amplitude of the AC current I. Further, the computing unit 50 divides the reactance component Vx of the AC potential difference signal by the amplitude of the AC current I to calculate the reactance component X of the impedance.
  • the computing unit 50 outputs the calculated resistance component R and reactance component X as measurement results to, for example, a management device that manages the state of the measurement object 10.
  • the detection circuit 20 and the power supply circuit 30 use electronic components such as operational amplifiers, that is, analog circuits. For this reason, it is caused by manufacturing variations of electronic components, deterioration with time in which the performance of the electronic components decreases with time, temperature drift in which the output of the electronic components fluctuates as the temperature of the electronic components rises, etc. The error included in the measurement result increases. As a result, the measurement accuracy of the impedance measuring device 5a is lowered.
  • the impedance measuring device 5a includes a diagnostic element 60, a diagnostic element information holding unit 61, a switch 70, and a diagnostic control unit 80.
  • the diagnostic element 60 is a passive element of any one of a resistor, a capacitor, and an inductor for specifying an impedance measurement error calculated by the calculator 50. One end of the diagnostic element 60 is grounded, and the other end is connected to the second output terminal of the switch 70. In the present embodiment, the diagnostic element 60 is configured by a resistor having a resistance having a reference value.
  • the diagnostic element information holding unit 61 holds diagnostic element information indicating the resistance value of the diagnostic element 60 (hereinafter referred to as “reference value”).
  • the switch 70 is provided between the connection terminal 10p of the measurement object 10 and the power supply circuit 30.
  • the input terminal of the switch 70 is connected to the detection circuit 20 and the power supply circuit 30, and the first output terminal of the switch 70 is connected to the connection terminal 10p.
  • the switch 70 has a measurement state in which the measurement object 10 is connected to the power supply circuit 30 and a diagnosis state in which the diagnosis element 60 is disconnected from the measurement object 10 and the diagnosis element 60 is connected to the power supply circuit 30. Switch.
  • the connection state of the switch 70 is controlled by the diagnosis control unit 80.
  • the diagnosis control unit 80 switches the connection state of the switch 70 to the measurement state or the diagnosis state based on a predetermined diagnosis condition.
  • the diagnosis control unit 80 includes a timer for measuring time, and monitors whether or not the measurement time of the timer has passed a predetermined measurement period as a diagnosis condition, and every time the measurement time passes the measurement period, The connection state of the switch 70 is switched from the measurement state to the diagnosis state. When a specific diagnosis period has elapsed after switching to the diagnosis state, the diagnosis control unit 80 returns the connection state of the switch 70 from the diagnosis state to the measurement state, and resets the timer.
  • the diagnosis control unit 80 monitors whether or not the internal temperature of the impedance measuring device 5a is higher than a predetermined threshold as a diagnostic condition, and determines the connection state of the switch 70 when the internal temperature rises above the threshold. You may make it switch from a measurement state to a diagnosis state.
  • the diagnosis control unit 80 uses the diagnosis element 60 to generate a diagnosis execution signal for specifying the measurement error of the impedance resistance component R and reactance component X. Output to 50.
  • the diagnosis control unit 80 outputs the diagnosis execution signal to the computing unit 50 and then shifts the phase of the AC signal output from the oscillation circuit 40a by 90 degrees in order to identify the measurement error of the reactance component X.
  • the diagnostic control unit 80 restores the phase of the AC signal output from the oscillation circuit 40a.
  • the calculator 50 When the calculator 50 receives the diagnosis execution signal from the diagnosis controller 80, the calculator 50 uses the diagnosis element 60 to execute a diagnosis process for calculating a measurement error due to the electronic component of the impedance measuring device 5a.
  • the computing unit 50 acquires the resistance component Vr of the AC potential difference signal generated in the diagnostic element 60 from the R component extraction circuit 21, and based on the acquired resistance component Vr and the output current I of the power supply circuit 30, The resistance value R d of the diagnostic element 60 is calculated.
  • the computing unit 50 calculates the difference between the calculated resistance value Rd and the reference value held in the diagnostic element information holding unit 61 as a measurement error of the impedance resistance component.
  • the X component extraction circuit 22 converts the resistance component Vr of the AC potential difference generated in the diagnostic element 60 into the AC potential difference. Is extracted as the reactance component Vx.
  • the computing unit 50 acquires the reactance component Vx of the extracted AC potential difference, and calculates the reactance value X d of the diagnostic element 60 based on the acquired reactance component Vx and the output current I of the power supply circuit 30.
  • the computing unit 50 calculates the difference between the calculated reactance value Xd and the reference value of the diagnostic element information holding unit 61 as a measurement error of the inductance component.
  • the computing unit 50 outputs each measurement error of the impedance resistance component and the reactance component to the diagnostic element information holding unit 61.
  • the diagnosis control unit 80 returns the phase of the output signal of the oscillation circuit 40a to the original state and outputs a measurement execution signal instead of the diagnosis execution signal when the switch 70 is switched to the measurement state.
  • the arithmetic unit 50 When the arithmetic unit 50 receives the measurement execution signal from the diagnosis control unit 80, the arithmetic unit 50 executes a correction process for correcting the measurement result based on the measurement error recorded in the diagnostic element information holding unit 61.
  • the computing unit 50 acquires the resistance component Vr and reactance component Vx of the AC potential difference generated in the measurement object 10 from the R component extraction circuit 21 and the X component extraction circuit 22. As described above, the computing unit 50 determines the impedance resistance component R and reactance component of the measurement object 10 based on the acquired resistance component Vr and reactance component Vx of the AC potential difference and the amplitude of the output current I of the power supply circuit 30. X is calculated as a measurement result.
  • the arithmetic unit 50 adds the measurement error of the resistance component R held in the diagnostic element information holding unit 61 to the resistance component R of the measurement result, and converts the measurement error of the reactance component X into the measurement result. Add to reactance component X.
  • the object 10 to be measured has a capacitor (electric capacity) component, but the object 10 to be measured may have an inductance (electric induction) component as a reactance X component.
  • FIG. 2 is a diagram illustrating a measurement result of the diagnostic element 60 when the phase of the alternating current I output from the power supply circuit 30 is switched from 0 degrees to 90 degrees in the diagnosis state.
  • FIG. 2 shows the measurement results when the resistance value of the diagnostic element 60 is changed stepwise.
  • the horizontal axis indicates the resistance component R of impedance
  • the vertical axis indicates the reactance component X of impedance.
  • the impedance resistance component X increases as the output signal Vr of the R component extraction circuit 21 increases
  • the impedance reactance component X increases as the output signal Vx of the X component extraction circuit 22 increases.
  • the diagnostic element 60 is a resistance element, so the reactance component X is zero, and only the magnitude of the resistance component R is Change.
  • the phase of the alternating potential difference Vr generated in the resistor R becomes the same as the phase of the alternating current I.
  • the phase of the alternating potential difference Vc generated in the capacitor C is delayed by 90 degrees ( ⁇ / 2) with respect to the phase of the alternating current I.
  • the phase of the alternating potential difference V L generated in the coil L advances by 90 degrees ( ⁇ / 2) with respect to the phase of the alternating current I.
  • the X component extraction circuit 22 in order to detect the capacitance component C of the reactance X, the signal component whose phase is shifted by 90 degrees in the delay direction with respect to the AC current I in the AC potential difference signal V from the detection circuit 20. Only is extracted. Therefore, in order to apply the alternating current I from the power supply circuit 30 to the diagnostic element 60 having the resistance R and extract the alternating potential difference Vr output from the diagnostic element 60 by the X component extraction circuit 22, the phase of the alternating current I Can be delayed by 90 degrees.
  • the AC potential difference generated in the diagnostic element 60 is changed in the X component extraction circuit 22 by reacting the reactance component of the diagnostic element 60 by delaying the phase of the alternating current I output from the power supply circuit 30 by 90 degrees. Output as Vx. For this reason, it is possible to specify the measurement error due to the electronic component in the signal path from the power supply circuit 30 to the X component extraction circuit 22, that is, the measurement error of the reactance component X, using the diagnostic element 60 that is a resistor. Become.
  • the phase of the alternating current I is shifted by 90 degrees in the delay direction, but the phase of the alternating current I may be shifted by 90 degrees in the advance direction.
  • the absolute value of the output signal of the X component extraction circuit 22 and the reference value of the diagnostic element 60 Can be compared.
  • the phase of the alternating current I output from the power supply circuit 30 is manipulated.
  • the alternating current supplied from the oscillation circuit 40b to the X component extraction circuit 22 is used.
  • the phase of the signal may be manipulated.
  • FIG. 3 is an explanatory diagram showing an example of the relationship between the type of passive element used as the diagnostic element 60 and an oscillation circuit that can be a target of phase operation among the oscillation circuits 40a to 40c.
  • FIG. 3 shows an operation method 1 for manipulating the phase of the output current I of the power supply circuit 30 and an operation method 2 for manipulating the phase of the output signal of one of the oscillation circuits 40b and 40c. Yes.
  • the phase of the output current I of the power supply circuit 30 is shifted by, for example, 90 degrees when the measurement error of the reactance component X is specified using the resistor.
  • the phase of the output current I of the power supply circuit 30 is shifted by, for example, 90 degrees in the delay direction.
  • the phase of the output current I of the power supply circuit 30 is shifted, for example, by 90 degrees in the advance direction.
  • the phase of the output signal of the oscillation circuit 40c is shifted by, for example, 90 degrees when the measurement error of the reactance component X is specified using the resistor.
  • the phase of the output signal of the oscillation circuit 40b is shifted by 90 degrees in the delay direction, for example.
  • the phase of the output signal of the oscillation circuit 40b is shifted, for example, by 90 degrees in the advance direction.
  • the resistance component R and the reactance component can be obtained by one passive element.
  • the measurement error of both X can be measured. Therefore, it is possible to suppress an increase in the circuit scale of the impedance measuring device 5a.
  • the volume of the capacitor or coil is larger than that of the resistor, it is possible to further suppress the increase in circuit scale by using the resistor as the diagnostic element 60.
  • the example which performs one operation of the phase operation 1 and the phase operation 2 was demonstrated in FIG. 3, you may perform the phase operation 1 and the phase operation 2 simultaneously.
  • the phase of the output signal of the oscillation circuit 40a is shifted 45 degrees in the delay direction, and the output of the oscillation circuit 40c is output.
  • the phase of the signal is shifted 45 degrees in the advance direction. Even with such an operation, it is possible to measure the measurement error of the reactance component.
  • FIG. 4 is a configuration diagram showing an example of the configuration of the R component extraction circuit 21 and the X component extraction circuit 22.
  • the R component extraction circuit 21 multiplies the AC potential difference signal V from the detection circuit 20 by the in-phase signal Sin (0) for detecting the resistance component R of the measurement object 10, thereby realizing a real part component of the AC potential difference signal.
  • the resistance component Vr is extracted.
  • the in-phase signal Sin (0) is an AC signal having the same phase as the output current I of the power supply circuit 30.
  • the R component extraction circuit 21 includes an in-phase multiplier 21a and an in-phase low-pass filter (LPF) 21b.
  • the in-phase multiplier 21a calculates the AC signal from the oscillation circuit 40b as the in-phase signal Sin (0) to the multiplied AC potential difference signal V. Thereby, an in-phase AC signal corresponding to the degree of coincidence between the waveform of the AC potential difference signal V and the waveform of the in-phase signal Sin (0) is output from the in-phase multiplier 21a. For example, when the AC potential difference signal V and the in-phase signal Sin (0) are completely in phase, an in-phase AC signal having a full-wave rectified waveform is output. Further, as the degree of coincidence between the waveforms of the AC potential difference signal V and the in-phase signal Sin (0) increases, the resistance component Vr of the AC potential difference increases.
  • the in-phase low-pass filter 21b detects the DC component of the in-phase AC signal.
  • the in-phase low-pass filter 21b removes the AC component or the high-frequency region component of the in-phase AC signal and passes the DC component of the in-phase AC signal.
  • the DC component smoothed by the in-phase low-pass filter 21b is input to the calculator 50 as the resistance component Vr of the AC potential difference detection signal.
  • the R component extraction circuit 21 multiplies the AC potential difference V by the in-phase signal Sin (0) having the same phase as the output current I of the power supply circuit 30, whereby the in-phase signal Sin (0 Only the resistance component Vr having the same phase as that of FIG. For this reason, even if the resistance component Vr is buried in the noise in the AC potential difference signal V, the R component extraction circuit 21 can detect the resistance component Vr with high accuracy.
  • the R component extraction circuit 21 outputs the real part component of the AC potential difference signal V to the calculator 50.
  • the calculator 50 calculates the resistance component R of the measurement object 10 based on the real part component of the AC potential difference signal V and the output current I of the power supply circuit 30.
  • the resistance component R is obtained from the real part component of the AC potential difference signal V, in this embodiment, the real part component of the AC potential difference signal V is referred to as a resistance component Vr.
  • the X component extraction circuit 22 multiplies the AC potential difference signal V by the quadrature signal Sin (90) for detecting the reactance component X of the measurement object 10, thereby obtaining a reactance component Vx that is an imaginary part component of the AC potential difference signal. Extract.
  • the quadrature signal Sin (90) is an AC signal having a phase angle orthogonal to the output current I of the power supply circuit 30 and having the same amplitude as the in-phase signal Sin (0).
  • the X component extraction circuit 22 includes an orthogonal multiplier 22a and an orthogonal low-pass filter 22b.
  • the quadrature multiplier 22a multiplies the AC potential difference V by the AC signal from the quadrature phase shifter 41 as the orthogonal signal Sin (90). Thereby, an orthogonal AC signal corresponding to the degree of coincidence between the waveform of the AC potential difference V1 and the waveform of the orthogonal signal is output from the orthogonal multiplier 22a.
  • the orthogonal low-pass filter 22b detects the DC component of the orthogonal AC signal.
  • the orthogonal low-pass filter 22b removes the AC component or the high-frequency region component of the orthogonal AC signal and passes the DC component of the orthogonal AC signal.
  • the direct current component smoothed by the orthogonal low-pass filter 22b is input to the computing unit 50 as the reactance component Vx of the alternating current potential difference signal.
  • the X component extraction circuit 22 extracts only the reactance component Vx having the same phase as that of the orthogonal signal Sin (90) from the AC potential difference signal V by multiplying the AC potential difference V by the orthogonal signal Sin (90). For this reason, even if the reactance component Vx is buried in the noise in the AC potential difference signal, the reactance component Vx can be reliably detected by the X component extraction circuit 22 with high accuracy.
  • the X component extraction circuit 22 outputs the imaginary part component of the AC potential difference signal V to the calculator 50.
  • the computing unit 50 computes the reactance component X of the measurement object 10 based on the imaginary part component of the AC potential difference signal V and the output current I of the power supply circuit 30.
  • the reactance component R is obtained from the imaginary part component of the AC potential difference signal V, in this embodiment, the imaginary part component of the AC potential difference signal V is referred to as a reactance component Vr.
  • FIG. 4 is a flowchart showing an example of a processing method of the impedance measuring apparatus 5a in the present embodiment. This processing method is repeatedly executed at a predetermined cycle (for example, several ms).
  • step S1 the diagnosis control unit 80 determines whether or not it is time for the impedance measurement device 5a to diagnose its own measurement state.
  • the diagnosis control unit 80 determines that the diagnosis time has come, it supplies a diagnosis execution signal to the computing unit 50.
  • step S2 the diagnosis control unit 80 controls the switch 70 to connect the diagnosis element 60 to the detection circuit 20 and the power supply circuit 30 when the diagnosis time comes.
  • the alternating current I is applied from the power supply circuit 30 to the diagnostic element 60, and the alternating potential difference V generated in the diagnostic element 60 is detected by the detection circuit 20.
  • step S3 when the arithmetic unit 50 receives the diagnosis execution signal, it obtains the resistance component Vr of the AC potential difference signal from the R component extraction circuit 21, and measures the resistance component R of the impedance based on the resistance component Vr of the AC potential difference signal. Calculate the error.
  • the arithmetic unit 50 calculates the resistance value of the diagnostic element 60 based on the resistance component Vr of the AC potential difference signal and the AC current I of the power supply circuit 30, and the calculated value and the diagnostic element information holding unit 61. A difference from the reference value is calculated as a measurement error of the resistance component R.
  • step S4 when the measurement error of the resistance component R is calculated, the diagnosis control unit 80 shifts the phase of the output current I of the power supply circuit 30 from 0 degrees to 90 degrees in the delay direction. That is, the diagnosis control unit 80 shifts the phase of the AC signal output from the oscillation circuit 40a by 90 degrees from 0 degrees in the delay direction. As a result, the phase of the AC potential difference signal output from the detection circuit 20 is delayed by 90 degrees, so that the X component extraction circuit 22 can extract the AC potential difference generated in the diagnostic element 60.
  • step S5 when the phase of the alternating current I is shifted by 90 degrees, the computing unit 50 acquires the reactance component Vx of the alternating potential difference signal from the X component extraction circuit 22, and measures the reactance component X of the impedance based on the reactance component Vr. Calculate the error.
  • the computing unit 50 calculates a reactance value corresponding to the resistance value of the diagnostic element 60 based on the reactance component Vx of the AC potential difference signal and the AC current I of the power supply circuit 30.
  • the computing unit 50 calculates the difference between the calculated reactance value and the reference value of the diagnostic element information holding unit 61 as a measurement error of the reactance component X.
  • step S6 when the measurement error of the reactance component X is calculated, the diagnosis control unit 80 returns the phase of the output current I of the power supply circuit 30 to 0 degrees. That is, the diagnosis control unit 80 shifts the phase of the AC signal output from the oscillation circuit 40a by 90 degrees in the advance direction.
  • step S1 determines whether it is determined in step S1 that it is not the diagnosis time.
  • step S7 the diagnosis control unit 80 controls the switch 70 to connect the measurement object 10 to the detection circuit 20 and the power supply circuit 30 when it is not the diagnosis time.
  • the alternating current I is applied from the power supply circuit 30 to the measurement object 10, and the alternating potential difference V generated in the diagnostic element 60 is detected by the detection circuit 20.
  • the diagnosis control unit 80 transmits a measurement execution signal to the computing unit 50 instead of the diagnosis execution signal.
  • step S8 when receiving the measurement execution signal, the arithmetic unit 50 acquires the resistance component Vr and the reactance component Vx from the R component extraction circuit 21 and the X component extraction circuit 22, and based on these components, the measurement object 10 is obtained. Resistance component R and reactance component X are calculated.
  • the computing unit 50 calculates the resistance component R of the measurement object 10 based on the resistance component Vr and the AC current I of the AC potential difference signal, and generates the reactance component Vx and the AC current I of the AC potential difference signal. Based on this, the reactance component X of the measurement object 10 is calculated.
  • step S9 the computing unit 50 corrects the calculated resistance component R and reactance component X based on the measurement errors calculated in steps S3 and S5, respectively. For example, the computing unit 50 adds the measurement error calculated in step S3 to the resistance component R, and adds the measurement error calculated in step S5 to the reactance component X. The computing unit 50 outputs the corrected resistance component R and reactance component X as measurement results to a controller that manages the measurement object 10.
  • step 10 the computing unit 50 repeats a series of processing procedures from step S1 to S9 until the impedance measuring device 5a is stopped (OFF), and ends the processing method when the impedance measuring device 5a is stopped. .
  • FIG. 5 is a time chart showing an example of a diagnostic technique for specifying measurement errors of both the resistance component R and the reactance component using one diagnostic element 60.
  • FIG. 5A is a diagram illustrating a connection state of the switch 70.
  • FIG. 5B is a diagram illustrating a change in the phase of the alternating current I output from the power supply circuit 30.
  • FIG. 5C is a diagram showing a change in the output signal Vr of the R component extraction circuit 21.
  • FIG. 5D is a diagram showing changes in the output signal Vx of the X component extraction circuit 22.
  • the horizontal axis of each drawing from FIG. 5A to FIG. 5D is a common time axis.
  • connection state of the switch 70 is a measurement state in which the measurement object 10 is connected to the power supply circuit 30. Therefore, as shown in FIGS. 5C and 5D, the resistance component Vr and the reactance component Vx of the AC potential difference generated in the measurement object 10 are respectively output.
  • the diagnosis control unit 80 switches the switch 70 to a diagnosis state in which the diagnosis element 60 is connected to the detection circuit 20 and the power supply circuit 30.
  • an alternating current I is applied from the power supply circuit 30 to the diagnostic element 60, and an alternating potential difference signal V indicating an alternating potential difference generated in the diagnostic element 60 is input to the R component extraction circuit 21 and the X component extraction circuit 22.
  • the diagnostic element 60 is a resistor
  • the phase of the AC potential difference signal V matches the phase of the AC current I. Therefore, since the amplitude component of the AC potential difference signal V is extracted by the R component extraction circuit 21, as shown in FIG. 5C, the output signal Vr of the R component extraction circuit 21 is a reference when the measurement error is zero. The level is almost the same as the voltage.
  • the calculator 50 calculates the resistance value of the diagnostic element 60 based on the output signal Vr of the R component extraction circuit 21 and the alternating current I, and calculates the difference between the resistance value and the reference value as an error of the resistance component R at the time of measurement. Calculate as On the other hand, as shown in FIG. 5D, the output signal Vx of the X component extraction circuit 22 becomes substantially zero.
  • the phase of the alternating current I is delayed by 90 degrees by the diagnosis control unit 80.
  • the phase of the AC potential difference signal V is also delayed by 90 degrees, and therefore coincides with the phase of the output signal of the quadrature phase shifter 41 supplied to the X component extraction circuit 22.
  • the amplitude component can be extracted.
  • the output signal Vx of the X component extraction circuit 22 is at the same level as the reference voltage.
  • the calculator 50 calculates a reactance value based on the output signal Vx of the X component extraction circuit 22 and the alternating current I, and calculates a difference between the reactance value and the reference value as an error of the reactance component X at the time of measurement. .
  • the output signal Vr of the R component extraction circuit 21 becomes substantially zero.
  • the phase of the alternating current I is returned to 0 degrees as shown in FIG. 5 (b), and the switch 70 is switched to the measurement state as shown in FIG. 5 (a). Then, the computing unit 50 calculates the resistance component R and the reactance component X of the measurement object 10 as measurement results.
  • the X component extraction circuit 22 can extract the resistance component of the diagnosis element 60 as a reactance component. For this reason, even if a resistor is used as the diagnostic element 60, it is possible to measure a measurement error due to an output fluctuation of an electronic component in a signal path for measuring a reactance component in the impedance measuring device 5a.
  • phase of the alternating current I output from the power supply circuit 30 is shifted by 90 degrees, but the amount of phase operation is not limited to 90 degrees.
  • the phase of the output current I of the power supply circuit 30 may be shifted by 45 degrees.
  • signals of substantially the same level are output from both the R component extraction circuit 21 and the X component extraction circuit 22.
  • both signals output a value obtained by multiplying the reference voltage by Sin (45 °). For this reason, since the measurement error of the resistance component R and the reactance component X can be calculated simultaneously, the diagnosis period can be shortened.
  • the phase of the quadrature signal Sin (90) input to the X component extraction circuit 22 that is, the phase of the output signal of the oscillation circuit 40c is manipulated by 90 degrees. May be. Even in this case, since the signal corresponding to the reference voltage is output from both the R component extraction circuit 21 and the X component extraction circuit 22, the diagnosis period is shortened while suppressing a decrease in accuracy of measuring the measurement error. It becomes possible.
  • the impedance measuring device 5 a includes the power supply circuit 30 that outputs an alternating current to the measurement object 10 and the detection circuit 20 that detects the alternating potential difference V generated in the measurement object 10. .
  • the impedance measuring device 5a also includes a first oscillation circuit 40b that outputs an AC signal Sin (0) having the same frequency as the output current I of the power supply circuit 30, and an output signal Sin (0) of the first oscillation circuit 40b.
  • a first extraction circuit 21 for extracting the resistance component Vr of the AC potential difference detected by the detection circuit 20.
  • the impedance measuring device 5a includes a quadrature phase shifter 41 constituting a second oscillation circuit that outputs an AC signal Sin (90) whose phase is orthogonal to the output signal Sin (0) of the first oscillation circuit 40b, And a second extraction circuit 22 that extracts the reactance component Vx of the AC potential difference detected by the detection circuit 20 based on the output signal Sin (90) of the quadrature phase shifter 41.
  • the impedance measuring device 5a includes the measurement object 10 based on the component Vr or Vx extracted by the first extraction circuit 21 or the second extraction circuit 22 and the alternating current I output by the power supply circuit 30.
  • An arithmetic unit 50 for calculating the resistance component R or reactance component X of the impedance is provided. Further, the impedance measuring device 5 a connects the passive object 60 of any one of a resistor, a capacitor, and a coil for specifying an error in the impedance calculated by the calculator 50 and the measurement object 10 to the power supply circuit 30.
  • a switch 70 that switches between a measurement state and a diagnosis state in which the passive element 60 is connected to the power supply circuit 30 and a diagnosis control unit 80 that controls the connection state of the switch 70 are provided.
  • the diagnosis control unit 80 extracts the reactance component X by the second extraction circuit 22 as compared with the case where the first extraction circuit 21 extracts the resistance component R.
  • the first oscillation circuit 40b, and the second oscillation circuit 40c the phase of the output signal of the circuit corresponding to the passive element 60 is shifted.
  • the 50 computing unit diagnoses an error in the impedance of the measurement object 10 based on the components Vr and Vx extracted by the first extraction circuit 21 and the second extraction circuit 22 using the passive element 60, or Correct the impedance.
  • the phase of the output signal of at least one of the power supply circuit 30, the first oscillation circuit 40b, and the second oscillation circuit 40c is controlled in accordance with the type of the passive element 60 as shown in FIG.
  • the diagnostic element 60 is a resistor having a reference value of resistance
  • the diagnostic control unit 80 extracts the reactance component X by the second extraction circuit 22 using the resistor.
  • the phase of at least one AC signal among the output signals of the power supply circuit 30 and the quadrature phase shifter 41 is shifted by a predetermined angle.
  • the diagnosis control unit 80 uses the resistor as the diagnosis element 60 to extract the reactance component X by the X component extraction circuit 22, and the alternating current I output from the power supply circuit 30. Is shifted by 45 degrees or 90 degrees.
  • the phase of the output current I of the power supply circuit 30 by shifting the phase of the output current I of the power supply circuit 30 by 45 degrees, the AC potential difference signal V generated in the diagnostic element 60 can be extracted by both the R component extraction circuit 21 and the X component extraction circuit 22.
  • the diagnosis period can be shortened.
  • the phase of the output current I of the power supply circuit 30 by shifting the phase of the output current I of the power supply circuit 30 by 90 degrees, the S / N ratio (Signal to Noise) becomes the highest, so that the measurement accuracy of the measurement error can be increased.
  • the diagnosis control unit 80 uses a resistor as the diagnosis element 60 to extract the reactance component by the X component extraction circuit 22, and the AC signal output from the quadrature phase shifter 41.
  • the phase angle is rotated 90 degrees.
  • FIG. 7 is a configuration diagram showing a basic configuration of the impedance measuring device 5b in the second embodiment of the present invention.
  • the fuel cell stack 1 is a measurement object of the impedance measurement device 5b in the present embodiment.
  • the fuel cell stack 1 is a stacked battery in which a plurality of power generation cells are stacked, and is mounted on a vehicle, for example.
  • the fuel cell stack 1 is connected to the load 3 and supplies power to the load 3.
  • the load 3 is, for example, an electric motor or an auxiliary machine of the fuel cell stack 1.
  • the auxiliary equipment of the fuel cell stack 1 is, for example, a compressor that supplies a cathode gas to the fuel cell stack 1 or a heater that heats the cooling water flowing through the fuel cell stack 1 when the fuel cell stack 1 is warmed up.
  • the control unit (C / U) 6 controls the power generation state of the fuel cell stack 1, the operation state such as the wet state, the internal pressure state, the temperature state, and the operation state of the load 3.
  • the control unit 6 controls the flow rates of the cathode gas and the anode gas supplied to the fuel cell stack 1 according to the required power required from the load 3, for example. Further, in the fuel cell stack 1, when the electrolyte membrane is in a dry state, the power generation performance is degraded. As a countermeasure, the control unit 6 uses the internal resistance value of the fuel cell stack 1 correlated with the wetness of the electrolyte membrane so that the electrolyte membrane does not become dry or excessively wet. Adjust the cathode gas flow rate.
  • the control unit 6 is provided with an operation switch unit 6a for starting the fuel cell system, a temperature sensor 6b for detecting the ambient temperature of the fuel cell stack 1, and the like.
  • the impedance measuring device 5b measures the internal impedance of the fuel cell stack 1.
  • the impedance measuring device 5 b measures the resistance component R and reactance capacitance component C of the fuel cell stack 1, and transmits the measured values of the resistance component R and capacitance component C to the control unit 6.
  • the control unit 6 receives the measured value of the resistance component R of the fuel cell stack 1 from the impedance measuring device 5b, the control unit 6 controls the wet state of the fuel cell stack 1 based on the measured value of the resistance component R.
  • control unit 6 receives the measurement value of the capacity component C of the fuel cell stack 1 from the impedance measurement device 5b, the anode gas supplied to the fuel cell stack 1 is insufficient based on the measurement value of the capacity component R. It is determined whether or not it is in a state.
  • the impedance measuring device 5b includes a positive side DC cutoff unit 511, a negative side DC cutoff unit 512, a midpoint DC cutoff unit 513, a positive side detection unit 521, a negative side detection unit 522, and a positive side power supply unit 531. , A negative power supply unit 532, an AC adjustment unit 540, and a calculation unit 550. Furthermore, the impedance measuring device 5b includes a diagnosis control unit 580 corresponding to the diagnosis control unit 80 shown in FIG.
  • the positive side DC blocking unit 511 is connected to the positive terminal 211 of the fuel cell stack 1.
  • the negative electrode side DC blocking unit 512 is connected to the negative electrode terminal 212 of the fuel cell stack 1.
  • the midpoint DC blocking unit 513 is connected to the midpoint terminal 213 of the fuel cell stack 1.
  • the midpoint terminal 213 is connected to a power generation cell located in the middle of the plurality of power generation cells stacked from the positive electrode terminal 211 to the negative electrode terminal 212.
  • the midpoint terminal 213 may be connected to a power generation cell at a position off the midpoint between the positive terminal 211 and the negative terminal 212.
  • DC blocking units 511 to 513 block a DC signal and allow an AC signal to flow.
  • the DC blockers 511 to 513 are realized by, for example, capacitors or transformers. Note that the midpoint DC blocking unit 513 indicated by a broken line can be omitted.
  • the positive electrode side detection unit 521 detects a potential difference between the AC potential Va generated at the positive electrode terminal 211 and the AC potential Vc generated at the midway terminal 213 (hereinafter referred to as “AC potential difference V1”).
  • the positive electrode side detection unit 521 outputs a detection signal whose value changes according to the vibration of the AC potential difference V1 to the calculation unit 550. For example, the value of the detection signal increases as the AC potential difference V1 increases, and the value of the detection signal decreases as the AC potential difference V1 decreases.
  • the first input terminal is connected to the positive electrode terminal 211 via the positive electrode side DC cutoff unit 511
  • the second input terminal is connected to the midpoint terminal 213 via the midpoint DC cutoff unit 513.
  • the negative electrode side detection unit 522 detects a potential difference (hereinafter referred to as “AC potential difference V2”) between the AC potential Vb generated at the negative electrode terminal 212 and the AC potential Vc generated at the midway terminal 213.
  • the negative electrode side detection unit 522 outputs a detection signal indicating the AC potential difference V2 to the calculation unit 550.
  • the first input terminal is connected to the negative electrode terminal 212 via the negative electrode side DC blocking unit 512
  • the second input terminal is connected to the midpoint terminal 213 via the midpoint DC blocking unit 513.
  • the positive electrode side detection unit 521 and the negative electrode side detection unit 522 are realized by, for example, a differential amplifier (instrumentation amplifier).
  • the positive power supply unit 531 is a power supply circuit that outputs an alternating current having a reference frequency fb.
  • the positive power supply unit 531 is realized by a voltage-current conversion circuit such as an operational amplifier (OP amplifier).
  • This voltage-current conversion circuit is used as a variable AC current source capable of adjusting the output current Io according to the input voltage Vi.
  • the output current Io can be obtained by the input voltage Vi ⁇ proportional constant Rs without actually measuring the output current Io.
  • the current Io can be obtained.
  • the negative power supply unit 532 has the same configuration. That is, the negative power supply unit 532 is a power supply circuit that outputs an alternating current having a reference frequency fb.
  • the AC adjustment unit 540 determines the amplitude of the AC current output from at least one of the positive power supply unit 531 and the negative power supply unit 532 so that the positive AC potential Va and the negative AC potential Vb coincide with each other. Adjust.
  • the AC adjustment unit 540 determines the amplitude of the AC current output from the positive power supply unit 531 and the negative power supply so that the amplitude levels of the positive AC potential difference V1 and the negative AC potential difference V2 are equal. Both the amplitude of the alternating current output from the unit 532 is increased or decreased.
  • the AC adjustment unit 540 is realized by, for example, a PI (Proportional Integral) control circuit.
  • the AC adjustment unit 540 sends the current command signals for the positive power supply unit 531 and the negative power supply unit 532 to the calculation unit 550 as AC currents I1 and I2 output from the positive power supply unit 531 and the negative power supply unit 532. Output.
  • the AC adjustment unit 540 includes a positive-side detection circuit 5411, a positive-side subtractor 5421, a positive-side integration circuit 5431, a positive-side multiplier 5441, a negative-side detection circuit 5412, a negative-side subtractor 5422, and a negative-side An integration circuit 5432 and a negative side multiplier 5442 are included.
  • the AC adjustment unit 540 includes a reference power source 545 and an AC signal source 546a.
  • the reference power source 545 outputs a reference potential (hereinafter referred to as “reference voltage Vs”) set in order to match the positive-side AC potential difference V1 and the negative-side AC potential difference V2.
  • the reference voltage Vs is a value determined by experiments or the like.
  • the AC signal source 546a is an oscillation source that oscillates an AC signal having the reference frequency fb, and corresponds to the oscillation circuit 40a shown in FIG.
  • the AC signal source 546a is a circuit capable of changing the phase of the AC signal, and the phase of the AC signal output from the AC signal source 546a is controlled by the diagnosis control unit 580.
  • the reference frequency fb is set to a predetermined frequency suitable for measuring the internal impedance of the fuel cell stack 1. For example, when the wet state of the electrolyte membrane of the fuel cell stack 1 is detected, the reference frequency fb is set to 1 kHz (kilohertz), for example, in order to measure the resistance component R correlated with the wet state of the electrolyte membrane. The In addition, when detecting a hydrogen shortage state in the fuel cell stack 1, the reference frequency fb is set to a frequency lower than 1 kHz, for example, in order to measure the capacitance component C correlated with the hydrogen shortage state.
  • 1 kHz kilohertz
  • the positive-side detection circuit 5411 When the positive-side detection circuit 5411 receives the detection signal indicating the AC potential difference V1 output from the positive-side detection unit 521, the positive-side detection circuit 5411 removes unnecessary signals included in the detection signal and makes the detection signal proportional to the amplitude of the AC potential difference V1. Convert to DC signal. For example, the positive detector circuit 5411 outputs the average value or effective value of the detection signal as a DC signal proportional to the amplitude of the AC potential difference V1.
  • the positive detection circuit 5411 is realized by a synchronous detection circuit.
  • the positive-side detection circuit 5411 extracts a real part component that is a resistance component of the AC potential difference V1 and an imaginary part component that is a capacitance component of the AC potential difference V1, and a vector of the AC potential difference V1 based on the real part component and the imaginary part component.
  • a vector value V1p indicating the magnitude of is calculated.
  • the positive detection circuit 5411 outputs the vector value V1p to the positive subtractor 5421 as a DC signal proportional to the amplitude of the AC potential difference V1.
  • the average value or effective value of the detection signals When the average value or effective value of the detection signals is used, if the phase difference between the AC potential difference V1 and the AC potential difference V2 increases, even if the amplitudes of the AC potential differences V1 and V2 are the same, the actual AC potential difference V1 or V2 is not detected. Since the partial component is small, the amplitude of the alternating current I1 or I2 may be excessively increased or decreased. On the other hand, by using the vector value V1p, the amplitude component of the AC potential difference V1 or V2 can be accurately obtained, so that the amplitudes of the AC currents I1 and I2 can be accurately adjusted.
  • the detailed configuration of the positive detection circuit 5411 will be described later with reference to the next drawing.
  • the positive side subtractor 5421 calculates a difference signal indicating a deviation width of the vector value Vp1 from the reference voltage Vs by subtracting the reference voltage Vs from the vector value Vp1 of the AC potential difference V1 detected by the positive side detection circuit 5411. .
  • the signal level of the differential signal increases as the deviation width from the reference voltage Vs increases.
  • the positive side integration circuit 5431 integrates the difference signal output from the positive side subtracter 5421 to average or adjust the sensitivity of the difference signal. Then, the positive side integration circuit 5431 outputs the integrated difference signal to the positive side multiplier 5441.
  • the positive-side multiplier 5441 multiplies the AC signal of the reference frequency fb output from the AC signal source 546a by the difference signal, thereby generating the AC voltage signal so that the amplitude of the AC potential difference V1 converges to the reference voltage Vs. Generate. As the signal level of the differential signal increases, the amplitude of the AC voltage signal increases.
  • the positive-side multiplier 5441 outputs the generated AC voltage signal as a current command signal to the positive-side power supply unit 531 shown in FIG.
  • the AC voltage signal Vi input to the positive power supply unit 531 is converted into an AC current signal Io by the positive power supply unit 531 and output to the positive terminal 211 of the fuel cell stack 1.
  • the AC current I1 output from the positive power supply unit 531 is generated. That is, by shifting the phase of the AC signal output from the AC signal source 546a, the phase of the AC current I1 output from the positive power supply unit 531 is similarly shifted.
  • the negative-polarity detection circuit 5412, the negative-polarity subtractor 5422, the negative-polarity integration circuit 5432, and the negative-polarity multiplier 5442 are respectively a positive-polarity detection circuit 5411, a positive-polarity subtracter 5421, a positive-polarity integration circuit 5431, and a positive-polarity multiplication.
  • the configuration is similar to that of the instrument 5441.
  • the AC adjustment unit 540 adjusts the amplitude of the AC current I1 output from the positive power source unit 531 so that the amplitude of the AC potential difference V1 becomes the reference voltage Vs. Similarly, the AC adjustment unit 540 adjusts the amplitude of the AC current I2 output from the negative power supply unit 532 so that the amplitude of the AC potential difference V2 becomes the reference voltage Vs.
  • the positive polarity detection circuit 5411 includes an R component extraction circuit 21, an X component extraction circuit 22, a vector calculation unit 23, a quadrature phase shifter 41, and AC signal sources 546b and 546c. Note that the R component extraction circuit 21, the X component extraction circuit 22, and the quadrature phase shifter 41 are the same as those shown in FIG.
  • AC signal sources 546b and 546c correspond to the oscillation circuits 40b and 40c shown in FIG. 1, respectively.
  • the AC signal sources 546b and 546c are both oscillation sources that oscillate an AC signal having the reference frequency fb.
  • the phases of the AC signals output from the AC signal sources 546b and 546c coincide with the phases of the AC signals output from the AC signal source 546a shown in FIG.
  • the AC signal sources 546b and 546c are circuits that can change the phase of the AC signal, and the phase of the AC signal output from the AC signal sources 546b and 546c can be controlled by the diagnosis control unit 580. Further, the output signals of the AC signal sources 546b and 546c may be shifted in phase from the output signal of the AC signal source 546a in consideration of a capacitance component parasitic in the impedance measuring device 5.
  • the R component extraction circuit 21 extracts the real part component of the AC potential difference V1 based on the AC signal from the AC signal source 546.
  • the R component extraction circuit 21 outputs the extracted real axis component to the calculation unit 550 and the vector calculation unit 23 as the resistance component V1r of the AC potential difference V1.
  • the X component extraction circuit 22 extracts the imaginary part component of the AC potential difference V1 based on the AC signal from the quadrature phase shifter 41, that is, the AC signal whose phase is orthogonal to the AC signal from the AC signal source 546.
  • the X component extraction circuit 22 outputs the extracted imaginary part component to the calculation unit 550 and the vector calculation unit 23 as the reactance component V1x of the AC potential difference V1.
  • the vector calculation unit 23 calculates the vector value V1p of the AC potential difference based on the real part component V1r and the imaginary part component V1x. Specifically, the vector calculation unit 230 calculates the square value of the sum of the square value of the real part component V1r and the square value of the imaginary part component V1x as shown in the following equation (1) to obtain the vector value V1p.
  • the vector calculation unit 23 outputs the calculated AC potential difference vector value V1p to the positive-side subtractor 5421.
  • the positive electrode side detection circuit 5411 detects the resistance component V1r and the reactance component V1x of the AC potential difference, respectively. Then, the positive electrode side detection circuit 5411 reproduces the vector value V1p of the AC potential difference and outputs it to the positive electrode side subtracter 5421. Note that the negative electrode side detection circuit 5412 has the same configuration as the positive electrode side detection circuit 5411.
  • the in-phase multiplier 21a includes resistance elements Ra to Rc, an operational amplifier 31, and a switch 32.
  • the resistance element Ra and the resistance element Rb are provided to adjust the magnitude of the current supplied from the positive electrode side detection unit 521.
  • the resistance element Rc is provided to adjust the amplification factor of the operational amplifier 31.
  • Both one end of the resistance element Ra and one end of the resistance element Rb are connected to the output terminal of the positive electrode side detection unit 521.
  • the other end of the resistor element Ra is connected to the inverting input terminal ( ⁇ ) of the operational amplifier 31 and one end of the resistor element Rc.
  • the other end of the resistance element Rc is connected to the output terminal of the operational amplifier 31.
  • the other end of the resistance element Rb is connected to the non-inverting input terminal (+) of the operational amplifier 31 and one contact terminal of the switch 32. The other contact terminal of the switch 32 is grounded.
  • an AC signal from the AC signal source 546b or a pulse signal (rectangular wave) synchronized with the AC signal is input.
  • the switch 32 switches the non-inverting input terminal (+) of the operational amplifier 31 to the ground or non-ground state according to the AC signal having the reference frequency fb.
  • the switch 32 when the AC signal supplied to the control terminal of the switch 32 is larger than zero, the switch 32 is connected (ON), and the non-inverting input terminal (+) of the operational amplifier 31 is grounded. In this state, since the operational amplifier 31 functions as an inverting amplifier that multiplies the input signal by “ ⁇ 1”, an inverted voltage signal in which the sign of the AC potential difference V1 is inverted is output from the operational amplifier 31.
  • the switch 32 is cut off (OFF), and the non-inverting input terminal (+) of the operational amplifier 31 is not grounded.
  • the operational amplifier 31 functions as a non-inverting amplifier that multiplies the input signal by “+1”, a non-inverting voltage signal in which the sign of the AC potential difference V1 is not inverted is output from the operational amplifier 31.
  • the quadrature multiplier 22a has the same configuration as the in-phase multiplier 21a.
  • the alternating current potential signal V1 is full-wave rectified by the operational amplifier 31 to be in phase. It is output to the low-pass filter 21b.
  • the common-mode low-pass filter 21b includes resistance elements R11 to R13 and capacitance elements C11 to C13. One end of the resistor element R11 is connected to the output terminal of the in-phase multiplier 21a, and the other end of the resistor element R11 is connected to one end of the capacitor element C11. The other end of the capacitive element C11 is grounded.
  • the in-phase AC signal is rectified by the in-phase low-pass filter 21b and output as a resistance component V1r of the AC potential difference.
  • the quadrature low-pass filter 22b has the same configuration as the in-phase low-pass filter 21b.
  • the computing unit 550 corresponds to the computing unit 50 shown in FIG.
  • the computing unit 550 acquires the positive-side AC potential difference resistance component V1r and reactance component V1x from the positive-side detection circuit 5411, and acquires the negative-side AC potential difference resistance component V2r and reactance component V2x from the negative-side detection circuit 5412. .
  • the calculation unit 550 acquires current command signals for the positive power supply unit 531 and the negative power supply unit 532 as alternating currents I1 and I2.
  • the calculating part 550 calculates the resistance component R1 of the positive electrode side which the fuel cell stack 1 has based on the amplitude of the alternating current I1 of the positive electrode side and the resistance component V1r of the AC potential difference. At the same time, the calculation unit 550 calculates the reactance component C1 on the positive electrode side of the fuel cell stack 1 based on the amplitude of the alternating current I1 on the positive electrode side and the reactance component V1x of the AC potential difference.
  • the calculation unit 550 calculates the resistance component R2 on the negative electrode side of the fuel cell stack 1 based on the amplitude of the negative current AC current I2 and the resistance component V2r of the AC potential difference. At the same time, the calculation unit 550 calculates the reactance component C2 on the negative electrode side of the fuel cell stack 1 based on the amplitude of the negative-current AC current I2 and the reactance component V2x of the AC potential difference.
  • the calculation unit 550 includes an AD (Analog Digital) converter 551 and a microcomputer chip 552.
  • AD Analog Digital
  • the AD converter 551 converts the current command signals (I1, I2) and the AC potential difference signals (V1, V2), which are analog signals, into digital numerical signals and transfers them to the microcomputer chip 552.
  • the microcomputer chip 552 stores in advance a program for calculating the resistance component Rn and the resistance component R of the entire fuel cell stack 1.
  • the microcomputer chip 552 sequentially calculates the resistance component R at a predetermined minute time interval or outputs the calculation result in response to a request from the control unit 6.
  • the resistance component Rn and the resistance component R of the entire fuel cell stack 1 are calculated by the following equations.
  • the reactance component Xn and the reactance component X of the entire fuel cell stack 1 are calculated by the following equations.
  • the calculation unit 550 is realized by an analog calculation circuit using an analog calculation IC, for example. By using the analog arithmetic circuit, it is possible to output a temporally continuous change in resistance value to the control unit 6.
  • the control unit 6 receives the resistance component R and the reactance component X output from the calculation unit 550 as the measurement result of the impedance measuring device 5b.
  • the control unit 6 controls the operating state of the fuel cell stack 1 according to the measurement result.
  • the control unit 6 determines that the electrolyte membrane of the fuel cell stack 1 is dry, and reduces the flow rate of the cathode gas supplied to the fuel cell stack 1. Thereby, the moisture taken out from the fuel cell stack 1 can be reduced.
  • FIG. 14 is a flowchart illustrating an example of a control method when equipotential control performed by the AC adjustment unit 540 is realized by a controller.
  • step S101 the controller determines whether or not the positive AC potential Va is greater than a predetermined value. If the determination result is negative, the controller proceeds to step S102, and if the determination result is positive, the controller proceeds to step S103.
  • step S102 the controller determines whether or not the positive AC potential Va is smaller than a predetermined value. If the determination result is negative, the controller proceeds to step S104, and if the determination result is positive, the controller proceeds to step S105.
  • step S103 the controller reduces the output of the positive power supply unit 531. That is, the controller decreases the amplitude of the alternating current I1. As a result, the positive AC potential Va decreases.
  • step S104 the controller maintains the output of the positive power supply unit 531. As a result, the positive AC potential Va is maintained.
  • step S105 the controller increases the output of the positive power supply unit 531. As a result, the positive AC potential Va increases.
  • step S106 the controller determines whether or not the negative AC potential Vb is greater than a predetermined value. If the determination result is negative, the controller proceeds to step S107, and if the determination result is positive, the controller proceeds to step S108.
  • step S107 the controller determines whether or not the negative AC potential Vb is smaller than a predetermined value. If the determination result is negative, the controller proceeds to step S109, and if the determination result is positive, the controller proceeds to step S110.
  • step S108 the controller reduces the output of the negative power supply unit 532. As a result, the negative AC potential Vb decreases.
  • step S109 the controller maintains the output of the negative power supply unit 532. As a result, the negative AC potential Vb is maintained.
  • step S110 the controller increases the output of the negative power supply unit 532. This increases the negative AC potential Vb.
  • step S111 the controller determines whether or not the AC potential Va and the AC potential Vb are predetermined values. If the determination result is positive, the controller proceeds to step S112. If the determination result is negative, the controller exits the process.
  • step S112 the controller calculates the resistance component R based on the above equations (2-1) and (2-2), and reactance based on the above equations (3-1) and (3-2).
  • the component X is calculated.
  • FIG. 14 is a time chart when the controller executes equipotential control performed by the AC adjustment unit 540. Note that step numbers are also shown so that the correspondence with the flowchart is easy to understand.
  • the controller starts control.
  • the controller proceeds from step S101 ⁇ S102 ⁇ S104 ⁇ S106 ⁇ S107 ⁇ S109 ⁇ S111 ⁇ S112 is processed.
  • the positive side alternating current I1 and the negative side alternating current I2 are maintained.
  • the resistance value R1 on the positive electrode side and the resistance value R2 on the negative electrode side are calculated.
  • the resistance value R1 on the positive electrode side and the resistance value R2 on the negative electrode side are added together to obtain the entire resistance component R.
  • the controller repeats steps S101 ⁇ S102 ⁇ S104 ⁇ S106 ⁇ S108 ⁇ S111 ⁇ S112.
  • the negative-side AC current I2 decreases as the negative-side resistance value R2 increases, so the negative-side AC potential Vb is maintained at the same level as the positive-side AC potential Va. Therefore, the resistance component R is calculated even in this state.
  • the controller repeats steps S101 ⁇ S102 ⁇ S104 ⁇ S106 ⁇ S107 ⁇ S109 ⁇ S111 ⁇ S112.
  • the positive side AC potential Va and the negative side AC potential Vb are maintained at the same level (FIG. 14C), and the resistance component R is calculated.
  • FIG. 16 is a diagram illustrating the state of the positive electrode potential generated at the positive electrode terminal 211 and the negative electrode potential generated at the negative electrode terminal 212 of the fuel cell stack 1.
  • a DC voltage Vdc output to the load 3 is generated between the positive terminal 211 and the negative terminal 212.
  • the impedance measuring device 5b Before the impedance measuring device 5b is activated (ON), the positive electrode potential and the negative electrode potential are constant, and the DC voltage Vdc is supplied to the load 3. Thereafter, when the impedance measuring device 5b is activated and the alternating currents I1 and I2 are output from the positive power supply unit 531 and the negative power supply unit 532, the alternating current potential Va is superimposed on the positive potential and the alternating potential Vb is superimposed on the negative potential. Is done.
  • the positive power supply unit 531 and the negative power supply unit 532 output AC currents I1 and I2 whose amplitudes are adjusted so that the AC potential differences V1 and V2 coincide with each other.
  • the alternating current I1 output from the positive electrode side power supply unit 531 is supplied to the positive electrode terminal 211 of the fuel cell stack 1 via the positive electrode side direct current cut-off unit 511, and then passes through the intermediate point terminal 213 and the intermediate point direct current cut off unit 513. It is output to the positive electrode side detection unit 521.
  • the AC potential difference V1 is detected by the positive electrode side detection unit 521.
  • the alternating current I2 output from the negative electrode side power supply unit 532 is supplied to the negative electrode terminal 212 of the fuel cell stack 1 via the negative electrode side DC blocking unit 512 and passes through the halfway terminal 213 and the halfway DC blocking unit 513. And output to the negative electrode side detection unit 522.
  • the AC potential difference V2 is detected by the negative electrode side detection unit 522.
  • the AC adjustment unit 540 determines the difference (V1 ⁇ V2) between the AC potential difference V1 on the positive electrode side of the fuel cell stack 1 and the AC potential difference V2 on the negative electrode side, that is, the difference between the AC potential Va and the AC potential Vb (Va ⁇ ).
  • the positive power supply unit 531 and the negative power supply unit 532 are adjusted so that Vb) is always small.
  • the amplitude of the AC component Va having the positive potential is adjusted to be equal to the amplitude of the AC component Vb having the negative potential, so that the DC voltage Vdc is constant without being changed.
  • the calculation unit 550 includes AC potential differences V1 and V2 output from the positive electrode side detection unit 521 and the negative electrode side detection unit 522, and AC currents I1 and I2 output from the positive electrode side power supply unit 531 and the negative electrode side power supply unit 532. Apply Ohm's law using. Thereby, the resistance component R1 on the positive electrode side and the resistance component R2 on the negative electrode side of the fuel cell stack 1, and the reactance component C1 on the positive electrode side and the reactance component C2 on the negative electrode side of the fuel cell stack 1 are calculated.
  • the alternating current potentials of the positive electrode terminal 211 and the negative electrode terminal 212 have the same value, even if the load 3 is connected to the traveling motor or the like with respect to the positive electrode terminal 211 and the negative electrode terminal 212, the alternating current I1 or I2 can be prevented from leaking to the load 3. For this reason, the resistance components R1 and R2 and the reactance components C1 and C2 of the fuel cell stack 1 can be accurately measured by the alternating currents I1 and I2 output from the positive power supply unit 531 and the negative power supply unit 532.
  • the resistance component R of the entire fuel cell stack 1 can be accurately measured based on the measured values of the resistance components R1 and R2 of the fuel cell stack 1 in operation. Further, since the positive power supply unit 531 and the negative power supply unit 532 are used, the resistance component R and the reactance component C can be measured even when the fuel cell stack 1 is stopped.
  • the positive electrode side power supply unit 531 and the negative electrode side power supply unit 532, the positive electrode side detection unit 521, the negative electrode side detection unit 522, the AC adjustment unit 540, and the like of the impedance measuring device 5b are configured by electronic components such as operational amplifiers, that is, analog circuits. Has been. Such electronic components are subject to manufacturing variations, deterioration over time in which performance deteriorates with time, temperature drift in which output values fluctuate as temperature rises, and the like. In connection with this, the precision which measures the impedance which the impedance measuring apparatus 5b has will fall. As a countermeasure, in the present embodiment, in addition to the configuration of the impedance measuring device 5b described above, a diagnostic element for specifying a measurement error is provided.
  • FIG. 17 is a configuration diagram showing a detailed configuration of the impedance measuring device 5b in the present embodiment.
  • the same components as those shown in FIG. 7 are denoted by the same reference numerals, and detailed description thereof is omitted.
  • the signal line 501 includes an input line 501 ⁇ / b> A in which an alternating current I ⁇ b> 1 is input from the positive power supply unit 531 to the positive terminal 211 of the fuel cell stack 1, and an alternating potential Va from the positive terminal 211 to the positive detection unit 521. And an output line 501B to be output.
  • the AC potential Vb is output from the negative power supply unit 532 to the input line 502 ⁇ / b> A where the alternating current I ⁇ b> 2 is input to the negative electrode terminal 212 of the fuel cell stack 1, and from the negative electrode terminal 212 to the negative electrode detection unit 522.
  • Output line 502B is
  • a capacitor 511A is connected to the input line 501A as the DC blocking unit 511 shown in FIG. 7, and a capacitor 511B is connected to the output line 501B as the DC blocking unit 511.
  • a capacitor 512A is connected to the input line 502A as the DC cutoff unit 512
  • a capacitor 512B is connected to the output line 502B as the DC cutoff unit 512.
  • the impedance measuring device 5b includes diagnostic elements 561 and 562, a switching unit 570, and a diagnostic control unit 580 in addition to the basic configuration shown in FIG.
  • the impedance measuring device 5b includes bandpass filters 5211 and 5221.
  • the diagnostic elements 561 and 562 correspond to the diagnostic element 60 shown in FIG. 1, and are any one of a resistor, a capacitor, and a coil for specifying a measurement error caused by an electronic component of the impedance measuring device 5b. It is a passive element. In the present embodiment, the diagnostic elements 561 and 562 are resistors having electrical resistance.
  • Diagnostic element 561 has a resistance of reference value Ref1. Diagnostic element 562 has a resistance of reference value Ref2. In the present embodiment, the reference value Ref1 of the diagnostic element 561 and the reference value Ref2 of the diagnostic element 562 are the same value.
  • the diagnostic element 561 is disposed at a position where it can be connected in parallel to the positive electrode side detection unit 521.
  • the diagnostic element 562 is disposed at a position where it can be connected in parallel to the negative electrode side detection unit 522.
  • the reference values Ref1 and Ref2 are set to values within a range where the resistance components R1 and R2 of the fuel cell stack 1 vary.
  • resistors having 50 m ⁇ (milliohm) are used as the diagnostic elements 561 and 562, for example.
  • the switching unit 570 corresponds to the switch 70 shown in FIG.
  • the switching unit 570 is configured to measure the signal path of the AC signal in the impedance measuring device 5b, the measurement state (battery connection state) for measuring the impedance of the fuel cell stack 1, or the resistance of the diagnostic elements 561 and 562. Switch to the diagnosis state (element connection state).
  • the connection state of the switching unit 570 is controlled by the diagnosis control unit 580.
  • the switching unit 570 connects the positive-side power source unit 531 to the positive-electrode terminal 211, and the resistance component R1 and the capacitance component C1 between the positive-electrode terminal 211 and the halfway-point terminal 213 in the fuel cell stack 1
  • the detection units 521 are connected in parallel.
  • the switching unit 570 connects the negative power source unit 532 to the negative electrode terminal 212, and detects the negative component on the resistance component R2 and the capacitive component C2 between the negative electrode terminal 212 and the halfway terminal 213 in the fuel cell stack 1. 522 are connected in parallel.
  • the switching unit 570 disconnects the positive power source unit 531 from the positive terminal 211 of the fuel cell stack 1 and connects it to the diagnostic element 561, and the diagnostic element 561 is connected in parallel to the positive electrode detection unit 521. Connect to.
  • the switching unit 570 disconnects the negative power supply unit 532 from the negative terminal 212 and connects it to the diagnostic element 562, and connects the diagnostic element 562 to the negative detection unit 522 in parallel.
  • the switching unit 570 includes current path switching devices 571 and 572 and detection target switching devices 573 and 574.
  • the current path switching devices 571 and 572 and the detection target switching devices 573 and 574 are realized by analog switches or relays, for example.
  • the current path switch 571 is connected between the positive power supply unit 531 and the capacitor 511A. Then, the current path switch 571 switches the supply destination of the alternating current I1 output from the positive power supply unit 531 to the positive terminal 211 or the diagnostic element 561 of the fuel cell stack 1.
  • the input terminal is connected to the positive power supply unit 531
  • the first output terminal is connected to the capacitor 511A
  • the second output terminal is connected to the diagnostic element 561.
  • the current path switch 572 is connected between the negative power supply unit 532 and the capacitor 512A.
  • the current path switch 572 switches the supply destination of the alternating current I2 output from the negative power supply unit 532 to the negative terminal 212 or the diagnostic element 562 of the fuel cell stack 1.
  • the input terminal is connected to the negative power supply unit 532
  • the first output terminal is connected to the capacitor 512A
  • the second output terminal is connected to the diagnostic element 562.
  • the detection target switch 573 is connected between the band pass filter 5211 and the positive electrode side detection unit 521.
  • the detection target switching unit 573 selects a detection target connected in parallel to the positive electrode side detection unit 521 as a positive electrode side portion from the positive electrode terminal 211 to the midway terminal 213 of the fuel cell stack 1 or a diagnostic element 561. Switch to.
  • the first input terminal is connected to the band pass filter 5211
  • the second input terminal is connected to the diagnostic element 561
  • the output terminal is connected to the positive electrode side detection unit 521.
  • the detection target switch 574 is connected between the band pass filter 5221 and the negative electrode side detection unit 522.
  • the detection target switching unit 574 switches the detection target connected in parallel to the negative electrode side detection unit 522 to the negative electrode side portion from the negative electrode terminal 212 to the halfway terminal 213 of the fuel cell stack 1 or the diagnostic element 562.
  • the first input terminal is connected to the band pass filter 5221
  • the second input terminal is connected to the diagnostic element 562
  • the output terminal is connected to the negative electrode side detection unit 522.
  • the switching unit 570 connects the positive power supply unit 531 and the positive detection unit 521 to the positive terminal 211 of the fuel cell stack 1, and connects the negative power supply unit 532 and the negative detection unit 522 to the negative terminal 212.
  • the measurement state to be connected is set.
  • the input terminal connected to the positive power supply unit 531 is connected to the first output terminal connected to the capacitor 511A.
  • the alternating current I1 output from the positive power supply unit 531 is supplied to the positive terminal 211 of the fuel cell stack 1.
  • the input terminal connected to the negative power supply unit 532 is connected to the first output terminal connected to the capacitor 511B.
  • the alternating current I2 output from the negative power supply unit 532 is supplied to the negative terminal 212 of the fuel cell stack 1.
  • the output terminal connected to the positive electrode side detection unit 521 is connected to the first input terminal connected to the band pass filter 5211. Accordingly, the resistance component R1 and the capacitance component C1 between the positive electrode terminal 211 and the halfway point terminal 213 of the fuel cell stack 1 are connected in parallel to the positive electrode side detection unit 521.
  • the AC potential Va is output at.
  • the output terminal connected to the negative electrode side detection unit 522 is connected to the first input terminal connected to the band pass filter 5221.
  • the resistance component R2 and the capacitance component C2 between the negative electrode terminal 212 and the halfway point terminal 213 of the fuel cell stack 1 are connected in parallel to the negative electrode side detection unit 522.
  • the AC potential Vb is output at.
  • the diagnosis control unit 580 corresponds to the diagnosis control unit 80 shown in FIG.
  • the state is switched to a measurement state in which the positive power supply unit 531 and the positive electrode detection unit 521 are connected to the positive electrode terminal 211 of the fuel cell stack 1 or a diagnosis state in which the positive power supply unit 531 and the positive electrode detection unit 521 are connected to the diagnostic element 561.
  • diagnosis control unit 580 is in a measurement state in which the negative electrode side power supply unit 532 and the negative electrode side detection unit 522 are connected to the negative electrode terminal 212 of the fuel cell stack 1, or the diagnosis element 562 is connected to the negative electrode side power supply unit 532 and the negative electrode side detection unit 522. Switch to the diagnostic state to connect.
  • the diagnosis control unit 580 is configured to measure the resistance of the diagnostic elements 561 and 562 from the measurement state for measuring the impedance of the fuel cell stack 1 from the connection state of the switching unit 570 at a predetermined diagnosis time. Switch to diagnostic state. Thereby, a diagnostic process for diagnosing the measurement state of the impedance measuring device 5b is performed.
  • the diagnosis control unit 580 calculates a diagnosis execution signal for specifying the measurement error of the resistance component R and the reactance component X using the diagnosis elements 561 and 562. Output to the unit 550.
  • the diagnosis control unit 580 outputs the diagnosis execution signal to the calculation unit 550, and then specifies the phase of the AC signal output from the AC signal source 546a shown in FIG. Shift.
  • the computing unit 550 calculates the resistance values of the diagnostic elements 561 and 562 as the reactance component X
  • the diagnostic control unit 580 restores the phase of the output signal of the AC signal source 546a.
  • the arithmetic unit 550 executes a diagnosis process for calculating a measurement error caused by the electronic component of the impedance measuring device 5b using the diagnosis elements 561 and 562.
  • the arithmetic unit 550 acquires the resistance component V1r of the AC potential difference signal generated in the diagnostic element 561 from the R component extraction circuit 21 of the positive electrode side detection circuit 5411, and acquires the output current I1 of the positive electrode side power supply unit 531. . Then, the calculation unit 550 calculates the resistance value of the diagnostic element 561 as the measured value R1m based on the acquired resistance component V1r and the output current I. The calculation unit 550 calculates the measurement error of the resistance component R1 based on the calculated measurement value R1m and the reference value Ref1 held in the memory 559.
  • the calculation unit 550 acquires the resistance component V2r of the AC potential difference signal generated in the diagnostic element 562 from the R component extraction circuit 21 of the negative electrode side detection circuit 5412, and acquires the output current I2 of the negative electrode side power supply unit 532. Then, the arithmetic unit 550 calculates the resistance value of the diagnostic element 562 as the measured value R2m based on the acquired resistance component V2r and the output current I2. The computing unit 550 calculates the measurement error of the resistance component R2 based on the calculated measurement value Rm2 and the reference value Ref2 held in the memory 559.
  • the X component extraction circuit 22 of the positive detection circuit 5411 detects the AC potential difference generated in the diagnosis element 561.
  • the resistance component V1r is extracted as the reactance component V1x.
  • the X component extraction circuit 22 of the negative-side detection circuit 5412 extracts the resistance component V2r of the AC potential difference generated in the diagnostic element 562 as the reactance component V2x.
  • the calculation unit 550 acquires the extracted reactance components V1x and V2x, and calculates the reactance values of the diagnostic elements 561 and 562 as measured values X1m and X2m based on the acquired reactance components V1x and V2x and the output current I1. .
  • the calculation unit 550 calculates measurement errors of the inductance components X1 and X2 based on the calculated measurement values X1m and X2m and the reference values Ref1 and Ref2 of the memory 559.
  • the calculation unit 550 records the measured values R1m and R2m of the resistance component and the measured values X1m and X2m of the reactance component in the memory 559.
  • the diagnosis control unit 580 outputs the measurement execution signal instead of the diagnosis execution signal when the phase of the output signal of the AC signal source 546a is restored and the connection state of the switching unit 570 is switched to the measurement state. .
  • the calculation unit 550 When the calculation unit 550 receives the measurement execution signal from the diagnosis control unit 580, the calculation unit 550 executes a correction process for correcting the measurement result based on the measurement value held in the memory 559. Details of the correction processing will be described later with reference to FIG.
  • the phase of the AC signal source 546a is manipulated, but the present invention is not limited to this.
  • the phase of the AC signal source 546 c may be manipulated.
  • the phase of at least one of the AC signal sources 546a and 546b may be manipulated.
  • the band pass filters 5211 and 5221 are arranged between the capacitors 511B and 512B and the detection target switching devices 573 and 574.
  • the band pass filters 5211 and 5221 are the detection target switching devices 573 and 574. May be disposed between the positive electrode side detection unit 521 and the negative electrode side detection unit 522.
  • FIG. 18 is a diagram illustrating a connection state of the switching unit 570 when diagnosing the impedance measuring device 5b.
  • the input terminal connected to the positive power supply unit 531 is switched from the first output terminal connected to the capacitor 511A to the second output terminal connected to the diagnostic element 561.
  • the alternating current I1 output from the positive power supply unit 531 is supplied to the diagnostic element 561.
  • the input terminal connected to the negative power supply unit 532 is switched from the first output terminal connected to the capacitor 511B to the second output terminal connected to the diagnostic element 562.
  • the alternating current I2 output from the negative power supply unit 532 is supplied to the diagnostic element 562.
  • the output terminal connected to the positive electrode side detection unit 521 is switched from the first input terminal connected to the band pass filter 5211 to the second input terminal connected to the diagnostic element 561.
  • the diagnostic element 561 is connected in parallel to the positive electrode side detection unit 521, the AC potential difference V 1 generated by the diagnostic element 561 is detected by the positive electrode side detection unit 521, and the AC potential difference V 1 is supplied to the AC adjustment unit 540. Is output.
  • the output terminal connected to the negative electrode side detection unit 522 is switched from the first input terminal connected to the band pass filter 5221 to the second input terminal connected to the diagnostic element 562.
  • the diagnostic element 562 is connected in parallel to the negative electrode side detection unit 522, the AC potential difference V2 generated by the diagnostic element 562 is detected by the negative electrode side detection unit 522, and the AC potential difference V2 is supplied to the AC adjustment unit 540. Is output.
  • the AC adjustment unit 540 includes the AC current I1 output from the positive power supply unit 531 and the negative power supply unit 532 so that the AC potential difference V1 generated in the diagnostic element 561 and the AC potential difference V2 generated in the diagnostic element 562 are equal to each other. Adjust the amplitude of I2.
  • the calculation unit 550 receives a current command signal corresponding to the AC current I1 and a current command signal corresponding to the AC current I2 from the AC adjustment unit 540. At the same time, the arithmetic unit 550 receives the positive-side AC potential difference resistance component V1r and the reactance component V1x from the positive-side detection circuit 5411, and the negative-side AC potential difference resistance component V2r and the reactance component from the negative-side detection unit 522. V2x is received.
  • the calculation unit 550 calculates the resistance value of the diagnostic element 561 based on the AC current I1 and the resistance component V1r of the AC potential difference, and holds the resistance value as the measured value Rm1, as shown in the equation (2-1). Further, calculation unit 550 calculates a resistance value of diagnostic element 562 based on AC current I2 and resistance component V2r of the AC potential difference, and holds the resistance value as measured value Rm2.
  • calculation unit 550 calculates the resistance value of the diagnostic element 562 based on the AC current I1 and the reactance component V1x of the AC potential difference, and holds the resistance value as the measured value Xm2, as shown in Expression (3-1). . Further, calculation unit 550 calculates a resistance value of diagnostic element 562 based on AC current I2 and reactance component V2x of the AC potential difference, and holds the resistance value as measured value Xm2.
  • the calculation unit 550 calculates the difference between the measured value R1m of the diagnostic element 561 and the reference value Ref1 as a measurement error of the resistance component R1, and calculates the difference between the measured value Rm2 of the diagnostic element 562 and the reference value Ref2 as a resistance. Calculated as the measurement error of component R2.
  • the calculation unit 550 calculates the difference between the measured value X1m of the diagnostic element 561 and the reference value Ref1 as a measurement error of the reactance component X1, and calculates the difference between the measured value Xm2 of the diagnostic element 562 and the reference value Ref2 as the reactance component X2. Is calculated as the measurement error.
  • the calculation unit 550 diagnoses whether the measurement state of the impedance measuring device 5b is good or bad based on the measurement errors of the resistance components R1 and R2, and transmits a diagnosis result regarding the measurement state of the resistance component R to the control unit 6. Further, the calculation unit 550 diagnoses whether the measurement state of the impedance measuring device 5b is good or bad based on the measurement errors of the reactance components X1 and X2, and transmits the diagnosis result regarding the measurement state of the reactance component X to the control unit 6. To do.
  • the arithmetic unit 550 determines whether or not the measurement error of the diagnostic element 561 and the measurement error of the diagnostic element 562 exceed a predetermined allowable error range. The arithmetic unit 550 determines that the measurement state of the impedance measuring device 5b is good when the measurement errors of the diagnostic elements 561 and 562 are both within the allowable error range. That is, it is determined that the impedance measurement accuracy has not decreased due to manufacturing variations or deterioration with time of electronic components provided in the impedance measuring device 5b.
  • the calculation unit 550 When it is determined that the measurement state of the impedance measuring device 5b is good, the calculation unit 550 outputs a diagnosis end signal indicating that the diagnosis is completed to the diagnosis control unit 580.
  • the diagnosis control unit 580 receives the diagnosis end signal, the diagnosis control unit 580 switches the connection state of the switching unit 570 from the diagnosis state to the measurement state illustrated in FIG.
  • the calculation unit 550 calculates the resistance component R and the reactance component X of the fuel cell stack 1 in a state where the AC potential difference V1 and the AC potential difference V2 are controlled to be equal to each other by equipotential control, and the calculation result is the control unit. 6 to send.
  • the calculation unit 550 determines that the measurement state of the impedance measuring device 5b is defective. That is, it is determined that the impedance measurement accuracy is reduced due to manufacturing variations of electronic components provided in the impedance measuring device 5b, deterioration with time, and the like.
  • the calculation unit 550 stops outputting the diagnosis end signal to the diagnosis control unit 580, for example, and switches the switching unit 570 to the measurement state. Prohibit that.
  • the calculation unit 550 outputs a diagnosis end signal to the diagnosis control unit 580, switches the switching unit 570 to the measurement state, and determines the resistance of the fuel cell stack 1 based on the measurement error of the diagnostic elements 561 and 562 calculated at the time of diagnosis.
  • the measurement result of component R may be corrected.
  • the calculation unit 550 adds the measurement error of the diagnostic element 561 to the resistance component R1 that is the measurement result, and also adds the measurement error of the diagnostic element 562 to the resistance component R2.
  • the resistance component R is calculated by adding the measurement error.
  • the calculation unit 550 may correct the measurement result by adding the average value of the measurement error of the diagnostic element 561 and the measurement error of the diagnostic element 562 to the measurement value of the resistance component R.
  • the calculation unit 550 switches the switching unit 570 to the measurement state and adds the measurement error of the diagnostic elements 561 and 562 to the measurement result to the control unit 6. You may send it.
  • the resistance component R and the capacity component C of the fuel cell stack 1 change according to the power generation state of the fuel cell stack 1.
  • the alternating currents I1 and I2 also change due to equipotential control, so that the measurement error also changes.
  • a method for correcting the measurement result in accordance with such fluctuations of the resistance component R and the capacitance component C will be described with reference to the next figure.
  • FIG. 19 is an explanatory diagram illustrating an example of a correction method for correcting the resistance component R of the impedance calculated by the calculation unit 550.
  • FIG. 19 shows a reference characteristic representing a reference value Ref1 of resistance of the diagnostic element 561 and a measurement characteristic determined by the resistance value R1m of the diagnostic element 561 as a measurement result.
  • the calculation unit 550 is based on the output signal V1r of the R component extraction circuit 21 of the positive-side detection circuit 5411 illustrated in FIG. A measured value R1m of the resistance value component of 561 is calculated. And the calculating part 550 calculates the inclination a of the straight line which approximates the measurement characteristic of following Formula (4) using measured value R1m.
  • the calculation unit 550 calculates the resistance component R1 on the positive electrode side of the fuel cell stack 1 based on the output signal Vr of the R component extraction circuit 21.
  • the arithmetic unit 550 calculates the correction amount Z by subtracting the measurement characteristic specified by the above expression (4) from the reference characteristic as in the following expression (5).
  • the calculation unit 550 calculates the correction amount Z by substituting the calculated resistance component R1 into the measured value X in the equation (5).
  • the computing unit 50 corrects the resistance component R1 on the positive electrode side of the fuel cell stack 1 by adding the calculated correction amount Z to the resistance component R1.
  • the arithmetic unit 550 uses the resistance value R1m of the diagnostic element 561 to correct the measurement result according to the variation of the resistance component R1 of the fuel cell stack 1 that is the measurement object. Similarly, the calculation unit 550 corrects the resistance component R2 on the negative electrode side using the resistance value R2m of the diagnostic element 562. Although the method for correcting the resistance component R has been described here, the same applies to the case where the reactance component X is corrected. Thereby, the measurement accuracy of the impedance measuring device 5b can be further increased.
  • FIG. 20 is a flowchart showing an example of a processing method of the impedance measuring apparatus 5b in the present embodiment.
  • the diagnosis control unit 580 determines whether or not it is a diagnosis time for the impedance measuring device 5b to diagnose its own state.
  • the diagnosis control unit 580 supplies a diagnosis execution signal to the calculation unit 550 when determining that the diagnosis time has come.
  • the diagnosis control unit 580 supplies a measurement execution signal to the calculation unit 550 instead of the diagnosis execution signal.
  • step S202 when the diagnosis time comes, the diagnosis control unit 580 controls the current path switchers 571 and 572 so that the positive power supply unit 531 and the negative power supply unit 532 are connected to the diagnostic elements 561 and 562, respectively. Connecting. At the same time, the diagnosis control unit 580 controls the detection target switching devices 573 and 574 to connect the diagnosis elements 561 and 562 in parallel to the positive electrode side detection unit 521 and the negative electrode side detection unit 522, respectively.
  • the diagnosis control unit 580 supplies the alternating currents I1 and I2 to the diagnostic elements 561 and 562, respectively, so that the AC potential differences V1 and V2 generated in the diagnostic elements 561 and 562 are obtained. Switch to the diagnostic state to detect.
  • step S203 the diagnosis control unit 580 sets the alternating currents I1 and I2 output from the positive power supply unit 531 and the negative power supply unit 532 to initial values.
  • the initial values of the alternating currents I1 and I2 are set based on the current values of the alternating currents I1 and I2 when the alternating current potential difference V1 and the alternating current potential difference V2 match in the diagnosis state.
  • diagnosis control unit 580 switches the reference value Vs of the reference power source 545 shown in FIG. 10 to the vector value Vp1 output from the vector calculation unit 23 shown in FIG. 11 as an initial value.
  • the diagnosis time can be shortened.
  • the alternating current potential differences V1 and V2 are detected from the positive electrode side detection unit 521 and the negative electrode side detection unit 522. 5411 and the negative electrode side detection circuit 5412.
  • step S204 upon receiving the diagnosis execution signal from the diagnosis control unit 580, the calculation unit 550 measures the resistance values R1m and R2m of the diagnosis elements 561 and 562, respectively.
  • the arithmetic unit 550 uses the alternating currents I1 and I2 and the resistance components V1r and V2r of the AC potential difference as shown in the equation (2-1) to calculate the resistance value R1m of the diagnostic element 561 and the diagnostic element 562.
  • the resistance value R2m is calculated.
  • step S205 when the resistance values R1m and R2m of the diagnostic elements 561 and 562 are calculated, the diagnosis control unit 580 calculates the phase of the output currents I1 and I2 of the positive power supply unit 531 and the negative power supply unit 532 shown in FIG. To operate. In the present embodiment, the diagnosis control unit 580 shifts the phase of the AC signal output from the AC signal source 546a shown in FIG. 10 by 90 degrees from 0 degrees in the delay direction.
  • the phases of the AC potential difference signals V1 and V2 output from the positive electrode side detection unit 521 and the negative electrode side detection unit 522 are delayed by 90 degrees, so that the X component extraction circuit 22 of the positive electrode side detection circuit 5411 and the negative electrode side detection circuit 5412 Thus, it is possible to extract the AC potential difference generated in the diagnostic elements 561 and 562, respectively.
  • step S206 the arithmetic unit 550 changes reactance values X1m and X2m corresponding to the resistance values of the diagnostic elements 561 and 562 after changing the phases of the alternating currents I1 and I2.
  • the calculation unit 550 acquires the reactance component V1x of the AC potential difference from the X component extraction circuit 22 of the positive electrode side detection circuit 5411 and the reactance component V2x of the AC potential difference from the X component extraction circuit 22 of the negative electrode side detection circuit 5412. To get. Then, the arithmetic unit 550 calculates the resistance values of the diagnostic elements 561 and 562 as reactance values X1m and X2m based on the reactance components V1x and V2x of the AC potential difference.
  • step S207 when the reactance values X1m and X2m are calculated using the diagnostic elements 561 and 562, the diagnosis control unit 580 restores the phases of the alternating currents I1 and I2.
  • the diagnosis control unit 580 sets the phase of the AC signal output from the AC signal source 546a to 0 degrees.
  • step S208 the calculation unit 550 executes a diagnosis process for diagnosing whether or not the measurement state of the impedance measuring device 5b is good.
  • the calculation unit 550 calculates the measurement error between the measurement values R1m and X1m related to the diagnostic element 561 and the reference value Ref1, and calculates the measurement error between the measurement values R2m and X2m related to the diagnostic element 562 and the reference value Ref2. To do. The calculation unit 550 determines whether or not these measurement errors are both within the allowable error range. If both the measurement errors of the diagnostic elements 561 and 562 are within the allowable error range, the arithmetic unit 550 determines that the measurement state of the impedance measuring device 5b is good, and returns to step S201.
  • step S209 when the measurement error of the diagnostic element 561 or 562 is outside the allowable error range, the calculation unit 550 determines that the measurement state is defective and sends a diagnosis result indicating that to the control unit 6. Output. Thereby, the reliability of the impedance measuring device 5b can be ensured.
  • step S201 determines whether it is the diagnosis time. If it is determined in step S201 that it is not the diagnosis time, the process proceeds to step S210.
  • step S210 the diagnosis control unit 580 controls the current path switching units 571 and 572 to connect the positive electrode side power source unit 531 and the negative electrode side power source unit 532 to the positive electrode terminal 211 and the negative electrode terminal 212 of the fuel cell stack 1, respectively. .
  • the diagnosis control unit 580 controls the detection target switching devices 573 and 574 to connect the resistance component R1 between the positive electrode terminal 211 and the halfway point terminal 213 to the positive electrode side detection unit 521, and at the same time, the negative electrode terminal 212. And a resistance component R2 between the halfway point terminal 213 and the negative electrode side detection unit 522.
  • the diagnosis control unit 580 supplies the alternating currents I1 and I2 to the fuel cell stack 1, respectively, and uses the combined component of the resistance component R1 and the capacitance component C1 and the combined component of the resistance component R2 and the capacitance component C2. It switches to the measurement state which detects the alternating current potential difference V1 and V2 which arise. Then, the AC adjustment unit 540 controls the positive power supply unit 531 and the negative power supply unit 532 so that the AC potential differences V1 and V2 are equal to each other, thereby adjusting the amplitudes of the AC currents I1 and I2.
  • the AC potential differences V1 and V2 are input from the positive electrode side detection unit 521 and the negative electrode side detection unit 522 to the positive electrode side detection circuit 5411 and the negative electrode side detection circuit 5412, respectively.
  • the resistance component V1r and reactance component V1x from the positive electrode side detection circuit 5411 and the resistance component V2r and reactance component V2x from the negative electrode side detection circuit 5412 are input to the arithmetic unit 550.
  • current command signals output from the AC adjustment unit 540 to the positive power supply unit 531 and the negative power supply unit 532 are output to the calculation unit 550 as AC currents I1 and I2.
  • step S211 the calculation unit 550 measures the resistance components R1 and R2 of the impedance of the fuel cell stack 1 and the reactance components C1 and C2.
  • the arithmetic unit 550 uses the adjusted AC currents I1 and I2 and the AC voltage difference resistance components V1r and V2r as shown in the equation (2-1), and the resistance components R1 and R2 of the fuel cell stack 1 R2 is calculated. Further, the calculation unit 550 calculates the reactance components X1 and X2 of the fuel cell stack 1 using the adjusted AC currents I1 and I2 and the reactance components V1x and V2x of the AC potential difference as shown in Expression (3-1). To do.
  • step S212 the calculation unit 550 executes a correction process for correcting the measurement result calculated in step S208 using the measurement error calculated in steps S203 and S205.
  • the calculation unit 550 calculates the correction amount Z by inputting the resistance component R1 that is the measurement result to the measurement value X of Equation (5), and calculates the correction amount Z. Add to the resistance component R1. Similarly, correction amounts corresponding to the resistance component R2 and the reactance components X1 and X2 that are measurement results are added.
  • step S213 the calculation unit 550 outputs the corrected measurement result to the control unit 6 that is the transmission destination.
  • the calculation unit 550 calculates the resistance component R of the entire fuel cell stack 1 by synthesizing the corrected resistance components R1 and R2 as shown in Expression (2-2). Further, the calculation unit 550 calculates the reactance component X of the entire fuel cell stack 1 by combining the corrected reactance components X1 and X2 as shown in Expression (3-2). Then, the calculation unit 550 transmits the combined resistance component R and reactance component X to the control unit 6 as measurement results.
  • step S209 When it is determined in step S209 that the measurement error of the diagnostic elements 561 and 562 exceeds the allowable error range, the calculation unit 550 adds measurement data indicating the measurement error to the measurement result. May be generated and transmitted to the control unit 6.
  • step S214 the calculation unit 550 repeatedly executes a series of processing steps from step S201 to step S213 until the operation of the impedance measuring device 5b is stopped (OFF). When the impedance measuring device 5b is stopped, the processing method is terminated.
  • the diagnostic elements 561 and 562 are mounted on each of the two systems of the positive electrode side measurement path and the negative electrode side measurement path.
  • the measurement error caused by the electronic components in both measurement paths is 1 You may make it diagnose by combining one diagnostic element.
  • the positive power supply unit 531 and the positive detection unit 521, and the negative power supply unit 532 and the negative detection unit 522 are sequentially connected to one diagnostic element.
  • the diagnosis control unit 580 disconnects the connection with the positive terminal 211 and connects the positive power supply unit 531 and the positive detection unit 521 to one diagnostic element. Thereafter, the connection with the negative electrode terminal 212 is disconnected, and the negative electrode side power supply unit 532 and the negative electrode side detection unit 522 are connected to the same diagnostic element. This eliminates errors caused by variations between the positive and negative systems, specifically, variations in diagnostic elements and switches, so that the accuracy of measuring measurement errors in each system can be improved.
  • the diagnosis control unit 580 outputs a diagnosis execution signal to the calculation unit 550 in order to diagnose the measurement accuracy of the impedance measurement device 5b at the time of manufacturing, shipping inspection, and periodic inspection of the impedance measurement device 5b. To do. As a result, the diagnosis control unit 580 switches the switching unit 570 to the diagnosis state, and the calculation unit 550 calculates the impedance measurement error of the diagnostic elements 561 and 562.
  • an operator uses the adjustment equipment to perform shipping inspection and calibration of the impedance measuring device 5b.
  • it is programmed to execute diagnostic processing at the time of manufacturing, shipping inspection, and periodic inspection of the impedance measuring device 5b, thereby automatically determining pass / fail of the shipping inspection and periodic inspection and the measurement function. Calibration can be performed.
  • the diagnosis execution signal is output from the operation switch unit 6a shown in FIG.
  • the operation switch unit 6a is a switch or button that can be operated from the outside.
  • the operation switch unit 6a is provided with an inspection switch for executing diagnosis and calibration (correction) of the impedance measuring device 5b.
  • diagnosis and calibration correction
  • An execution signal is output to the control unit 6.
  • the control unit 6 outputs a diagnosis execution signal to the diagnosis control unit 580 via the calculation unit 550.
  • a diagnosis execution signal may be output from the operation switch unit 6a by attaching or removing a jumper wire to or from the operation switch unit 6a.
  • the diagnosis control unit 580 in the diagnosis state, extracts the reactance component X1 using the diagnosis element 561 that is a resistor, the AC current I1 and the positive-side orthogonal shift. The phase of at least one of the output signals of the phase shifter 41 is shifted. Similarly, when the diagnosis control unit 580 extracts the reactance component X2 using the diagnosis element 562 that is a resistor, the diagnosis control unit 580 outputs at least one AC signal of the AC current I2 and the output signal of the negative-phase quadrature phase shifter 41. Shift phase.
  • the diagnosis control unit 580 uses the resistor as the diagnosis element 60 to extract the reactance components V1x and V2x by the X component extraction circuit 22 of both the positive detection circuit 5411 and the negative detection circuit 5412. In the case of extraction, the phase of one AC signal source 546a is shifted by 90 degrees.
  • the diagnosis control unit 580 uses the resistor as the diagnostic element 60 to extract the reactance components V1x and V2x by the X component extraction circuit 22, the diagnosis control unit 580 determines each phase of the AC signal source 546c. Manipulate. Since the output of the AC signal source 546c is smaller than the outputs of the positive power supply unit 531 and the negative power supply unit 532, the phase operation is accompanied by the phase operation as compared with the case of operating the phases of the positive power supply unit 531 and the negative power supply unit 532. The influence of noise can be reduced.
  • the alternating current adjusting unit 540 adjusts the amplitudes of the alternating currents I1 and I2 so that the alternating current potential difference V1 and the alternating current potential difference V2 coincide with each other. Therefore, when the switching unit 570 is switched to the diagnosis state, the diagnosis control unit 580 sets the alternating currents I1 and I2 output from the positive power supply unit 531 and the negative power supply unit 532 to initial values.
  • the fuel cell stack 1 has electrical characteristics such as charge transfer resistance, electric double layer capacity and internal loss resistance related to power generation of the fuel cell.
  • the resistance component R of the fuel cell stack 1 is measured by the impedance measuring device 5b.
  • measurement is performed by changing the frequencies of the alternating currents I1 and I2 supplied to the fuel cell stack 1. be able to.
  • the capacity component of the internal impedance changes according to the concentration of hydrogen contained in the anode gas in the fuel cell stack 1. Since the electrolyte membrane deteriorates when the hydrogen concentration in the fuel cell stack 1 is insufficient, the lack of hydrogen in the fuel cell stack 1 can be diagnosed by using the measured value of the capacity component C of the fuel cell stack 1. It becomes possible.
  • the phases of the oscillation circuits 40a to 40c or the AC signal sources 546a to 546c are manipulated, but the phases of these signal sources are fixed, and the phase of the output signal from the signal source is changed for each signal source. You may make it provide the phase shifter to make.
  • the AC adjustment unit 540 is configured by an analog circuit, but may be configured by a digital arithmetic unit such as a microcomputer chip.
  • the measurement object 10 is the fuel cell stack 1, but may be a lithium ion battery.
  • the circuit configuration of the impedance measuring device 5b may be simplified.
  • the AC adjustment unit 540 is omitted, and the AC currents I1 and I2 whose amplitude and phase coincide with each other are fixedly output from the power supply units 531 and 532.
  • one of the detection units 521 and 522 is omitted, and an AC potential difference (for example, AC potential difference V1) detected only by the other detection unit (for example, the positive electrode side detection unit 521) and an AC current (for example, AC current) that causes the AC potential difference.
  • the internal resistance is calculated using the current I1). Even with such a circuit configuration, the same effect as in the above embodiment can be obtained.
  • the halfway point terminal 213 is provided in the middle of the resistance component R of the fuel cell stack 1, and the alternating current adjustment unit 540 causes the alternating current potentials V1 and V2 to have the same reference value Vs.
  • the midpoint terminal 213 may be provided in a power generation cell that is out of the power generation cell located in the middle of the fuel cell stack 1.
  • the resistance component R1 and the resistance component R2 depend on the position of the power generation cell provided with the halfway point terminal 213. What is necessary is just to obtain

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measurement Of Resistance Or Impedance (AREA)

Abstract

An impedance measurement device including a switch for switching between a measurement state in which an object of measurement is connected to a power supply circuit and a diagnosis state in which a passive element is connected to the power supply circuit outputs AC current to the object of measurement. The impedance measurement device extracts the resistance component of the AC potential difference generated in the object of measurement on the basis of an AC signal having the same frequency as the AC current, extracts the reactance component on the basis of an AC signal having a phase orthogonal to that of the AC signal, and calculates the resistance component or reactance component of the impedance of the object of measurement on the basis of the extracted components and the AC current. When extracting the reactance component when the switch has been switched to the diagnosis state, the impedance measurement device shifts the phase of the AC signal from among the AC current and the orthogonal AC signals that corresponds to the passive element. The impedance measurement device diagnoses impedance error or corrects impedance on the basis of each component extracted when the switch was switched to the diagnosis state.

Description

インピーダンス測定装置及びその処理方法Impedance measuring apparatus and processing method thereof
 この発明は、測定対象が有するインピーダンスの測定誤差を特定するための受動素子を備えるインピーダンス測定装置及びその処理方法に関する。 The present invention relates to an impedance measuring apparatus including a passive element for specifying an impedance measurement error of a measurement object and a processing method thereof.
 WO2012/077450A1には、積層電池から負荷に電力を供給した状態で、測定対象である積層電池に交流電流を出力し、その積層電池に生じる交流電位差を検出することにより、積層電池の内部抵抗を測定する測定装置が提案されている。 In WO2012 / 077450A1, the internal resistance of a laminated battery is detected by outputting an alternating current to the laminated battery to be measured in a state in which power is supplied from the laminated battery to the load, and detecting the alternating potential difference generated in the laminated battery. Measuring devices for measuring have been proposed.
 上述の測定装置では、オペアンプなどの電子部品が交流電流を出力する回路や、交流電位差を検出する回路などに用いられる。そのため、電子部品の製造バラツキや、経時劣化、温度上昇に伴う出力変動などが原因で、積層電池のインピーダンスを測定する精度が低下してしまう。そのため、測定装置に受動素子を備え、受動素子のインピーダンスを計測し、測定装置で生じる測定誤差を特定することが可能になる。 In the measurement apparatus described above, an electronic component such as an operational amplifier is used for a circuit that outputs an alternating current, a circuit that detects an alternating potential difference, or the like. For this reason, the accuracy of measuring the impedance of the laminated battery is reduced due to manufacturing variations of electronic parts, deterioration with time, output fluctuation accompanying temperature rise, and the like. Therefore, it is possible to provide a passive element in the measurement device, measure the impedance of the passive element, and specify a measurement error that occurs in the measurement device.
 例えば、燃料電池内の水素の状態を検出するために燃料電池の抵抗成分だけでなく容量成分を測定するような測定装置では、上述のように抵抗成分及び容量成分の測定誤差を特定するのに、受動素子として抵抗器だけでなくコンデンサが必要になる。コンデンサについては容積が大きいため、測定装置に2つの受動素子を備えようとすると、測定装置の規模が大きくなってしまうという問題がある。 For example, in a measuring device that measures not only the resistance component of the fuel cell but also the capacitance component in order to detect the state of hydrogen in the fuel cell, the measurement error of the resistance component and the capacitance component is specified as described above. As a passive element, not only a resistor but also a capacitor is required. Since the capacitor has a large volume, there is a problem that if the measuring device is provided with two passive elements, the measuring device becomes large.
 本発明は、このような問題点に着目してなされたものであり、電子部品に起因する測定精度の低下を抑制しつつ、規模の増加を抑制することが可能なインピーダンス測定装置及びその処理方法を提供することを目的とする。 The present invention has been made paying attention to such problems, and an impedance measuring apparatus and a processing method thereof capable of suppressing an increase in scale while suppressing a decrease in measurement accuracy due to an electronic component. The purpose is to provide.
 本発明のある態様によれば、インピーダンス測定装置は、測定対象に交流電流を出力する電源回路と、前記測定対象に生じる交流電位差と前記電源回路の出力電流とに基づいて前記測定対象のインピーダンスを演算する演算器と、前記インピーダンスの誤差を特定するための抵抗、コンデンサ、及びコイルのうちのいずれか1つの受動素子と、前記測定対象を前記電源回路に接続した測定状態と、前記受動素子を前記電源回路に接続した診断状態とを切り替えるスイッチとを含む。このインピーダンス測定装置の処理方法は、前記電源回路により前記測定対象に交流電流を出力する出力ステップと、前記測定対象に生じる交流電位差を検出する検出ステップとを含む。この処理方法は、前記電源回路の出力電流に対して周波数が同一の交流信号を出力する第1発振ステップと、前記第1発振ステップでの出力信号に基づいて、前記検出ステップで検出される交流電位差の抵抗成分を抽出する第1抽出ステップとを含む。そして、この処理方法は、前記第1発振ステップでの出力信号に対して位相が直交する交流信号を出力する第2発振ステップと、前記第2発振ステップでの出力信号に基づいて、前記検出ステップで検出される交流電位差のリアクタンス成分を抽出する第2抽出ステップとを含む。さらに、この処理方法は、前記第1又は第2抽出ステップで抽出される成分と前記出力ステップで出力される交流電流とに基づいて前記測定対象が有するインピーダンスの抵抗成分又はリアクタンス成分を演算する演算ステップを含む。また、この処理方法は、前記スイッチが前記診断状態に切り替えられた場合において、前記第2抽出ステップでリアクタンス成分を抽出するときには、前記第1抽出ステップで抵抗成分を抽出するときに比べて、前記出力ステップ、前記第1発振ステップ及び前記第2発振ステップでの各出力信号のうち前記受動素子に対応する出力信号の位相をシフトさせる移相ステップを含む。そして、この処理方法は、前記スイッチが前記診断状態に切り替えられた場合に前記第1及び第2抽出ステップで抽出される各成分に基づいて、前記演算ステップで演算されるインピーダンスの誤差を診断する処理、又は、当該インピーダンスを補正する処理を実行する処理ステップを含む。 According to an aspect of the present invention, an impedance measuring device is configured to calculate an impedance of the measurement target based on a power supply circuit that outputs an alternating current to the measurement target, an AC potential difference generated in the measurement target, and an output current of the power supply circuit. An arithmetic unit for calculation, a passive element of any one of a resistor, a capacitor, and a coil for specifying the impedance error, a measurement state in which the measurement target is connected to the power supply circuit, and the passive element And a switch for switching a diagnosis state connected to the power supply circuit. The processing method of the impedance measuring apparatus includes an output step of outputting an alternating current to the measurement target by the power supply circuit, and a detection step of detecting an AC potential difference generated in the measurement target. This processing method includes a first oscillation step for outputting an AC signal having the same frequency as the output current of the power supply circuit, and an AC detected in the detection step based on the output signal in the first oscillation step. A first extraction step of extracting a resistance component of the potential difference. The processing method includes: a second oscillation step for outputting an AC signal whose phase is orthogonal to the output signal at the first oscillation step; and the detection step based on the output signal at the second oscillation step. A second extraction step of extracting a reactance component of the AC potential difference detected in step (b). Furthermore, this processing method is an arithmetic operation for calculating a resistance component or reactance component of the impedance of the measurement object based on the component extracted in the first or second extraction step and the alternating current output in the output step. Includes steps. Further, in the processing method, when the reactance component is extracted in the second extraction step when the switch is switched to the diagnosis state, the processing method is compared with the case where the resistance component is extracted in the first extraction step. An output step, and a phase shifting step of shifting the phase of the output signal corresponding to the passive element among the output signals in the first oscillation step and the second oscillation step. In this processing method, when the switch is switched to the diagnosis state, an error in the impedance calculated in the calculation step is diagnosed based on each component extracted in the first and second extraction steps. The processing step which performs a process or the process which correct | amends the said impedance is included.
図1は、本発明の第1実施形態におけるインピーダンス測定装置の構成の一例を示す構成図である。FIG. 1 is a configuration diagram showing an example of the configuration of the impedance measuring apparatus according to the first embodiment of the present invention. 図2は、ひとつの診断素子に交流電流を出力する電源回路の位相を90度操作したときの抵抗成分及びリアクタンス成分の測定結果を示す説明図である。FIG. 2 is an explanatory diagram showing measurement results of resistance components and reactance components when the phase of a power supply circuit that outputs an alternating current to one diagnostic element is operated by 90 degrees. 図3は、診断素子の種類と位相操作の対象となる発振回路との関係を示す説明図である。FIG. 3 is an explanatory diagram showing the relationship between the type of diagnostic element and the oscillation circuit that is the target of the phase operation. 図4は、測定対象に生じる交流電位差の抵抗成分及びリアクタンス成分を抽出する回路の構成を示す回路図である。FIG. 4 is a circuit diagram illustrating a configuration of a circuit that extracts a resistance component and a reactance component of an AC potential difference generated in a measurement target. 図5は、本実施形態におけるインピーダンス測定装置の位相制御方法に関する処理手順例を示すフローチャートである。FIG. 5 is a flowchart illustrating an example of a processing procedure regarding the phase control method of the impedance measuring apparatus according to the present embodiment. 図6は、インピーダンス測定装置の診断期間における交流電流の位相を操作する位相操作手法の一例を示すタイムチャートである。FIG. 6 is a time chart showing an example of a phase operation method for operating the phase of the alternating current during the diagnosis period of the impedance measuring device. 図7は、本発明の第2実施形態におけるインピーダンス測定装置の基本構成を示す図である。FIG. 7 is a diagram showing a basic configuration of an impedance measuring apparatus according to the second embodiment of the present invention. 図8は、直流を遮断する遮断部及び電位差を検出する検出部の構成を示す回路図である。FIG. 8 is a circuit diagram illustrating a configuration of a blocking unit that blocks direct current and a detection unit that detects a potential difference. 図9は、測定対象である積層電池の正極及び負極に交流電流を出力する電源部の構成を示す回路図である。FIG. 9 is a circuit diagram showing a configuration of a power supply unit that outputs an alternating current to the positive electrode and the negative electrode of the laminated battery to be measured. 図10は、積層電池の正極及び負極に出力される交流電流の振幅を調整する交流調整部の構成を示す構成図である。FIG. 10 is a configuration diagram illustrating a configuration of an AC adjustment unit that adjusts the amplitude of the AC current output to the positive electrode and the negative electrode of the laminated battery. 図11は、交流調整部に備えられた交流検波回路の構成を示す構成図である。FIG. 11 is a configuration diagram illustrating a configuration of an AC detection circuit provided in the AC adjustment unit. 図12は、積層電池に生じる交流電位差の抵抗成分及びリアクタンス成分を抽出する回路の構成を示す回路図である。FIG. 12 is a circuit diagram illustrating a configuration of a circuit that extracts a resistance component and a reactance component of an AC potential difference generated in the stacked battery. 図13は、積層電池が有するインピーダンスの抵抗成分及びリアクタンス成分を演算する演算部の構成を示す構成図である。FIG. 13 is a configuration diagram illustrating a configuration of a calculation unit that calculates the resistance component and reactance component of the impedance of the stacked battery. 図14は、積層電池の正極及び負極に生じる交流電位を互いに等しく制御する等電位制御方法の一例を示すフローチャートである。FIG. 14 is a flowchart showing an example of an equipotential control method for controlling the AC potentials generated at the positive electrode and the negative electrode of the laminated battery equally. 図15は、等電位制御を実行したときのインピーダンス測定装置の状態を示すタイムチャートである。FIG. 15 is a time chart showing the state of the impedance measuring apparatus when equipotential control is executed. 図16は、等電位制御により積層電池の正極及び負極に生じる交流電位を示す説明図である。FIG. 16 is an explanatory diagram showing an AC potential generated at the positive electrode and the negative electrode of the laminated battery by equipotential control. 図17は、本実施形態におけるインピーダンス測定装置の詳細構成を示す構成図である。FIG. 17 is a configuration diagram illustrating a detailed configuration of the impedance measuring apparatus according to the present embodiment. 図18は、診断素子を用いて測定誤差を特定するときのインピーダンス測定装置内の接続状態を示す接続図である。FIG. 18 is a connection diagram illustrating a connection state in the impedance measuring apparatus when a measurement error is specified using a diagnostic element. 図19は、診断素子を用いて測定結果を補正する補正手法の一例を示す図である。FIG. 19 is a diagram illustrating an example of a correction method for correcting a measurement result using a diagnostic element. 図20は、本実施形態におけるインピーダンス測定装置の位相制御方法に関する処理手順例を示すフローチャートである。FIG. 20 is a flowchart illustrating an example of a processing procedure regarding the phase control method of the impedance measuring apparatus according to the present embodiment.
 以下、添付図面を参照しながら本発明の実施形態について説明する。 Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.
 (第1実施形態)
 図1は、本発明の第1実施形態におけるインピーダンス測定装置の構成の一例を示す構成図である。
(First embodiment)
FIG. 1 is a configuration diagram showing an example of the configuration of the impedance measuring apparatus according to the first embodiment of the present invention.
 測定対象物10は、レジスタンス(電気抵抗)R成分とリアクタンスX成分とを有する物体である。本実施形態の測定対象物10は、リアクタンスXを構成するコンデンサと、レジスタンスRを有する抵抗器とが互いに並列に接続された電気回路と等価なものである。測定対象物10としては、例えば、二次電池や、燃料電池などが挙げられる。 The measurement object 10 is an object having a resistance (electric resistance) R component and a reactance X component. The measurement object 10 of the present embodiment is equivalent to an electric circuit in which a capacitor constituting the reactance X and a resistor having a resistance R are connected in parallel to each other. Examples of the measurement object 10 include a secondary battery and a fuel cell.
 インピーダンス測定装置5aは、測定対象物10が有するインピーダンスの抵抗成分及びリアクタンス成分を測定する装置である。インピーダンス測定装置5a自身に備えられた電子部品の出力変動に伴うインピーダンスの測定誤差を抑制するために、インピーダンス測定装置5aは、自己診断機能を有する。 The impedance measuring device 5a is a device that measures the resistance component and reactance component of the impedance of the measurement object 10. The impedance measuring device 5a has a self-diagnosis function in order to suppress impedance measurement errors caused by fluctuations in the output of electronic components provided in the impedance measuring device 5a itself.
 インピーダンス測定装置5aは、検出回路20と、R成分抽出回路21と、X成分抽出回路22と、電源回路30と、発振回路40a~40cと、直交移相器41と、演算器50とを備える。さらに、インピーダンス測定装置5aは、診断素子60と、診断素子情報保持部61と、スイッチ70と、診断制御部80とを備える。 The impedance measuring device 5a includes a detection circuit 20, an R component extraction circuit 21, an X component extraction circuit 22, a power supply circuit 30, oscillation circuits 40a to 40c, a quadrature phase shifter 41, and an arithmetic unit 50. . Furthermore, the impedance measuring device 5a includes a diagnostic element 60, a diagnostic element information holding unit 61, a switch 70, and a diagnostic control unit 80.
 発振回路40a~40cは、予め定められた周波数である基準周波数fbを有する交流信号を発振する回路である。発振回路40a~40cは、交流信号の位相を変更可能な回路である。 The oscillation circuits 40a to 40c are circuits that oscillate an AC signal having a reference frequency fb that is a predetermined frequency. The oscillation circuits 40a to 40c are circuits that can change the phase of the AC signal.
 発振回路40aは、基準周波数を有する交流信号を電源回路30に出力する。発振回路40bは、基準周波数fbを有する交流信号をR成分抽出回路21に出力する。発振回路40cは、基準周波数を有する交流信号を直交移相器41に出力する。 The oscillation circuit 40 a outputs an AC signal having a reference frequency to the power supply circuit 30. The oscillation circuit 40 b outputs an AC signal having the reference frequency fb to the R component extraction circuit 21. The oscillation circuit 40 c outputs an AC signal having a reference frequency to the quadrature phase shifter 41.
 直交移相器41は、発振回路40cから出力される交流信号である出力信号の位相を90度進ませる。直交移相器41は、発振回路40cの出力信号の位相を90度進ませた交流信号をX成分抽出回路22に出力する。なお、発振回路40c及び直交移相器41は、発振回路40bの出力信号に対して位相が直交する交流信号を出力する直交信号発振回路を構成する。 The quadrature phase shifter 41 advances the phase of the output signal, which is an AC signal output from the oscillation circuit 40c, by 90 degrees. The quadrature phase shifter 41 outputs an AC signal obtained by advancing the phase of the output signal of the oscillation circuit 40c by 90 degrees to the X component extraction circuit 22. The oscillation circuit 40c and the quadrature phase shifter 41 constitute an orthogonal signal oscillation circuit that outputs an AC signal whose phase is orthogonal to the output signal of the oscillation circuit 40b.
 電源回路30は、発振回路40aから出力される交流信号に基づいて、測定対象物10の一端に基準周波数fbを有する交流電流を出力する回路である。電源回路30は、例えば、複数のオペアンプにより実現される。 The power supply circuit 30 is a circuit that outputs an alternating current having a reference frequency fb at one end of the measurement object 10 based on the alternating current signal output from the oscillation circuit 40a. The power supply circuit 30 is realized by a plurality of operational amplifiers, for example.
 検出回路20は、電源回路30により交流電流が印加された測定対象物10に生じる交流電位差(電圧)を検出する回路である。検出回路20は、例えば、差動アンプや計装アンプにより実現される。検出回路20は、交流電位差を検出した値を示す交流電位差信号Vを、R成分抽出回路21及びX成分抽出回路22にそれぞれ出力する。 The detection circuit 20 is a circuit that detects an AC potential difference (voltage) generated in the measurement object 10 to which an AC current is applied by the power supply circuit 30. The detection circuit 20 is realized by, for example, a differential amplifier or an instrumentation amplifier. The detection circuit 20 outputs an AC potential difference signal V indicating a value obtained by detecting the AC potential difference to the R component extraction circuit 21 and the X component extraction circuit 22, respectively.
 R成分抽出回路21は、発振回路40bから出力される交流信号に基づいて、交流電位差信号Vの実部成分、すなわち抵抗成分を抽出する。なお、発振回路40bは、電源回路30の出力電流に対して同じ周波数を有する交流信号を出力する基準信号発振回路を構成する。 The R component extraction circuit 21 extracts a real part component of the AC potential difference signal V, that is, a resistance component, based on the AC signal output from the oscillation circuit 40b. Note that the oscillation circuit 40 b constitutes a reference signal oscillation circuit that outputs an AC signal having the same frequency with respect to the output current of the power supply circuit 30.
 本実施形態では、R成分抽出回路21は、電源回路30の出力電流に対して位相が同一の交流信号に基づいて交流電位差信号の抵抗成分Vrを抽出する。R成分抽出回路21の構成については次図を参照して説明する。R成分抽出回路21は、抽出した交流電位差信号の抵抗成分Vrを演算器50に出力する。 In the present embodiment, the R component extraction circuit 21 extracts the resistance component Vr of the AC potential difference signal based on the AC signal having the same phase with respect to the output current of the power supply circuit 30. The configuration of the R component extraction circuit 21 will be described with reference to the following diagram. The R component extraction circuit 21 outputs the extracted resistance component Vr of the AC potential difference signal to the calculator 50.
 X成分抽出回路22は、直交移相器41から出力される交流信号に基づいて、交流電位差信号Vの虚部成分、すなわちリアクタンス成分を抽出する。 The X component extraction circuit 22 extracts the imaginary part component of the AC potential difference signal V, that is, the reactance component, based on the AC signal output from the quadrature phase shifter 41.
 本実施形態では、X成分抽出回路22は、電源回路30の出力電流に対して位相を90度進めた交流信号に基づいて、交流電位差信号のリアクタンス成分Vxを抽出する。X成分抽出回路22の構成については次図を参照して説明する。X成分抽出回路22は、抽出した交流電位差信号のリアクタンス成分Vxを演算器50に出力する。 In this embodiment, the X component extraction circuit 22 extracts the reactance component Vx of the AC potential difference signal based on the AC signal whose phase is advanced by 90 degrees with respect to the output current of the power supply circuit 30. The configuration of the X component extraction circuit 22 will be described with reference to the next figure. The X component extraction circuit 22 outputs the reactance component Vx of the extracted AC potential difference signal to the calculator 50.
 演算器50は、電源回路30から出力される交流電流Iと、交流電位差信号の抵抗成分Vr及びリアクタンス成分Vxとに基づいて、測定対象物10が有するインピーダンスの抵抗成分R及びリアクタンス成分Xを演算する。 The computing unit 50 computes the resistance component R and reactance component X of the impedance of the measurement object 10 based on the alternating current I output from the power supply circuit 30 and the resistance component Vr and reactance component Vx of the AC potential difference signal. To do.
 具体的には、演算器50は、交流電位差信号の抵抗成分Vrを交流電流Iの振幅により除算して、インピーダンスの抵抗成分Rを算出する。さらに演算器50は、交流電位差信号のリアクタンス成分Vxを交流電流Iの振幅により除算して、インピーダンスのリアクタンス成分Xを算出する。 Specifically, the arithmetic unit 50 calculates the impedance resistance component R by dividing the resistance component Vr of the AC potential difference signal by the amplitude of the AC current I. Further, the computing unit 50 divides the reactance component Vx of the AC potential difference signal by the amplitude of the AC current I to calculate the reactance component X of the impedance.
 演算器50は、算出した抵抗成分R及びリアクタンス成分Xを測定結果として、例えば測定対象物10の状態を管理する管理装置に出力する。 The computing unit 50 outputs the calculated resistance component R and reactance component X as measurement results to, for example, a management device that manages the state of the measurement object 10.
 上述のように、検出回路20及び電源回路30には、オペアンプなどの電子部品、すなわちアナログ回路が用いられている。そのため、電子部品の製造バラツキや、時間の経過に伴って電子部品の性能が低下する経時劣化、電子部品の温度上昇に伴い電子部品の出力が変動する温度ドリフトなどが原因となり、演算器50の測定結果に含まれる誤差が大きくなる。その結果、インピーダンス測定装置5aの測定精度が低下してしまう。この対策として、インピーダンス測定装置5aには、診断素子60、診断素子情報保持部61、スイッチ70、及び診断制御部80が備えられている。 As described above, the detection circuit 20 and the power supply circuit 30 use electronic components such as operational amplifiers, that is, analog circuits. For this reason, it is caused by manufacturing variations of electronic components, deterioration with time in which the performance of the electronic components decreases with time, temperature drift in which the output of the electronic components fluctuates as the temperature of the electronic components rises, etc. The error included in the measurement result increases. As a result, the measurement accuracy of the impedance measuring device 5a is lowered. As a countermeasure, the impedance measuring device 5a includes a diagnostic element 60, a diagnostic element information holding unit 61, a switch 70, and a diagnostic control unit 80.
 診断素子60は、演算器50が演算したインピーダンスの測定誤差を特定するための抵抗器、コンデンサ、及びインダクタのうちのいずれか1つの受動素子である。診断素子60の一端は接地され、他端はスイッチ70の第2出力端子に接続される。本実施形態では、診断素子60は、基準となる値の抵抗を有する抵抗器により構成される。 The diagnostic element 60 is a passive element of any one of a resistor, a capacitor, and an inductor for specifying an impedance measurement error calculated by the calculator 50. One end of the diagnostic element 60 is grounded, and the other end is connected to the second output terminal of the switch 70. In the present embodiment, the diagnostic element 60 is configured by a resistor having a resistance having a reference value.
 診断素子情報保持部61は、診断素子60の抵抗値(以下「基準値」という。)を示す診断素子情報を保持する。 The diagnostic element information holding unit 61 holds diagnostic element information indicating the resistance value of the diagnostic element 60 (hereinafter referred to as “reference value”).
 スイッチ70は、測定対象物10の接続端子10pと電源回路30との間に設けられる。スイッチ70の入力端子は、検出回路20及び電源回路30に接続されると共に、スイッチ70の第1出力端子は接続端子10pに接続される。 The switch 70 is provided between the connection terminal 10p of the measurement object 10 and the power supply circuit 30. The input terminal of the switch 70 is connected to the detection circuit 20 and the power supply circuit 30, and the first output terminal of the switch 70 is connected to the connection terminal 10p.
 スイッチ70は、測定対象物10を電源回路30に接続した状態である測定状態と、測定対象物10との接続を切断して診断素子60を電源回路30に接続した状態である診断状態とを切り替える。スイッチ70の接続状態は、診断制御部80により制御される。 The switch 70 has a measurement state in which the measurement object 10 is connected to the power supply circuit 30 and a diagnosis state in which the diagnosis element 60 is disconnected from the measurement object 10 and the diagnosis element 60 is connected to the power supply circuit 30. Switch. The connection state of the switch 70 is controlled by the diagnosis control unit 80.
 診断制御部80は、所定の診断条件に基づいて、スイッチ70の接続状態を測定状態又は診断状態に切り替える。 The diagnosis control unit 80 switches the connection state of the switch 70 to the measurement state or the diagnosis state based on a predetermined diagnosis condition.
 例えば、診断制御部80は、時間を計測するタイマを備え、診断条件として、タイマの計測時間が所定の測定期間を経過したか否かを監視し、計測時間が測定期間を経過するたびに、スイッチ70の接続状態を測定状態から診断状態に切り替える。診断状態に切り替えられた後、特定の診断期間が経過すると、診断制御部80は、スイッチ70の接続状態を診断状態から測定状態に戻し、タイマをリセットする。 For example, the diagnosis control unit 80 includes a timer for measuring time, and monitors whether or not the measurement time of the timer has passed a predetermined measurement period as a diagnosis condition, and every time the measurement time passes the measurement period, The connection state of the switch 70 is switched from the measurement state to the diagnosis state. When a specific diagnosis period has elapsed after switching to the diagnosis state, the diagnosis control unit 80 returns the connection state of the switch 70 from the diagnosis state to the measurement state, and resets the timer.
 あるいは、診断制御部80は、診断条件として、インピーダンス測定装置5aの内部温度が所定の閾値よりも高いか否かを監視し、内部温度が閾値よりも上昇した場合に、スイッチ70の接続状態を測定状態から診断状態に切り替えるようにしてもよい。 Alternatively, the diagnosis control unit 80 monitors whether or not the internal temperature of the impedance measuring device 5a is higher than a predetermined threshold as a diagnostic condition, and determines the connection state of the switch 70 when the internal temperature rises above the threshold. You may make it switch from a measurement state to a diagnosis state.
 診断制御部80は、スイッチ70の接続状態を診断状態に切り替えた場合には、診断素子60を用いてインピーダンスの抵抗成分R及びリアクタンス成分Xの測定誤差を特定するための診断実行信号を演算器50に出力する。 When the connection state of the switch 70 is switched to the diagnosis state, the diagnosis control unit 80 uses the diagnosis element 60 to generate a diagnosis execution signal for specifying the measurement error of the impedance resistance component R and reactance component X. Output to 50.
 診断制御部80は、演算器50に診断実行信号を出力した後、リアクタンス成分Xの測定誤差を特定するために、発振回路40aから出力される交流信号の位相を90度シフトさせる。そして、演算器50により診断素子60を用いてリアクタンス成分Xが算出されると、診断制御部80は、発振回路40aから出力される交流信号の位相を元に戻す。 The diagnosis control unit 80 outputs the diagnosis execution signal to the computing unit 50 and then shifts the phase of the AC signal output from the oscillation circuit 40a by 90 degrees in order to identify the measurement error of the reactance component X. When the reactance component X is calculated by the computing unit 50 using the diagnostic element 60, the diagnostic control unit 80 restores the phase of the AC signal output from the oscillation circuit 40a.
 演算器50は、診断制御部80から診断実行信号を受信すると、診断素子60を用いてインピーダンス測定装置5aの電子部品に起因する測定誤差を算出する診断処理を実行する。 When the calculator 50 receives the diagnosis execution signal from the diagnosis controller 80, the calculator 50 uses the diagnosis element 60 to execute a diagnosis process for calculating a measurement error due to the electronic component of the impedance measuring device 5a.
 診断処理において、演算器50は、R成分抽出回路21から、診断素子60に生じる交流電位差信号の抵抗成分Vrを取得し、取得した抵抗成分Vrと電源回路30の出力電流Iとに基づいて、診断素子60の抵抗値Rdを算出する。演算器50は、算出した抵抗値Rdと、診断素子情報保持部61に保持された基準値との差分を、インピーダンスの抵抗成分の測定誤差として算出する。 In the diagnosis process, the computing unit 50 acquires the resistance component Vr of the AC potential difference signal generated in the diagnostic element 60 from the R component extraction circuit 21, and based on the acquired resistance component Vr and the output current I of the power supply circuit 30, The resistance value R d of the diagnostic element 60 is calculated. The computing unit 50 calculates the difference between the calculated resistance value Rd and the reference value held in the diagnostic element information holding unit 61 as a measurement error of the impedance resistance component.
 また、診断制御部80が発振回路40aの出力信号の位相を遅れ方向に90度シフトさせた場合には、X成分抽出回路22は、診断素子60に生じる交流電位差の抵抗成分Vrを、交流電位差のリアクタンス成分Vxとして抽出する。演算器50は、抽出した交流電位差のリアクタンス成分Vxを取得し、取得したリアクタンス成分Vxと電源回路30の出力電流Iとに基づいて、診断素子60のリアクタンス値Xdを算出する。演算器50は、算出したリアクタンス値Xdと診断素子情報保持部61の基準値との差分を、インダクタンス成分の測定誤差として算出する。 When the diagnosis control unit 80 shifts the phase of the output signal of the oscillation circuit 40a by 90 degrees in the delay direction, the X component extraction circuit 22 converts the resistance component Vr of the AC potential difference generated in the diagnostic element 60 into the AC potential difference. Is extracted as the reactance component Vx. The computing unit 50 acquires the reactance component Vx of the extracted AC potential difference, and calculates the reactance value X d of the diagnostic element 60 based on the acquired reactance component Vx and the output current I of the power supply circuit 30. The computing unit 50 calculates the difference between the calculated reactance value Xd and the reference value of the diagnostic element information holding unit 61 as a measurement error of the inductance component.
 演算器50は、インピーダンスの抵抗成分及びリアクタンス成分の各測定誤差を診断素子情報保持部61に出力する。診断制御部80は、発振回路40aの出力信号の位相を元に戻し、かつ、スイッチ70を測定状態に切り替えた場合には、診断実行信号の代わりに測定実行信号を出力する。 The computing unit 50 outputs each measurement error of the impedance resistance component and the reactance component to the diagnostic element information holding unit 61. The diagnosis control unit 80 returns the phase of the output signal of the oscillation circuit 40a to the original state and outputs a measurement execution signal instead of the diagnosis execution signal when the switch 70 is switched to the measurement state.
 演算器50は、診断制御部80から測定実行信号を受信すると、診断素子情報保持部61に記録された測定誤差に基づいて、測定結果を補正する補正処理を実行する。 When the arithmetic unit 50 receives the measurement execution signal from the diagnosis control unit 80, the arithmetic unit 50 executes a correction process for correcting the measurement result based on the measurement error recorded in the diagnostic element information holding unit 61.
 本実施形態では、演算器50は、R成分抽出回路21及びX成分抽出回路22から、測定対象物10に生じる交流電位差の抵抗成分Vr及びリアクタンス成分Vxを取得する。演算器50は、上述のとおり、取得した交流電位差の抵抗成分Vr及びリアクタンス成分Vxと電源回路30の出力電流Iの振幅とに基づいて、測定対象物10が有するインピーダンスの抵抗成分R及びリアクタンス成分Xを測定結果として算出する。 In this embodiment, the computing unit 50 acquires the resistance component Vr and reactance component Vx of the AC potential difference generated in the measurement object 10 from the R component extraction circuit 21 and the X component extraction circuit 22. As described above, the computing unit 50 determines the impedance resistance component R and reactance component of the measurement object 10 based on the acquired resistance component Vr and reactance component Vx of the AC potential difference and the amplitude of the output current I of the power supply circuit 30. X is calculated as a measurement result.
 そして、補正処理において、演算器50は、診断素子情報保持部61に保持された抵抗成分Rの測定誤差を、測定結果の抵抗成分Rに加算すると共に、リアクタンス成分Xの測定誤差を測定結果のリアクタンス成分Xに加算する。 In the correction process, the arithmetic unit 50 adds the measurement error of the resistance component R held in the diagnostic element information holding unit 61 to the resistance component R of the measurement result, and converts the measurement error of the reactance component X into the measurement result. Add to reactance component X.
 なお、本実施形態ではコンデンサ(電気容量)成分を有するものを測定対象物10としたが、リアクタンスX成分としてインダクタンス(電気誘導)成分を有するものを測定対象物10としてもよい。 In the present embodiment, the object 10 to be measured has a capacitor (electric capacity) component, but the object 10 to be measured may have an inductance (electric induction) component as a reactance X component.
 図2は、診断状態において電源回路30から出力される交流電流Iの位相を0度から90度に切り替えたときの診断素子60の測定結果を示す図である。図2には、診断素子60の抵抗値を段階的に変更したときの測定結果が示されている。 FIG. 2 is a diagram illustrating a measurement result of the diagnostic element 60 when the phase of the alternating current I output from the power supply circuit 30 is switched from 0 degrees to 90 degrees in the diagnosis state. FIG. 2 shows the measurement results when the resistance value of the diagnostic element 60 is changed stepwise.
 図2では、横軸がインピーダンスの抵抗成分Rを示し、縦軸がインピーダンスのリアクタンス成分Xを示す。R成分抽出回路21の出力信号Vrが大きくなるほど、インピーダンスの抵抗成分Xは大きくなり、X成分抽出回路22の出力信号Vxが大きくなるほど、インピーダンスのリアクタンス成分Xは大きくなる。 In FIG. 2, the horizontal axis indicates the resistance component R of impedance, and the vertical axis indicates the reactance component X of impedance. The impedance resistance component X increases as the output signal Vr of the R component extraction circuit 21 increases, and the impedance reactance component X increases as the output signal Vx of the X component extraction circuit 22 increases.
 図2に示すように、電源回路30の交流電流Iの位相θを0度に設定したときには、診断素子60が抵抗素子であるため、リアクタンス成分Xはゼロとなり、抵抗成分Rの大きさだけが変化する。 As shown in FIG. 2, when the phase θ of the alternating current I of the power supply circuit 30 is set to 0 degrees, the diagnostic element 60 is a resistance element, so the reactance component X is zero, and only the magnitude of the resistance component R is Change.
 一方、電源回路30の出力電流Iの位相θを0度からマイナス90度に切り替えたときには、抵抗成分Rはゼロとなり、リアクタンス成分Xの大きさだけが変化する。この原理について以下に簡単に説明する。 On the other hand, when the phase θ of the output current I of the power supply circuit 30 is switched from 0 degree to minus 90 degrees, the resistance component R becomes zero and only the magnitude of the reactance component X changes. This principle will be briefly described below.
 一般に、電源回路30から交流電流Iを抵抗Rに印加すると、抵抗Rに生じる交流電位差Vrの位相は、交流電流Iの位相に対して同じになる。一方、電源回路30から交流電流IをコンデンサCに印加すると、コンデンサCに生じる交流電位差Vcの位相は、交流電流Iの位相に対して90度(π/2)遅れる。また、電源回路30から交流電流IをコイルLに印加すると、コイルLに生じる交流電位差VLの位相は、交流電流Iの位相に対して90度(π/2)進む。 In general, when an alternating current I is applied from the power supply circuit 30 to the resistor R, the phase of the alternating potential difference Vr generated in the resistor R becomes the same as the phase of the alternating current I. On the other hand, when the alternating current I is applied from the power supply circuit 30 to the capacitor C, the phase of the alternating potential difference Vc generated in the capacitor C is delayed by 90 degrees (π / 2) with respect to the phase of the alternating current I. When the alternating current I is applied from the power supply circuit 30 to the coil L, the phase of the alternating potential difference V L generated in the coil L advances by 90 degrees (π / 2) with respect to the phase of the alternating current I.
 したがって、X成分抽出回路22では、リアクタンスXの容量成分Cを検出するために、検出回路20からの交流電位差信号Vのうち、交流電流Iに対して位相が遅れ方向に90度シフトした信号成分のみが抽出される。このため、電源回路30から交流電流Iを抵抗Rを有する診断素子60に印加して、診断素子60から出力される交流電位差VrをX成分抽出回路22で抽出するには、交流電流Iの位相を90度遅らせればよい。 Therefore, in the X component extraction circuit 22, in order to detect the capacitance component C of the reactance X, the signal component whose phase is shifted by 90 degrees in the delay direction with respect to the AC current I in the AC potential difference signal V from the detection circuit 20. Only is extracted. Therefore, in order to apply the alternating current I from the power supply circuit 30 to the diagnostic element 60 having the resistance R and extract the alternating potential difference Vr output from the diagnostic element 60 by the X component extraction circuit 22, the phase of the alternating current I Can be delayed by 90 degrees.
 そのゆえ、図2に示したように、電源回路30から出力される交流電流Iの位相を90度遅らせることにより、診断素子60に生じる交流電位差がX成分抽出回路22において診断素子60のリアクタンス成分Vxとして出力される。このため、抵抗器である診断素子60を用いて、電源回路30からX成分抽出回路22までの信号経路における電子部品に起因する測定誤差、すなわちリアクタンス成分Xの測定誤差を特定することが可能となる。 Therefore, as shown in FIG. 2, the AC potential difference generated in the diagnostic element 60 is changed in the X component extraction circuit 22 by reacting the reactance component of the diagnostic element 60 by delaying the phase of the alternating current I output from the power supply circuit 30 by 90 degrees. Output as Vx. For this reason, it is possible to specify the measurement error due to the electronic component in the signal path from the power supply circuit 30 to the X component extraction circuit 22, that is, the measurement error of the reactance component X, using the diagnostic element 60 that is a resistor. Become.
 このように、電源回路30の交流電流Iの位相θをマイナス90度シフトさせることにより、1つの診断素子60を用いて、抵抗成分Rの測定誤差だけでなく、リアクタンス成分Xの測定誤差を計測することができる。本実施形態によれば、抵抗成分R及びリアクタンス成分Xの測定誤差を計測するのに、インピーダンス測定装置5aにひとつの抵抗器を備えるだけでよい。診断素子60として用いられる抵抗器はコンデンサに比べて容積が小さいため、インピーダンス測定装置5aの回路規模の増加を抑制しつつ、測定対象物10が有するインピーダンスの抵抗成分及びリアクタンス成分の両者の測定精度を向上させることができる。 Thus, by shifting the phase θ of the alternating current I of the power supply circuit 30 by minus 90 degrees, not only the measurement error of the resistance component R but also the measurement error of the reactance component X is measured using one diagnostic element 60. can do. According to this embodiment, in order to measure the measurement error of the resistance component R and the reactance component X, it is only necessary to provide the impedance measuring device 5a with one resistor. Since the resistor used as the diagnostic element 60 has a smaller volume than the capacitor, the measurement accuracy of both the resistance component and the reactance component of the impedance of the measurement object 10 is suppressed while suppressing an increase in the circuit scale of the impedance measuring device 5a. Can be improved.
 なお、本実施形態では交流電流Iの位相を遅れ方向に90度シフトさせたが、交流電流Iの位相を進み方向に90度シフトさせるようにしてもよい。このような場合には、X成分抽出回路22の出力信号が負の値になるだけであり、絶対値は変わらないので、X成分抽出回路22の出力信号の絶対値と診断素子60の基準値とを比較すればよい。 In the present embodiment, the phase of the alternating current I is shifted by 90 degrees in the delay direction, but the phase of the alternating current I may be shifted by 90 degrees in the advance direction. In such a case, since the output signal of the X component extraction circuit 22 only has a negative value and the absolute value does not change, the absolute value of the output signal of the X component extraction circuit 22 and the reference value of the diagnostic element 60 Can be compared.
 また、本実施形態では電源回路30から出力される交流電流Iの位相を操作したが、診断素子60として抵抗器を用いた場合には、発振回路40bからX成分抽出回路22に供給される交流信号の位相を操作してもよい。 In the present embodiment, the phase of the alternating current I output from the power supply circuit 30 is manipulated. However, when a resistor is used as the diagnostic element 60, the alternating current supplied from the oscillation circuit 40b to the X component extraction circuit 22 is used. The phase of the signal may be manipulated.
 図3は、診断素子60として用いられる受動素子の種類と、発振回路40a~40cのうち位相操作の対象となり得る発振回路との関係の一例を示す説明図である。 FIG. 3 is an explanatory diagram showing an example of the relationship between the type of passive element used as the diagnostic element 60 and an oscillation circuit that can be a target of phase operation among the oscillation circuits 40a to 40c.
 図3には、電源回路30の出力電流Iの位相を操作する操作手法1と、発振回路40b及び40cのうちの一方の発振回路の出力信号の位相を操作する操作手法2とが示されている。 FIG. 3 shows an operation method 1 for manipulating the phase of the output current I of the power supply circuit 30 and an operation method 2 for manipulating the phase of the output signal of one of the oscillation circuits 40b and 40c. Yes.
 操作手法1においては、診断素子60として抵抗器が実装された場合は、抵抗器を用いてリアクタンス成分Xの測定誤差を特定するときに、電源回路30の出力電流Iの位相を例えば90度シフトさせる。診断素子60としてコイルが実装された場合は、コイルを用いて抵抗成分Rの測定誤差を特定するときに、電源回路30の出力電流Iの位相を例えば遅れ方向に90度シフトさせる。診断素子60としてコンデンサが実装された場合は、コンデンサを用いて抵抗成分Rの測定誤差を特定するときに、電源回路30の出力電流Iの位相を例えば進み方向に90度シフトさせる。 In the operation method 1, when a resistor is mounted as the diagnostic element 60, the phase of the output current I of the power supply circuit 30 is shifted by, for example, 90 degrees when the measurement error of the reactance component X is specified using the resistor. Let When a coil is mounted as the diagnostic element 60, when the measurement error of the resistance component R is specified using the coil, the phase of the output current I of the power supply circuit 30 is shifted by, for example, 90 degrees in the delay direction. When a capacitor is mounted as the diagnostic element 60, when the measurement error of the resistance component R is specified using the capacitor, the phase of the output current I of the power supply circuit 30 is shifted, for example, by 90 degrees in the advance direction.
 操作手法2においては、診断素子60として抵抗器が実装された場合は、抵抗器を用いてリアクタンス成分Xの測定誤差を特定するときに、発振回路40cの出力信号の位相を例えば90度シフトさせる。診断素子60としてコイルが実装された場合は、コイルを用いて抵抗成分Rの測定誤差を特定するときに、発振回路40bの出力信号の位相を例えば遅れ方向に90度シフトさせる。診断素子60としてコンデンサが実装された場合は、コンデンサを用いて抵抗成分Rの測定誤差を特定するときに、発振回路40bの出力信号の位相を例えば進み方向に90度シフトさせる。 In the operation method 2, when a resistor is mounted as the diagnostic element 60, the phase of the output signal of the oscillation circuit 40c is shifted by, for example, 90 degrees when the measurement error of the reactance component X is specified using the resistor. . When a coil is mounted as the diagnostic element 60, when the measurement error of the resistance component R is specified using the coil, the phase of the output signal of the oscillation circuit 40b is shifted by 90 degrees in the delay direction, for example. When a capacitor is mounted as the diagnostic element 60, when the measurement error of the resistance component R is specified using the capacitor, the phase of the output signal of the oscillation circuit 40b is shifted, for example, by 90 degrees in the advance direction.
 このように、診断素子60に用いられる受動素子に合わせて発振回路40a~40cのうち少なくとも1つの発振回路の出力信号の位相を操作することで、ひとつの受動素子により、抵抗成分R及びリアクタンス成分Xの両者の測定誤差を計測することができる。したがって、インピーダンス測定装置5aの回路規模が大きくなるのを抑制することが可能となる。 In this way, by manipulating the phase of the output signal of at least one of the oscillation circuits 40a to 40c in accordance with the passive element used for the diagnostic element 60, the resistance component R and the reactance component can be obtained by one passive element. The measurement error of both X can be measured. Therefore, it is possible to suppress an increase in the circuit scale of the impedance measuring device 5a.
 また、コンデンサやコイルの容積は抵抗器に比べて大きいため、診断素子60として抵抗器を用いることにより、回路規模の増加をより一層抑制することが可能となる。なお、図3では位相操作1及び位相操作2の一方の操作を行う例について説明したが、位相操作1及び位相操作2を同時に行っても良い。例えば、診断素子60として抵抗器を用いる場合に、抵抗器を用いてリアクタンス成分の測定誤差を特定するときには、発振回路40aの出力信号の位相を遅れ方向に45度シフトさせ、発振回路40cの出力信号の位相を進み方向に45度シフトさせる。このような操作であってもリアクタンス成分の測定誤差を計測することか可能である。 Further, since the volume of the capacitor or coil is larger than that of the resistor, it is possible to further suppress the increase in circuit scale by using the resistor as the diagnostic element 60. In addition, although the example which performs one operation of the phase operation 1 and the phase operation 2 was demonstrated in FIG. 3, you may perform the phase operation 1 and the phase operation 2 simultaneously. For example, when a resistor is used as the diagnostic element 60, when the measurement error of the reactance component is specified using the resistor, the phase of the output signal of the oscillation circuit 40a is shifted 45 degrees in the delay direction, and the output of the oscillation circuit 40c is output. The phase of the signal is shifted 45 degrees in the advance direction. Even with such an operation, it is possible to measure the measurement error of the reactance component.
 図4は、R成分抽出回路21及びX成分抽出回路22の構成の一例を示す構成図である。 FIG. 4 is a configuration diagram showing an example of the configuration of the R component extraction circuit 21 and the X component extraction circuit 22.
 R成分抽出回路21は、測定対象物10の抵抗成分Rを検出するための同相信号Sin(0)を検出回路20からの交流電位差信号Vに乗算することにより、交流電位差信号の実部成分である抵抗成分Vrを抽出する。同相信号Sin(0)は、電源回路30の出力電流Iと位相が同一の交流信号である。R成分抽出回路21は、同相乗算器21a及び同相低域フィルタ(LPF)21bを備える。 The R component extraction circuit 21 multiplies the AC potential difference signal V from the detection circuit 20 by the in-phase signal Sin (0) for detecting the resistance component R of the measurement object 10, thereby realizing a real part component of the AC potential difference signal. The resistance component Vr is extracted. The in-phase signal Sin (0) is an AC signal having the same phase as the output current I of the power supply circuit 30. The R component extraction circuit 21 includes an in-phase multiplier 21a and an in-phase low-pass filter (LPF) 21b.
 同相乗算器21aは、発振回路40bからの交流信号を同相信号Sin(0)として乗交流電位差信号Vに算する。これにより、交流電位差信号Vの波形と同相信号Sin(0)の波形との一致度合いに応じた同相交流信号が同相乗算器21aから出力される。例えば、交流電位差信号Vと同相信号Sin(0)の位相が完全に一致している場合には、全波整流波形の同相交流信号が出力される。また、交流電位差信号V及び同相信号Sin(0)の波形の一致度合いが大きいほど、交流電位差の抵抗成分Vrが大きくなる。 The in-phase multiplier 21a calculates the AC signal from the oscillation circuit 40b as the in-phase signal Sin (0) to the multiplied AC potential difference signal V. Thereby, an in-phase AC signal corresponding to the degree of coincidence between the waveform of the AC potential difference signal V and the waveform of the in-phase signal Sin (0) is output from the in-phase multiplier 21a. For example, when the AC potential difference signal V and the in-phase signal Sin (0) are completely in phase, an in-phase AC signal having a full-wave rectified waveform is output. Further, as the degree of coincidence between the waveforms of the AC potential difference signal V and the in-phase signal Sin (0) increases, the resistance component Vr of the AC potential difference increases.
 同相低域フィルタ21bは、同相交流信号の直流成分を検出する。同相低域フィルタ21bは、同相交流信号の交流成分又は高周波領域成分を除去して同相交流信号の直流成分を通過させる。同相低域フィルタ21bにより平滑化された直流成分は、交流電位差検出信号の抵抗成分Vrとして演算器50に入力される。 The in-phase low-pass filter 21b detects the DC component of the in-phase AC signal. The in-phase low-pass filter 21b removes the AC component or the high-frequency region component of the in-phase AC signal and passes the DC component of the in-phase AC signal. The DC component smoothed by the in-phase low-pass filter 21b is input to the calculator 50 as the resistance component Vr of the AC potential difference detection signal.
 このように、R成分抽出回路21は、電源回路30の出力電流Iと同じ位相の同相信号Sin(0)を交流電位差Vに乗算することにより、交流電位差信号Vから同相信号Sin(0)と同位相の抵抗成分Vrのみを抽出する。このため、抵抗成分Vrが交流電位差信号V中のノイズに埋もれていたとしても、R成分抽出回路21により精度良く抵抗成分Vrを検波することができる。 In this way, the R component extraction circuit 21 multiplies the AC potential difference V by the in-phase signal Sin (0) having the same phase as the output current I of the power supply circuit 30, whereby the in-phase signal Sin (0 Only the resistance component Vr having the same phase as that of FIG. For this reason, even if the resistance component Vr is buried in the noise in the AC potential difference signal V, the R component extraction circuit 21 can detect the resistance component Vr with high accuracy.
 なお、R成分抽出回路21は、交流電位差信号Vの実部成分を演算器50に出力する。演算器50は、交流電位差信号Vの実部成分と電源回路30の出力電流Iとに基づいて、測定対象物10の抵抗成分Rを演算する。このように交流電位差信号Vの実部成分によって抵抗成分Rが求められるため、本実施形態では交流電位差信号Vの実部成分を抵抗成分Vrと称する。 The R component extraction circuit 21 outputs the real part component of the AC potential difference signal V to the calculator 50. The calculator 50 calculates the resistance component R of the measurement object 10 based on the real part component of the AC potential difference signal V and the output current I of the power supply circuit 30. Thus, since the resistance component R is obtained from the real part component of the AC potential difference signal V, in this embodiment, the real part component of the AC potential difference signal V is referred to as a resistance component Vr.
 X成分抽出回路22は、測定対象物10のリアクタンス成分Xを検出するための直交信号Sin(90)を交流電位差信号Vに乗算することにより、交流電位差信号の虚部成分であるリアクタンス成分Vxを抽出する。直交信号Sin(90)は、電源回路30の出力電流Iに対して位相角が直交し、かつ、同相信号Sin(0)に対して振幅が同一の交流信号である。X成分抽出回路22は、直交乗算器22a及び直交低域フィルタ22bを備える。 The X component extraction circuit 22 multiplies the AC potential difference signal V by the quadrature signal Sin (90) for detecting the reactance component X of the measurement object 10, thereby obtaining a reactance component Vx that is an imaginary part component of the AC potential difference signal. Extract. The quadrature signal Sin (90) is an AC signal having a phase angle orthogonal to the output current I of the power supply circuit 30 and having the same amplitude as the in-phase signal Sin (0). The X component extraction circuit 22 includes an orthogonal multiplier 22a and an orthogonal low-pass filter 22b.
 直交乗算器22aは、直交移相器41からの交流信号を直交信号Sin(90)として交流電位差Vに乗算する。これにより、交流電位差V1の波形と直交信号の波形の一致度合いに応じた直交交流信号が直交乗算器22aから出力される。 The quadrature multiplier 22a multiplies the AC potential difference V by the AC signal from the quadrature phase shifter 41 as the orthogonal signal Sin (90). Thereby, an orthogonal AC signal corresponding to the degree of coincidence between the waveform of the AC potential difference V1 and the waveform of the orthogonal signal is output from the orthogonal multiplier 22a.
 直交低域フィルタ22bは、直交交流信号の直流成分を検出する。直交低域フィルタ22bは、直交交流信号の交流成分又は高周波領域成分を除去して直交交流信号の直流成分を通過させる。直交低域フィルタ22bによって平滑化された直流成分は、交流電位差信号のリアクタンス成分Vxとして演算器50に入力される。 The orthogonal low-pass filter 22b detects the DC component of the orthogonal AC signal. The orthogonal low-pass filter 22b removes the AC component or the high-frequency region component of the orthogonal AC signal and passes the DC component of the orthogonal AC signal. The direct current component smoothed by the orthogonal low-pass filter 22b is input to the computing unit 50 as the reactance component Vx of the alternating current potential difference signal.
 このように、X成分抽出回路22は、直交信号Sin(90)を交流電位差Vに乗算することにより、交流電位差信号Vから直交信号Sin(90)と同位相のリアクタンス成分Vxのみを抽出する。このため、リアクタンス成分Vxが交流電位差信号中のノイズに埋もれていたとしても、X成分抽出回路22により精度良くリアクタンス成分Vxを確実に検出することができる。 Thus, the X component extraction circuit 22 extracts only the reactance component Vx having the same phase as that of the orthogonal signal Sin (90) from the AC potential difference signal V by multiplying the AC potential difference V by the orthogonal signal Sin (90). For this reason, even if the reactance component Vx is buried in the noise in the AC potential difference signal, the reactance component Vx can be reliably detected by the X component extraction circuit 22 with high accuracy.
 なお、X成分抽出回路22は、交流電位差信号Vの虚部成分を演算器50に出力する。演算器50は、交流電位差信号Vの虚部成分と電源回路30の出力電流Iとに基づいて、測定対象物10のリアクタンス成分Xを演算する。このように交流電位差信号Vの虚部成分によってリアクタンス成分Rが求められるため、本実施形態では交流電位差信号Vの虚部成分をリアクタンス成分Vrと称している。 The X component extraction circuit 22 outputs the imaginary part component of the AC potential difference signal V to the calculator 50. The computing unit 50 computes the reactance component X of the measurement object 10 based on the imaginary part component of the AC potential difference signal V and the output current I of the power supply circuit 30. Thus, since the reactance component R is obtained from the imaginary part component of the AC potential difference signal V, in this embodiment, the imaginary part component of the AC potential difference signal V is referred to as a reactance component Vr.
 図4は、本実施形態におけるインピーダンス測定装置5aの処理方法の一例を示すフローチャートである。この処理方法は所定の周期(例えば数ms)で繰り返し実行される。 FIG. 4 is a flowchart showing an example of a processing method of the impedance measuring apparatus 5a in the present embodiment. This processing method is repeatedly executed at a predetermined cycle (for example, several ms).
 まず、ステップS1において診断制御部80は、インピーダンス測定装置5aが自己の測定状態を診断する診断時期になったか否かを判断する。診断制御部80は、診断時期になったと判断した場合には、診断実行信号を演算器50に供給する。 First, in step S1, the diagnosis control unit 80 determines whether or not it is time for the impedance measurement device 5a to diagnose its own measurement state. When the diagnosis control unit 80 determines that the diagnosis time has come, it supplies a diagnosis execution signal to the computing unit 50.
 ステップS2において診断制御部80は、診断時期になった場合には、スイッチ70を制御して診断素子60を検出回路20及び電源回路30に接続する。これにより、電源回路30から診断素子60に交流電流Iが印加され、これに伴い診断素子60に生じる交流電位差Vが検出回路20により検出される。 In step S2, the diagnosis control unit 80 controls the switch 70 to connect the diagnosis element 60 to the detection circuit 20 and the power supply circuit 30 when the diagnosis time comes. As a result, the alternating current I is applied from the power supply circuit 30 to the diagnostic element 60, and the alternating potential difference V generated in the diagnostic element 60 is detected by the detection circuit 20.
 ステップS3において演算器50は、診断実行信号を受信すると、R成分抽出回路21から交流電位差信号の抵抗成分Vrを取得し、交流電位差信号の抵抗成分Vrに基づいて、インピーダンスの抵抗成分Rの測定誤差を算出する。 In step S3, when the arithmetic unit 50 receives the diagnosis execution signal, it obtains the resistance component Vr of the AC potential difference signal from the R component extraction circuit 21, and measures the resistance component R of the impedance based on the resistance component Vr of the AC potential difference signal. Calculate the error.
 具体的には、演算器50は、交流電位差信号の抵抗成分Vrと電源回路30の交流電流Iとに基づいて診断素子60の抵抗値を算出し、算出した値と診断素子情報保持部61の基準値との差分を抵抗成分Rの測定誤差として算出する。 Specifically, the arithmetic unit 50 calculates the resistance value of the diagnostic element 60 based on the resistance component Vr of the AC potential difference signal and the AC current I of the power supply circuit 30, and the calculated value and the diagnostic element information holding unit 61. A difference from the reference value is calculated as a measurement error of the resistance component R.
 ステップS4において診断制御部80は、抵抗成分Rの測定誤差が算出されると、電源回路30の出力電流Iの位相を0度から遅れ方向に90度シフトさせる。すなわち、診断制御部80は、発振回路40aから出力される交流信号の位相を0度から遅れ方向に90度だけシフトさせる。これにより、検出回路20から出力される交流電位差信号の位相が90度遅れるので、X成分抽出回路22により、診断素子60に生じる交流電位差を抽出することが可能となる。 In step S4, when the measurement error of the resistance component R is calculated, the diagnosis control unit 80 shifts the phase of the output current I of the power supply circuit 30 from 0 degrees to 90 degrees in the delay direction. That is, the diagnosis control unit 80 shifts the phase of the AC signal output from the oscillation circuit 40a by 90 degrees from 0 degrees in the delay direction. As a result, the phase of the AC potential difference signal output from the detection circuit 20 is delayed by 90 degrees, so that the X component extraction circuit 22 can extract the AC potential difference generated in the diagnostic element 60.
 ステップS5において演算器50は、交流電流Iの位相が90度シフトすると、X成分抽出回路22から交流電位差信号のリアクタンス成分Vxを取得し、リアクタンス成分Vrに基づいて、インピーダンスのリアクタンス成分Xの測定誤差を算出する。 In step S5, when the phase of the alternating current I is shifted by 90 degrees, the computing unit 50 acquires the reactance component Vx of the alternating potential difference signal from the X component extraction circuit 22, and measures the reactance component X of the impedance based on the reactance component Vr. Calculate the error.
 具体的には、演算器50は、交流電位差信号のリアクタンス成分Vxと電源回路30の交流電流Iとに基づいて、診断素子60の抵抗値に相当するリアクタンス値を算出する。演算器50は、算出したリアクタンス値と診断素子情報保持部61の基準値との差分をリアクタンス成分Xの測定誤差として算出する。 Specifically, the computing unit 50 calculates a reactance value corresponding to the resistance value of the diagnostic element 60 based on the reactance component Vx of the AC potential difference signal and the AC current I of the power supply circuit 30. The computing unit 50 calculates the difference between the calculated reactance value and the reference value of the diagnostic element information holding unit 61 as a measurement error of the reactance component X.
 ステップS6において診断制御部80は、リアクタンス成分Xの測定誤差が算出されると、電源回路30の出力電流Iの位相を0度に戻す。すなわち、診断制御部80は、発振回路40aから出力される交流信号の位相を進み方向に90度だけシフトさせる。 In step S6, when the measurement error of the reactance component X is calculated, the diagnosis control unit 80 returns the phase of the output current I of the power supply circuit 30 to 0 degrees. That is, the diagnosis control unit 80 shifts the phase of the AC signal output from the oscillation circuit 40a by 90 degrees in the advance direction.
 次に、ステップS1で診断時期でないと判断された場合には、ステップS7の処理に進む。 Next, when it is determined in step S1 that it is not the diagnosis time, the process proceeds to step S7.
 ステップS7において診断制御部80は、診断時期でない場合には、スイッチ70を制御して測定対象物10を検出回路20及び電源回路30に接続する。これにより、電源回路30から測定対象物10に交流電流Iが印加され、これに伴い診断素子60に生じる交流電位差Vが検出回路20により検出される。そして、診断制御部80は、診断実行信号の代わりに測定実行信号を演算器50に送信する。 In step S7, the diagnosis control unit 80 controls the switch 70 to connect the measurement object 10 to the detection circuit 20 and the power supply circuit 30 when it is not the diagnosis time. As a result, the alternating current I is applied from the power supply circuit 30 to the measurement object 10, and the alternating potential difference V generated in the diagnostic element 60 is detected by the detection circuit 20. Then, the diagnosis control unit 80 transmits a measurement execution signal to the computing unit 50 instead of the diagnosis execution signal.
 ステップS8において演算器50は、測定実行信号を受信すると、R成分抽出回路21及びX成分抽出回路22からの抵抗成分Vr及びリアクタンス成分Vxを取得し、これらの成分に基づいて、測定対象物10の抵抗成分R及びリアクタンス成分Xを算出する。 In step S8, when receiving the measurement execution signal, the arithmetic unit 50 acquires the resistance component Vr and the reactance component Vx from the R component extraction circuit 21 and the X component extraction circuit 22, and based on these components, the measurement object 10 is obtained. Resistance component R and reactance component X are calculated.
 具体的には、演算器50は、交流電位差信号の抵抗成分Vrと交流電流Iとに基づいて測定対象物10の抵抗成分Rを算出し、交流電位差信号のリアクタンス成分Vxと交流電流Iとに基づいて測定対象物10のリアクタンス成分Xを算出する。 Specifically, the computing unit 50 calculates the resistance component R of the measurement object 10 based on the resistance component Vr and the AC current I of the AC potential difference signal, and generates the reactance component Vx and the AC current I of the AC potential difference signal. Based on this, the reactance component X of the measurement object 10 is calculated.
 ステップS9において演算器50は、算出した抵抗成分R及びリアクタンス成分Xを、それぞれステップS3及びS5で算出された測定誤差に基づいて補正する。例えば、演算器50は、ステップS3で算出された測定誤差を抵抗成分Rに加算すると共に、ステップS5で算出された測定誤差をリアクタンス成分Xに加算する。演算器50は、補正後の抵抗成分R及びリアクタンス成分Xを測定結果として測定対象物10を管理するコントローラに出力する。 In step S9, the computing unit 50 corrects the calculated resistance component R and reactance component X based on the measurement errors calculated in steps S3 and S5, respectively. For example, the computing unit 50 adds the measurement error calculated in step S3 to the resistance component R, and adds the measurement error calculated in step S5 to the reactance component X. The computing unit 50 outputs the corrected resistance component R and reactance component X as measurement results to a controller that manages the measurement object 10.
 ステップ10において演算器50は、インピーダンス測定装置5aが停止(OFF)されるまでは、ステップS1からS9までの一連の処理手順を繰り返し、インピーダンス測定装置5aが停止された場合に処理方法を終了する。 In step 10, the computing unit 50 repeats a series of processing procedures from step S1 to S9 until the impedance measuring device 5a is stopped (OFF), and ends the processing method when the impedance measuring device 5a is stopped. .
 図5は、1つの診断素子60を用いて抵抗成分R及びリアクタンス成分の双方の測定誤差を特定する診断手法の一例を示すタイムチャートである。 FIG. 5 is a time chart showing an example of a diagnostic technique for specifying measurement errors of both the resistance component R and the reactance component using one diagnostic element 60.
 図5(a)は、スイッチ70の接続状態を示す図である。図5(b)は、電源回路30から出力される交流電流Iの位相の変化を示す図である。図5(c)は、R成分抽出回路21の出力信号Vrの変化を示す図である。図5(d)は、X成分抽出回路22の出力信号Vxの変化を示す図である。図5(a)から図5(d)までの各図面の横軸は、互いに共通の時間軸である。なお、ここでは、電子部品に起因する抵抗成分R及びリアクタンス成分Xの測定誤差が殆ど生じていないものとする。 FIG. 5A is a diagram illustrating a connection state of the switch 70. FIG. 5B is a diagram illustrating a change in the phase of the alternating current I output from the power supply circuit 30. FIG. 5C is a diagram showing a change in the output signal Vr of the R component extraction circuit 21. FIG. 5D is a diagram showing changes in the output signal Vx of the X component extraction circuit 22. The horizontal axis of each drawing from FIG. 5A to FIG. 5D is a common time axis. Here, it is assumed that there are almost no measurement errors of the resistance component R and the reactance component X caused by the electronic components.
 時刻t1よりも前においては、図5(a)に示すように、スイッチ70の接続状態は電源回路30に測定対象物10を接続した測定状態である。このため、図5(c)及び図5(d)に示すように、測定対象物10に生じる交流電位差の抵抗成分Vr及びリアクタンス成分Vxがそれぞれ出力されている。 Prior to time t1, as shown in FIG. 5A, the connection state of the switch 70 is a measurement state in which the measurement object 10 is connected to the power supply circuit 30. Therefore, as shown in FIGS. 5C and 5D, the resistance component Vr and the reactance component Vx of the AC potential difference generated in the measurement object 10 are respectively output.
 時刻t1において、診断時期となり、図5(a)に示すように、診断制御部80により、スイッチ70が診断素子60を検出回路20及び電源回路30に接続した診断状態に切り替えられる。これにより、電源回路30から交流電流Iが診断素子60に印加され、診断素子60に生じる交流電位差を示す交流電位差信号VがR成分抽出回路21及びX成分抽出回路22に入力される。 At time t1, the diagnosis time comes, and as shown in FIG. 5A, the diagnosis control unit 80 switches the switch 70 to a diagnosis state in which the diagnosis element 60 is connected to the detection circuit 20 and the power supply circuit 30. As a result, an alternating current I is applied from the power supply circuit 30 to the diagnostic element 60, and an alternating potential difference signal V indicating an alternating potential difference generated in the diagnostic element 60 is input to the R component extraction circuit 21 and the X component extraction circuit 22.
 このとき、診断素子60は抵抗器であるため、交流電位差信号Vの位相は交流電流Iの位相と一致する。したがって、交流電位差信号Vの振幅成分はR成分抽出回路21で抽出されるため、図5(c)に示すように、R成分抽出回路21の出力信号Vrは、測定誤差がゼロのときの基準電圧に対してほぼ同じレベルになる。演算器50は、R成分抽出回路21の出力信号Vrと交流電流Iとに基づいて診断素子60の抵抗値を演算し、その抵抗値と基準値との差分を測定時の抵抗成分Rの誤差として算出する。一方、図5(d)に示すように、X成分抽出回路22の出力信号Vxは、ほぼゼロになる。 At this time, since the diagnostic element 60 is a resistor, the phase of the AC potential difference signal V matches the phase of the AC current I. Therefore, since the amplitude component of the AC potential difference signal V is extracted by the R component extraction circuit 21, as shown in FIG. 5C, the output signal Vr of the R component extraction circuit 21 is a reference when the measurement error is zero. The level is almost the same as the voltage. The calculator 50 calculates the resistance value of the diagnostic element 60 based on the output signal Vr of the R component extraction circuit 21 and the alternating current I, and calculates the difference between the resistance value and the reference value as an error of the resistance component R at the time of measurement. Calculate as On the other hand, as shown in FIG. 5D, the output signal Vx of the X component extraction circuit 22 becomes substantially zero.
 時刻t2において、図5(b)に示すように、交流電流Iの位相が診断制御部80により90度だけ遅らされる。これにより、交流電位差信号Vの位相も90度だけ遅れるので、X成分抽出回路22に供給される直交移相器41の出力信号の位相と一致し、X成分抽出回路22により交流電位差信号Vの振幅成分が抽出できるようになる。 At time t2, as shown in FIG. 5B, the phase of the alternating current I is delayed by 90 degrees by the diagnosis control unit 80. As a result, the phase of the AC potential difference signal V is also delayed by 90 degrees, and therefore coincides with the phase of the output signal of the quadrature phase shifter 41 supplied to the X component extraction circuit 22. The amplitude component can be extracted.
 このため、図5(d)に示すように、X成分抽出回路22の出力信号Vxは基準電圧とほぼ同じレベルになる。演算器50は、このX成分抽出回路22の出力信号Vxと交流電流Iとに基づいてリアクタンス値を演算し、そのリアクタンス値と基準値との差分を測定時のリアクタンス成分Xの誤差として算出する。一方、図5(c)に示すように、R成分抽出回路21の出力信号Vrは、ほぼゼロになる。 Therefore, as shown in FIG. 5 (d), the output signal Vx of the X component extraction circuit 22 is at the same level as the reference voltage. The calculator 50 calculates a reactance value based on the output signal Vx of the X component extraction circuit 22 and the alternating current I, and calculates a difference between the reactance value and the reference value as an error of the reactance component X at the time of measurement. . On the other hand, as shown in FIG. 5C, the output signal Vr of the R component extraction circuit 21 becomes substantially zero.
 時刻t3において、図5(b)に示すように交流電流Iの位相が0度に戻され、さらに図5(a)に示すようにスイッチ70が測定状態に切り替えられる。そして演算器50により、測定対象物10の抵抗成分R及びリアクタンス成分Xが測定結果として算出される。 At time t3, the phase of the alternating current I is returned to 0 degrees as shown in FIG. 5 (b), and the switch 70 is switched to the measurement state as shown in FIG. 5 (a). Then, the computing unit 50 calculates the resistance component R and the reactance component X of the measurement object 10 as measurement results.
 このように、診断期間において交流電流Iの位相を90度遅らせることにより、X成分抽出回路22において、診断素子60の抵抗成分をリアクタンス成分として抽出することが可能になる。このため、診断素子60として抵抗器を使用しても、インピーダンス測定装置5a内のリアクタンス成分を測定するための信号経路における電子部品の出力変動に起因する測定誤差を計測することが可能になる。 Thus, by delaying the phase of the alternating current I by 90 degrees during the diagnosis period, the X component extraction circuit 22 can extract the resistance component of the diagnosis element 60 as a reactance component. For this reason, even if a resistor is used as the diagnostic element 60, it is possible to measure a measurement error due to an output fluctuation of an electronic component in a signal path for measuring a reactance component in the impedance measuring device 5a.
 なお、本実施形態では電源回路30から出力される交流電流Iの位相を90度シフトさせたが、位相の操作量は90度に限られるものではない。 In the present embodiment, the phase of the alternating current I output from the power supply circuit 30 is shifted by 90 degrees, but the amount of phase operation is not limited to 90 degrees.
 例えば、電源回路30の出力電流Iの位相を45度だけシフトさせるだけでもよい。この場合には、R成分抽出回路21及びX成分抽出回路22の双方から、ほぼ同レベルの信号が出力される。理論的には、双方から基準電圧にSin(45°)を乗算した値を示す信号が出力されることになる。このため、抵抗成分R及びリアクタンス成分Xの測定誤差を同時に算出できるので、診断期間を短縮することが可能になる。 For example, the phase of the output current I of the power supply circuit 30 may be shifted by 45 degrees. In this case, signals of substantially the same level are output from both the R component extraction circuit 21 and the X component extraction circuit 22. Theoretically, both signals output a value obtained by multiplying the reference voltage by Sin (45 °). For this reason, since the measurement error of the resistance component R and the reactance component X can be calculated simultaneously, the diagnosis period can be shortened.
 また、電源回路30の出力電流Iの位相を操作するのではなく、X成分抽出回路22に入力される直交信号Sin(90)の位相、すなわち発振回路40cの出力信号の位相を90度操作してもよい。この場合でも、R成分抽出回路21及びX成分抽出回路22の双方から基準電圧相当の信号が出力されることになるので、測定誤差を計測する精度の低下を抑制しつつ、診断期間を短くすること可能になる。 Further, instead of manipulating the phase of the output current I of the power supply circuit 30, the phase of the quadrature signal Sin (90) input to the X component extraction circuit 22, that is, the phase of the output signal of the oscillation circuit 40c is manipulated by 90 degrees. May be. Even in this case, since the signal corresponding to the reference voltage is output from both the R component extraction circuit 21 and the X component extraction circuit 22, the diagnosis period is shortened while suppressing a decrease in accuracy of measuring the measurement error. It becomes possible.
 本発明の第1実施形態によれば、インピーダンス測定装置5aは、測定対象物10に交流電流を出力する電源回路30と、測定対象物10に生じる交流電位差Vを検出する検出回路20とを備える。また、インピーダンス測定装置5aは、電源回路30の出力電流Iに対して周波数が同一の交流信号Sin(0)を出力する第1発振回路40bと、第1発振回路40bの出力信号Sin(0)に基づいて、検出回路20により検出される交流電位差の抵抗成分Vrを抽出する第1抽出回路21とを備える。さらに、インピーダンス測定装置5aは、第1発振回路40bの出力信号Sin(0)に対して位相が直交する交流信号Sin(90)を出力する第2発振回路を構成する直交移相器41と、直交移相器41の出力信号Sin(90)に基づいて、検出回路20により検出される交流電位差のリアクタンス成分Vxを抽出する第2抽出回路22とを含む。 According to the first embodiment of the present invention, the impedance measuring device 5 a includes the power supply circuit 30 that outputs an alternating current to the measurement object 10 and the detection circuit 20 that detects the alternating potential difference V generated in the measurement object 10. . The impedance measuring device 5a also includes a first oscillation circuit 40b that outputs an AC signal Sin (0) having the same frequency as the output current I of the power supply circuit 30, and an output signal Sin (0) of the first oscillation circuit 40b. And a first extraction circuit 21 for extracting the resistance component Vr of the AC potential difference detected by the detection circuit 20. Furthermore, the impedance measuring device 5a includes a quadrature phase shifter 41 constituting a second oscillation circuit that outputs an AC signal Sin (90) whose phase is orthogonal to the output signal Sin (0) of the first oscillation circuit 40b, And a second extraction circuit 22 that extracts the reactance component Vx of the AC potential difference detected by the detection circuit 20 based on the output signal Sin (90) of the quadrature phase shifter 41.
 そして、インピーダンス測定装置5aは、第1抽出回路21又は第2抽出回路22により抽出される成分Vr又はVxと、電源回路30により出力される交流電流Iとに基づいて、測定対象物10が有するインピーダンスの抵抗成分R又はリアクタンス成分Xを演算する演算器50を備える。さらに、インピーダンス測定装置5aは、演算器50により演算されるインピーダンスの誤差を特定するための抵抗、コンデンサ、及びコイルのいずれか1つの受動素子60と、測定対象物10を電源回路30に接続した測定状態と、受動素子60を電源回路30に接続した診断状態とを切り替えるスイッチ70と、スイッチ70の接続状態を制御する診断制御部80と、を備える。 The impedance measuring device 5a includes the measurement object 10 based on the component Vr or Vx extracted by the first extraction circuit 21 or the second extraction circuit 22 and the alternating current I output by the power supply circuit 30. An arithmetic unit 50 for calculating the resistance component R or reactance component X of the impedance is provided. Further, the impedance measuring device 5 a connects the passive object 60 of any one of a resistor, a capacitor, and a coil for specifying an error in the impedance calculated by the calculator 50 and the measurement object 10 to the power supply circuit 30. A switch 70 that switches between a measurement state and a diagnosis state in which the passive element 60 is connected to the power supply circuit 30 and a diagnosis control unit 80 that controls the connection state of the switch 70 are provided.
 この診断制御部80は、スイッチ70を診断状態に切り替えた場合において、第2抽出回路22でリアクタンス成分Xを抽出するときには、第1抽出回路21で抵抗成分Rを抽出するときに比べて、電源回路30、第1発振回路40b及び第2発振回路40cのうち受動素子60に対応する回路の出力信号の位相をシフトさせる。そして、50演算器は、受動素子60を用いて第1抽出回路21及び第2抽出回路22で抽出される各成分Vr及びVxに基づいて、測定対象物10のインピーダンスの誤差を診断する、又は、インピーダンスを補正する。 In the case where the switch 70 is switched to the diagnosis state, the diagnosis control unit 80 extracts the reactance component X by the second extraction circuit 22 as compared with the case where the first extraction circuit 21 extracts the resistance component R. Of the circuit 30, the first oscillation circuit 40b, and the second oscillation circuit 40c, the phase of the output signal of the circuit corresponding to the passive element 60 is shifted. Then, the 50 computing unit diagnoses an error in the impedance of the measurement object 10 based on the components Vr and Vx extracted by the first extraction circuit 21 and the second extraction circuit 22 using the passive element 60, or Correct the impedance.
 このように、電源回路30、第1発振回路40b及び第2発振回路40cのうち、図3に示したように受動素子60の種類に合わせて、少なくとも1つの回路の出力信号の位相を操作することにより、ひとつの診断素子だけで、抵抗成分R及びリアクタンス成分Xの両者の測定誤差を特定することが可能となる。したがって、インピーダンス測定装置5aの回路規模及び製造コストの増加を抑制しつつ、インピーダンスの測定精度の低下を抑制することができる。 As described above, the phase of the output signal of at least one of the power supply circuit 30, the first oscillation circuit 40b, and the second oscillation circuit 40c is controlled in accordance with the type of the passive element 60 as shown in FIG. Thus, it is possible to specify measurement errors of both the resistance component R and the reactance component X with only one diagnostic element. Therefore, it is possible to suppress a decrease in impedance measurement accuracy while suppressing an increase in circuit scale and manufacturing cost of the impedance measuring device 5a.
 また、本実施形態によれば、診断素子60は、基準となる値の抵抗を有する抵抗器であり、診断制御部80は、抵抗器を用いて第2抽出回路22でリアクタンス成分Xを抽出する場合には、電源回路30及び直交移相器41の出力信号のうち少なくとも一方の交流信号の位相を所定の角度だけシフトさせる。 Further, according to the present embodiment, the diagnostic element 60 is a resistor having a reference value of resistance, and the diagnostic control unit 80 extracts the reactance component X by the second extraction circuit 22 using the resistor. In this case, the phase of at least one AC signal among the output signals of the power supply circuit 30 and the quadrature phase shifter 41 is shifted by a predetermined angle.
 このように、診断素子60として抵抗器を用いることにより、コンデンサを用いる場合に比べて、インピーダンス測定装置5aをより一層小型にすることが可能となる。 Thus, by using a resistor as the diagnostic element 60, it is possible to further reduce the size of the impedance measuring device 5a compared to the case of using a capacitor.
 また、本実施形態によれば、診断制御部80は、診断素子60として抵抗器を用いてX成分抽出回路22でリアクタンス成分Xを抽出する場合には、電源回路30から出力される交流電流Iの位相を45度又は90度だけシフトさせる。 Further, according to the present embodiment, the diagnosis control unit 80 uses the resistor as the diagnosis element 60 to extract the reactance component X by the X component extraction circuit 22, and the alternating current I output from the power supply circuit 30. Is shifted by 45 degrees or 90 degrees.
 このように、電源回路30の出力電流Iの位相を45度シフトさせることにより、診断素子60に生じる交流電位差信号VをR成分抽出回路21及びX成分抽出回路22の双方で抽出することが可能となり、診断期間を短縮することができる。また、電源回路30の出力電流Iの位相を90度シフトさせることにより、S/N比(Signal to Noise)が最も高くなるので、測定誤差の計測精度を高めることができる。 In this way, by shifting the phase of the output current I of the power supply circuit 30 by 45 degrees, the AC potential difference signal V generated in the diagnostic element 60 can be extracted by both the R component extraction circuit 21 and the X component extraction circuit 22. Thus, the diagnosis period can be shortened. Further, by shifting the phase of the output current I of the power supply circuit 30 by 90 degrees, the S / N ratio (Signal to Noise) becomes the highest, so that the measurement accuracy of the measurement error can be increased.
 また、本実施形態によれば、診断制御部80は、診断素子60として抵抗器を用いてX成分抽出回路22でリアクタンス成分を抽出する場合には、直交移相器41から出力される交流信号の位相角を90度回転させる。これにより、抵抗成分R及びリアクタンス成分Xの測定誤差を同時に計測しつつ、その計測精度の低下を抑制することができる。すなわち、診断期間を短縮しつつ測定精度を向上させることができる。 In addition, according to the present embodiment, the diagnosis control unit 80 uses a resistor as the diagnosis element 60 to extract the reactance component by the X component extraction circuit 22, and the AC signal output from the quadrature phase shifter 41. The phase angle is rotated 90 degrees. Thereby, the measurement error of the resistance component R and the reactance component X can be measured simultaneously, and a decrease in the measurement accuracy can be suppressed. That is, the measurement accuracy can be improved while shortening the diagnosis period.
 (第2実施形態)
 図7は、本発明の第2実施形態におけるインピーダンス測定装置5bの基本構成を示す構成図である。
(Second Embodiment)
FIG. 7 is a configuration diagram showing a basic configuration of the impedance measuring device 5b in the second embodiment of the present invention.
 燃料電池スタック1は、本実施形態におけるインピーダンス測定装置5bの測定対象物である。燃料電池スタック1は、複数の発電セルが積層された積層電池であり、例えば車両に搭載される。燃料電池スタック1は、負荷3と接続されて負荷3に電力を供給する。 The fuel cell stack 1 is a measurement object of the impedance measurement device 5b in the present embodiment. The fuel cell stack 1 is a stacked battery in which a plurality of power generation cells are stacked, and is mounted on a vehicle, for example. The fuel cell stack 1 is connected to the load 3 and supplies power to the load 3.
 負荷3は、例えば、電動モータや、燃料電池スタック1の補機などである。燃料電池スタック1の補機は、例えば、燃料電池スタック1にカソードガスを供給するコンプレッサや、燃料電池スタック1を暖機するときに燃料電池スタック1を流れる冷却水を加熱するヒータなどである。 The load 3 is, for example, an electric motor or an auxiliary machine of the fuel cell stack 1. The auxiliary equipment of the fuel cell stack 1 is, for example, a compressor that supplies a cathode gas to the fuel cell stack 1 or a heater that heats the cooling water flowing through the fuel cell stack 1 when the fuel cell stack 1 is warmed up.
 コントロールユニット(C/U)6は、燃料電池スタック1の発電状態や、湿潤状態、内部の圧力状態、温度状態などの運転状態、及び負荷3の作動状態を制御する。 The control unit (C / U) 6 controls the power generation state of the fuel cell stack 1, the operation state such as the wet state, the internal pressure state, the temperature state, and the operation state of the load 3.
 コントロールユニット6は、例えば、負荷3から要求される要求電力に応じて、燃料電池スタック1に供給されるカソードガス及びアノードガスの流量を制御する。また、燃料電池スタック1では電解質膜が乾いた状態になると発電性能が低下する。この対策としてコントロールユニット6は、電解質膜の湿潤度と相関関係のある燃料電池スタック1の内部抵抗値を用いて、電解質膜が乾いた状態や過剰に湿った状態にならないように、アノードガス及びカソードガスの流量を調整する。 The control unit 6 controls the flow rates of the cathode gas and the anode gas supplied to the fuel cell stack 1 according to the required power required from the load 3, for example. Further, in the fuel cell stack 1, when the electrolyte membrane is in a dry state, the power generation performance is degraded. As a countermeasure, the control unit 6 uses the internal resistance value of the fuel cell stack 1 correlated with the wetness of the electrolyte membrane so that the electrolyte membrane does not become dry or excessively wet. Adjust the cathode gas flow rate.
 なお、コントロールユニット6には、燃料電池システムを起動するための操作スイッチ部6aや、燃料電池スタック1の周囲温度を検出する温度センサ6bなどが設けられている。 The control unit 6 is provided with an operation switch unit 6a for starting the fuel cell system, a temperature sensor 6b for detecting the ambient temperature of the fuel cell stack 1, and the like.
 インピーダンス測定装置5bは、燃料電池スタック1の内部インピーダンスを測定する。本実施形態では、インピーダンス測定装置5bは、燃料電池スタック1の抵抗成分R及びリアクタンスの容量成分Cを測定し、その抵抗成分R及び容量成分Cの各測定値をコントロールユニット6に送信する。コントロールユニット6は、インピーダンス測定装置5bから燃料電池スタック1の抵抗成分Rの測定値を受信すると、その抵抗成分Rの測定値に基づいて燃料電池スタック1の湿潤状態を制御する。また、コントロールユニット6は、インピーダンス測定装置5bから燃料電池スタック1の容量成分Cの測定値を受信すると、その容量成分Rの測定値に基づいて、燃料電池スタック1に供給されるアノードガスが不足している状態か否かを判断する。 The impedance measuring device 5b measures the internal impedance of the fuel cell stack 1. In the present embodiment, the impedance measuring device 5 b measures the resistance component R and reactance capacitance component C of the fuel cell stack 1, and transmits the measured values of the resistance component R and capacitance component C to the control unit 6. When the control unit 6 receives the measured value of the resistance component R of the fuel cell stack 1 from the impedance measuring device 5b, the control unit 6 controls the wet state of the fuel cell stack 1 based on the measured value of the resistance component R. Further, when the control unit 6 receives the measurement value of the capacity component C of the fuel cell stack 1 from the impedance measurement device 5b, the anode gas supplied to the fuel cell stack 1 is insufficient based on the measurement value of the capacity component R. It is determined whether or not it is in a state.
 インピーダンス測定装置5bは、正極側直流遮断部511と、負極側直流遮断部512と、中途点直流遮断部513と、正極側検出部521と、負極側検出部522と、正極側電源部531と、負極側電源部532と、交流調整部540と、演算部550とを含む。さらに、インピーダンス測定装置5bは、図1に示した診断制御部80に対応する診断制御部580を備える。 The impedance measuring device 5b includes a positive side DC cutoff unit 511, a negative side DC cutoff unit 512, a midpoint DC cutoff unit 513, a positive side detection unit 521, a negative side detection unit 522, and a positive side power supply unit 531. , A negative power supply unit 532, an AC adjustment unit 540, and a calculation unit 550. Furthermore, the impedance measuring device 5b includes a diagnosis control unit 580 corresponding to the diagnosis control unit 80 shown in FIG.
 正極側直流遮断部511、負極側直流遮断部512、中途点直流遮断部513、正極側検出部521、及び負極側検出部522の詳細については、図8を参照して説明する。 Details of the positive side DC blocking unit 511, the negative side DC blocking unit 512, the midpoint DC blocking unit 513, the positive side detection unit 521, and the negative side detection unit 522 will be described with reference to FIG.
 正極側直流遮断部511は、燃料電池スタック1の正極端子211に接続される。負極側直流遮断部512は、燃料電池スタック1の負極端子212に接続される。中途点直流遮断部513は、燃料電池スタック1の中途点端子213に接続される。中途点端子213は、正極端子211から負極端子212へ積層された複数枚の発電セルのうち中間に位置する発電セルに接続されている。なお、中途点端子213は、正極端子211と負極端子212との中点から外れた位置の発電セルに接続してもよい。 The positive side DC blocking unit 511 is connected to the positive terminal 211 of the fuel cell stack 1. The negative electrode side DC blocking unit 512 is connected to the negative electrode terminal 212 of the fuel cell stack 1. The midpoint DC blocking unit 513 is connected to the midpoint terminal 213 of the fuel cell stack 1. The midpoint terminal 213 is connected to a power generation cell located in the middle of the plurality of power generation cells stacked from the positive electrode terminal 211 to the negative electrode terminal 212. The midpoint terminal 213 may be connected to a power generation cell at a position off the midpoint between the positive terminal 211 and the negative terminal 212.
 直流遮断部511~513は、直流信号を遮断し、交流信号を流す。直流遮断部511~513は、例えばコンデンサやトランスにより実現される。なお、破線で示された中途点直流遮断部513は省略することができる。 DC blocking units 511 to 513 block a DC signal and allow an AC signal to flow. The DC blockers 511 to 513 are realized by, for example, capacitors or transformers. Note that the midpoint DC blocking unit 513 indicated by a broken line can be omitted.
 正極側検出部521は、正極端子211に生じる交流電位Vaと、中途点端子213に生じる交流電位Vcとの間の電位差(以下、「交流電位差V1」という。)を検出する。正極側検出部521は、交流電位差V1の振動に応じて値が変化する検出信号を演算部550に出力する。例えば交流電位差V1が上昇するほど検出信号の値は大きくなり、交流電位差V1が低下するほど検出信号の値は小さくなる。正極側検出部521では、第1入力端子が正極側直流遮断部511を介して正極端子211と接続され、第2入力端子が中途点直流遮断部513を介して中途点端子213と接続される。 The positive electrode side detection unit 521 detects a potential difference between the AC potential Va generated at the positive electrode terminal 211 and the AC potential Vc generated at the midway terminal 213 (hereinafter referred to as “AC potential difference V1”). The positive electrode side detection unit 521 outputs a detection signal whose value changes according to the vibration of the AC potential difference V1 to the calculation unit 550. For example, the value of the detection signal increases as the AC potential difference V1 increases, and the value of the detection signal decreases as the AC potential difference V1 decreases. In the positive electrode side detection unit 521, the first input terminal is connected to the positive electrode terminal 211 via the positive electrode side DC cutoff unit 511, and the second input terminal is connected to the midpoint terminal 213 via the midpoint DC cutoff unit 513. .
 負極側検出部522は、負極端子212に生じる交流電位Vbと、中途点端子213に生じる交流電位Vcとの間の電位差(以下「交流電位差V2」という。)を検出する。負極側検出部522は、交流電位差V2を示す検出信号を演算部550に出力する。負極側検出部522では、第1入力端子が負極側直流遮断部512を介して負極端子212と接続され、第2入力端子が中途点直流遮断部513を介して中途点端子213と接続される。正極側検出部521及び負極側検出部522は、例えば差動アンプ(計装アンプ)により実現される。 The negative electrode side detection unit 522 detects a potential difference (hereinafter referred to as “AC potential difference V2”) between the AC potential Vb generated at the negative electrode terminal 212 and the AC potential Vc generated at the midway terminal 213. The negative electrode side detection unit 522 outputs a detection signal indicating the AC potential difference V2 to the calculation unit 550. In the negative electrode side detection unit 522, the first input terminal is connected to the negative electrode terminal 212 via the negative electrode side DC blocking unit 512, and the second input terminal is connected to the midpoint terminal 213 via the midpoint DC blocking unit 513. . The positive electrode side detection unit 521 and the negative electrode side detection unit 522 are realized by, for example, a differential amplifier (instrumentation amplifier).
 正極側電源部531及び負極側電源部532の詳細については、図9を参照して説明する。 Details of the positive power supply unit 531 and the negative power supply unit 532 will be described with reference to FIG.
 正極側電源部531は、基準周波数fbの交流電流を出力する電源回路である。正極側電源部531は、例えばオペアンプ(OPアンプ)などの電圧電流変換回路により実現される。この電圧電流変換回路により入力電圧Viに比例した電流Ioが出力される。なおIo=Vi/Rsであり、Rsは電流センシング抵抗である。この電圧電流変換回路は、入力電圧Viに応じて出力電流Ioを調整可能な可変交流電流源として用いられる。 The positive power supply unit 531 is a power supply circuit that outputs an alternating current having a reference frequency fb. The positive power supply unit 531 is realized by a voltage-current conversion circuit such as an operational amplifier (OP amplifier). This voltage-current converter circuit outputs a current Io proportional to the input voltage Vi. Note that Io = Vi / Rs, where Rs is a current sensing resistance. This voltage-current conversion circuit is used as a variable AC current source capable of adjusting the output current Io according to the input voltage Vi.
 正極側電源部531として電圧電流変換回路を使用することにより、出力電流Ioを実測しなくても、入力電圧Vi÷比例定数Rsで出力電流Ioが得られるので、入力電圧Viを検出すれば出力電流Ioを求めることができる。負極側電源部532についても同様の構成である。すなわち負極側電源部532は、基準周波数fbの交流電流を出力する電源回路である。 By using a voltage-current conversion circuit as the positive-side power supply unit 531, the output current Io can be obtained by the input voltage Vi ÷ proportional constant Rs without actually measuring the output current Io. The current Io can be obtained. The negative power supply unit 532 has the same configuration. That is, the negative power supply unit 532 is a power supply circuit that outputs an alternating current having a reference frequency fb.
 交流調整部540の詳細については図10を参照して説明する。 Details of the AC adjustment unit 540 will be described with reference to FIG.
 交流調整部540は、正極側の交流電位Vaと負極側の交流電位Vbとが互いに一致するように、正極側電源部531及び負極側電源部532のうち少なくとも一方から出力される交流電流の振幅を調整する。 The AC adjustment unit 540 determines the amplitude of the AC current output from at least one of the positive power supply unit 531 and the negative power supply unit 532 so that the positive AC potential Va and the negative AC potential Vb coincide with each other. Adjust.
 本実施形態では交流調整部540は、正極側の交流電位差V1と負極側の交流電位差V2の振幅レベルが等しくなるように、正極側電源部531から出力される交流電流の振幅と、負極側電源部532から出力される交流電流の振幅との両方を増減させる。交流調整部540は、例えばPI(Proportional Integral)制御回路により実現される。 In the present embodiment, the AC adjustment unit 540 determines the amplitude of the AC current output from the positive power supply unit 531 and the negative power supply so that the amplitude levels of the positive AC potential difference V1 and the negative AC potential difference V2 are equal. Both the amplitude of the alternating current output from the unit 532 is increased or decreased. The AC adjustment unit 540 is realized by, for example, a PI (Proportional Integral) control circuit.
 また、交流調整部540は、正極側電源部531及び負極側電源部532に対する電流指令信号を、正極側電源部531及び負極側電源部532から出力される交流電流I1及びI2として演算部550に出力する。 In addition, the AC adjustment unit 540 sends the current command signals for the positive power supply unit 531 and the negative power supply unit 532 to the calculation unit 550 as AC currents I1 and I2 output from the positive power supply unit 531 and the negative power supply unit 532. Output.
 交流調整部540は、正極側検波回路5411と、正極側減算器5421と、正極側積分回路5431と、正極側乗算器5441と、負極側検波回路5412と、負極側減算器5422と、負極側積分回路5432と、負極側乗算器5442と、を含む。 The AC adjustment unit 540 includes a positive-side detection circuit 5411, a positive-side subtractor 5421, a positive-side integration circuit 5431, a positive-side multiplier 5441, a negative-side detection circuit 5412, a negative-side subtractor 5422, and a negative-side An integration circuit 5432 and a negative side multiplier 5442 are included.
 さらに、交流調整部540は、基準電源545及び交流信号源546aを備える。基準電源545は、正極側の交流電位差V1と負極側の交流電位差V2とを一致させるために設定された基準となる電位(以下、「基準電圧Vs」という。)を出力する。基準電圧Vsは、実験等で定められた値である。 Furthermore, the AC adjustment unit 540 includes a reference power source 545 and an AC signal source 546a. The reference power source 545 outputs a reference potential (hereinafter referred to as “reference voltage Vs”) set in order to match the positive-side AC potential difference V1 and the negative-side AC potential difference V2. The reference voltage Vs is a value determined by experiments or the like.
 交流信号源546aは、基準周波数fbの交流信号を発振させる発振源であり、図1に示した発振回路40aに対応する。交流信号源546aは、交流信号の位相を変更可能な回路であり、交流信号源546aから出力される交流信号の位相は診断制御部580によって制御される。 The AC signal source 546a is an oscillation source that oscillates an AC signal having the reference frequency fb, and corresponds to the oscillation circuit 40a shown in FIG. The AC signal source 546a is a circuit capable of changing the phase of the AC signal, and the phase of the AC signal output from the AC signal source 546a is controlled by the diagnosis control unit 580.
 基準周波数fbは、燃料電池スタック1の内部インピーダンスを測定するのに適した所定の周波数に設定される。例えば、燃料電池スタック1の電解質膜の湿潤状態を検出する場合には、電解質膜の湿潤状態と相関のある抵抗成分Rを計測するために、基準周波数fbは、例えば1kHz(キロヘルツ)に設定される。また、燃料電池スタック1における水素の不足状態を検出する場合には、水素の不足状態と相関のある容量成分Cを計測するために、基準周波数fbは、例えば、1kHzよりも低い周波数に設定される。 The reference frequency fb is set to a predetermined frequency suitable for measuring the internal impedance of the fuel cell stack 1. For example, when the wet state of the electrolyte membrane of the fuel cell stack 1 is detected, the reference frequency fb is set to 1 kHz (kilohertz), for example, in order to measure the resistance component R correlated with the wet state of the electrolyte membrane. The In addition, when detecting a hydrogen shortage state in the fuel cell stack 1, the reference frequency fb is set to a frequency lower than 1 kHz, for example, in order to measure the capacitance component C correlated with the hydrogen shortage state. The
 正極側検波回路5411は、正極側検出部521から出力される交流電位差V1を示す検出信号を受信すると、検出信号に含まれる不要信号を除去すると共に、検出信号を交流電位差V1の振幅に比例した直流信号に変換する。例えば、正極側検波回路5411は、交流電位差V1の振幅に比例した直流信号として、検出信号の平均値又は実効値を出力する。 When the positive-side detection circuit 5411 receives the detection signal indicating the AC potential difference V1 output from the positive-side detection unit 521, the positive-side detection circuit 5411 removes unnecessary signals included in the detection signal and makes the detection signal proportional to the amplitude of the AC potential difference V1. Convert to DC signal. For example, the positive detector circuit 5411 outputs the average value or effective value of the detection signal as a DC signal proportional to the amplitude of the AC potential difference V1.
 本実施形態では、正極側検波回路5411は、同期検波回路により実現される。正極側検波回路5411は、交流電位差V1の抵抗成分である実部成分と交流電位差V1の容量成分である虚部成分を抽出し、その実部成分及び虚部成分に基づいて、交流電位差V1のベクトルの大きさを示すベクトル値V1pを算出する。正極側検波回路5411は、交流電位差V1の振幅に比例した直流信号として、ベクトル値V1pを正極側減算器5421に出力する。 In the present embodiment, the positive detection circuit 5411 is realized by a synchronous detection circuit. The positive-side detection circuit 5411 extracts a real part component that is a resistance component of the AC potential difference V1 and an imaginary part component that is a capacitance component of the AC potential difference V1, and a vector of the AC potential difference V1 based on the real part component and the imaginary part component. A vector value V1p indicating the magnitude of is calculated. The positive detection circuit 5411 outputs the vector value V1p to the positive subtractor 5421 as a DC signal proportional to the amplitude of the AC potential difference V1.
 なお、検出信号の平均値又は実効値を用いると、交流電位差V1と交流電位差V2との位相差が大きくなると、交流電位差V1及びV2の振幅が同一であっても、交流電位差V1又はV2の実部成分が小さくなるため、交流電流I1又はI2の振幅が過剰に増減されてしまう可能性がある。これに対してベクトル値V1pを用いることにより、交流電位差V1又はV2の振幅成分が正確に求められるので、交流電流I1及びI2の振幅を精度よく調整することができる。正極側検波回路5411の詳細構成については次図を参照して後述する。 When the average value or effective value of the detection signals is used, if the phase difference between the AC potential difference V1 and the AC potential difference V2 increases, even if the amplitudes of the AC potential differences V1 and V2 are the same, the actual AC potential difference V1 or V2 is not detected. Since the partial component is small, the amplitude of the alternating current I1 or I2 may be excessively increased or decreased. On the other hand, by using the vector value V1p, the amplitude component of the AC potential difference V1 or V2 can be accurately obtained, so that the amplitudes of the AC currents I1 and I2 can be accurately adjusted. The detailed configuration of the positive detection circuit 5411 will be described later with reference to the next drawing.
 正極側減算器5421は、正極側検波回路5411で検出される交流電位差V1のベクトル値Vp1から基準電圧Vsを減算することにより、基準電圧Vsからベクトル値Vp1のズレ幅を示す差分信号を算出する。例えば、基準電圧Vsからのズレ幅が大きくなるほど、差分信号の信号レベルは大きくなる。 The positive side subtractor 5421 calculates a difference signal indicating a deviation width of the vector value Vp1 from the reference voltage Vs by subtracting the reference voltage Vs from the vector value Vp1 of the AC potential difference V1 detected by the positive side detection circuit 5411. . For example, the signal level of the differential signal increases as the deviation width from the reference voltage Vs increases.
 正極側積分回路5431は、正極側減算器5421から出力される差分信号を積分することにより、差分信号を平均化又は感度調節する。そして、正極側積分回路5431は、積分された差分信号を正極側乗算器5441に出力する。 The positive side integration circuit 5431 integrates the difference signal output from the positive side subtracter 5421 to average or adjust the sensitivity of the difference signal. Then, the positive side integration circuit 5431 outputs the integrated difference signal to the positive side multiplier 5441.
 正極側乗算器5441は、交流信号源546aから出力される基準周波数fbの交流信号に対して差分信号を乗算することにより、交流電位差V1の振幅が基準電圧Vsに収束するように交流電圧信号を生成する。差分信号の信号レベルが大きくなるほど、交流電圧信号の振幅は大きくなる。 The positive-side multiplier 5441 multiplies the AC signal of the reference frequency fb output from the AC signal source 546a by the difference signal, thereby generating the AC voltage signal so that the amplitude of the AC potential difference V1 converges to the reference voltage Vs. Generate. As the signal level of the differential signal increases, the amplitude of the AC voltage signal increases.
 正極側乗算器5441は、生成された交流電圧信号を電流指令信号として、図9に示した正極側電源部531に出力する。正極側電源部531に入力される交流電圧信号Viは、正極側電源部531によって交流電流信号Ioに変換されて燃料電池スタック1の正極端子211へ出力される。 The positive-side multiplier 5441 outputs the generated AC voltage signal as a current command signal to the positive-side power supply unit 531 shown in FIG. The AC voltage signal Vi input to the positive power supply unit 531 is converted into an AC current signal Io by the positive power supply unit 531 and output to the positive terminal 211 of the fuel cell stack 1.
 このように、交流信号源546aから出力される交流信号に基づいて、正極側電源部531から出力される交流電流I1が生成される。すなわち、交流信号源546aから出力される交流信号の位相をシフトさせることにより、正極側電源部531から出力される交流電流I1の位相も同様にシフトする。 Thus, based on the AC signal output from the AC signal source 546a, the AC current I1 output from the positive power supply unit 531 is generated. That is, by shifting the phase of the AC signal output from the AC signal source 546a, the phase of the AC current I1 output from the positive power supply unit 531 is similarly shifted.
 なお、負極側検波回路5412、負極側減算器5422、負極側積分回路5432及び負極側乗算器5442は、それぞれ、正極側検波回路5411、正極側減算器5421、正極側積分回路5431及び正極側乗算器5441と同様の構成である。 Note that the negative-polarity detection circuit 5412, the negative-polarity subtractor 5422, the negative-polarity integration circuit 5432, and the negative-polarity multiplier 5442 are respectively a positive-polarity detection circuit 5411, a positive-polarity subtracter 5421, a positive-polarity integration circuit 5431, and a positive-polarity multiplication. The configuration is similar to that of the instrument 5441.
 このように、交流調整部540は、交流電位差V1の振幅が基準電圧Vsとなるように、正極側電源部531から出力される交流電流I1の振幅を調整する。同様に交流調整部540は、交流電位差V2の振幅が基準電圧Vsとなるように、負極側電源部532から出力される交流電流I2の振幅を調整する。 Thus, the AC adjustment unit 540 adjusts the amplitude of the AC current I1 output from the positive power source unit 531 so that the amplitude of the AC potential difference V1 becomes the reference voltage Vs. Similarly, the AC adjustment unit 540 adjusts the amplitude of the AC current I2 output from the negative power supply unit 532 so that the amplitude of the AC potential difference V2 becomes the reference voltage Vs.
 このため、交流電位Va及び交流電位Vbが互いに同じレベルに制御されるので、正極端子211に重畳される交流電位と、負極端子212に重畳される交流電位とが一致する。これにより、インピーダンス測定装置5bから燃料電池スタック1へ出力された交流電流I1及びI2が負荷3の方に漏れ出るのを防ぐことができる。なお、以下では、交流電位Vaと交流電位Vbとが互いに等しくなるように正極側電源部531及び負極側電源部532を制御することを「等電位制御」という。 For this reason, since the AC potential Va and the AC potential Vb are controlled to the same level, the AC potential superimposed on the positive terminal 211 coincides with the AC potential superimposed on the negative terminal 212. Thereby, it is possible to prevent the alternating currents I1 and I2 output from the impedance measuring device 5b to the fuel cell stack 1 from leaking toward the load 3. In the following, controlling the positive power supply unit 531 and the negative power supply unit 532 so that the AC potential Va and the AC potential Vb are equal to each other is referred to as “equipotential control”.
 次に正極側検波回路5411の詳細について図11を参照して説明する。 Next, details of the positive-side detector circuit 5411 will be described with reference to FIG.
 正極側検波回路5411は、R成分抽出回路21と、X成分抽出回路22と、ベクトル演算部23と、直交移相器41と、交流信号源546b及び546cとを備える。なお、R成分抽出回路21、X成分抽出回路22、及び直交移相器41は、図4に示した構成と同じであるため、同一符号を付して詳細な説明を省略する。 The positive polarity detection circuit 5411 includes an R component extraction circuit 21, an X component extraction circuit 22, a vector calculation unit 23, a quadrature phase shifter 41, and AC signal sources 546b and 546c. Note that the R component extraction circuit 21, the X component extraction circuit 22, and the quadrature phase shifter 41 are the same as those shown in FIG.
 交流信号源546b及び546cは、それぞれ図1に示した発振回路40b及び40cに対応する。交流信号源546b及び546cは、共に基準周波数fbの交流信号を発振させる発振源である。本実施形態では、交流信号源546b及び546cから出力される交流信号の位相は、図10に示した交流信号源546aから出力される交流信号の位相は一致している。 AC signal sources 546b and 546c correspond to the oscillation circuits 40b and 40c shown in FIG. 1, respectively. The AC signal sources 546b and 546c are both oscillation sources that oscillate an AC signal having the reference frequency fb. In the present embodiment, the phases of the AC signals output from the AC signal sources 546b and 546c coincide with the phases of the AC signals output from the AC signal source 546a shown in FIG.
 なお、交流信号源546b及び546cは、交流信号の位相を変更可能な回路であり、交流信号源546b及び546cから出力される交流信号の位相は診断制御部580によって制御することも可能である。また、交流信号源546b及び546cの出力信号は、インピーダンス測定装置5の内部に寄生する容量成分などを考慮して、交流信号源546aの出力信号から位相をずらしても良い。 The AC signal sources 546b and 546c are circuits that can change the phase of the AC signal, and the phase of the AC signal output from the AC signal sources 546b and 546c can be controlled by the diagnosis control unit 580. Further, the output signals of the AC signal sources 546b and 546c may be shifted in phase from the output signal of the AC signal source 546a in consideration of a capacitance component parasitic in the impedance measuring device 5.
 R成分抽出回路21は、交流信号源546からの交流信号に基づいて、交流電位差V1の実部成分を抽出する。R成分抽出回路21は、抽出した実軸成分を交流電位差V1の抵抗成分V1rとして演算部550及びベクトル演算部23に出力する。 The R component extraction circuit 21 extracts the real part component of the AC potential difference V1 based on the AC signal from the AC signal source 546. The R component extraction circuit 21 outputs the extracted real axis component to the calculation unit 550 and the vector calculation unit 23 as the resistance component V1r of the AC potential difference V1.
 X成分抽出回路22は、直交移相器41からの交流信号、すなわち交流信号源546からの交流信号に対して位相が直交する交流信号に基づいて、交流電位差V1の虚部成分を抽出する。X成分抽出回路22は、抽出した虚部成分を交流電位差V1のリアクタンス成分V1xとして演算部550及びベクトル演算部23に出力する。 The X component extraction circuit 22 extracts the imaginary part component of the AC potential difference V1 based on the AC signal from the quadrature phase shifter 41, that is, the AC signal whose phase is orthogonal to the AC signal from the AC signal source 546. The X component extraction circuit 22 outputs the extracted imaginary part component to the calculation unit 550 and the vector calculation unit 23 as the reactance component V1x of the AC potential difference V1.
 ベクトル演算部23は、実部成分V1rと虚部成分V1xとに基づいて交流電位差のベクトル値V1pを算出する。具体的には、ベクトル演算部230は、次式(1)のとおり、実部成分V1rの二乗値と虚部成分V1xの二乗値との和の平方根を演算してベクトル値V1pを求める。 The vector calculation unit 23 calculates the vector value V1p of the AC potential difference based on the real part component V1r and the imaginary part component V1x. Specifically, the vector calculation unit 230 calculates the square value of the sum of the square value of the real part component V1r and the square value of the imaginary part component V1x as shown in the following equation (1) to obtain the vector value V1p.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 ベクトル演算部23は、算出した交流電位差のベクトル値V1pを正極側減算器5421に出力する。 The vector calculation unit 23 outputs the calculated AC potential difference vector value V1p to the positive-side subtractor 5421.
 このように、正極側検波回路5411は、交流電位差の抵抗成分V1rとリアクタンス成分V1xとをそれぞれ検出する。そして正極側検波回路5411は、交流電位差のベクトル値V1pを再生して正極側減算器5421に出力する。なお、負極側検波回路5412も、正極側検波回路5411と同様の構成である。 Thus, the positive electrode side detection circuit 5411 detects the resistance component V1r and the reactance component V1x of the AC potential difference, respectively. Then, the positive electrode side detection circuit 5411 reproduces the vector value V1p of the AC potential difference and outputs it to the positive electrode side subtracter 5421. Note that the negative electrode side detection circuit 5412 has the same configuration as the positive electrode side detection circuit 5411.
 次に、R成分抽出回路21及びX成分抽出回路22の詳細について図12を参照して説明する。 Next, details of the R component extraction circuit 21 and the X component extraction circuit 22 will be described with reference to FIG.
 同相乗算器21aは、抵抗素子Ra~Rcと、オペアンプ31と、スイッチ32とを備える。抵抗素子Ra及び抵抗素子Rbは、正極側検出部521から供給される電流の大きさを調整するために設けられている。抵抗素子Rcは、オペアンプ31の増幅率を調整するために設けられている。 The in-phase multiplier 21a includes resistance elements Ra to Rc, an operational amplifier 31, and a switch 32. The resistance element Ra and the resistance element Rb are provided to adjust the magnitude of the current supplied from the positive electrode side detection unit 521. The resistance element Rc is provided to adjust the amplification factor of the operational amplifier 31.
 抵抗素子Raの一端と抵抗素子Rbの一端は、共に正極側検出部521の出力端子に接続される。抵抗素子Raの他端は、オペアンプ31の反転入力端子(-)と、抵抗素子Rcの一端とに接続される。抵抗素子Rcの他端はオペアンプ31の出力端子と接続される。また、抵抗素子Rbの他端は、オペアンプ31の非反転入力端子(+)と、スイッチ32の一方の接点端子と接続される。スイッチ32の他方の接点端子は接地される。 Both one end of the resistance element Ra and one end of the resistance element Rb are connected to the output terminal of the positive electrode side detection unit 521. The other end of the resistor element Ra is connected to the inverting input terminal (−) of the operational amplifier 31 and one end of the resistor element Rc. The other end of the resistance element Rc is connected to the output terminal of the operational amplifier 31. The other end of the resistance element Rb is connected to the non-inverting input terminal (+) of the operational amplifier 31 and one contact terminal of the switch 32. The other contact terminal of the switch 32 is grounded.
 スイッチ32の制御端子には、交流信号源546bからの交流信号、又は、その交流信号に同期したパルス信号(矩形波)が入力される。スイッチ32は、基準周波数fbの交流信号に応じて、オペアンプ31の非反転入力端子(+)を接地又は非接地の状態に切り替える。 To the control terminal of the switch 32, an AC signal from the AC signal source 546b or a pulse signal (rectangular wave) synchronized with the AC signal is input. The switch 32 switches the non-inverting input terminal (+) of the operational amplifier 31 to the ground or non-ground state according to the AC signal having the reference frequency fb.
 例えば、スイッチ32の制御端子に供給される交流信号がゼロよりも大きい場合には、スイッチ32は接続状態(ON)となって、オペアンプ31の非反転入力端子(+)が接地される。この状態では、オペアンプ31は入力信号に「-1」を乗算する反転増幅器として機能するため、オペアンプ31から交流電位差V1の符号が反転した反転電圧信号が出力される。 For example, when the AC signal supplied to the control terminal of the switch 32 is larger than zero, the switch 32 is connected (ON), and the non-inverting input terminal (+) of the operational amplifier 31 is grounded. In this state, since the operational amplifier 31 functions as an inverting amplifier that multiplies the input signal by “−1”, an inverted voltage signal in which the sign of the AC potential difference V1 is inverted is output from the operational amplifier 31.
 一方、スイッチ32の制御端子に供給される交流信号がゼロよりも小さい場合には、スイッチ32は遮断状態(OFF)となって、オペアンプ31の非反転入力端子(+)が非接地となる。この状態では、オペアンプ31は入力信号に「+1」を乗算する非反転増幅器として機能するため、オペアンプ31から交流電位差V1の符号が反転しない非反転電圧信号が出力される。直交乗算器22aも同相乗算器21aと同様の構成である。 On the other hand, when the AC signal supplied to the control terminal of the switch 32 is smaller than zero, the switch 32 is cut off (OFF), and the non-inverting input terminal (+) of the operational amplifier 31 is not grounded. In this state, since the operational amplifier 31 functions as a non-inverting amplifier that multiplies the input signal by “+1”, a non-inverting voltage signal in which the sign of the AC potential difference V1 is not inverted is output from the operational amplifier 31. The quadrature multiplier 22a has the same configuration as the in-phase multiplier 21a.
 このように、基準周波数fbの交流信号に応じて、オペアンプ31の非反転入力端子(+)を接地又は非接地の状態に切り替えることにより、オペアンプ31によって交流電位差信号V1が全波整流されて同相低域フィルタ21bに出力される。なお、同相低域フィルタ21bは、抵抗素子R11~R13と容量素子C11~C13とを有する。同相乗算器21aの出力端子に対して抵抗素子R11の一端が接続され、抵抗素子R11の他端が容量素子C11の一端に接続される。そして容量素子C11の他端が接地される。このように、同相低域フィルタ21bにはRC回路が3つ直列に接続される。同相低域フィルタ21bにより同相交流信号が整流され、交流電位差の抵抗成分V1rとして出力される。なお、直交低域フィルタ22bも同相低域フィルタ21bと同様の構成である。 In this way, by switching the non-inverting input terminal (+) of the operational amplifier 31 to the grounded or non-grounded state according to the alternating current signal of the reference frequency fb, the alternating current potential signal V1 is full-wave rectified by the operational amplifier 31 to be in phase. It is output to the low-pass filter 21b. The common-mode low-pass filter 21b includes resistance elements R11 to R13 and capacitance elements C11 to C13. One end of the resistor element R11 is connected to the output terminal of the in-phase multiplier 21a, and the other end of the resistor element R11 is connected to one end of the capacitor element C11. The other end of the capacitive element C11 is grounded. In this way, three RC circuits are connected in series to the in-phase low-pass filter 21b. The in-phase AC signal is rectified by the in-phase low-pass filter 21b and output as a resistance component V1r of the AC potential difference. The quadrature low-pass filter 22b has the same configuration as the in-phase low-pass filter 21b.
 次に演算部550の詳細については図13を参照して説明する。 Next, details of the calculation unit 550 will be described with reference to FIG.
 演算部550は、図1に示した演算器50に対応する。演算部550は、正極側検波回路5411から正極側の交流電位差の抵抗成分V1r及びリアクタンス成分V1xを取得し、負極側検波回路5412から負極側の交流電位差の抵抗成分V2r及びリアクタンス成分V2xを取得する。また、演算部550は、正極側電源部531及び負極側電源部532に対する電流指令信号を交流電流I1及びI2として取得する。 The computing unit 550 corresponds to the computing unit 50 shown in FIG. The computing unit 550 acquires the positive-side AC potential difference resistance component V1r and reactance component V1x from the positive-side detection circuit 5411, and acquires the negative-side AC potential difference resistance component V2r and reactance component V2x from the negative-side detection circuit 5412. . In addition, the calculation unit 550 acquires current command signals for the positive power supply unit 531 and the negative power supply unit 532 as alternating currents I1 and I2.
 そして、演算部550は、正極側の交流電流I1の振幅と交流電位差の抵抗成分V1rと基づいて、燃料電池スタック1が有する正極側の抵抗成分R1を算出する。これと共に、演算部550は、正極側の交流電流I1の振幅と交流電位差のリアクタンス成分V1xと基づいて、燃料電池スタック1の正極側のリアクタンス成分C1を算出する。 And the calculating part 550 calculates the resistance component R1 of the positive electrode side which the fuel cell stack 1 has based on the amplitude of the alternating current I1 of the positive electrode side and the resistance component V1r of the AC potential difference. At the same time, the calculation unit 550 calculates the reactance component C1 on the positive electrode side of the fuel cell stack 1 based on the amplitude of the alternating current I1 on the positive electrode side and the reactance component V1x of the AC potential difference.
 さらに、演算部550は、負極側の交流電流I2の振幅と交流電位差の抵抗成分V2rと基づいて、燃料電池スタック1の負極側の抵抗成分R2を算出する。これと共に、演算部550は、負極側の交流電流I2の振幅と交流電位差のリアクタンス成分V2xと基づいて、燃料電池スタック1の負極側のリアクタンス成分C2を算出する。 Further, the calculation unit 550 calculates the resistance component R2 on the negative electrode side of the fuel cell stack 1 based on the amplitude of the negative current AC current I2 and the resistance component V2r of the AC potential difference. At the same time, the calculation unit 550 calculates the reactance component C2 on the negative electrode side of the fuel cell stack 1 based on the amplitude of the negative-current AC current I2 and the reactance component V2x of the AC potential difference.
 演算部550は、AD(Analog Digital)変換器551及びマイコンチップ552を備える。 The calculation unit 550 includes an AD (Analog Digital) converter 551 and a microcomputer chip 552.
 AD変換器551は、アナログ信号である電流指令信号(I1,I2)及び交流電位差信号(V1,V2)をデジタル数値信号に変換し、マイコンチップ552に転送する。 The AD converter 551 converts the current command signals (I1, I2) and the AC potential difference signals (V1, V2), which are analog signals, into digital numerical signals and transfers them to the microcomputer chip 552.
 マイコンチップ552には、抵抗成分Rn及び燃料電池スタック1全体の抵抗成分Rを算出するプログラムが予め記憶されている。マイコンチップ552は、所定の微小時間間隔で順次抵抗成分Rを演算し、又は、コントロールユニット6の要求に応じて演算結果を出力する。抵抗成分Rn及び燃料電池スタック1全体の抵抗成分Rは、次式で演算される。 The microcomputer chip 552 stores in advance a program for calculating the resistance component Rn and the resistance component R of the entire fuel cell stack 1. The microcomputer chip 552 sequentially calculates the resistance component R at a predetermined minute time interval or outputs the calculation result in response to a request from the control unit 6. The resistance component Rn and the resistance component R of the entire fuel cell stack 1 are calculated by the following equations.
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
 同様に、リアクタンス成分Xn及び燃料電池スタック1全体のリアクタンス成分Xは、次式で演算される。 Similarly, the reactance component Xn and the reactance component X of the entire fuel cell stack 1 are calculated by the following equations.
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
 演算部550は、例えば、アナログ演算ICを用いたアナログ演算回路により実現される。アナログ演算回路を用いることにより、時間的に連続した抵抗値の変化をコントロールユニット6に出力することができる。 The calculation unit 550 is realized by an analog calculation circuit using an analog calculation IC, for example. By using the analog arithmetic circuit, it is possible to output a temporally continuous change in resistance value to the control unit 6.
 コントロールユニット6は、インピーダンス測定装置5bの測定結果として演算部550から出力される抵抗成分R及びリアクタンス成分Xを受信する。コントロールユニット6は、その測定結果に応じて燃料電池スタック1の運転状態を制御する。 The control unit 6 receives the resistance component R and the reactance component X output from the calculation unit 550 as the measurement result of the impedance measuring device 5b. The control unit 6 controls the operating state of the fuel cell stack 1 according to the measurement result.
 例えば、コントロールユニット6は、抵抗成分Rが高い場合には、燃料電池スタック1の電解質膜が乾いた状態であると判断し、燃料電池スタック1に供給されるカソードガスの流量を減らす。これにより、燃料電池スタック1から持ち出される水分を減少させることができる。 For example, when the resistance component R is high, the control unit 6 determines that the electrolyte membrane of the fuel cell stack 1 is dry, and reduces the flow rate of the cathode gas supplied to the fuel cell stack 1. Thereby, the moisture taken out from the fuel cell stack 1 can be reduced.
 図14は、交流調整部540によって行われる等電位制御をコントローラによって実現したときの制御方法の一例を示すフローチャートである。 FIG. 14 is a flowchart illustrating an example of a control method when equipotential control performed by the AC adjustment unit 540 is realized by a controller.
 ステップS101においてコントローラは、正極交流電位Vaが所定値よりも大きいか否かを判定する。コントローラは、判定結果が否であればステップS102へ処理を移行し、判定結果が肯であればステップS103へ処理を移行する。 In step S101, the controller determines whether or not the positive AC potential Va is greater than a predetermined value. If the determination result is negative, the controller proceeds to step S102, and if the determination result is positive, the controller proceeds to step S103.
 ステップS102においてコントローラは、正極交流電位Vaが所定値よりも小さいか否かを判定する。コントローラは、判定結果が否であればステップS104へ処理を移行し、判定結果が肯であればステップS105へ処理を移行する。 In step S102, the controller determines whether or not the positive AC potential Va is smaller than a predetermined value. If the determination result is negative, the controller proceeds to step S104, and if the determination result is positive, the controller proceeds to step S105.
 ステップS103においてコントローラは、正極側電源部531の出力を下げる。すなわち、コントローラは、交流電流I1の振幅を小さくする。これによって正極交流電位Vaが下がる。 In step S103, the controller reduces the output of the positive power supply unit 531. That is, the controller decreases the amplitude of the alternating current I1. As a result, the positive AC potential Va decreases.
 ステップS104においてコントローラは、正極側電源部531の出力を維持する。これによって正極交流電位Vaが維持される。 In step S104, the controller maintains the output of the positive power supply unit 531. As a result, the positive AC potential Va is maintained.
 ステップS105においてコントローラは、正極側電源部531の出力を上げる。これによって正極交流電位Vaが上がる。 In step S105, the controller increases the output of the positive power supply unit 531. As a result, the positive AC potential Va increases.
 ステップS106においてコントローラは、負極の交流電位Vbが所定値よりも大きいか否かを判定する。コントローラは、判定結果が否であればステップS107へ処理を移行し、判定結果が肯であればステップS108へ処理を移行する。 In step S106, the controller determines whether or not the negative AC potential Vb is greater than a predetermined value. If the determination result is negative, the controller proceeds to step S107, and if the determination result is positive, the controller proceeds to step S108.
 ステップS107においてコントローラは、負極の交流電位Vbが所定値よりも小さいか否かを判定する。コントローラは、判定結果が否であればステップS109へ処理を移行し、判定結果が肯であればステップS110へ処理を移行する。 In step S107, the controller determines whether or not the negative AC potential Vb is smaller than a predetermined value. If the determination result is negative, the controller proceeds to step S109, and if the determination result is positive, the controller proceeds to step S110.
 ステップS108においてコントローラは、負極側電源部532の出力を下げる。これによって負極交流電位Vbが下がる。 In step S108, the controller reduces the output of the negative power supply unit 532. As a result, the negative AC potential Vb decreases.
 ステップS109においてコントローラは、負極側電源部532の出力を維持する。これによって負極交流電位Vbが維持される。 In step S109, the controller maintains the output of the negative power supply unit 532. As a result, the negative AC potential Vb is maintained.
 ステップS110においてコントローラは、負極側電源部532の出力を上げる。これによって負極交流電位Vbが上がる。 In step S110, the controller increases the output of the negative power supply unit 532. This increases the negative AC potential Vb.
 ステップS111においてコントローラは、交流電位Va及び交流電位Vbが所定値であるか否かを判定する。コントローラは、判定結果が肯であればステップS112へ処理を移行し、判定結果が否であれば処理を抜ける。 In step S111, the controller determines whether or not the AC potential Va and the AC potential Vb are predetermined values. If the determination result is positive, the controller proceeds to step S112. If the determination result is negative, the controller exits the process.
 ステップS112においてコントローラは、上述の式(2-1)及び式(2-2)に基づいて抵抗成分Rを演算し、上述の式(3-1)及び式(3-2)に基づいてリアクタンス成分Xを演算する。 In step S112, the controller calculates the resistance component R based on the above equations (2-1) and (2-2), and reactance based on the above equations (3-1) and (3-2). The component X is calculated.
 図14は、交流調整部540によって行われる等電位制御をコントローラが実行したときのタイムチャートである。なおフローチャートとの対応が判りやすくなるようにステップ番号を併記する。 FIG. 14 is a time chart when the controller executes equipotential control performed by the AC adjustment unit 540. Note that step numbers are also shown so that the correspondence with the flowchart is easy to understand.
 図14の初期は、正極側の抵抗値R1が、負極側の抵抗値R2よりも高い状態である(図14(A))。このような状態でコントローラが制御を開始する。 In the initial stage of FIG. 14, the resistance value R1 on the positive electrode side is higher than the resistance value R2 on the negative electrode side (FIG. 14A). In such a state, the controller starts control.
 時刻t0では、正極交流電位Vaも負極交流電位Vbも制御レベルに達していない(図14(C))。この状態では、コントローラは、ステップS101→S102→S105→S106→S107→S110→S111を繰り返す。これによって正極側の交流電流I1及び負極側の交流電流I2が増大する(図14(B))。 At time t0, neither the positive AC potential Va nor the negative AC potential Vb has reached the control level (FIG. 14C). In this state, the controller repeats steps S101 → S102 → S105 → S106 → S107 → S110 → S111. As a result, the alternating current I1 on the positive electrode side and the alternating current I2 on the negative electrode side increase (FIG. 14B).
 時刻t1で正極の交流電位Vaが制御レベルに達したら(図14(C))、コントローラは、ステップS101→S102→S104→S106→S107→S110→S111を繰り返す。これによって正極側の交流電流I1が維持されるとともに、負極側の交流電流I2は増大する(図14(B))。 When the positive AC potential Va reaches the control level at time t1 (FIG. 14C), the controller repeats steps S101 → S102 → S104 → S106 → S107 → S110 → S111. As a result, the alternating current I1 on the positive electrode side is maintained, and the alternating current I2 on the negative electrode side increases (FIG. 14B).
 時刻t2で負極交流電位Vbも制御レベルに達して正極の交流電位Vaと同レベルになったら(図14(C))、コントローラは、ステップS101→S102→S104→S106→S107→S109→S111→S112を処理する。これによって正極側の交流電流I1及び負極側の交流電流I2が維持される。そして式(1-1)に基づいて、正極側の抵抗値R1及び負極側の抵抗値R2が演算される。そして正極側の抵抗値R1と負極側の抵抗値R2とが足し合わされて全体の抵抗成分Rが求められる。 When the negative AC potential Vb reaches the control level and becomes the same level as the positive AC potential Va at time t2 (FIG. 14C), the controller proceeds from step S101 → S102 → S104 → S106 → S107 → S109 → S111 → S112 is processed. As a result, the positive side alternating current I1 and the negative side alternating current I2 are maintained. Based on the equation (1-1), the resistance value R1 on the positive electrode side and the resistance value R2 on the negative electrode side are calculated. The resistance value R1 on the positive electrode side and the resistance value R2 on the negative electrode side are added together to obtain the entire resistance component R.
 時刻t3以降は燃料電池スタック1の湿潤状態が変化するなどして負極側の抵抗値R2が上昇している(図14(A))。この場合には、コントローラは、ステップS101→S102→S104→S106→S108→S111→S112を繰り返す。このように処理することで負極側の抵抗値R2が上昇に合わせて負極側の交流電流I2が下がるので、負極側の交流電位Vbは正極側の交流電位Vaと同レベルに維持される。したがってこの状態でも抵抗成分Rが演算される。 After time t3, the resistance value R2 on the negative electrode side increases due to a change in the wet state of the fuel cell stack 1 (FIG. 14A). In this case, the controller repeats steps S101 → S102 → S104 → S106 → S108 → S111 → S112. By processing in this way, the negative-side AC current I2 decreases as the negative-side resistance value R2 increases, so the negative-side AC potential Vb is maintained at the same level as the positive-side AC potential Va. Therefore, the resistance component R is calculated even in this state.
 時刻t4以降は負極側の抵抗値R2が正極側の抵抗値R1に一致するようになる(図14(A))。この場合には、コントローラは、ステップS101→S102→S104→S106→S107→S109→S111→S112を繰り返す。このように処理することで正極側の交流電位Vaと負極側の交流電位Vbとが同レベルに維持され(図14(C))、抵抗成分Rが演算される。 After time t4, the resistance value R2 on the negative electrode side coincides with the resistance value R1 on the positive electrode side (FIG. 14A). In this case, the controller repeats steps S101 → S102 → S104 → S106 → S107 → S109 → S111 → S112. By processing in this way, the positive side AC potential Va and the negative side AC potential Vb are maintained at the same level (FIG. 14C), and the resistance component R is calculated.
 次にインピーダンス測定装置5bの等電位制御による作用効果を説明する。 Next, the effect of the equipotential control of the impedance measuring device 5b will be described.
 図16は、燃料電池スタック1の正極端子211に生じる正極電位及び負極端子212に生じる負極電位の状態を例示する図である。 FIG. 16 is a diagram illustrating the state of the positive electrode potential generated at the positive electrode terminal 211 and the negative electrode potential generated at the negative electrode terminal 212 of the fuel cell stack 1.
 燃料電池スタック1の出力中は、正極端子211及び負極端子212の間に、負荷3に出力される直流電圧Vdcが生じる。インピーダンス測定装置5bが起動(ON)される前は、正極電位及び負極電位は一定であり、負荷3に直流電圧Vdcが供給される。その後インピーダンス測定装置5bが起動され、正極側電源部531及び負極側電源部532から交流電流I1及びI2が出力されると、正極電位に交流電位Vaが重畳され、負極電位に交流電位Vbが重畳される。 During output of the fuel cell stack 1, a DC voltage Vdc output to the load 3 is generated between the positive terminal 211 and the negative terminal 212. Before the impedance measuring device 5b is activated (ON), the positive electrode potential and the negative electrode potential are constant, and the DC voltage Vdc is supplied to the load 3. Thereafter, when the impedance measuring device 5b is activated and the alternating currents I1 and I2 are output from the positive power supply unit 531 and the negative power supply unit 532, the alternating current potential Va is superimposed on the positive potential and the alternating potential Vb is superimposed on the negative potential. Is done.
 そして交流調整部540からの電流指令信号に従って正極側電源部531及び負極側電源部532は、交流電位差V1及びV2が一致するように互いに振幅が調整された交流電流I1及びI2を出力する。 Then, according to the current command signal from the AC adjustment unit 540, the positive power supply unit 531 and the negative power supply unit 532 output AC currents I1 and I2 whose amplitudes are adjusted so that the AC potential differences V1 and V2 coincide with each other.
 正極側電源部531から出力された交流電流I1は、正極側直流遮断部511を介して、燃料電池スタック1の正極端子211に供給され、中途点端子213及び中途点直流遮断部513を介して正極側検出部521に出力される。このとき、正極端子211と中途点端子213との間には、交流電流I1が抵抗成分R1に供給されることで抵抗成分R1での電圧降下により交流電位差V1(=Va-Vc)が生じる。この交流電位差V1は、正極側検出部521によって検出される。 The alternating current I1 output from the positive electrode side power supply unit 531 is supplied to the positive electrode terminal 211 of the fuel cell stack 1 via the positive electrode side direct current cut-off unit 511, and then passes through the intermediate point terminal 213 and the intermediate point direct current cut off unit 513. It is output to the positive electrode side detection unit 521. At this time, an AC potential difference V1 (= Va−Vc) is generated between the positive electrode terminal 211 and the midway terminal 213 due to a voltage drop in the resistance component R1 by supplying the AC current I1 to the resistance component R1. The AC potential difference V1 is detected by the positive electrode side detection unit 521.
 一方、負極側電源部532から出力された交流電流I2は、負極側直流遮断部512を介して燃料電池スタック1の負極端子212に供給され、中途点端子213及び中途点直流遮断部513を介して負極側検出部522に出力される。このとき、負極端子212と中途点端子213との間には、交流電流I2が抵抗成分R2に印加されるので抵抗成分R2での電圧降下により交流電位差V2(=Vb-Vc)が生じる。この交流電位差V2は、負極側検出部522によって検出される。 On the other hand, the alternating current I2 output from the negative electrode side power supply unit 532 is supplied to the negative electrode terminal 212 of the fuel cell stack 1 via the negative electrode side DC blocking unit 512 and passes through the halfway terminal 213 and the halfway DC blocking unit 513. And output to the negative electrode side detection unit 522. At this time, since the alternating current I2 is applied to the resistance component R2 between the negative electrode terminal 212 and the midpoint terminal 213, an AC potential difference V2 (= Vb−Vc) is generated due to a voltage drop in the resistance component R2. The AC potential difference V2 is detected by the negative electrode side detection unit 522.
 交流調整部540は、燃料電池スタック1の正極側の交流電位差V1と、負極側の交流電位差V2との間の差(V1-V2)、すなわち交流電位Vaと交流電位Vbとの差(Va-Vb)が常に小さくなるように、正極側電源部531及び負極側電源部532を調節する。これにより、正極電位の交流成分Vaの振幅と負極電位の交流成分Vbの振幅とが等しくなるように調整されるので、直流電圧Vdcは変動せずに一定となる。 The AC adjustment unit 540 determines the difference (V1−V2) between the AC potential difference V1 on the positive electrode side of the fuel cell stack 1 and the AC potential difference V2 on the negative electrode side, that is, the difference between the AC potential Va and the AC potential Vb (Va− The positive power supply unit 531 and the negative power supply unit 532 are adjusted so that Vb) is always small. As a result, the amplitude of the AC component Va having the positive potential is adjusted to be equal to the amplitude of the AC component Vb having the negative potential, so that the DC voltage Vdc is constant without being changed.
 そして、演算部550は、正極側検出部521及び負極側検出部522から出力される交流電位差V1及びV2と、正極側電源部531及び負極側電源部532から出力される交流電流I1及びI2とを用いてオームの法則を適用する。これにより、燃料電池スタック1の正極側の抵抗成分R1及び負極側の抵抗成分R2と、燃料電池スタック1の正極側のリアクタンス成分C1及び負極側のリアクタンス成分C2とが算出される。 The calculation unit 550 includes AC potential differences V1 and V2 output from the positive electrode side detection unit 521 and the negative electrode side detection unit 522, and AC currents I1 and I2 output from the positive electrode side power supply unit 531 and the negative electrode side power supply unit 532. Apply Ohm's law using. Thereby, the resistance component R1 on the positive electrode side and the resistance component R2 on the negative electrode side of the fuel cell stack 1, and the reactance component C1 on the positive electrode side and the reactance component C2 on the negative electrode side of the fuel cell stack 1 are calculated.
 ここでは、正極端子211及び負極端子212の交流電位が同じ値になるので、仮に正極端子211及び負極端子212に対して走行用モータなどに負荷3が接続されている状態でも、交流電流I1又はI2が負荷3に漏洩するのを抑制することができる。このため、正極側電源部531及び負極側電源部532から出力される交流電流I1及びI2により燃料電池スタック1の抵抗成分R1及びR2とリアクタンス成分C1及びC2を正確に測定することができる。 Here, since the alternating current potentials of the positive electrode terminal 211 and the negative electrode terminal 212 have the same value, even if the load 3 is connected to the traveling motor or the like with respect to the positive electrode terminal 211 and the negative electrode terminal 212, the alternating current I1 or I2 can be prevented from leaking to the load 3. For this reason, the resistance components R1 and R2 and the reactance components C1 and C2 of the fuel cell stack 1 can be accurately measured by the alternating currents I1 and I2 output from the positive power supply unit 531 and the negative power supply unit 532.
 さらに負荷3の状態によらず、稼働中の燃料電池スタック1の抵抗成分R1及びR2の測定値に基づいて燃料電池スタック1全体の抵抗成分Rを正確に測定することができる。また、正極側電源部531及び負極側電源部532が使用されるので、燃料電池スタック1が停止中であっても抵抗成分R及びリアクタンス成分Cを測定することができる。 Furthermore, regardless of the state of the load 3, the resistance component R of the entire fuel cell stack 1 can be accurately measured based on the measured values of the resistance components R1 and R2 of the fuel cell stack 1 in operation. Further, since the positive power supply unit 531 and the negative power supply unit 532 are used, the resistance component R and the reactance component C can be measured even when the fuel cell stack 1 is stopped.
 しかしながら、インピーダンス測定装置5bの正極側電源部531及び負極側電源部532や、正極側検出部521及び負極側検出部522、交流調整部540などは、オペアンプなどの電子部品、すなわちアナログ回路により構成されている。このような電子部品には、製造バラツキや、時間経過に伴って性能が劣化する経時劣化、温度上昇に伴い出力値が変動する温度ドリフトなどが生じる。これに伴い、インピーダンス測定装置5bが有するインピーダンスを測定する精度が低下してしまう。この対策として本実施形態では、上述のインピーダンス測定装置5bの構成に加えて、測定誤差を特定するための診断素子が備えられる。 However, the positive electrode side power supply unit 531 and the negative electrode side power supply unit 532, the positive electrode side detection unit 521, the negative electrode side detection unit 522, the AC adjustment unit 540, and the like of the impedance measuring device 5b are configured by electronic components such as operational amplifiers, that is, analog circuits. Has been. Such electronic components are subject to manufacturing variations, deterioration over time in which performance deteriorates with time, temperature drift in which output values fluctuate as temperature rises, and the like. In connection with this, the precision which measures the impedance which the impedance measuring apparatus 5b has will fall. As a countermeasure, in the present embodiment, in addition to the configuration of the impedance measuring device 5b described above, a diagnostic element for specifying a measurement error is provided.
 図17は、本実施形態におけるインピーダンス測定装置5bの詳細構成を示す構成図である。ここでは、図7に示した構成と同じものについては同一符号を付して詳細な説明を省略する。 FIG. 17 is a configuration diagram showing a detailed configuration of the impedance measuring device 5b in the present embodiment. Here, the same components as those shown in FIG. 7 are denoted by the same reference numerals, and detailed description thereof is omitted.
 図17では、信号ライン501は、正極側電源部531から燃料電池スタック1の正極端子211へ交流電流I1が入力される入力ライン501Aと、正極端子211から正極側検出部521へ交流電位Vaが出力される出力ライン501Bとにより構成される。同様に信号ライン502は、負極側電源部532から燃料電池スタック1の負極端子212へ交流電流I2が入力される入力ライン502Aと、負極端子212から負極側検出部522へ交流電位Vbが出力される出力ライン502Bとにより構成される。 In FIG. 17, the signal line 501 includes an input line 501 </ b> A in which an alternating current I <b> 1 is input from the positive power supply unit 531 to the positive terminal 211 of the fuel cell stack 1, and an alternating potential Va from the positive terminal 211 to the positive detection unit 521. And an output line 501B to be output. Similarly, in the signal line 502, the AC potential Vb is output from the negative power supply unit 532 to the input line 502 </ b> A where the alternating current I <b> 2 is input to the negative electrode terminal 212 of the fuel cell stack 1, and from the negative electrode terminal 212 to the negative electrode detection unit 522. Output line 502B.
 このように、信号ライン501及び502の各々を2つのラインに分離することにより、正極端子211及び負極端子212から出力される交流電位信号のみを正極側検出部521及び負極側検出部522で検出することが可能となる。このため、インピーダンス測定装置5bの測定精度を向上させることができる。 In this manner, by separating each of the signal lines 501 and 502 into two lines, only the AC potential signal output from the positive terminal 211 and the negative terminal 212 is detected by the positive side detection unit 521 and the negative side detection unit 522. It becomes possible to do. For this reason, the measurement accuracy of the impedance measuring device 5b can be improved.
 また、入力ライン501Aには、図7に示した直流遮断部511としてコンデンサ511Aが接続され、出力ライン501Bにも、直流遮断部511としてコンデンサ511Bが接続される。同様に、入力ライン502Aには、直流遮断部512としてコンデンサ512Aが接続され、出力ライン502Bにも、直流遮断部512としてコンデンサ512Bが接続される。 Further, a capacitor 511A is connected to the input line 501A as the DC blocking unit 511 shown in FIG. 7, and a capacitor 511B is connected to the output line 501B as the DC blocking unit 511. Similarly, a capacitor 512A is connected to the input line 502A as the DC cutoff unit 512, and a capacitor 512B is connected to the output line 502B as the DC cutoff unit 512.
 インピーダンス測定装置5bは、図7に示した基本構成に加えて、診断素子561及び562と、切替部570と、診断制御部580とを備えている。また、インピーダンス測定装置5bは、帯域通過フィルタ5211及び5221を備えている。 The impedance measuring device 5b includes diagnostic elements 561 and 562, a switching unit 570, and a diagnostic control unit 580 in addition to the basic configuration shown in FIG. The impedance measuring device 5b includes bandpass filters 5211 and 5221.
 診断素子561及び562は、図1に示した診断素子60に対応し、インピーダンス測定装置5bの電子部品に起因する測定誤差を特定するための抵抗器、コンデンサ、及びコイルのうちのいずれか1つの受動素子である。本実施形態では、診断素子561及び562は、電気抵抗を有する抵抗器である。 The diagnostic elements 561 and 562 correspond to the diagnostic element 60 shown in FIG. 1, and are any one of a resistor, a capacitor, and a coil for specifying a measurement error caused by an electronic component of the impedance measuring device 5b. It is a passive element. In the present embodiment, the diagnostic elements 561 and 562 are resistors having electrical resistance.
 診断素子561は基準値Ref1の抵抗を有する。診断素子562は基準値Ref2の抵抗を有する。本実施形態では、診断素子561の基準値Ref1と診断素子562の基準値Ref2は、互いに同じ値である。 Diagnostic element 561 has a resistance of reference value Ref1. Diagnostic element 562 has a resistance of reference value Ref2. In the present embodiment, the reference value Ref1 of the diagnostic element 561 and the reference value Ref2 of the diagnostic element 562 are the same value.
 診断素子561は、正極側検出部521に対して並列接続できる位置に配置される。診断素子562は、負極側検出部522に対して並列接続できる位置に配置される。基準値Ref1及びRef2は、燃料電池スタック1の抵抗成分R1及びR2が変動する範囲内の値に設定される。診断素子561及び562としては、例えば、50mΩ(ミリオーム)を有する抵抗器が用いられる。 The diagnostic element 561 is disposed at a position where it can be connected in parallel to the positive electrode side detection unit 521. The diagnostic element 562 is disposed at a position where it can be connected in parallel to the negative electrode side detection unit 522. The reference values Ref1 and Ref2 are set to values within a range where the resistance components R1 and R2 of the fuel cell stack 1 vary. As the diagnostic elements 561 and 562, for example, resistors having 50 mΩ (milliohm) are used.
 切替部570は、図1に示したスイッチ70に対応する。切替部570は、インピーダンス測定装置5b内の交流信号の信号経路を、燃料電池スタック1のインピーダンスを測定するための測定状態(電池接続状態)又は、診断素子561及び562の抵抗を測定するための診断状態(素子接続状態)に切り替える。切替部570の接続状態は、診断制御部580によって制御される。 The switching unit 570 corresponds to the switch 70 shown in FIG. The switching unit 570 is configured to measure the signal path of the AC signal in the impedance measuring device 5b, the measurement state (battery connection state) for measuring the impedance of the fuel cell stack 1, or the resistance of the diagnostic elements 561 and 562. Switch to the diagnosis state (element connection state). The connection state of the switching unit 570 is controlled by the diagnosis control unit 580.
 測定状態では、切替部570は、正極側電源部531を正極端子211に接続すると共に、燃料電池スタック1における正極端子211と中途点端子213との間の抵抗成分R1及び容量成分C1に正極側検出部521を並列接続する。そして、切替部570は、負極側電源部532を負極端子212に接続すると共に、燃料電池スタック1における負極端子212と中途点端子213との間の抵抗成分R2及び容量成分C2に負極側検出部522を並列に接続する。 In the measurement state, the switching unit 570 connects the positive-side power source unit 531 to the positive-electrode terminal 211, and the resistance component R1 and the capacitance component C1 between the positive-electrode terminal 211 and the halfway-point terminal 213 in the fuel cell stack 1 The detection units 521 are connected in parallel. The switching unit 570 connects the negative power source unit 532 to the negative electrode terminal 212, and detects the negative component on the resistance component R2 and the capacitive component C2 between the negative electrode terminal 212 and the halfway terminal 213 in the fuel cell stack 1. 522 are connected in parallel.
 一方、診断状態では、切替部570は、正極側電源部531を燃料電池スタック1の正極端子211から切断して診断素子561に接続すると共に、診断素子561を正極側検出部521に対して並列に接続する。そして、切替部570は、負極側電源部532を負極端子212から切断して診断素子562に接続すると共に、診断素子562を負極側検出部522に対して並列に接続する。 On the other hand, in the diagnosis state, the switching unit 570 disconnects the positive power source unit 531 from the positive terminal 211 of the fuel cell stack 1 and connects it to the diagnostic element 561, and the diagnostic element 561 is connected in parallel to the positive electrode detection unit 521. Connect to. The switching unit 570 disconnects the negative power supply unit 532 from the negative terminal 212 and connects it to the diagnostic element 562, and connects the diagnostic element 562 to the negative detection unit 522 in parallel.
 切替部570は、電流経路切替器571及び572と検出対象切替器573及び574と、を備える。電流経路切替器571及び572、並びに検出対象切替器573及び574は、例えば、アナログスイッチやリレーにより実現される。 The switching unit 570 includes current path switching devices 571 and 572 and detection target switching devices 573 and 574. The current path switching devices 571 and 572 and the detection target switching devices 573 and 574 are realized by analog switches or relays, for example.
 電流経路切替器571は、正極側電源部531とコンデンサ511Aとの間に接続される。そして、電流経路切替器571は、正極側電源部531から出力される交流電流I1の供給先を、燃料電池スタック1の正極端子211又は診断素子561に切り替える。電流経路切替器571では、入力端子が正極側電源部531と接続され、第1出力端子がコンデンサ511Aに接続され、第2出力端子が診断素子561と接続される。 The current path switch 571 is connected between the positive power supply unit 531 and the capacitor 511A. Then, the current path switch 571 switches the supply destination of the alternating current I1 output from the positive power supply unit 531 to the positive terminal 211 or the diagnostic element 561 of the fuel cell stack 1. In the current path switch 571, the input terminal is connected to the positive power supply unit 531, the first output terminal is connected to the capacitor 511A, and the second output terminal is connected to the diagnostic element 561.
 電流経路切替器572は、負極側電源部532とコンデンサ512Aとの間に接続される。そして電流経路切替器572は、負極側電源部532から出力される交流電流I2の供給先を、燃料電池スタック1の負極端子212又は診断素子562に切り替える。電流経路切替器572では、入力端子が負極側電源部532と接続され、第1出力端子がコンデンサ512Aに接続され、第2出力端子が診断素子562と接続される。 The current path switch 572 is connected between the negative power supply unit 532 and the capacitor 512A. The current path switch 572 switches the supply destination of the alternating current I2 output from the negative power supply unit 532 to the negative terminal 212 or the diagnostic element 562 of the fuel cell stack 1. In the current path switch 572, the input terminal is connected to the negative power supply unit 532, the first output terminal is connected to the capacitor 512A, and the second output terminal is connected to the diagnostic element 562.
 検出対象切替器573は、帯域通過フィルタ5211と正極側検出部521との間に接続される。そして、検出対象切替器573は、正極側検出部521に対して並列に接続される検出対象を、燃料電池スタック1の正極端子211から中途点端子213までの正極側部分、又は、診断素子561に切り替える。検出対象切替器573では、第1入力端子が帯域通過フィルタ5211と接続され、第2入力端子が診断素子561に接続され、出力端子が正極側検出部521と接続される。 The detection target switch 573 is connected between the band pass filter 5211 and the positive electrode side detection unit 521. The detection target switching unit 573 selects a detection target connected in parallel to the positive electrode side detection unit 521 as a positive electrode side portion from the positive electrode terminal 211 to the midway terminal 213 of the fuel cell stack 1 or a diagnostic element 561. Switch to. In the detection target switch 573, the first input terminal is connected to the band pass filter 5211, the second input terminal is connected to the diagnostic element 561, and the output terminal is connected to the positive electrode side detection unit 521.
 検出対象切替器574は、帯域通過フィルタ5221と負極側検出部522との間に接続される。そして検出対象切替器574は、負極側検出部522に対して並列接続される検出対象を、燃料電池スタック1の負極端子212から中途点端子213までの負極側部分、又は、診断素子562に切り替える。検出対象切替器574では、第1入力端子が帯域通過フィルタ5221と接続され、第2入力端子が診断素子562に接続され、出力端子が負極側検出部522と接続される。 The detection target switch 574 is connected between the band pass filter 5221 and the negative electrode side detection unit 522. The detection target switching unit 574 switches the detection target connected in parallel to the negative electrode side detection unit 522 to the negative electrode side portion from the negative electrode terminal 212 to the halfway terminal 213 of the fuel cell stack 1 or the diagnostic element 562. . In the detection target switch 574, the first input terminal is connected to the band pass filter 5221, the second input terminal is connected to the diagnostic element 562, and the output terminal is connected to the negative electrode side detection unit 522.
 図17では、切替部570は、燃料電池スタック1の正極端子211に正極側電源部531及び正極側検出部521を接続すると共に、負極端子212に負極側電源部532及び負極側検出部522を接続する測定状態に設定されている。 In FIG. 17, the switching unit 570 connects the positive power supply unit 531 and the positive detection unit 521 to the positive terminal 211 of the fuel cell stack 1, and connects the negative power supply unit 532 and the negative detection unit 522 to the negative terminal 212. The measurement state to be connected is set.
 具体的には、電流経路切替器571では、正極側電源部531と接続された入力端子が、コンデンサ511Aと接続された第1出力端子に接続される。これにより、正極側電源部531から出力される交流電流I1が燃料電池スタック1の正極端子211に供給される。 Specifically, in the current path switch 571, the input terminal connected to the positive power supply unit 531 is connected to the first output terminal connected to the capacitor 511A. As a result, the alternating current I1 output from the positive power supply unit 531 is supplied to the positive terminal 211 of the fuel cell stack 1.
 同様に、電流経路切替器572では、負極側電源部532と接続された入力端子が、コンデンサ511Bと接続された第1出力端子に接続される。これにより、負極側電源部532から出力される交流電流I2が燃料電池スタック1の負極端子212に供給される。 Similarly, in the current path switch 572, the input terminal connected to the negative power supply unit 532 is connected to the first output terminal connected to the capacitor 511B. As a result, the alternating current I2 output from the negative power supply unit 532 is supplied to the negative terminal 212 of the fuel cell stack 1.
 検出対象切替器573では、正極側検出部521と接続された出力端子が、帯域通過フィルタ5211と接続された第1入力端子に接続される。これにより、燃料電池スタック1の正極端子211と中途点端子213との間の抵抗成分R1及び容量成分C1が正極側検出部521に並列に接続されるので、正極端子211から正極側検出部521に交流電位Vaが出力される。 In the detection target switching device 573, the output terminal connected to the positive electrode side detection unit 521 is connected to the first input terminal connected to the band pass filter 5211. Accordingly, the resistance component R1 and the capacitance component C1 between the positive electrode terminal 211 and the halfway point terminal 213 of the fuel cell stack 1 are connected in parallel to the positive electrode side detection unit 521. The AC potential Va is output at.
 検出対象切替器574では、負極側検出部522と接続された出力端子が、帯域通過フィルタ5221と接続された第1入力端子に接続される。これにより、燃料電池スタック1の負極端子212と中途点端子213との間の抵抗成分R2及び容量成分C2が負極側検出部522に並列に接続されるので、負極端子212から負極側検出部522に交流電位Vbが出力される。 In the detection target switching device 574, the output terminal connected to the negative electrode side detection unit 522 is connected to the first input terminal connected to the band pass filter 5221. As a result, the resistance component R2 and the capacitance component C2 between the negative electrode terminal 212 and the halfway point terminal 213 of the fuel cell stack 1 are connected in parallel to the negative electrode side detection unit 522. The AC potential Vb is output at.
 これらの電流経路切替器571及び572、並びに検出対象切替器573及び574は、共に診断制御部580によって制御される。 These current path switching devices 571 and 572 and detection target switching devices 573 and 574 are both controlled by the diagnosis control unit 580.
 診断制御部580は、図1に示した診断制御部80に対応する。燃料電池スタック1の正極端子211に正極側電源部531及び正極側検出部521を接続する測定状態、又は診断素子561に正極側電源部531及び正極側検出部521を接続する診断状態に切り替える。 The diagnosis control unit 580 corresponds to the diagnosis control unit 80 shown in FIG. The state is switched to a measurement state in which the positive power supply unit 531 and the positive electrode detection unit 521 are connected to the positive electrode terminal 211 of the fuel cell stack 1 or a diagnosis state in which the positive power supply unit 531 and the positive electrode detection unit 521 are connected to the diagnostic element 561.
 さらに、診断制御部580は、燃料電池スタック1の負極端子212に負極側電源部532及び負極側検出部522を接続する測定状態、又は診断素子562に負極側電源部532及び負極側検出部522を接続する診断状態に切り替える。 Further, the diagnosis control unit 580 is in a measurement state in which the negative electrode side power supply unit 532 and the negative electrode side detection unit 522 are connected to the negative electrode terminal 212 of the fuel cell stack 1, or the diagnosis element 562 is connected to the negative electrode side power supply unit 532 and the negative electrode side detection unit 522. Switch to the diagnostic state to connect.
 診断制御部580は、予め定められた診断時期になると、切替部570の接続状態を、燃料電池スタック1のインピーダンスを測定するための測定状態から、診断素子561及び562の抵抗を測定するための診断状態に切り替える。これにより、インピーダンス測定装置5bの測定状態を診断する診断処理が行われる。 The diagnosis control unit 580 is configured to measure the resistance of the diagnostic elements 561 and 562 from the measurement state for measuring the impedance of the fuel cell stack 1 from the connection state of the switching unit 570 at a predetermined diagnosis time. Switch to diagnostic state. Thereby, a diagnostic process for diagnosing the measurement state of the impedance measuring device 5b is performed.
 診断制御部580は、切替部570の接続状態を診断状態に切り替えた場合には、診断素子561及び562を用いて抵抗成分R及びリアクタンス成分Xの測定誤差を特定するための診断実行信号を演算部550に出力する。 When the connection state of the switching unit 570 is switched to the diagnosis state, the diagnosis control unit 580 calculates a diagnosis execution signal for specifying the measurement error of the resistance component R and the reactance component X using the diagnosis elements 561 and 562. Output to the unit 550.
 診断制御部580は、演算部550に診断実行信号を出力した後、リアクタンス成分Xの測定誤差を特定するために、図10に示した交流信号源546aから出力される交流信号の位相を90度シフトさせる。そして、演算部550により診断素子561及び562の抵抗値がリアクタンス成分Xとして算出されると、診断制御部580は、交流信号源546aの出力信号の位相を元に戻す。 The diagnosis control unit 580 outputs the diagnosis execution signal to the calculation unit 550, and then specifies the phase of the AC signal output from the AC signal source 546a shown in FIG. Shift. When the computing unit 550 calculates the resistance values of the diagnostic elements 561 and 562 as the reactance component X, the diagnostic control unit 580 restores the phase of the output signal of the AC signal source 546a.
 一方、演算部550は、診断制御部580から診断実行信号を受信すると、診断素子561及び562を用いてインピーダンス測定装置5bの電子部品に起因する測定誤差を算出する診断処理を実行する。 On the other hand, when receiving the diagnosis execution signal from the diagnosis control unit 580, the arithmetic unit 550 executes a diagnosis process for calculating a measurement error caused by the electronic component of the impedance measuring device 5b using the diagnosis elements 561 and 562.
 診断処理において、演算部550は、正極側検波回路5411のR成分抽出回路21から、診断素子561に生じる交流電位差信号の抵抗成分V1rを取得し、正極側電源部531の出力電流I1を取得する。そして、演算部550は、取得した抵抗成分V1rと出力電流Iとに基づいて、診断素子561の抵抗値を測定値R1mとして算出する。演算部550は、算出した測定値R1mとメモリ559に保持された基準値Ref1とに基づいて抵抗成分R1の測定誤差を算出する。 In the diagnosis process, the arithmetic unit 550 acquires the resistance component V1r of the AC potential difference signal generated in the diagnostic element 561 from the R component extraction circuit 21 of the positive electrode side detection circuit 5411, and acquires the output current I1 of the positive electrode side power supply unit 531. . Then, the calculation unit 550 calculates the resistance value of the diagnostic element 561 as the measured value R1m based on the acquired resistance component V1r and the output current I. The calculation unit 550 calculates the measurement error of the resistance component R1 based on the calculated measurement value R1m and the reference value Ref1 held in the memory 559.
 さらに、演算部550は、負極側検波回路5412のR成分抽出回路21から、診断素子562に生じる交流電位差信号の抵抗成分V2rを取得し、負極側電源部532の出力電流I2を取得する。そして、演算部550は、取得した抵抗成分V2rと出力電流I2とに基づいて、診断素子562の抵抗値を測定値R2mとして算出する。演算部550は、算出した測定値Rm2とメモリ559に保持された基準値Ref2とに基づいて、抵抗成分R2の測定誤差を算出する。 Further, the calculation unit 550 acquires the resistance component V2r of the AC potential difference signal generated in the diagnostic element 562 from the R component extraction circuit 21 of the negative electrode side detection circuit 5412, and acquires the output current I2 of the negative electrode side power supply unit 532. Then, the arithmetic unit 550 calculates the resistance value of the diagnostic element 562 as the measured value R2m based on the acquired resistance component V2r and the output current I2. The computing unit 550 calculates the measurement error of the resistance component R2 based on the calculated measurement value Rm2 and the reference value Ref2 held in the memory 559.
 また、診断制御部580が交流信号源546aの出力信号の位相を遅れ方向に90度シフトさせた場合には、正極側検波回路5411のX成分抽出回路22は、診断素子561に生じる交流電位差の抵抗成分V1rを、リアクタンス成分V1xとして抽出する。さらに負極側検波回路5412のX成分抽出回路22は、診断素子562に生じる交流電位差の抵抗成分V2rを、リアクタンス成分V2xとして抽出する。 When the diagnosis control unit 580 shifts the phase of the output signal of the AC signal source 546a by 90 degrees in the delay direction, the X component extraction circuit 22 of the positive detection circuit 5411 detects the AC potential difference generated in the diagnosis element 561. The resistance component V1r is extracted as the reactance component V1x. Further, the X component extraction circuit 22 of the negative-side detection circuit 5412 extracts the resistance component V2r of the AC potential difference generated in the diagnostic element 562 as the reactance component V2x.
 演算部550は、抽出したリアクタンス成分V1x及びV2xを取得し、取得したリアクタンス成分V1x及びV2xと出力電流I1とに基づいて、診断素子561及び562の各リアクタンス値を測定値X1m及びX2mとして算出する。演算部550は、算出した測定値X1m及びX2mとメモリ559の基準値Ref1及びRef2とに基づいて、インダクタンス成分X1及びX2の測定誤差を算出する。 The calculation unit 550 acquires the extracted reactance components V1x and V2x, and calculates the reactance values of the diagnostic elements 561 and 562 as measured values X1m and X2m based on the acquired reactance components V1x and V2x and the output current I1. . The calculation unit 550 calculates measurement errors of the inductance components X1 and X2 based on the calculated measurement values X1m and X2m and the reference values Ref1 and Ref2 of the memory 559.
 演算部550は、抵抗成分の測定値R1m及びR2mと、リアクタンス成分の測定値X1m及びX2mとをメモリ559に記録する。診断制御部580は、交流信号源546aの出力信号の位相を元に戻し、かつ、切替部570の接続状態を測定状態に切り替えた場合には、診断実行信号の代わりに測定実行信号を出力する。 The calculation unit 550 records the measured values R1m and R2m of the resistance component and the measured values X1m and X2m of the reactance component in the memory 559. The diagnosis control unit 580 outputs the measurement execution signal instead of the diagnosis execution signal when the phase of the output signal of the AC signal source 546a is restored and the connection state of the switching unit 570 is switched to the measurement state. .
 演算部550は、診断制御部580から測定実行信号を受信すると、メモリ559に保持された測定値に基づいて測定結果を補正する補正処理を実行する。補正処理の詳細については図20を参照して後述する。 When the calculation unit 550 receives the measurement execution signal from the diagnosis control unit 580, the calculation unit 550 executes a correction process for correcting the measurement result based on the measurement value held in the memory 559. Details of the correction processing will be described later with reference to FIG.
 なお、本実施形態では診断素子561及び562として抵抗器を用いてリアクタンス成分Xの測定誤差を特定する場合には、交流信号源546aの位相を操作したが、これに限られるものではない。例えば、図3で述べたように、診断素子561及び562として抵抗器を用いる場合には、交流信号源546cの位相を操作してもよい。また、診断素子561及び562としてコンデンサ及びコイルの一方を用いる場合において、抵抗成分Rの測定誤差を特定するときには、交流信号源546a及び546bの少なくとも一方の位相を操作するようにしてもよい。 In this embodiment, when the measurement error of the reactance component X is specified using resistors as the diagnostic elements 561 and 562, the phase of the AC signal source 546a is manipulated, but the present invention is not limited to this. For example, as described in FIG. 3, when resistors are used as the diagnostic elements 561 and 562, the phase of the AC signal source 546 c may be manipulated. Further, when one of the capacitor and the coil is used as the diagnostic elements 561 and 562, when specifying the measurement error of the resistance component R, the phase of at least one of the AC signal sources 546a and 546b may be manipulated.
 また、本実施形態では帯域通過フィルタ5211及び5221をコンデンサ511B及び512Bと検出対象切替器573及び574との間に配置したが、例えば、帯域通過フィルタ5211及び5221は、検出対象切替器573及び574と正極側検出部521及び負極側検出部522との間に配置してもよい。 In this embodiment, the band pass filters 5211 and 5221 are arranged between the capacitors 511B and 512B and the detection target switching devices 573 and 574. For example, the band pass filters 5211 and 5221 are the detection target switching devices 573 and 574. May be disposed between the positive electrode side detection unit 521 and the negative electrode side detection unit 522.
 図18は、インピーダンス測定装置5bを診断するときの切替部570の接続状態を示す図である。 FIG. 18 is a diagram illustrating a connection state of the switching unit 570 when diagnosing the impedance measuring device 5b.
 電流経路切替器571では、正極側電源部531と接続された入力端子が、コンデンサ511Aと接続された第1出力端子から、診断素子561と接続された第2出力端子へ切り替えられる。これにより、正極側電源部531から出力される交流電流I1が、診断素子561に供給される。 In the current path switch 571, the input terminal connected to the positive power supply unit 531 is switched from the first output terminal connected to the capacitor 511A to the second output terminal connected to the diagnostic element 561. As a result, the alternating current I1 output from the positive power supply unit 531 is supplied to the diagnostic element 561.
 同様に電流経路切替器572では、負極側電源部532と接続された入力端子が、コンデンサ511Bと接続された第1出力端子から、診断素子562と接続された第2出力端子へ切り替えられる。これにより、負極側電源部532から出力される交流電流I2が診断素子562に供給される。 Similarly, in the current path switch 572, the input terminal connected to the negative power supply unit 532 is switched from the first output terminal connected to the capacitor 511B to the second output terminal connected to the diagnostic element 562. As a result, the alternating current I2 output from the negative power supply unit 532 is supplied to the diagnostic element 562.
 検出対象切替器573では、正極側検出部521と接続された出力端子が、帯域通過フィルタ5211と接続された第1入力端子から、診断素子561と接続された第2入力端子へ切り替えられる。これにより、正極側検出部521に対して診断素子561が並列に接続されるので、診断素子561によって生じる交流電位差V1が正極側検出部521で検出され、その交流電位差V1が交流調整部540に出力される。 In the detection target switching unit 573, the output terminal connected to the positive electrode side detection unit 521 is switched from the first input terminal connected to the band pass filter 5211 to the second input terminal connected to the diagnostic element 561. Thereby, since the diagnostic element 561 is connected in parallel to the positive electrode side detection unit 521, the AC potential difference V 1 generated by the diagnostic element 561 is detected by the positive electrode side detection unit 521, and the AC potential difference V 1 is supplied to the AC adjustment unit 540. Is output.
 検出対象切替器574では、負極側検出部522と接続された出力端子が、帯域通過フィルタ5221と接続された第1入力端子から、診断素子562と接続された第2入力端子へ切り替えられる。これにより、負極側検出部522に対して診断素子562が並列に接続されるので、診断素子562によって生じる交流電位差V2が負極側検出部522で検出され、その交流電位差V2が交流調整部540に出力される。 In the detection target switching unit 574, the output terminal connected to the negative electrode side detection unit 522 is switched from the first input terminal connected to the band pass filter 5221 to the second input terminal connected to the diagnostic element 562. Thereby, since the diagnostic element 562 is connected in parallel to the negative electrode side detection unit 522, the AC potential difference V2 generated by the diagnostic element 562 is detected by the negative electrode side detection unit 522, and the AC potential difference V2 is supplied to the AC adjustment unit 540. Is output.
 交流調整部540は、診断素子561に生じる交流電位差V1と診断素子562に生じる交流電位差V2とが互いに等しくなるように、正極側電源部531及び負極側電源部532から出力される交流電流I1及びI2の振幅を調整する。 The AC adjustment unit 540 includes the AC current I1 output from the positive power supply unit 531 and the negative power supply unit 532 so that the AC potential difference V1 generated in the diagnostic element 561 and the AC potential difference V2 generated in the diagnostic element 562 are equal to each other. Adjust the amplitude of I2.
 演算部550は、交流調整部540から、交流電流I1に相当する電流指令信号、及び交流電流I2に相当する電流指令信号を受信する。これと共に演算部550は、正極側検波回路5411から、正極側の交流電位差の抵抗成分V1r及びリアクタンス成分V1xを受信し、負極側検出部522から、負極側の交流電位差の抵抗成分V2r及びリアクタンス成分V2xを受信する。 The calculation unit 550 receives a current command signal corresponding to the AC current I1 and a current command signal corresponding to the AC current I2 from the AC adjustment unit 540. At the same time, the arithmetic unit 550 receives the positive-side AC potential difference resistance component V1r and the reactance component V1x from the positive-side detection circuit 5411, and the negative-side AC potential difference resistance component V2r and the reactance component from the negative-side detection unit 522. V2x is received.
 演算部550は、式(2-1)のとおり、交流電流I1と交流電位差の抵抗成分V1rとに基づいて診断素子561の抵抗値を演算し、その抵抗値を測定値Rm1として保持する。さらに演算部550は、交流電流I2と交流電位差の抵抗成分V2rとに基づいて診断素子562の抵抗値を演算し、その抵抗値を測定値Rm2として保持する。 The calculation unit 550 calculates the resistance value of the diagnostic element 561 based on the AC current I1 and the resistance component V1r of the AC potential difference, and holds the resistance value as the measured value Rm1, as shown in the equation (2-1). Further, calculation unit 550 calculates a resistance value of diagnostic element 562 based on AC current I2 and resistance component V2r of the AC potential difference, and holds the resistance value as measured value Rm2.
 そして、演算部550は、式(3-1)のとおり、交流電流I1と交流電位差のリアクタンス成分V1xとに基づいて診断素子562の抵抗値を演算し、その抵抗値を測定値Xm2として保持する。さらに演算部550は、交流電流I2と交流電位差のリアクタンス成分V2xとに基づいて診断素子562の抵抗値を演算し、その抵抗値を測定値Xm2として保持する。 Then, the calculation unit 550 calculates the resistance value of the diagnostic element 562 based on the AC current I1 and the reactance component V1x of the AC potential difference, and holds the resistance value as the measured value Xm2, as shown in Expression (3-1). . Further, calculation unit 550 calculates a resistance value of diagnostic element 562 based on AC current I2 and reactance component V2x of the AC potential difference, and holds the resistance value as measured value Xm2.
 例えば、演算部550は、診断素子561の測定値R1mと基準値Ref1との差を、抵抗成分R1の測定誤差として算出すると共に、診断素子562の測定値Rm2と基準値Ref2との差を抵抗成分R2の測定誤差として算出する。演算部550は、診断素子561の測定値X1mと基準値Ref1との差を、リアクタンス成分X1の測定誤差として算出すると共に、診断素子562の測定値Xm2と基準値Ref2との差をリアクタンス成分X2の測定誤差として算出する。 For example, the calculation unit 550 calculates the difference between the measured value R1m of the diagnostic element 561 and the reference value Ref1 as a measurement error of the resistance component R1, and calculates the difference between the measured value Rm2 of the diagnostic element 562 and the reference value Ref2 as a resistance. Calculated as the measurement error of component R2. The calculation unit 550 calculates the difference between the measured value X1m of the diagnostic element 561 and the reference value Ref1 as a measurement error of the reactance component X1, and calculates the difference between the measured value Xm2 of the diagnostic element 562 and the reference value Ref2 as the reactance component X2. Is calculated as the measurement error.
 演算部550は、抵抗成分R1及びR2の測定誤差に基づいて、インピーダンス測定装置5bの測定状態が良好か不良かを診断し、抵抗成分Rの測定状態に関する診断結果をコントロールユニット6に送信する。さらに、演算部550は、リアクタンス成分X1及びX2の測定誤差に基づいて、インピーダンス測定装置5bの測定状態が良好か不良かを診断し、リアクタンス成分Xの測定状態に関する診断結果をコントロールユニット6に送信する。 The calculation unit 550 diagnoses whether the measurement state of the impedance measuring device 5b is good or bad based on the measurement errors of the resistance components R1 and R2, and transmits a diagnosis result regarding the measurement state of the resistance component R to the control unit 6. Further, the calculation unit 550 diagnoses whether the measurement state of the impedance measuring device 5b is good or bad based on the measurement errors of the reactance components X1 and X2, and transmits the diagnosis result regarding the measurement state of the reactance component X to the control unit 6. To do.
 例えば、演算部550は、診断素子561の測定誤差及び診断素子562の測定誤差が、予め定められる許容誤差範囲を超えたか否かを判断する。そして演算部550は、診断素子561及び562の測定誤差が共に許容誤差範囲内にある場合には、インピーダンス測定装置5bの測定状態が良好であると判定する。すなわち、インピーダンス測定装置5bに備えられた電子部品の製造バラツキや経時劣化などが原因でインピーダンスの測定精度が低下していないと判定される。 For example, the arithmetic unit 550 determines whether or not the measurement error of the diagnostic element 561 and the measurement error of the diagnostic element 562 exceed a predetermined allowable error range. The arithmetic unit 550 determines that the measurement state of the impedance measuring device 5b is good when the measurement errors of the diagnostic elements 561 and 562 are both within the allowable error range. That is, it is determined that the impedance measurement accuracy has not decreased due to manufacturing variations or deterioration with time of electronic components provided in the impedance measuring device 5b.
 インピーダンス測定装置5bの測定状態が良好であると判定された場合には、演算部550は、診断が終了した旨を示す診断終了信号を診断制御部580に出力する。診断制御部580は、その診断終了信号を受信すると、切替部570の接続状態を、診断状態から、図17に示した測定状態に切り替える。 When it is determined that the measurement state of the impedance measuring device 5b is good, the calculation unit 550 outputs a diagnosis end signal indicating that the diagnosis is completed to the diagnosis control unit 580. When the diagnosis control unit 580 receives the diagnosis end signal, the diagnosis control unit 580 switches the connection state of the switching unit 570 from the diagnosis state to the measurement state illustrated in FIG.
 そして、演算部550は、等電位制御によって交流電位差V1と交流電位差V2とが互いに等しく制御された状態で、燃料電池スタック1の抵抗成分R及びリアクタンス成分Xを演算し、その演算結果をコントロールユニット6へ送信する。 Then, the calculation unit 550 calculates the resistance component R and the reactance component X of the fuel cell stack 1 in a state where the AC potential difference V1 and the AC potential difference V2 are controlled to be equal to each other by equipotential control, and the calculation result is the control unit. 6 to send.
 一方、診断素子561又は562の測定誤差が許容誤差範囲を超えた場合には、演算部550は、インピーダンス測定装置5bの測定状態が不良であると判定する。すなわち、インピーダンス測定装置5bに備えられた電子部品の製造バラツキや、経時劣化などが原因でインピーダンスの測定精度が低下していると判定される。 On the other hand, when the measurement error of the diagnostic element 561 or 562 exceeds the allowable error range, the calculation unit 550 determines that the measurement state of the impedance measuring device 5b is defective. That is, it is determined that the impedance measurement accuracy is reduced due to manufacturing variations of electronic components provided in the impedance measuring device 5b, deterioration with time, and the like.
 インピーダンス測定装置5bの測定状態が不良であると判定された場合には、演算部550は、例えば、診断制御部580への診断終了信号の出力を停止して、切替部570を測定状態に切り替えることを禁止する。 When it is determined that the measurement state of the impedance measuring device 5b is defective, the calculation unit 550 stops outputting the diagnosis end signal to the diagnosis control unit 580, for example, and switches the switching unit 570 to the measurement state. Prohibit that.
 あるいは、演算部550は、診断終了信号を診断制御部580に出力して切替部570を測定状態に切り替え、診断時に算出した診断素子561及び562の測定誤差に基づいて、燃料電池スタック1の抵抗成分Rの測定結果を補正するようにしてもよい。 Alternatively, the calculation unit 550 outputs a diagnosis end signal to the diagnosis control unit 580, switches the switching unit 570 to the measurement state, and determines the resistance of the fuel cell stack 1 based on the measurement error of the diagnostic elements 561 and 562 calculated at the time of diagnosis. The measurement result of component R may be corrected.
 例えば、診断素子561及び562の測定値が基準値よりも小さいときには、演算部550は、測定結果である抵抗成分R1に診断素子561の測定誤差を加算すると共に、抵抗成分R2に診断素子562の測定誤差を加算して抵抗成分Rを算出する。 For example, when the measured values of the diagnostic elements 561 and 562 are smaller than the reference value, the calculation unit 550 adds the measurement error of the diagnostic element 561 to the resistance component R1 that is the measurement result, and also adds the measurement error of the diagnostic element 562 to the resistance component R2. The resistance component R is calculated by adding the measurement error.
 または、演算部550は、診断素子561の測定誤差と診断素子562の測定誤差との平均値を抵抗成分Rの測定値に加算することで測定結果を補正してもよい。その他の例として、演算部550は、測定状態が不良と判定された場合には、切替部570を測定状態に切り替え、診断素子561及び562の測定誤差を測定結果に付加してコントロールユニット6に送信してもよい。 Alternatively, the calculation unit 550 may correct the measurement result by adding the average value of the measurement error of the diagnostic element 561 and the measurement error of the diagnostic element 562 to the measurement value of the resistance component R. As another example, when the measurement state is determined to be defective, the calculation unit 550 switches the switching unit 570 to the measurement state and adds the measurement error of the diagnostic elements 561 and 562 to the measurement result to the control unit 6. You may send it.
 なお、燃料電池スタック1の抵抗成分Rや容量成分Cが、燃料電池スタック1の発電状態に応じて変化する。例えば、抵抗成分Rが変化すると、等電位制御により交流電流I1及びI2も変化するため、測定誤差も変化する。このような抵抗成分Rや容量成分Cの変動に合わせて測定結果を補正する手法について次図を参照して説明する。 Note that the resistance component R and the capacity component C of the fuel cell stack 1 change according to the power generation state of the fuel cell stack 1. For example, when the resistance component R changes, the alternating currents I1 and I2 also change due to equipotential control, so that the measurement error also changes. A method for correcting the measurement result in accordance with such fluctuations of the resistance component R and the capacitance component C will be described with reference to the next figure.
 図19は、演算部550により算出されるインピーダンスの抵抗成分Rを補正する補正手法の一例を示す説明図である。 FIG. 19 is an explanatory diagram illustrating an example of a correction method for correcting the resistance component R of the impedance calculated by the calculation unit 550.
 図19には、診断素子561が有する抵抗の基準値Ref1を表わす基準特性と、測定結果である診断素子561の抵抗値R1mにより定まる測定特性とが示されている。 FIG. 19 shows a reference characteristic representing a reference value Ref1 of resistance of the diagnostic element 561 and a measurement characteristic determined by the resistance value R1m of the diagnostic element 561 as a measurement result.
 演算部550は、診断制御部580により切替部570の接続状態が診断状態に切り替えられると、図11に示した正極側検波回路5411のR成分抽出回路21の出力信号V1rに基づいて、診断素子561の抵抗値成分の測定値R1mを算出する。そして、演算部550は、測定値R1mを用いて、次式(4)の測定特性を近似する直線の傾きaを算出する。 When the connection state of the switching unit 570 is switched to the diagnosis state by the diagnosis control unit 580, the calculation unit 550 is based on the output signal V1r of the R component extraction circuit 21 of the positive-side detection circuit 5411 illustrated in FIG. A measured value R1m of the resistance value component of 561 is calculated. And the calculating part 550 calculates the inclination a of the straight line which approximates the measurement characteristic of following Formula (4) using measured value R1m.
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
 次に、切替部570の接続状態が測定状態に切り替えられると、演算部550は、R成分抽出回路21の出力信号Vrに基づいて、燃料電池スタック1の正極側の抵抗成分R1を算出する。 Next, when the connection state of the switching unit 570 is switched to the measurement state, the calculation unit 550 calculates the resistance component R1 on the positive electrode side of the fuel cell stack 1 based on the output signal Vr of the R component extraction circuit 21.
 そして、演算部550は、次式(5)のように、上式(4)によって特定された測定特性を基準特性から減算して補正量Zを算出する。 Then, the arithmetic unit 550 calculates the correction amount Z by subtracting the measurement characteristic specified by the above expression (4) from the reference characteristic as in the following expression (5).
Figure JPOXMLDOC01-appb-M000005
   
Figure JPOXMLDOC01-appb-M000005
   
 具体的には、演算部550は、算出した抵抗成分R1を、式(5)中の測定値Xに代入して補正量Zを算出する。演算器50は、算出した補正量Zを抵抗成分R1に加算することにより、燃料電池スタック1の正極側の抵抗成分R1を補正する。 Specifically, the calculation unit 550 calculates the correction amount Z by substituting the calculated resistance component R1 into the measured value X in the equation (5). The computing unit 50 corrects the resistance component R1 on the positive electrode side of the fuel cell stack 1 by adding the calculated correction amount Z to the resistance component R1.
 このように、演算部550は、診断素子561の抵抗値R1mを用いて、測定対象物である燃料電池スタック1の抵抗成分R1の変動に応じて測定結果を補正する。同様に、演算部550は、診断素子562の抵抗値R2mを用いて負極側の抵抗成分R2を補正する。ここでは、抵抗成分Rを補正する手法について説明したが、リアクタンス成分Xを補正する場合にも同様である。これにより、インピーダンス測定装置5bの測定精度をより一層高めることができる。 Thus, the arithmetic unit 550 uses the resistance value R1m of the diagnostic element 561 to correct the measurement result according to the variation of the resistance component R1 of the fuel cell stack 1 that is the measurement object. Similarly, the calculation unit 550 corrects the resistance component R2 on the negative electrode side using the resistance value R2m of the diagnostic element 562. Although the method for correcting the resistance component R has been described here, the same applies to the case where the reactance component X is corrected. Thereby, the measurement accuracy of the impedance measuring device 5b can be further increased.
 次にインピーダンス測定装置5bの動作について図20を参照して説明する。 Next, the operation of the impedance measuring device 5b will be described with reference to FIG.
 図20は、本実施形態におけるインピーダンス測定装置5bの処理方法の一例を示すフローチャートである。 FIG. 20 is a flowchart showing an example of a processing method of the impedance measuring apparatus 5b in the present embodiment.
 まず、ステップS201において診断制御部580は、インピーダンス測定装置5bが自己の状態を診断する診断時期になったか否かを判断する。診断制御部580は、診断時期になったと判断した場合には、診断実行信号を演算部550に供給する。一方、診断時期になっていないと判断した場合には、診断制御部580は、診断実行信号の代わりに測定実行信号を演算部550に供給する。 First, in step S201, the diagnosis control unit 580 determines whether or not it is a diagnosis time for the impedance measuring device 5b to diagnose its own state. The diagnosis control unit 580 supplies a diagnosis execution signal to the calculation unit 550 when determining that the diagnosis time has come. On the other hand, when it is determined that the diagnosis time has not come, the diagnosis control unit 580 supplies a measurement execution signal to the calculation unit 550 instead of the diagnosis execution signal.
 ステップS202において診断制御部580は、診断時期になった場合には、電流経路切替器571及び572を制御して、正極側電源部531及び負極側電源部532を、それぞれ診断素子561及び562に接続する。これと共に診断制御部580は、検出対象切替器573及び574を制御して、正極側検出部521及び負極側検出部522に対し、それぞれ診断素子561及び562を並列に接続する。 In step S202, when the diagnosis time comes, the diagnosis control unit 580 controls the current path switchers 571 and 572 so that the positive power supply unit 531 and the negative power supply unit 532 are connected to the diagnostic elements 561 and 562, respectively. Connecting. At the same time, the diagnosis control unit 580 controls the detection target switching devices 573 and 574 to connect the diagnosis elements 561 and 562 in parallel to the positive electrode side detection unit 521 and the negative electrode side detection unit 522, respectively.
 このように、インピーダンス測定装置5bが診断時期になると、診断制御部580は、交流電流I1及びI2をそれぞれ診断素子561及び562に供給して、診断素子561及び562に生じる交流電位差V1及びV2を検出する診断状態に切り替える。 As described above, when the impedance measuring device 5b reaches the diagnosis time, the diagnosis control unit 580 supplies the alternating currents I1 and I2 to the diagnostic elements 561 and 562, respectively, so that the AC potential differences V1 and V2 generated in the diagnostic elements 561 and 562 are obtained. Switch to the diagnostic state to detect.
 ステップS203において診断制御部580は、正極側電源部531及び負極側電源部532から出力される交流電流I1及びI2を初期値に設定する。交流電流I1及びI2の初期値は、診断状態に状態で交流電位差V1と交流電位差V2とが一致したときの交流電流I1及びI2の電流値に基づいて設定される。 In step S203, the diagnosis control unit 580 sets the alternating currents I1 and I2 output from the positive power supply unit 531 and the negative power supply unit 532 to initial values. The initial values of the alternating currents I1 and I2 are set based on the current values of the alternating currents I1 and I2 when the alternating current potential difference V1 and the alternating current potential difference V2 match in the diagnosis state.
 例えば、診断制御部580は、図11に示したベクトル演算部23から出力されるベクトル値Vp1を初期値として図10に示した基準電源545の基準電圧Vsに切り替える。 For example, the diagnosis control unit 580 switches the reference value Vs of the reference power source 545 shown in FIG. 10 to the vector value Vp1 output from the vector calculation unit 23 shown in FIG. 11 as an initial value.
 これにより、交流電流I1及びI2が変動範囲の上限値まで達している状態で診断状態に切り替えられた場合であっても、交流電位差V1及びV2を迅速に基準電圧Vsに収束させることができる。したがって、診断時間を短縮することができる。 Thus, even when the alternating currents I1 and I2 reach the upper limit value of the fluctuation range and are switched to the diagnosis state, the alternating potential differences V1 and V2 can be quickly converged to the reference voltage Vs. Therefore, the diagnosis time can be shortened.
 交流調整部540により交流電位差V1及びV2が互いに等しくなるように交流電流I1及びI2が調整された状態で、正極側検出部521及び負極側検出部522から交流電位差V1及びV2が正極側検波回路5411及び負極側検波回路5412へ出力される。 In the state where the alternating currents I1 and I2 are adjusted so that the alternating current potential differences V1 and V2 are equal to each other by the alternating current adjustment unit 540, the alternating current potential differences V1 and V2 are detected from the positive electrode side detection unit 521 and the negative electrode side detection unit 522. 5411 and the negative electrode side detection circuit 5412.
 ステップS204において演算部550は、診断制御部580から診断実行信号を受信すると、診断素子561及び562の各々の抵抗値R1m及びR2mを測定する。本実施形態では、演算部550は、式(2-1)のとおり、交流電流I1及びI2と交流電位差の抵抗成分V1r及びV2rとを用いて、診断素子561の抵抗値R1m及び診断素子562の抵抗値R2mを演算する。 In step S204, upon receiving the diagnosis execution signal from the diagnosis control unit 580, the calculation unit 550 measures the resistance values R1m and R2m of the diagnosis elements 561 and 562, respectively. In the present embodiment, the arithmetic unit 550 uses the alternating currents I1 and I2 and the resistance components V1r and V2r of the AC potential difference as shown in the equation (2-1) to calculate the resistance value R1m of the diagnostic element 561 and the diagnostic element 562. The resistance value R2m is calculated.
 ステップS205において診断制御部580は、診断素子561及び562の抵抗値R1m及びR2mが算出されると、図7に示した正極側電源部531及び負極側電源部532の出力電流I1及びI2の位相を操作する。本実施形態では、診断制御部580は、図10に示した交流信号源546aから出力される交流信号の位相を0度から遅れ方向に90度だけシフトさせる。これにより、正極側検出部521及び負極側検出部522から出力される交流電位差信号V1及びV2の位相が90度遅れるので、正極側検波回路5411及び負極側検波回路5412のX成分抽出回路22により、それぞれ診断素子561及び562に生じる交流電位差を抽出することが可能となる。 In step S205, when the resistance values R1m and R2m of the diagnostic elements 561 and 562 are calculated, the diagnosis control unit 580 calculates the phase of the output currents I1 and I2 of the positive power supply unit 531 and the negative power supply unit 532 shown in FIG. To operate. In the present embodiment, the diagnosis control unit 580 shifts the phase of the AC signal output from the AC signal source 546a shown in FIG. 10 by 90 degrees from 0 degrees in the delay direction. As a result, the phases of the AC potential difference signals V1 and V2 output from the positive electrode side detection unit 521 and the negative electrode side detection unit 522 are delayed by 90 degrees, so that the X component extraction circuit 22 of the positive electrode side detection circuit 5411 and the negative electrode side detection circuit 5412 Thus, it is possible to extract the AC potential difference generated in the diagnostic elements 561 and 562, respectively.
 ステップS206において演算部550は、交流電流I1及びI2の位相を変更した後、診断素子561及び562の抵抗値に相当するリアクタンス値X1m及びX2mを測定する。本実施形態では、演算部550は、正極側検波回路5411のX成分抽出回路22から交流電位差のリアクタンス成分V1xを取得し、負極側検波回路5412のX成分抽出回路22から交流電位差のリアクタンス成分V2xを取得する。そして、演算部550は、交流電位差のリアクタンス成分V1x及びV2xに基づいて、診断素子561及び562の抵抗値をリアクタンス値X1m及びX2mとして算出する。 In step S206, the arithmetic unit 550 changes reactance values X1m and X2m corresponding to the resistance values of the diagnostic elements 561 and 562 after changing the phases of the alternating currents I1 and I2. In the present embodiment, the calculation unit 550 acquires the reactance component V1x of the AC potential difference from the X component extraction circuit 22 of the positive electrode side detection circuit 5411 and the reactance component V2x of the AC potential difference from the X component extraction circuit 22 of the negative electrode side detection circuit 5412. To get. Then, the arithmetic unit 550 calculates the resistance values of the diagnostic elements 561 and 562 as reactance values X1m and X2m based on the reactance components V1x and V2x of the AC potential difference.
 ステップS207において診断制御部580は、診断素子561及び562を用いてリアクタンス値X1m及びX2mが算出されると、交流電流I1及びI2の位相を元に戻す。本実施形態では、診断制御部580は、交流信号源546aから出力される交流信号の位相を0度に設定する。 In step S207, when the reactance values X1m and X2m are calculated using the diagnostic elements 561 and 562, the diagnosis control unit 580 restores the phases of the alternating currents I1 and I2. In the present embodiment, the diagnosis control unit 580 sets the phase of the AC signal output from the AC signal source 546a to 0 degrees.
 ステップS208において演算部550は、インピーダンス測定装置5bの測定状態が良好か否かを診断する診断処理を実行する。 In step S208, the calculation unit 550 executes a diagnosis process for diagnosing whether or not the measurement state of the impedance measuring device 5b is good.
 本実施形態では、演算部550は、診断素子561に関する測定値R1m及びX1mと基準値Ref1との測定誤差を算出し、診断素子562に関する測定値R2m及びX2mと基準値Ref2との測定誤差を算出する。演算部550は、これらの測定誤差が共に許容誤差範囲内にあるか否かを判断する。そして演算部550は、診断素子561及び562の測定誤差が共に許容誤差範囲内にある場合には、インピーダンス測定装置5bの測定状態が良好であると判断し、ステップS201に戻る。 In the present embodiment, the calculation unit 550 calculates the measurement error between the measurement values R1m and X1m related to the diagnostic element 561 and the reference value Ref1, and calculates the measurement error between the measurement values R2m and X2m related to the diagnostic element 562 and the reference value Ref2. To do. The calculation unit 550 determines whether or not these measurement errors are both within the allowable error range. If both the measurement errors of the diagnostic elements 561 and 562 are within the allowable error range, the arithmetic unit 550 determines that the measurement state of the impedance measuring device 5b is good, and returns to step S201.
 一方、ステップS209において演算部550は、診断素子561又は562の測定誤差が許容誤差範囲外にある場合には、測定状態が不良であると判断し、その旨を示す診断結果をコントロールユニット6へ出力する。これにより、インピーダンス測定装置5bの信頼性を確保することができる。 On the other hand, in step S209, when the measurement error of the diagnostic element 561 or 562 is outside the allowable error range, the calculation unit 550 determines that the measurement state is defective and sends a diagnosis result indicating that to the control unit 6. Output. Thereby, the reliability of the impedance measuring device 5b can be ensured.
 次に、ステップS201で診断時期でないと判断された場合には、ステップS210の処理に進む。 Next, if it is determined in step S201 that it is not the diagnosis time, the process proceeds to step S210.
 ステップS210において診断制御部580は、電流経路切替器571及び572を制御して、正極側電源部531及び負極側電源部532を、それぞれ燃料電池スタック1の正極端子211及び負極端子212に接続する。これと共に、診断制御部580は、検出対象切替器573及び574を制御して、正極端子211と中途点端子213との間の抵抗成分R1を正極側検出部521に接続すると共に、負極端子212と中途点端子213との間の抵抗成分R2を負極側検出部522に接続する。 In step S210, the diagnosis control unit 580 controls the current path switching units 571 and 572 to connect the positive electrode side power source unit 531 and the negative electrode side power source unit 532 to the positive electrode terminal 211 and the negative electrode terminal 212 of the fuel cell stack 1, respectively. . At the same time, the diagnosis control unit 580 controls the detection target switching devices 573 and 574 to connect the resistance component R1 between the positive electrode terminal 211 and the halfway point terminal 213 to the positive electrode side detection unit 521, and at the same time, the negative electrode terminal 212. And a resistance component R2 between the halfway point terminal 213 and the negative electrode side detection unit 522.
 このように、診断制御部580は、交流電流I1及びI2を燃料電池スタック1にそれぞれ供給して、抵抗成分R1と容量成分C1の合成成分、及び、抵抗成分R2と容量成分C2の合成成分により生じる交流電位差V1及びV2を検出する測定状態に切り替える。そして、交流調整部540は、交流電位差V1及びV2が互いに等しくなるように、正極側電源部531及び負極側電源部532を制御して、交流電流I1及びI2の振幅を調整する。 As described above, the diagnosis control unit 580 supplies the alternating currents I1 and I2 to the fuel cell stack 1, respectively, and uses the combined component of the resistance component R1 and the capacitance component C1 and the combined component of the resistance component R2 and the capacitance component C2. It switches to the measurement state which detects the alternating current potential difference V1 and V2 which arise. Then, the AC adjustment unit 540 controls the positive power supply unit 531 and the negative power supply unit 532 so that the AC potential differences V1 and V2 are equal to each other, thereby adjusting the amplitudes of the AC currents I1 and I2.
 この状態で、正極側検出部521及び負極側検出部522から、交流電位差V1及びV2が、それぞれ正極側検波回路5411及び負極側検波回路5412へ入力される。そして、正極側検波回路5411からの抵抗成分V1r及びリアクタンス成分V1x及び負極側検波回路5412からの抵抗成分V2r及びリアクタンス成分V2xが演算部550に入力される。また、交流調整部540から、正極側電源部531及び負極側電源部532へ出力される電流指令信号が、交流電流I1及びI2として演算部550へ出力される。 In this state, the AC potential differences V1 and V2 are input from the positive electrode side detection unit 521 and the negative electrode side detection unit 522 to the positive electrode side detection circuit 5411 and the negative electrode side detection circuit 5412, respectively. Then, the resistance component V1r and reactance component V1x from the positive electrode side detection circuit 5411 and the resistance component V2r and reactance component V2x from the negative electrode side detection circuit 5412 are input to the arithmetic unit 550. In addition, current command signals output from the AC adjustment unit 540 to the positive power supply unit 531 and the negative power supply unit 532 are output to the calculation unit 550 as AC currents I1 and I2.
 ステップS211において演算部550は、燃料電池スタック1が有するインピーダンスの抵抗成分R1及びR2、並びにリアクタンス成分C1及びC2を測定する。 In step S211, the calculation unit 550 measures the resistance components R1 and R2 of the impedance of the fuel cell stack 1 and the reactance components C1 and C2.
 本実施形態では、演算部550は、式(2-1)のとおり、調整後の交流電流I1及びI2と交流電位差の抵抗成分V1r及びV2rとを用いて、燃料電池スタック1の抵抗成分R1及びR2を算出する。さらに、演算部550は、式(3-1)のとおり、調整後の交流電流I1及びI2と交流電位差のリアクタンス成分V1x及びV2xとを用いて、燃料電池スタック1のリアクタンス成分X1及びX2を算出する。 In the present embodiment, the arithmetic unit 550 uses the adjusted AC currents I1 and I2 and the AC voltage difference resistance components V1r and V2r as shown in the equation (2-1), and the resistance components R1 and R2 of the fuel cell stack 1 R2 is calculated. Further, the calculation unit 550 calculates the reactance components X1 and X2 of the fuel cell stack 1 using the adjusted AC currents I1 and I2 and the reactance components V1x and V2x of the AC potential difference as shown in Expression (3-1). To do.
 ステップS212において演算部550は、ステップS203及びS205で算出された測定誤差を用いて、ステップS208で算出された測定結果を補正する補正処理を実行する。 In step S212, the calculation unit 550 executes a correction process for correcting the measurement result calculated in step S208 using the measurement error calculated in steps S203 and S205.
 本実施形態では、演算部550は、図19で述べたように、測定結果である抵抗成分R1を式(5)の測定値Xに入力して補正量Zを算出し、その補正量Zを抵抗成分R1に加算する。同様に、測定結果である抵抗成分R2、リアクタンス成分X1及びX2に対して、それぞれに対応する補正量を加算する。 In the present embodiment, as described with reference to FIG. 19, the calculation unit 550 calculates the correction amount Z by inputting the resistance component R1 that is the measurement result to the measurement value X of Equation (5), and calculates the correction amount Z. Add to the resistance component R1. Similarly, correction amounts corresponding to the resistance component R2 and the reactance components X1 and X2 that are measurement results are added.
 ステップS213において演算部550は、補正後の測定結果を送信先であるコントロールユニット6に出力する。 In step S213, the calculation unit 550 outputs the corrected measurement result to the control unit 6 that is the transmission destination.
 本実施形態では、演算部550は、式(2-2)のとおり、補正後の抵抗成分R1及びR2を合成することにより、燃料電池スタック1全体の抵抗成分Rを演算する。さらに、演算部550は、式(3-2)のとおり、補正後のリアクタンス成分X1及びX2を合成することにより、燃料電池スタック1全体のリアクタンス成分Xを演算する。そして、演算部550は、合成後の抵抗成分R及びリアクタンス成分Xを測定結果としてコントロールユニット6へ送信する。 In the present embodiment, the calculation unit 550 calculates the resistance component R of the entire fuel cell stack 1 by synthesizing the corrected resistance components R1 and R2 as shown in Expression (2-2). Further, the calculation unit 550 calculates the reactance component X of the entire fuel cell stack 1 by combining the corrected reactance components X1 and X2 as shown in Expression (3-2). Then, the calculation unit 550 transmits the combined resistance component R and reactance component X to the control unit 6 as measurement results.
 なお、ステップS209で診断素子561及び562の測定誤差が許容誤差範囲を超えているとの判断がなされた場合には、演算部550は、測定誤差を示す診断結果を測定結果に付加した測定データを生成してコントロールユニット6に送信してもよい。 When it is determined in step S209 that the measurement error of the diagnostic elements 561 and 562 exceeds the allowable error range, the calculation unit 550 adds measurement data indicating the measurement error to the measurement result. May be generated and transmitted to the control unit 6.
 ステップS214において演算部550は、インピーダンス測定装置5bの動作が停止(OFF)されるまでは、ステップS201からS213までの一連の処理手順を繰り返し実行する。そして、インピーダンス測定装置5bが停止された場合には、処理方法を終了する。 In step S214, the calculation unit 550 repeatedly executes a series of processing steps from step S201 to step S213 until the operation of the impedance measuring device 5b is stopped (OFF). When the impedance measuring device 5b is stopped, the processing method is terminated.
 なお、本実施形態では、正極側の測定経路、及び負極側の測定経路の2つの系統のそれぞれに診断素子561及び562を実装したが、両方の測定経路における電子部品に起因する測定誤差を1つの診断素子を兼用して診断するようにしてもよい。この場合には診断状態において、正極側電源部531及び正極側検出部521と、負極側電源部532及び負極側検出部522とが1つの診断素子に対して順番に接続される。 In this embodiment, the diagnostic elements 561 and 562 are mounted on each of the two systems of the positive electrode side measurement path and the negative electrode side measurement path. However, the measurement error caused by the electronic components in both measurement paths is 1 You may make it diagnose by combining one diagnostic element. In this case, in the diagnosis state, the positive power supply unit 531 and the positive detection unit 521, and the negative power supply unit 532 and the negative detection unit 522 are sequentially connected to one diagnostic element.
 例えば、診断制御部580は、診断状態において、正極端子211との接続を切断して1つの診断素子に対して正極側電源部531及び正極側検出部521を接続する。その後、負極端子212との接続を切断して負極側電源部532及び負極側検出部522を同じ診断素子に接続する。これにより、正極側及び負極側の系統間のバラツキ、具体的には診断素子や切替器のバラツキによって生じる誤差が排除されるので、各系統での測定誤差を計測する精度を高めることができる。 For example, in the diagnosis state, the diagnosis control unit 580 disconnects the connection with the positive terminal 211 and connects the positive power supply unit 531 and the positive detection unit 521 to one diagnostic element. Thereafter, the connection with the negative electrode terminal 212 is disconnected, and the negative electrode side power supply unit 532 and the negative electrode side detection unit 522 are connected to the same diagnostic element. This eliminates errors caused by variations between the positive and negative systems, specifically, variations in diagnostic elements and switches, so that the accuracy of measuring measurement errors in each system can be improved.
 また、本実施形態では診断制御部580は、インピーダンス測定装置5bの製造時や出荷検査時、定期検査時において、インピーダンス測定装置5bの測定精度を診断するために診断実行信号を演算部550に出力する。これにより、診断制御部580によって切替部570が診断状態に切り替えられ、演算部550によって診断素子561及び562のインピーダンスの測定誤差が算出される。 In the present embodiment, the diagnosis control unit 580 outputs a diagnosis execution signal to the calculation unit 550 in order to diagnose the measurement accuracy of the impedance measurement device 5b at the time of manufacturing, shipping inspection, and periodic inspection of the impedance measurement device 5b. To do. As a result, the diagnosis control unit 580 switches the switching unit 570 to the diagnosis state, and the calculation unit 550 calculates the impedance measurement error of the diagnostic elements 561 and 562.
 通常、インピーダンス測定装置5bの製造バラツキを許容範囲内に調整するために、作業員が調整設備を使用してインピーダンス測定装置5bの出荷検査や校正を行う。これに対して、インピーダンス測定装置5bの製造時や出荷検査時や定期検査時において、診断処理を実行するようにプログラムすることで、自動的に出荷検査及び定期検査の合否判定や、測定機能の校正を行うことができる。 Usually, in order to adjust the manufacturing variation of the impedance measuring device 5b within an allowable range, an operator uses the adjustment equipment to perform shipping inspection and calibration of the impedance measuring device 5b. On the other hand, it is programmed to execute diagnostic processing at the time of manufacturing, shipping inspection, and periodic inspection of the impedance measuring device 5b, thereby automatically determining pass / fail of the shipping inspection and periodic inspection and the measurement function. Calibration can be performed.
 例えば、診断実行信号は、図7に示した操作スイッチ部6aから出力される。操作スイッチ部6aは、外部からの操作が可能なスイッチ又はボタンである。操作スイッチ部6aには、インピーダンス測定装置5bの診断及び校正(補正)を実行するための検査スイッチが設けられており、作業員によって検査スイッチがONに設定されると、操作スイッチ部6aから診断実行信号がコントロールユニット6に出力される。コントロールユニット6は、診断実行信号を、演算部550を介して診断制御部580に出力する。 For example, the diagnosis execution signal is output from the operation switch unit 6a shown in FIG. The operation switch unit 6a is a switch or button that can be operated from the outside. The operation switch unit 6a is provided with an inspection switch for executing diagnosis and calibration (correction) of the impedance measuring device 5b. When the inspection switch is set to ON by an operator, the operation switch unit 6a performs diagnosis. An execution signal is output to the control unit 6. The control unit 6 outputs a diagnosis execution signal to the diagnosis control unit 580 via the calculation unit 550.
 このようにすることで、インピーダンス測定装置5bの測定精度を維持しつつ、製造時の調整作業や定期検査の作業を軽減することができる。なお、操作スイッチ部6aに対してジャンパー線を取り付けたり取り外したりすることで、操作スイッチ部6aから診断実行信号を出力させてもよい。 By doing in this way, the adjustment work at the time of manufacture and the work of the periodic inspection can be reduced while maintaining the measurement accuracy of the impedance measuring device 5b. Note that a diagnosis execution signal may be output from the operation switch unit 6a by attaching or removing a jumper wire to or from the operation switch unit 6a.
 本発明の第2実施形態によれば、診断制御部580は、診断状態において、抵抗器である診断素子561を用いてリアクタンス成分X1を抽出する場合には、交流電流I1及び正極側の直交移相器41の出力信号のうち少なくとも一方の位相をシフトさせる。同様に、診断制御部580は、抵抗器である診断素子562を用いてリアクタンス成分X2を抽出するときには、交流電流I2及び負極側の直交移相器41の出力信号のうち少なくとも一方の交流信号の位相をシフトさせる。 According to the second embodiment of the present invention, the diagnosis control unit 580, in the diagnosis state, extracts the reactance component X1 using the diagnosis element 561 that is a resistor, the AC current I1 and the positive-side orthogonal shift. The phase of at least one of the output signals of the phase shifter 41 is shifted. Similarly, when the diagnosis control unit 580 extracts the reactance component X2 using the diagnosis element 562 that is a resistor, the diagnosis control unit 580 outputs at least one AC signal of the AC current I2 and the output signal of the negative-phase quadrature phase shifter 41. Shift phase.
 これにより、ひとつの診断素子561を用いて、正極側の測定経路における抵抗成分R1の測定誤差だけでなく、リアクタンス成分X1の測定誤差も特定することができる。このため、インピーダンス測定装置5bに実装する診断素子の数を削減することができるので、インピーダンス測定装置5bの規模の増加を抑制しつつ、抵抗成分R及びリアクタンス成分Xの双方の測定精度を向上させることができる。 Thereby, by using one diagnostic element 561, not only the measurement error of the resistance component R1 but also the measurement error of the reactance component X1 in the measurement path on the positive electrode side can be specified. For this reason, since the number of diagnostic elements mounted on the impedance measuring device 5b can be reduced, the measurement accuracy of both the resistance component R and the reactance component X is improved while suppressing an increase in the scale of the impedance measuring device 5b. be able to.
 また、本実施形態によれば、診断制御部580は、診断素子60として抵抗器を用いて正極側検波回路5411及び負極側検波回路5412の両者のX成分抽出回路22でリアクタンス成分V1x及びV2xを抽出する場合には、ひとつの交流信号源546aの位相を90度シフトさせる。 Further, according to the present embodiment, the diagnosis control unit 580 uses the resistor as the diagnosis element 60 to extract the reactance components V1x and V2x by the X component extraction circuit 22 of both the positive detection circuit 5411 and the negative detection circuit 5412. In the case of extraction, the phase of one AC signal source 546a is shifted by 90 degrees.
 したがって、正極側検波回路5411及び負極側検波回路5412の2つの交流信号源546cの各位相を90度操作する場合に比べて、1つの交流信号源546aの位相を操作するだけで済むので、位相操作を簡易にすることができる。 Therefore, as compared with the case where the phases of the two AC signal sources 546c of the positive electrode side detection circuit 5411 and the negative electrode side detection circuit 5412 are operated by 90 degrees, it is only necessary to operate the phase of one AC signal source 546a. Operation can be simplified.
 また、本実施形態によれば、診断制御部580は、診断素子60として抵抗器を用いてX成分抽出回路22でリアクタンス成分V1x及びV2xを抽出する場合には、交流信号源546cの各位相を操作する。交流信号源546cの出力は正極側電源部531及び負極側電源部532よりも出力が小さいため、正極側電源部531及び負極側電源部532の位相を操作する場合に比べて、位相操作に伴うノイズの影響を低減することができる。 Further, according to the present embodiment, when the diagnosis control unit 580 uses the resistor as the diagnostic element 60 to extract the reactance components V1x and V2x by the X component extraction circuit 22, the diagnosis control unit 580 determines each phase of the AC signal source 546c. Manipulate. Since the output of the AC signal source 546c is smaller than the outputs of the positive power supply unit 531 and the negative power supply unit 532, the phase operation is accompanied by the phase operation as compared with the case of operating the phases of the positive power supply unit 531 and the negative power supply unit 532. The influence of noise can be reduced.
 また、本実施形態によれば、交流調整部540により、交流電位差V1と交流電位差V2とが一致するように交流電流I1及びI2の振幅が調整される。そのため、切替部570が診断状態に切り替えられた場合には、診断制御部580は、正極側電源部531及び負極側電源部532から出力される交流電流I1及びI2を初期値に設定する。 Further, according to the present embodiment, the alternating current adjusting unit 540 adjusts the amplitudes of the alternating currents I1 and I2 so that the alternating current potential difference V1 and the alternating current potential difference V2 coincide with each other. Therefore, when the switching unit 570 is switched to the diagnosis state, the diagnosis control unit 580 sets the alternating currents I1 and I2 output from the positive power supply unit 531 and the negative power supply unit 532 to initial values.
 これにより、診断開始時に、交流電位差V1及びV2が一致するように交流電流I1及びI2の振幅を調整するのに要する時間を短くすることができる。したがって、交流電流I1及びI2の位相操作に伴う時間の増加を抑制することができる。 This makes it possible to shorten the time required to adjust the amplitudes of the alternating currents I1 and I2 so that the alternating potential differences V1 and V2 coincide at the start of diagnosis. Therefore, an increase in time associated with the phase operation of the alternating currents I1 and I2 can be suppressed.
 また、燃料電池スタック1においては、内部に燃料電池の発電に関わる電荷移動抵抗、電気二重層容量や内部損失抵抗などの電気的特性を有している。本実施形態では燃料電池スタック1の内部インピーダンスに含まれる内部損失抵抗成分が電解質膜111の湿潤状態と相関関係が高いことから、インピーダンス測定装置5bによって燃料電池スタック1の抵抗成分Rが測定される。一方、燃料電池スタック1のインピーダンスに含まれる電荷移動抵抗や電気二重層容量の容量成分を測定するには、燃料電池スタック1に供給される交流電流I1及びI2の周波数を変更することにより計測することができる。内部インピーダンスの容量成分は、燃料電池スタック1内のアノードガスに含まれる水素濃度に応じて変化する。燃料電池スタック1内の水素濃度が不足すると電解質膜が劣化することから、燃料電池スタック1が有する容量成分Cの測定値を利用することにより、燃料電池スタック1内の水素不足を診断することが可能となる。 In addition, the fuel cell stack 1 has electrical characteristics such as charge transfer resistance, electric double layer capacity and internal loss resistance related to power generation of the fuel cell. In this embodiment, since the internal loss resistance component included in the internal impedance of the fuel cell stack 1 has a high correlation with the wet state of the electrolyte membrane 111, the resistance component R of the fuel cell stack 1 is measured by the impedance measuring device 5b. . On the other hand, in order to measure the charge transfer resistance and the capacitance component of the electric double layer capacity included in the impedance of the fuel cell stack 1, measurement is performed by changing the frequencies of the alternating currents I1 and I2 supplied to the fuel cell stack 1. be able to. The capacity component of the internal impedance changes according to the concentration of hydrogen contained in the anode gas in the fuel cell stack 1. Since the electrolyte membrane deteriorates when the hydrogen concentration in the fuel cell stack 1 is insufficient, the lack of hydrogen in the fuel cell stack 1 can be diagnosed by using the measured value of the capacity component C of the fuel cell stack 1. It becomes possible.
 以上、本発明の実施形態について説明したが、上記実施形態は本発明の適用例の一部を示したに過ぎず、本発明の技術的範囲を上記実施形態の具体的構成に限定する趣旨ではない。 The embodiment of the present invention has been described above. However, the above embodiment only shows a part of application examples of the present invention, and the technical scope of the present invention is limited to the specific configuration of the above embodiment. Absent.
 例えば、上記実施形態では発振回路40a~40c又は交流信号源546a~546cの位相を操作したが、これらの信号源の位相は固定し、信号源ごとに、信号源からの出力信号の位相を変化させる移相器を設けるようにしてもよい。 For example, in the above embodiment, the phases of the oscillation circuits 40a to 40c or the AC signal sources 546a to 546c are manipulated, but the phases of these signal sources are fixed, and the phase of the output signal from the signal source is changed for each signal source. You may make it provide the phase shifter to make.
 また、本実施形態では交流調整部540は、アナログ回路により構成したが、マイコンチップなどのデジタル演算器で構成してもよい。 Further, in the present embodiment, the AC adjustment unit 540 is configured by an analog circuit, but may be configured by a digital arithmetic unit such as a microcomputer chip.
 さらに、第2実施形態では測定対象物10は燃料電池スタック1であったが、リチウムイオンバッテリであってもよい。正極側及び負極側の抵抗が殆ど変動しないリチウムイオンバッテリであれば、インピーダンス測定装置5bの回路構成を簡略化してもよい。例えば、交流調整部540を省略して電源部531及び532からは、振幅と位相が一致した交流電流I1及びI2を固定的に出力する。また検出部521及び522の一方を省略して他方の検出部(例えば正極側検出部521)のみで検出される交流電位差(例えば交流電位差V1)と、その交流電位差を生じさせる交流電流(例えば交流電流I1)とを用いて内部抵抗を演算する。このような回路構成であっても、上記実施形態と同じような効果を得ることができる。 Furthermore, in the second embodiment, the measurement object 10 is the fuel cell stack 1, but may be a lithium ion battery. As long as the resistance on the positive electrode side and the negative electrode side hardly changes, the circuit configuration of the impedance measuring device 5b may be simplified. For example, the AC adjustment unit 540 is omitted, and the AC currents I1 and I2 whose amplitude and phase coincide with each other are fixedly output from the power supply units 531 and 532. Also, one of the detection units 521 and 522 is omitted, and an AC potential difference (for example, AC potential difference V1) detected only by the other detection unit (for example, the positive electrode side detection unit 521) and an AC current (for example, AC current) that causes the AC potential difference. The internal resistance is calculated using the current I1). Even with such a circuit configuration, the same effect as in the above embodiment can be obtained.
 また、本実施形態では、中途点端子213が燃料電池スタック1の抵抗成分Rの中間に設けられ、交流調整部540によって交流電位差V1及びV2の振幅が同一の基準値Vsとなるように交流電流I1及びI2の振幅を制御する例について説明した。しかしながら、中途点端子213は、燃料電池スタック1の中間に位置する発電セルから外れた発電セルに設けられてもよい。この場合には、正極端子211に生じる交流電位と、負極端子に生じる交流電位とが一致すればよいので、中途点端子213が設けられた発電セルの位置によって抵抗成分R1と抵抗成分R2との抵抗比を求め、その抵抗比に合わせて交流電位差V1及びV2の振幅の基準値を設定すればよい。 Further, in the present embodiment, the halfway point terminal 213 is provided in the middle of the resistance component R of the fuel cell stack 1, and the alternating current adjustment unit 540 causes the alternating current potentials V1 and V2 to have the same reference value Vs. An example of controlling the amplitudes of I1 and I2 has been described. However, the midpoint terminal 213 may be provided in a power generation cell that is out of the power generation cell located in the middle of the fuel cell stack 1. In this case, since the AC potential generated at the positive electrode terminal 211 and the AC potential generated at the negative electrode terminal only need to coincide with each other, the resistance component R1 and the resistance component R2 depend on the position of the power generation cell provided with the halfway point terminal 213. What is necessary is just to obtain | require resistance ratio and to set the reference value of the amplitude of AC electric potential difference V1 and V2 according to the resistance ratio.
 なお、上記実施形態は、適宜組み合わせ可能である。 In addition, the said embodiment can be combined suitably.

Claims (8)

  1.  測定対象に交流電流を出力する電源回路と、
     前記測定対象に生じる交流電位差と前記電源回路の出力電流とに基づいて前記測定対象のインピーダンスを演算する演算器と、
     前記インピーダンスの誤差を特定するための抵抗、コンデンサ、及びコイルのうちのいずれか1つの受動素子と、
     前記測定対象を前記電源回路に接続した測定状態と、前記受動素子を前記電源回路に接続した診断状態とを切り替えるスイッチと、
    を含むインピーダンス測定装置の処理方法であって、
     前記電源回路により前記測定対象に交流電流を出力する出力ステップと、
     前記測定対象に生じる交流電位差を検出する検出ステップと、
     前記電源回路の出力電流に対して周波数が同一の交流信号を出力する第1発振ステップと、
     前記第1発振ステップでの出力信号に基づいて、前記検出ステップで検出される交流電位差の抵抗成分を抽出する第1抽出ステップと、
     前記第1発振ステップでの出力信号に対して位相が直交する交流信号を出力する第2発振ステップと、
     前記第2発振ステップでの出力信号に基づいて、前記検出ステップで検出される交流電位差のリアクタンス成分を抽出する第2抽出ステップと、
     前記第1又は第2抽出ステップで抽出される成分と、前記出力ステップで出力される交流電流とに基づいて、前記測定対象が有するインピーダンスの抵抗成分又はリアクタンス成分を演算する演算ステップと、
     前記スイッチが前記診断状態に切り替えられた場合において、前記第2抽出ステップでリアクタンス成分を抽出するときには、前記第1抽出ステップで抵抗成分を抽出するときに比べて、前記出力ステップ、前記第1発振ステップ及び前記第2発振ステップでの各出力信号のうち前記受動素子に対応する出力信号の位相をシフトさせる移相ステップと、
     前記スイッチが前記診断状態に切り替えられた場合に前記第1及び第2抽出ステップで抽出される各成分に基づいて、前記演算ステップで演算されるインピーダンスの誤差を診断する処理、又は、当該インピーダンスを補正する処理を実行する処理ステップと、
    を含むインピーダンス測定装置の処理方法。
    A power supply circuit that outputs an alternating current to the measurement target;
    An arithmetic unit that calculates the impedance of the measurement object based on the AC potential difference generated in the measurement object and the output current of the power supply circuit;
    Any one passive element of a resistor, a capacitor, and a coil for specifying the impedance error; and
    A switch for switching between a measurement state in which the measurement target is connected to the power supply circuit and a diagnosis state in which the passive element is connected to the power supply circuit;
    A processing method for an impedance measuring device including:
    An output step of outputting an alternating current to the measurement object by the power supply circuit;
    A detection step of detecting an AC potential difference generated in the measurement object;
    A first oscillation step for outputting an AC signal having the same frequency as the output current of the power supply circuit;
    A first extraction step of extracting a resistance component of the AC potential difference detected in the detection step based on an output signal in the first oscillation step;
    A second oscillation step for outputting an AC signal having a phase orthogonal to the output signal in the first oscillation step;
    A second extraction step of extracting a reactance component of the AC potential difference detected in the detection step based on an output signal in the second oscillation step;
    A calculation step of calculating a resistance component or reactance component of the impedance of the measurement object based on the component extracted in the first or second extraction step and the alternating current output in the output step;
    When the switch is switched to the diagnosis state, when the reactance component is extracted in the second extraction step, the output step and the first oscillation are compared to when the resistance component is extracted in the first extraction step. A phase shifting step of shifting the phase of the output signal corresponding to the passive element among the output signals in the step and the second oscillation step;
    When the switch is switched to the diagnosis state, based on each component extracted in the first and second extraction steps, a process for diagnosing an error in the impedance calculated in the calculation step, or the impedance A processing step for executing a correction process;
    A processing method for an impedance measuring device including:
  2.  請求項1に記載のインピーダンス測定装置の処理方法であって、
     前記受動素子は、基準となる値の抵抗を有する抵抗器であり、
     前記移相ステップは、前記抵抗器を用いて前記第2抽出ステップでリアクタンス成分を抽出する場合には、前記出力ステップ及び前記第2発振ステップで出力される交流信号のうち少なくとも一方の交流信号の位相を所定の角度だけシフトさせる、
    インピーダンス測定装置の処理方法。
    It is a processing method of the impedance measuring device according to claim 1,
    The passive element is a resistor having a resistance of a reference value,
    In the phase shifting step, when a reactance component is extracted in the second extraction step using the resistor, at least one of the AC signals output in the output step and the second oscillation step Shift the phase by a certain angle,
    Processing method of impedance measuring device.
  3.  請求項2に記載のインピーダンス測定装置の処理方法であって、
     前記移相ステップは、前記抵抗器を用いて前記第2抽出ステップでリアクタンス成分を抽出する場合には、前記出力ステップで出力される交流電流の位相を45度又は90度シフトさせる、
    インピーダンス測定装置の処理方法。
    It is a processing method of the impedance measuring device according to claim 2,
    The phase shift step shifts the phase of the alternating current output in the output step by 45 degrees or 90 degrees when the reactance component is extracted in the second extraction step using the resistor.
    Processing method of impedance measuring device.
  4.  請求項2に記載のインピーダンス測定装置の処理方法であって、
     前記移相ステップは、前記抵抗器を用いて前記第2抽出ステップでリアクタンス成分を抽出する場合には、前記第2発振ステップにおいて出力される交流信号の位相を90度シフトさせる、
    インピーダンス測定装置の処理方法。
    It is a processing method of the impedance measuring device according to claim 2,
    The phase shifting step shifts the phase of the AC signal output in the second oscillation step by 90 degrees when the reactance component is extracted in the second extraction step using the resistor.
    Processing method of impedance measuring device.
  5.  請求項1から請求項4までのいずれか1項に記載のインピーダンス測定装置の処理方法であって、
     前記電源回路は、前記測定対象である積層電池の正極及び負極の各々に対して前記交流電流を出力し、
     前記検出ステップは、
     前記積層電池の中途点と前記正極との間の交流電位差を検出する正極側検出ステップと、
     前記積層電池の負極と前記中途点との間の交流電位差を検出する負極側検出ステップと、を含み、
     前記第1抽出ステップにおいては、前記第1発振ステップでの出力信号に基づいて、前記正極側検出ステップ及び負極側検出ステップで検出される交流電位差の抵抗成分をそれぞれ抽出し、
     前記第2抽出ステップにおいては、前記第1発振ステップでの出力信号に基づいて、前記正極側検出ステップ及び負極側検出ステップで検出される交流電位差の容量成分をそれぞれ抽出し、
     前記正極側検出ステップで検出される交流電位差と、前記負極側検出ステップで検出される交流電位差とが一致するように、前記電源回路から前記積層電池の正極又は負極に出力される交流電流の振幅を調整する調整ステップと、
     前記スイッチが前記診断状態に切り替えられた場合には、前記調整ステップにより前記正極側電源回路及び前記負極側電源回路から出力される交流電流をそれぞれ初期値に設定する初期化ステップと、を含む、
    インピーダンス測定装置の処理方法。
    It is a processing method of the impedance measuring device according to any one of claims 1 to 4,
    The power supply circuit outputs the alternating current to each of the positive electrode and the negative electrode of the laminated battery to be measured,
    The detecting step includes
    A positive electrode side detection step for detecting an AC potential difference between the middle point of the laminated battery and the positive electrode;
    A negative electrode side detection step for detecting an AC potential difference between the negative electrode of the multilayer battery and the midpoint,
    In the first extraction step, based on the output signal in the first oscillation step, the resistance component of the AC potential difference detected in the positive electrode side detection step and the negative electrode side detection step is extracted,
    In the second extraction step, based on the output signal in the first oscillation step, each of the capacitance components of the AC potential difference detected in the positive electrode side detection step and the negative electrode side detection step is extracted,
    The amplitude of the AC current output from the power supply circuit to the positive electrode or the negative electrode of the stacked battery so that the AC potential difference detected in the positive electrode side detection step matches the AC potential difference detected in the negative electrode side detection step. Adjustment steps to adjust,
    When the switch is switched to the diagnostic state, the initializing step of setting the alternating current output from the positive power supply circuit and the negative power supply circuit to initial values by the adjustment step, respectively,
    Processing method of impedance measuring device.
  6.  請求項1から請求項5までのいずれか1項に記載のインピーダンス測定装置の処理方法であって、
     前記処理ステップは、
     前記スイッチが前記診断状態に切り替えられた場合には、前記第1抽出回路又は前記第2抽出回路で抽出される成分と、前記電源回路から出力される交流電流とに基づいて、前記演算器によりインピーダンスの抵抗成分又はリアクタンス成分を演算する演算ステップと、
     前記演算ステップにより演算された抵抗成分又はリアクタンス成分と、前記受動素子によって定められた基準値との差分が所定の閾値を超えた場合には、前記インピーダンス測定装置の測定状態が不良であると診断する診断ステップと、を含む、
    インピーダンス測定装置の処理方法。
    It is a processing method of the impedance measuring device according to any one of claims 1 to 5,
    The processing step includes
    When the switch is switched to the diagnostic state, based on the component extracted by the first extraction circuit or the second extraction circuit and the alternating current output from the power supply circuit, the computing unit A calculation step for calculating a resistance component or reactance component of the impedance;
    When the difference between the resistance component or reactance component calculated in the calculation step and the reference value determined by the passive element exceeds a predetermined threshold, the measurement state of the impedance measuring device is diagnosed as defective Including a diagnostic step,
    Processing method of impedance measuring device.
  7.  請求項1から請求項6までのいずれか1項に記載のインピーダンス測定装置の処理方法であって、
     前記処理ステップは、
     前記スイッチが前記診断状態に切り替えられた場合には、前記第1抽出ステップ又は前記第2抽出ステップで抽出される成分と、前記出力ステップで出力される交流電流とに基づいて、前記演算器によりインピーダンスの抵抗成分又はリアクタンス成分を演算する演算ステップと、
     前記演算ステップで演算された抵抗成分又はリアクタンス成分と、前記受動素子により定められた基準値との差分である測定誤差を算出する誤差算出ステップと、
     前記スイッチが前記測定状態に切り替えられた場合には、前記誤差算出ステップにより算出される測定誤差に基づいて、前記演算ステップで演算されるインピーダンスの抵抗成分又はリアクタンス成分を補正する補正ステップと、を含む、
    インピーダンス測定装置の処理方法。
    It is a processing method of the impedance measuring device according to any one of claims 1 to 6,
    The processing step includes
    When the switch is switched to the diagnostic state, based on the component extracted in the first extraction step or the second extraction step and the alternating current output in the output step, the computing unit A calculation step for calculating a resistance component or reactance component of the impedance;
    An error calculating step of calculating a measurement error that is a difference between the resistance component or reactance component calculated in the calculating step and a reference value determined by the passive element;
    A correction step of correcting the resistance component or reactance component of the impedance calculated in the calculation step based on the measurement error calculated in the error calculation step when the switch is switched to the measurement state; Including,
    Processing method of impedance measuring device.
  8.  測定対象に交流電流を出力する電源回路と、
     前記測定対象に生じる交流電位差を検出する検出回路と、
     前記電源回路の出力電流に対して周波数が同一の交流信号を出力する第1発振回路と、
     前記第1発振回路の出力信号に基づいて、前記検出回路により検出される交流電位差の抵抗成分を抽出する第1抽出回路と、
     前記第1発振回路の出力信号に対して位相が直交する交流信号を出力する第2発振回路と、
     前記第2発振回路の出力信号に基づいて、前記検出回路により検出される交流電位差のリアクタンス成分を抽出する第2抽出回路と、
     前記第1抽出回路又は前記第2抽出回路により抽出される成分と、前記電源回路により出力される交流電流とに基づいて、前記測定対象が有するインピーダンスの抵抗成分又はリアクタンス成分を演算する演算器と、
     前記演算器により演算されるインピーダンスの誤差を特定するための抵抗、コンデンサ、及びコイルのいずれか1つの受動素子と、
     前記測定対象を前記電源回路に接続した測定状態と、前記受動素子を前記電源回路に接続した診断状態とを切り替えるスイッチと、
     前記スイッチの接続状態を制御する制御部と、を含み、
     前記制御部は、前記スイッチを前記診断状態に切り替えた場合において、前記第2抽出回路によりリアクタンス成分を抽出するときには、前記第1抽出回路により抵抗成分を抽出するときに比べて、前記電源回路、前記第1発振回路、及び前記第2発振回路のうち前記受動素子に対応する回路の出力信号の位相をシフトさせ、
     前記演算器は、前記受動素子を用いて前記第1抽出回路及び前記第2抽出回路により抽出される各成分に基づいて、前記測定対象のインピーダンスの誤差を診断する、又は、当該インピーダンスを補正する、
    インピーダンス測定装置。
    A power supply circuit that outputs an alternating current to the measurement target;
    A detection circuit for detecting an AC potential difference generated in the measurement object;
    A first oscillation circuit that outputs an AC signal having the same frequency as the output current of the power supply circuit;
    A first extraction circuit that extracts a resistance component of an AC potential difference detected by the detection circuit based on an output signal of the first oscillation circuit;
    A second oscillation circuit that outputs an AC signal whose phase is orthogonal to the output signal of the first oscillation circuit;
    A second extraction circuit for extracting a reactance component of the AC potential difference detected by the detection circuit based on an output signal of the second oscillation circuit;
    An arithmetic unit that calculates a resistance component or a reactance component of an impedance of the measurement object based on a component extracted by the first extraction circuit or the second extraction circuit and an alternating current output by the power supply circuit; ,
    Any one passive element of a resistor, a capacitor, and a coil for specifying an error in impedance calculated by the calculator;
    A switch for switching between a measurement state in which the measurement target is connected to the power supply circuit and a diagnosis state in which the passive element is connected to the power supply circuit;
    A control unit for controlling a connection state of the switch,
    In the case where the switch is switched to the diagnosis state, the control unit extracts the reactance component by the second extraction circuit, compared with the case of extracting the resistance component by the first extraction circuit, Shifting the phase of the output signal of the circuit corresponding to the passive element among the first oscillation circuit and the second oscillation circuit,
    The computing unit diagnoses an error in the impedance of the measurement object or corrects the impedance based on each component extracted by the first extraction circuit and the second extraction circuit using the passive element. ,
    Impedance measuring device.
PCT/JP2015/078780 2015-10-09 2015-10-09 Impedance measurement device and processing method therefor WO2017061036A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/078780 WO2017061036A1 (en) 2015-10-09 2015-10-09 Impedance measurement device and processing method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2015/078780 WO2017061036A1 (en) 2015-10-09 2015-10-09 Impedance measurement device and processing method therefor

Publications (1)

Publication Number Publication Date
WO2017061036A1 true WO2017061036A1 (en) 2017-04-13

Family

ID=58488249

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/078780 WO2017061036A1 (en) 2015-10-09 2015-10-09 Impedance measurement device and processing method therefor

Country Status (1)

Country Link
WO (1) WO2017061036A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107394847A (en) * 2017-08-24 2017-11-24 苏州麦喆思科电子有限公司 A kind of intelligent lithium electricity protection electric quantity monitoring device
CN109765429A (en) * 2017-11-09 2019-05-17 日置电机株式会社 Impedance measurement system and impedance measurement method
WO2020026888A1 (en) * 2018-07-31 2020-02-06 日本電産リード株式会社 Battery impedance measuring device
WO2023171420A1 (en) * 2022-03-08 2023-09-14 ヌヴォトンテクノロジージャパン株式会社 Battery monitoring device and battery monitoring system
WO2023249094A1 (en) * 2022-06-24 2023-12-28 日置電機株式会社 Measurement device and standard resistor

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001074795A (en) * 1999-08-31 2001-03-23 Ando Electric Co Ltd Instrument and method for measuring resistance of communication line and storing medium
WO2014141752A1 (en) * 2013-03-12 2014-09-18 日産自動車株式会社 Impedance measuring device and control method for impedance measuring device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001074795A (en) * 1999-08-31 2001-03-23 Ando Electric Co Ltd Instrument and method for measuring resistance of communication line and storing medium
WO2014141752A1 (en) * 2013-03-12 2014-09-18 日産自動車株式会社 Impedance measuring device and control method for impedance measuring device

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107394847A (en) * 2017-08-24 2017-11-24 苏州麦喆思科电子有限公司 A kind of intelligent lithium electricity protection electric quantity monitoring device
CN109765429A (en) * 2017-11-09 2019-05-17 日置电机株式会社 Impedance measurement system and impedance measurement method
CN109765429B (en) * 2017-11-09 2023-02-24 日置电机株式会社 Impedance measuring system and impedance measuring method
WO2020026888A1 (en) * 2018-07-31 2020-02-06 日本電産リード株式会社 Battery impedance measuring device
WO2023171420A1 (en) * 2022-03-08 2023-09-14 ヌヴォトンテクノロジージャパン株式会社 Battery monitoring device and battery monitoring system
WO2023249094A1 (en) * 2022-06-24 2023-12-28 日置電機株式会社 Measurement device and standard resistor

Similar Documents

Publication Publication Date Title
JP6344465B2 (en) Impedance measuring apparatus and impedance measuring method
WO2017061036A1 (en) Impedance measurement device and processing method therefor
JP6075442B2 (en) Impedance measuring device and control method of impedance measuring device
JP6315078B2 (en) Impedance measuring device and control method of impedance measuring device
JP5708658B2 (en) Stacked battery internal resistance measuring apparatus and internal resistance measuring method
KR20210146793A (en) Measuring apparatus of battery internal resistance and method of measuring same
JP5867615B2 (en) Multilayer battery impedance measurement device
US20220045544A1 (en) Battery monitoring device
JP6508190B2 (en) Impedance measuring apparatus and control method of impedance measuring apparatus
JP2021012135A (en) Insulation resistance detection device
JP2023086798A (en) Battery monitoring device
JP5625244B2 (en) Secondary battery capacity estimation device
WO2016092618A1 (en) Impedance measurement device and impedance measurement method
JP7009025B2 (en) Voltage measuring device, voltage measuring method
JP4425648B2 (en) Ground fault detection device
JP6686715B2 (en) Impedance measuring device, diagnostic device, and measuring method of impedance measuring device
JP6458375B2 (en) Impedance measuring device
JP5660474B2 (en) Impedance characteristic evaluation method and impedance characteristic evaluation apparatus
JP6318883B2 (en) Impedance measuring device
JP6132718B2 (en) Impedance measuring apparatus and impedance measuring method
JP2021018946A (en) Battery monitoring device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15905855

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 15905855

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP