JP5660474B2 - Impedance characteristic evaluation method and impedance characteristic evaluation apparatus - Google Patents

Impedance characteristic evaluation method and impedance characteristic evaluation apparatus Download PDF

Info

Publication number
JP5660474B2
JP5660474B2 JP2013150782A JP2013150782A JP5660474B2 JP 5660474 B2 JP5660474 B2 JP 5660474B2 JP 2013150782 A JP2013150782 A JP 2013150782A JP 2013150782 A JP2013150782 A JP 2013150782A JP 5660474 B2 JP5660474 B2 JP 5660474B2
Authority
JP
Japan
Prior art keywords
impedance
battery
resistance
membrane resistance
equivalent circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013150782A
Other languages
Japanese (ja)
Other versions
JP2013229349A (en
Inventor
友定 伸浩
伸浩 友定
山崎 大輔
大輔 山崎
篤史 木村
篤史 木村
阿久津 智美
智美 阿久津
紗綾 佐藤
紗綾 佐藤
誠 川野
誠 川野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokogawa Electric Corp
Original Assignee
Yokogawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Electric Corp filed Critical Yokogawa Electric Corp
Priority to JP2013150782A priority Critical patent/JP5660474B2/en
Publication of JP2013229349A publication Critical patent/JP2013229349A/en
Application granted granted Critical
Publication of JP5660474B2 publication Critical patent/JP5660474B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Measurement Of Resistance Or Impedance (AREA)
  • Secondary Cells (AREA)
  • Fuel Cell (AREA)

Description

本発明は、電池のインピーダンス特性を評価するインピーダンス特性評価方法およびインピーダンス特性評価装置に関する。   The present invention relates to an impedance characteristic evaluation method and an impedance characteristic evaluation apparatus for evaluating impedance characteristics of a battery.

負荷電流に重畳する交流の周波数(測定周波数)を変えながら燃料電池セルのインピーダンスを測定する方法が知られている。この方法では、負荷電流として直流成分(Idc)に加えて十分振幅の小さな交流成分(Iac)を重畳した電流(Idc+Iac)を与える。一般的には、この交流成分として正弦波が使用される。インピーダンス計測器により、この電流摂動に対する電池電圧(Vdc+Vac)の変化を測定し、交流成分のゲイン特性、位相遅れを得る。測定周波数を順次変えながら、それぞれの周波数でのゲインおよび位相を測定することで、燃料電池セルのインピーダンス特性を得ることができる。
特開2007−265885号公報
A method for measuring the impedance of a fuel cell while changing the frequency (measurement frequency) of the alternating current superimposed on the load current is known. In this method, a current (Idc + Iac) obtained by superimposing an alternating current component (Iac) having a sufficiently small amplitude in addition to the direct current component (Idc) as a load current is given. Generally, a sine wave is used as this alternating current component. An impedance measuring instrument measures the change in battery voltage (Vdc + Vac) with respect to this current perturbation, and obtains the AC component gain characteristics and phase delay. By measuring the gain and phase at each frequency while sequentially changing the measurement frequency, the impedance characteristic of the fuel cell can be obtained.
JP 2007-265885 A

燃料電池セルインピーダンスは、膜抵抗および反応抵抗から構成されると考えられる。このうち、膜抵抗はイオン伝導体の抵抗と考えられているが、燃料電池においては、その抵抗値は発電状態に大きく依存する。発電負荷の大小や、供給される燃料ガス(水素)や酸化ガス(エア)の加湿状態、発電の際に発生する生成水の影響などにより、膜抵抗は変化する。一方、反応抵抗はそれらの原因も含め、触媒状態や触媒へのガス供給など、様々な他の要因で変化すると考えられている。   The fuel cell impedance is considered to be composed of a membrane resistance and a reaction resistance. Among these, the membrane resistance is considered as the resistance of the ion conductor, but in the fuel cell, the resistance value largely depends on the power generation state. The membrane resistance changes depending on the magnitude of the power generation load, the humidified state of the supplied fuel gas (hydrogen) and oxidizing gas (air), the influence of the generated water generated during power generation, and the like. On the other hand, the reaction resistance is considered to change due to various other factors including the cause and the catalyst state and gas supply to the catalyst.

しかし、現在行われているインピーダンス計測では、上記の膜抵抗と反応抵抗とを分けて測定することが行われておらず、2種類の抵抗の変化をまとめて解析しようとしているため、特に反応抵抗の解析が遅れている。   However, in the current impedance measurement, the above-described membrane resistance and reaction resistance are not separately measured, and since the change of two types of resistance is being analyzed together, the reaction resistance is particularly important. Analysis of is delayed.

本発明の目的は、測定されたインピーダンス特性から膜抵抗を除去し、反応抵抗を詳細に解析することができるインピーダンス特性評価方法およびインピーダンス特性評価装置を提供することにある。   An object of the present invention is to provide an impedance characteristic evaluation method and an impedance characteristic evaluation apparatus that can remove a membrane resistance from a measured impedance characteristic and analyze a reaction resistance in detail.

本発明のインピーダンス特性評価方法は、以下を特徴とする。
電池のインピーダンス特性を評価するインピーダンス特性評価方法において、測定周波数を変えながら電池のインピーダンスを測定するステップと、前記測定周波数を上昇させたときの前記インピーダンスの実数成分の収束値を前記電池の膜抵抗として算出するステップと、前記電池のインピーダンスから前記膜抵抗を減算することで前記電池の反応抵抗を算出するステップと、を備え、前記膜抵抗を算出するステップでは、等価回路に対するフィッティングを用いて前記膜抵抗を算出し、前記等価回路は、前記電池の等価回路と、測定系の等価回路としてのインダクタとを直列に接続して構成される回路であることを特徴とするインピーダンス特性評価方法。
The impedance characteristic evaluation method of the present invention is characterized by the following.
In the impedance characteristic evaluation method for evaluating the impedance characteristic of a battery, the step of measuring the impedance of the battery while changing the measurement frequency, and the convergence value of the real component of the impedance when the measurement frequency is increased are determined as the membrane resistance of the battery And calculating the reaction resistance of the battery by subtracting the membrane resistance from the impedance of the battery, and calculating the membrane resistance using the fitting for an equivalent circuit A method for evaluating impedance characteristics, wherein a film resistance is calculated, and the equivalent circuit is a circuit configured by connecting an equivalent circuit of the battery and an inductor as an equivalent circuit of a measurement system in series .

このインピーダンス特性評価方法によれば、測定周波数を上昇させたときのインピーダンスの実数成分の収束値を電池の膜抵抗として算出し、電池のインピーダンスから上記膜抵抗を減算することで電池の反応抵抗を算出するので、反応抵抗を詳細に解析することができる。   According to this impedance characteristic evaluation method, the convergence value of the real component of the impedance when the measurement frequency is increased is calculated as the membrane resistance of the battery, and the reaction resistance of the battery is calculated by subtracting the membrane resistance from the battery impedance. Since the calculation is performed, the reaction resistance can be analyzed in detail.

本発明のインピーダンス特性評価方法は、以下を特徴とする。電池のインピーダンス特性を評価するインピーダンス特性評価装置において、測定周波数を変えながら電池のインピーダンスを測定する測定手段と、前記測定周波数を上昇させたときの前記インピーダンスの実数成分の収束値を前記電池の膜抵抗として算出する膜抵抗算出手段と、前記電池のインピーダンスから前記膜抵抗を減算することで前記電池の反応抵抗を算出する反応抵抗算出手段と、を備え、前記膜抵抗算出手段は、等価回路に対するフィッティングを用いて前記膜抵抗を算出し、前記等価回路は、前記電池の等価回路と、測定系の等価回路としてのインダクタとを直列に接続して構成される回路であることを特徴とするインピーダンス特性評価装置。


The impedance characteristic evaluation method of the present invention is characterized by the following. In the impedance characteristic evaluation apparatus for evaluating the impedance characteristic of a battery, a measurement means for measuring the impedance of the battery while changing the measurement frequency, and a convergence value of the real component of the impedance when the measurement frequency is increased Membrane resistance calculation means for calculating as resistance, and reaction resistance calculation means for calculating reaction resistance of the battery by subtracting the membrane resistance from the impedance of the battery, the membrane resistance calculation means for the equivalent circuit The membrane resistance is calculated using fitting, and the equivalent circuit is a circuit configured by connecting an equivalent circuit of the battery and an inductor as an equivalent circuit of a measurement system in series. Characteristic evaluation device.


このインピーダンス特性評価装置によれば、測定周波数を上昇させたときのインピーダンスの実数成分の収束値を電池の膜抵抗として算出し、電池のインピーダンスから上記膜抵抗を減算することで電池の反応抵抗を算出するので、反応抵抗を詳細に解析することができる。   According to this impedance characteristic evaluation apparatus, the convergence value of the real component of the impedance when the measurement frequency is increased is calculated as the battery membrane resistance, and the reaction resistance of the battery is calculated by subtracting the membrane resistance from the battery impedance. Since the calculation is performed, the reaction resistance can be analyzed in detail.

本発明のインピーダンス特性評価方法によれば、測定周波数を上昇させたときのインピーダンスの実数成分の収束値を電池の膜抵抗として算出し、電池のインピーダンスから上記膜抵抗を減算することで電池の反応抵抗を算出するので、反応抵抗を詳細に解析することができる。   According to the impedance characteristic evaluation method of the present invention, the convergence value of the real component of the impedance when the measurement frequency is increased is calculated as the battery membrane resistance, and the battery response is obtained by subtracting the membrane resistance from the battery impedance. Since the resistance is calculated, the reaction resistance can be analyzed in detail.

本発明のインピーダンス特性評価装置によれば、測定周波数を上昇させたときのインピーダンスの実数成分の収束値を電池の膜抵抗として算出し、電池のインピーダンスから上記膜抵抗を減算することで電池の反応抵抗を算出するので、反応抵抗を詳細に解析することができる。   According to the impedance characteristic evaluation apparatus of the present invention, the convergence value of the real component of the impedance when the measurement frequency is increased is calculated as the battery membrane resistance, and the battery response is subtracted from the battery impedance. Since the resistance is calculated, the reaction resistance can be analyzed in detail.

以下、図1〜図4を参照して、本発明によるインピーダンス特性評価方法の一実施形態について説明する。   Hereinafter, an embodiment of an impedance characteristic evaluation method according to the present invention will be described with reference to FIGS.

図1は、電池セルのインピーダンス特性を計測する際の接続状態を示す図である。   FIG. 1 is a diagram illustrating a connection state when measuring impedance characteristics of battery cells.

図1に示すように、燃料電池セル1は、アノード12、電解質膜11およびカソード13を順次積層して構成される。   As shown in FIG. 1, the fuel cell 1 is configured by sequentially stacking an anode 12, an electrolyte membrane 11, and a cathode 13.

インピーダンス特性の計測時には、アノード12およびカソード13の間に、インピーダンス計測器2および電子負荷3が直列に接続される。また、制御・演算装置4は、インピーダンス計測器2および電子負荷3の動作を制御するとともに、インピーダンス特性の計測、評価のための演算処理を実行する。   When measuring the impedance characteristic, the impedance measuring instrument 2 and the electronic load 3 are connected in series between the anode 12 and the cathode 13. The control / arithmetic apparatus 4 controls the operations of the impedance measuring instrument 2 and the electronic load 3 and executes arithmetic processing for measuring and evaluating impedance characteristics.

図1に示すように、制御・演算装置4は、測定周波数を変えながら燃料電池セル1のインピーダンスを測定する測定手段41と、測定周波数を上昇させたときのインピーダンスの実数成分の収束値を燃料電池セル1の膜抵抗として算出する膜抵抗算出手段42と、燃料電池セル1のインピーダンスから膜抵抗を減算することで燃料電池セル1の反応抵抗を算出する反応抵抗算出手段43と、を構成する。   As shown in FIG. 1, the control / arithmetic unit 4 uses a measurement means 41 for measuring the impedance of the fuel cell 1 while changing the measurement frequency, and the convergence value of the real component of the impedance when the measurement frequency is raised. A membrane resistance calculation unit 42 that calculates the membrane resistance of the battery cell 1 and a reaction resistance calculation unit 43 that calculates the reaction resistance of the fuel cell 1 by subtracting the membrane resistance from the impedance of the fuel cell 1 are configured. .

図2は、インピーダンス特性を計測する手順を示すフローチャートである。   FIG. 2 is a flowchart showing a procedure for measuring impedance characteristics.

図2のステップS1では、測定手段41の制御に基づき、電子負荷3の負荷電流に重畳する交流の周波数(測定周波数)を変えながら燃料電池セル1のインピーダンスを測定する。   In step S <b> 1 of FIG. 2, the impedance of the fuel cell 1 is measured while changing the AC frequency (measurement frequency) superimposed on the load current of the electronic load 3 based on the control of the measuring means 41.

ここでは、負荷電流として直流成分(Idc)に加えて十分振幅の小さな交流成分(Iac)を重畳した電流(Idc+Iac)を与える。一般的には、この交流成分として正弦波が使用される。インピーダンス計測器2は、この電流摂動に対する電池電圧(Vdc+Vac)の変化を測定し、交流成分のゲイン特性、位相遅れを得る。測定周波数を順次変えながら、それぞれの周波数でのゲインおよび位相を測定することで、燃料電池セル1のインピーダンス特性を得ることができる。   Here, a current (Idc + Iac) obtained by superimposing an alternating current component (Iac) having a sufficiently small amplitude in addition to the direct current component (Idc) is given as a load current. Generally, a sine wave is used as this alternating current component. The impedance measuring instrument 2 measures the change of the battery voltage (Vdc + Vac) with respect to this current perturbation, and obtains the gain characteristic and phase delay of the AC component. The impedance characteristic of the fuel cell 1 can be obtained by measuring the gain and phase at each frequency while sequentially changing the measurement frequency.

図3(a)は、このようにして測定されたインピーダンス特性を複素平面図により示す図である。   FIG. 3A is a diagram showing the impedance characteristics measured in this way in a complex plan view.

次に、ステップS2では、膜抵抗算出手段42により、ステップS1において測定されたインピーダンス特性に基づいて、膜抵抗Zmemを算出する。   Next, in step S2, the membrane resistance calculation unit 42 calculates the membrane resistance Zmem based on the impedance characteristic measured in step S1.

ここでは、インピーダンス特性のグラフ(図3(a))と実軸との交点の座標を燃料電池セル1の膜抵抗Zmemとして算出することができる。グラフ(図3(a))と実軸との交点は、測定周波数を上昇させたときのインピーダンスの実数成分の収束値に相当している。このように、膜抵抗Zmemは実数部だけをもち、虚数成分をもたない。   Here, the coordinates of the intersection between the impedance characteristic graph (FIG. 3A) and the real axis can be calculated as the membrane resistance Zmem of the fuel cell 1. The intersection between the graph (FIG. 3A) and the real axis corresponds to the convergence value of the real component of the impedance when the measurement frequency is increased. Thus, the film resistance Zmem has only a real part and no imaginary component.

グラフ上の交点を用いる代わりに、図4(a)に示すような燃料電池セル1の等価回路の素子の定数をフィッティングにより求め、抵抗R1の値を膜抵抗Zmenとしてもよい。なお、図4(a)において、抵抗R2、抵抗R3、コンデンサC2およびコンデンサC3からなる回路は、反応抵抗に相当する。等価回路は図4(a)に示すものに限定されず、燃料電池セルのインピーダンス特性に応じて適切な等価回路が選択される。   Instead of using the intersection on the graph, the constant of the element of the equivalent circuit of the fuel cell 1 as shown in FIG. 4A may be obtained by fitting, and the value of the resistance R1 may be used as the membrane resistance Zmen. In FIG. 4A, a circuit composed of a resistor R2, a resistor R3, a capacitor C2, and a capacitor C3 corresponds to a reaction resistance. The equivalent circuit is not limited to that shown in FIG. 4A, and an appropriate equivalent circuit is selected according to the impedance characteristics of the fuel cell.

次に、ステップS3では、反応抵抗算出手段43において燃料電池セル1のインピーダンスから膜抵抗Zmemを減算することにより、燃料電池セル1の反応抵抗Zactを算出する。   Next, in step S <b> 3, the reaction resistance calculation unit 43 calculates the reaction resistance Zact of the fuel cell 1 by subtracting the membrane resistance Zmem from the impedance of the fuel cell 1.

ここで、燃料電池セル1の実数部をZreal、虚数部をZimg、反応抵抗Zactの実数部をZ´real、虚数部をZ´img、位相角をθ´とすると、   Here, if the real part of the fuel cell 1 is Zreal, the imaginary part is Zimg, the real part of the reaction resistance Zact is Z'real, the imaginary part is Z'img, and the phase angle is θ ',

Figure 0005660474
が成立する。
Figure 0005660474
Is established.

図3(b)は、燃料電池セル1のインピーダンスを膜抵抗Zmemおよび反応抵抗Zactに分離した様子を示す図である。また、図3(c)は、膜抵抗Zmemを減算することにより得られた反応抵抗Zactのインピーダンス特性を示す図である。   FIG. 3B is a diagram showing a state in which the impedance of the fuel cell 1 is separated into the membrane resistance Zmem and the reaction resistance Zact. FIG. 3C is a diagram showing impedance characteristics of the reaction resistance Zact obtained by subtracting the membrane resistance Zmem.

次に、ステップS4では、図3(c)に示す複素平面図、あるいはボード線図等を用いて示される、反応抵抗Zactのインピーダンス特性の解析・評価を行い、処理を終了する。   Next, in step S4, the impedance characteristic of the reaction resistance Zact shown by using the complex plan view or the Bode diagram shown in FIG. 3C is analyzed and evaluated, and the process is terminated.

以上のように、本実施形態のインピーダンス特性評価方法によれば、膜抵抗と反応抵抗を分離することで、周波数に依存する特性を有する反応抵抗について、その周波数特性を単独で再計算することが可能となる。これにより、反応抵抗のみを抽出して詳細な解析・評価を行うことができる。   As described above, according to the impedance characteristic evaluation method of the present embodiment, by separating the membrane resistance and the reaction resistance, it is possible to independently recalculate the frequency characteristic of the reaction resistance having a frequency-dependent characteristic. It becomes possible. Thereby, only reaction resistance can be extracted and a detailed analysis and evaluation can be performed.

図4(b)は、測定系のインピーダンスの影響で、測定周波数を上昇させたときにインピーダンスが実数成分に収束しない場合を例示する図である。図4(b)の例では、測定系に起因するL成分によって高周波領域で位相の進みが発生する。このような場合には、実軸との交点から膜抵抗Zmemを求めることはできない。また、図4(a)に示すような等価回路でのフィッティングも不可能となる。したがって、この場合には、ステップS2において、図4(c)に示すような測定系のインピーダンスを加えた等価回路を用いてフィッティングを行い、抵抗値R1を膜抵抗Zmemとして求めることができる。図4(c)において、L成分(L1)が、測定系に起因するインピーダンスに相当する。   FIG. 4B is a diagram illustrating a case where the impedance does not converge to the real component when the measurement frequency is increased due to the influence of the impedance of the measurement system. In the example of FIG. 4B, the phase advance occurs in the high frequency region due to the L component caused by the measurement system. In such a case, the membrane resistance Zmem cannot be obtained from the intersection with the real axis. Further, fitting with an equivalent circuit as shown in FIG. Therefore, in this case, in step S2, fitting is performed using an equivalent circuit to which the impedance of the measurement system as shown in FIG. 4C is added, and the resistance value R1 can be obtained as the membrane resistance Zmem. In FIG. 4C, the L component (L1) corresponds to the impedance caused by the measurement system.

このように、測定系のインピーダンスを考慮した等価回路を用いてフィッティングを行うことで、実際に高い頻度で発生する測定系のインピーダンス(L成分)の影響をシミュレーションによって除去できる。これにより真の膜抵抗を抽出することができ、反応抵抗を正しく計算することが可能となる。   Thus, by performing fitting using an equivalent circuit that takes into account the impedance of the measurement system, the influence of the impedance (L component) of the measurement system that is actually generated at a high frequency can be eliminated by simulation. As a result, the true membrane resistance can be extracted, and the reaction resistance can be calculated correctly.

本発明の適用範囲は上記実施形態に限定されることはない。本発明は、電池のインピーダンス特性を評価するインピーダンス特性評価方法およびインピーダンス特性評価装置に対し、広く適用することができる。   The scope of application of the present invention is not limited to the above embodiment. The present invention can be widely applied to an impedance characteristic evaluation method and an impedance characteristic evaluation apparatus for evaluating the impedance characteristics of a battery.

電池セルのインピーダンス特性を計測する際の接続状態を示す図。The figure which shows the connection state at the time of measuring the impedance characteristic of a battery cell. 図2は、インピーダンス特性を計測する手順を示すフローチャート。FIG. 2 is a flowchart showing a procedure for measuring impedance characteristics. インピーダンス特性を示す図であり、(a)は、燃料電池セルのインピーダンス特性を示す図、(b)は、燃料電池セルのインピーダンスを膜抵抗Zmenおよび反応抵抗Zactに分離した様子を示す図、(c)は、膜抵抗Zmemを減算することにより得られた反応抵抗Zactのインピーダンス特性を示す図。It is a figure which shows an impedance characteristic, (a) is a figure which shows the impedance characteristic of a fuel cell, (b) is a figure which shows a mode that the impedance of the fuel cell was isolate | separated into the membrane resistance Zmen and the reaction resistance Zact, (c) is a figure which shows the impedance characteristic of reaction resistance Zact obtained by subtracting membrane resistance Zmem. フィッティングの方法を示す図であり、(a)は燃料電池セルの等価回路を例示する図、(b)は測定系のインピーダンスの影響で、測定周波数を上昇させたときにインピーダンスが実数成分に収束しない場合を例示する図、(c)は測定系のインピーダンスを加えた等価回路を示す図。It is a figure which shows the method of fitting, (a) is a figure which illustrates the equivalent circuit of a fuel cell, (b) is the influence of the impedance of a measurement system, and when a measurement frequency is raised, an impedance will converge on a real component The figure which illustrates the case where it does not carry out, (c) is a figure which shows the equivalent circuit which added the impedance of the measurement system.

1 燃料電池セル
11 電解質膜
12 アノード
13 カソード
2 インピーダンス計測器
3 電子負荷
4 制御・演算装置
41 測定手段
42 膜抵抗算出手段
43 反応抵抗算出手段
DESCRIPTION OF SYMBOLS 1 Fuel cell 11 Electrolyte membrane 12 Anode 13 Cathode 2 Impedance measuring device 3 Electronic load 4 Control / arithmetic apparatus 41 Measuring means 42 Membrane resistance calculating means 43 Reaction resistance calculating means

Claims (2)

電池のインピーダンス特性を評価するインピーダンス特性評価方法において、
測定周波数を変えながら電池のインピーダンスを測定するステップと、
前記測定周波数を上昇させたときの前記インピーダンスの実数成分の収束値を前記電池の膜抵抗として算出するステップと、
前記電池のインピーダンスから前記膜抵抗を減算することで前記電池の反応抵抗を算出するステップと、
を備え、
前記膜抵抗を算出するステップでは、等価回路に対するフィッティングを用いて前記膜抵抗を算出し、
前記等価回路は、前記電池の等価回路と、測定系の等価回路としてのインダクタとを直列に接続して構成される回路であることを特徴とするインピーダンス特性評価方法。
In the impedance characteristic evaluation method for evaluating the impedance characteristic of a battery,
Measuring the battery impedance while changing the measurement frequency;
Calculating the convergence value of the real component of the impedance when the measurement frequency is raised as the membrane resistance of the battery;
Calculating the reaction resistance of the battery by subtracting the membrane resistance from the impedance of the battery;
With
In the step of calculating the membrane resistance, the membrane resistance is calculated using fitting to an equivalent circuit,
The method for evaluating impedance characteristics , wherein the equivalent circuit is a circuit configured by connecting an equivalent circuit of the battery and an inductor as an equivalent circuit of a measurement system in series .
電池のインピーダンス特性を評価するインピーダンス特性評価装置において、
測定周波数を変えながら電池のインピーダンスを測定する測定手段と、
前記測定周波数を上昇させたときの前記インピーダンスの実数成分の収束値を前記電池の膜抵抗として算出する膜抵抗算出手段と、
前記電池のインピーダンスから前記膜抵抗を減算することで前記電池の反応抵抗を算出する反応抵抗算出手段と、
を備え、
前記膜抵抗算出手段は、等価回路に対するフィッティングを用いて前記膜抵抗を算出し、
前記等価回路は、前記電池の等価回路と、測定系の等価回路としてのインダクタとを直列に接続して構成される回路であることを特徴とするインピーダンス特性評価装置。
In an impedance characteristic evaluation apparatus for evaluating the impedance characteristic of a battery,
Measuring means for measuring the impedance of the battery while changing the measurement frequency;
Membrane resistance calculation means for calculating the convergence value of the real component of the impedance when the measurement frequency is increased as the membrane resistance of the battery
Reaction resistance calculating means for calculating the reaction resistance of the battery by subtracting the membrane resistance from the impedance of the battery;
With
The membrane resistance calculating means calculates the membrane resistance using a fitting for an equivalent circuit,
The equivalent circuit is a circuit configured by connecting an equivalent circuit of the battery and an inductor as an equivalent circuit of a measurement system in series .
JP2013150782A 2013-07-19 2013-07-19 Impedance characteristic evaluation method and impedance characteristic evaluation apparatus Active JP5660474B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013150782A JP5660474B2 (en) 2013-07-19 2013-07-19 Impedance characteristic evaluation method and impedance characteristic evaluation apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013150782A JP5660474B2 (en) 2013-07-19 2013-07-19 Impedance characteristic evaluation method and impedance characteristic evaluation apparatus

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2008131691A Division JP2009283173A (en) 2008-05-20 2008-05-20 Impedance characteristics evaluation method and impedance characteristics evaluation device

Publications (2)

Publication Number Publication Date
JP2013229349A JP2013229349A (en) 2013-11-07
JP5660474B2 true JP5660474B2 (en) 2015-01-28

Family

ID=49676726

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013150782A Active JP5660474B2 (en) 2013-07-19 2013-07-19 Impedance characteristic evaluation method and impedance characteristic evaluation apparatus

Country Status (1)

Country Link
JP (1) JP5660474B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6507507B2 (en) * 2014-07-16 2019-05-08 日産自動車株式会社 Fuel cell internal state estimation device

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0719806A (en) * 1993-07-02 1995-01-20 Tetsuo Shoji Method and device for measuring coating thickness and material change
JP3111990B2 (en) * 1998-07-13 2000-11-27 日本電気株式会社 Evaluation method of planar inductor
JP4214761B2 (en) * 2002-01-31 2009-01-28 株式会社デンソー Fuel cell system
WO2007110970A1 (en) * 2006-03-29 2007-10-04 The Tokyo Electric Power Company, Incorporated Method for calculating interface resistance

Also Published As

Publication number Publication date
JP2013229349A (en) 2013-11-07

Similar Documents

Publication Publication Date Title
Klotz et al. Practical guidelines for reliable electrochemical characterization of solid oxide fuel cells
JP6075442B2 (en) Impedance measuring device and control method of impedance measuring device
CN109991498A (en) Arc-detection
CA2939987C (en) Impedance measuring device and control method for impedance measuring device
KR20130142884A (en) Inspection system of secondary battery, charge and discharge device, and inspection method
JP5288166B2 (en) Battery impedance evaluation method and impedance evaluation apparatus
JP6724822B2 (en) Calculation method of internal resistance of secondary battery
WO2017061036A1 (en) Impedance measurement device and processing method therefor
JP5201380B2 (en) Fuel cell AC impedance measuring apparatus and AC impedance measuring method
Zhou et al. Online measuring power factor in AC resistance spot welding
JP5660474B2 (en) Impedance characteristic evaluation method and impedance characteristic evaluation apparatus
JP2007066589A (en) Characteristic evaluation method and device of fuel cell
JP5454928B2 (en) Battery inspection method and battery inspection apparatus
JP2009283173A (en) Impedance characteristics evaluation method and impedance characteristics evaluation device
JP2020003264A (en) Nitrous oxide concentration detector
KR20130138384A (en) Insulation resistance sensing apparatus and control method thereof
KR101629579B1 (en) Method of detecting fule stack voltage and apparatus performing the same
JP2010048567A (en) Method and device for evaluating characteristics of battery
JP5370717B2 (en) Impedance characteristic evaluation method and impedance characteristic evaluation apparatus
JP5152629B2 (en) Method and apparatus for measuring impedance of fuel cell
Dotelli et al. Inverter ripple as a diagnostic tool for ohmic resistance measurements on PEM fuel cells
Bethoux et al. A new state-observer of the inner PEM fuel cell pressures for enhanced system monitoring
JP5376405B2 (en) Impedance measuring method and impedance measuring apparatus
JP2008176944A (en) Inspection method of fuel cell
JP6446920B2 (en) Multilayer battery impedance measurement device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140808

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140815

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141010

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141107

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141120

R150 Certificate of patent or registration of utility model

Ref document number: 5660474

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150