JP2012149973A - Internal resistance measurement value calibration circuit of charge element - Google Patents

Internal resistance measurement value calibration circuit of charge element Download PDF

Info

Publication number
JP2012149973A
JP2012149973A JP2011008438A JP2011008438A JP2012149973A JP 2012149973 A JP2012149973 A JP 2012149973A JP 2011008438 A JP2011008438 A JP 2011008438A JP 2011008438 A JP2011008438 A JP 2011008438A JP 2012149973 A JP2012149973 A JP 2012149973A
Authority
JP
Japan
Prior art keywords
internal resistance
potential
storage element
reference resistor
calibration circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011008438A
Other languages
Japanese (ja)
Inventor
Kiyoshi Takahashi
高橋  清
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Battery Co Ltd
Original Assignee
Furukawa Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Battery Co Ltd filed Critical Furukawa Battery Co Ltd
Priority to JP2011008438A priority Critical patent/JP2012149973A/en
Publication of JP2012149973A publication Critical patent/JP2012149973A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Measurement Of Resistance Or Impedance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a measurement value calibration circuit capable of reducing calibration errors caused by potential application to an AC coupling element much more than that in calibration of an internal resistance measurement device by using only a reference resistor.SOLUTION: During the calibration of an internal resistance measurement device 3 using a reference resistor 5, a potential v1 equal to that of a charge element is applied to a capacitor 6 connected between the reference resistor 5 and an AC voltmeter 2 by a DC voltage source 7. Thus, in the state where the potential v1 equal to that applied to the capacitor 6 during the internal resistance measurement of the charge element using the internal resistance measurement device 3 is applied to the capacitor 6 in a measurement value calibration circuit, calibration of the internal resistance measurement device 3 using the reference resistor 5 is executed. During the calibration of the internal resistance measurement device 3 using the reference resistor 5, a capacitance change caused by the potential application to the capacitor 6 satisfies a measurement condition for real internal resistance measurement of the charge element using the internal resistance device 3.

Description

本発明は、内部抵抗計測器により計測される、電位を有する蓄電素子の内部抵抗計測値を校正する計測値校正回路に関するものである。   The present invention relates to a measurement value calibration circuit that calibrates an internal resistance measurement value of a storage element having a potential, which is measured by an internal resistance measurement device.

従来、電池や電気二重層コンデンサなどの電位を有する蓄電素子は、内部抵抗計測器により内部抵抗の計測が行われて、残存容量や劣化状態などの判定が広く行われている。   Conventionally, in a storage element having a potential such as a battery or an electric double layer capacitor, an internal resistance is measured by an internal resistance measuring instrument, and a determination of a remaining capacity, a deterioration state, and the like is widely performed.

内部抵抗計測器による内部抵抗の計測には、蓄電素子自体の内部抵抗が小さく、なおかつ蓄電素子が直流電位を有していることにより、交流四端子計法が多く用いられている。この交流四端子計法を用いた内部抵抗計測は、図1に示す内部抵抗計測器3が用いられて行われる。蓄電素子4の内部抵抗rの計測に際しては、同図に示すように、交流電流発生器1および交流電圧計2に並列に蓄電素子4が接続され、交流電流発生器1により蓄電素子4に交流電流iが通電される。この通電により蓄電素子4に起電力vが発生し、この起電力vは交流電圧計2で計測される。蓄電素子4の内部抵抗rは、交流電流発生器1により通電した交流電流i、および交流電圧計2で計測された電圧vの各値を、演算式r=v÷iに代入することで、求められる。   For the measurement of the internal resistance by the internal resistance measuring instrument, the AC four-terminal meter method is often used because the internal resistance of the storage element itself is small and the storage element has a DC potential. Internal resistance measurement using this AC four-terminal meter method is performed using the internal resistance measuring instrument 3 shown in FIG. When measuring the internal resistance r of the storage element 4, as shown in the figure, the storage element 4 is connected in parallel to the alternating current generator 1 and the alternating current voltmeter 2, and the alternating current generator 1 connects the storage element 4 to the alternating current. The current i is energized. By this energization, an electromotive force v is generated in the storage element 4, and the electromotive force v is measured by the AC voltmeter 2. The internal resistance r of the storage element 4 is obtained by substituting each value of the alternating current i energized by the alternating current generator 1 and the voltage v measured by the alternating current voltmeter 2 into an arithmetic expression r = v ÷ i. Desired.

内部抵抗計測器3は、上記のように、蓄電素子4に交流電流iを通電する交流電流発生器1と、この通電により蓄電素子4に発生した電圧変動を起電力vとして計測する交流電圧計2とで構成される場合が多い。このように蓄電素子の内部抵抗を計測する技術として、例えば、特許文献1に開示された鉛蓄電池の内部インピーダンス測定方法がある。この内部インピーダンス測定方法を用いた内部抵抗計測器では、鉛蓄電池が蓄電素子とされ、鉛蓄電池の陽極と陰極との間に交流電流成分を含んだ測定電流が通電される。そして、鉛蓄電池の陽極と陰極とが測定用電極とされ、両電極間の交流電圧成分が検出されて、鉛蓄電池の内部インピーダンスが測定される。   As described above, the internal resistance measuring instrument 3 includes the AC current generator 1 that supplies the accumulator element 4 with the AC current i, and the AC voltmeter that measures the voltage fluctuation generated in the accumulator element 4 due to this energization as the electromotive force v. 2 is often included. As a technique for measuring the internal resistance of the storage element in this way, for example, there is a method for measuring the internal impedance of a lead storage battery disclosed in Patent Document 1. In an internal resistance measuring instrument using this internal impedance measuring method, a lead storage battery is used as a storage element, and a measurement current including an alternating current component is passed between an anode and a cathode of the lead storage battery. Then, the anode and cathode of the lead storage battery are used as measurement electrodes, the AC voltage component between both electrodes is detected, and the internal impedance of the lead storage battery is measured.

従来、この種の内部抵抗計測器が正しく計測するか否かをチェックする為の計測値校正回路として、一般的に図2に示される回路が広く用いられている。なお、同図において、図1と同一または相当する部分には同一符号を付してその説明は省略する。この計測値校正回路は、交流電流発生器1および交流電圧計2に校正用の基準抵抗器5が並列に接続されて、構成される。基準抵抗器5は、計測される蓄電素子の擬似体で、小さな抵抗値を持つものが使用され、交流電流発生器1により一定の交流電流を流した時に電圧計2に表示される値により演算式r=v÷iにより求められ、その値によって、計測器3の正確さを確認できる。例えば、基準抵抗器5の抵抗が1Ωで、交流電流発生器1により1Aの定電流を流した場合は、電圧計2は1Vを示す。1V以外の値を示した場合は、計測器3にずれがあると言うことで、計測器3を校正する。   2. Description of the Related Art Conventionally, a circuit shown in FIG. 2 is generally widely used as a measurement value calibration circuit for checking whether or not this type of internal resistance measuring instrument correctly measures. In the figure, the same or corresponding parts as in FIG. This measurement value calibration circuit is configured by connecting a reference resistor 5 for calibration to an alternating current generator 1 and an alternating current voltmeter 2 in parallel. The reference resistor 5 is a simulated electric storage element that has a small resistance value, and is calculated based on the value displayed on the voltmeter 2 when a constant alternating current is passed by the alternating current generator 1. The accuracy of the measuring instrument 3 can be confirmed by the equation r = v ÷ i. For example, when the resistance of the reference resistor 5 is 1Ω and a constant current of 1 A is passed by the AC current generator 1, the voltmeter 2 indicates 1V. When a value other than 1V is shown, the measuring instrument 3 is calibrated by saying that the measuring instrument 3 has a deviation.

特許第2876235号公報Japanese Patent No. 2876235

しかし、実際の計測器3における、交流電圧vを計測する回路は、交流成分のみを通過させるように、図3に示すように、蓄電素子4および交流電圧計2間にコンデンサ6が交流結合素子として接続される場合が多い。なお、同図において、図1と同一または相当する部分には同一符号を付してその説明は省略する。   However, the circuit for measuring the AC voltage v in the actual measuring instrument 3 has a capacitor 6 between the power storage element 4 and the AC voltmeter 2 as shown in FIG. Are often connected as. In the figure, the same or corresponding parts as in FIG.

このような、コンデンサ6により交流電圧計2が蓄電素子4に交流結合される計測器3は、交流結合に用いるコンデンサ6の種類によっては、蓄電素子4からコンデンサ6への印加電圧によりコンデンサ6の静電容量値が変化し、測定値が蓄電素子4そのものの値とずれる場合がある。   Such a measuring instrument 3 in which the AC voltmeter 2 is AC-coupled to the storage element 4 by the capacitor 6 may be connected to the capacitor 6 by the voltage applied from the storage element 4 to the capacitor 6 depending on the type of the capacitor 6 used for AC coupling. The capacitance value changes, and the measured value may deviate from the value of the storage element 4 itself.

例えば、図4のグラフに示すように、コンデンサ6としてアルミ電解コンデンサやタンタル電解コンデンサを用いた場合は、印加電圧が変化してもその静電容量値は変化しないが、積層セラミックコンデンサを用いた場合は、印加電圧によってその静電容量値が大きく変化してしまう。なお、同グラフにおいて、横軸はコンデンサへの印加電圧[V]、縦軸は百分率で表したコンデンサの静電容量変化率[%]を示す。また、測定点が黒丸印でプロットされた実線で示される特性線はアルミ電解コンデンサの特性、×印でプロットされた点線で示される特性線はタンタル電解コンデンサの特性、黒三角印でプロットされた一点鎖線で示される特性線は積層セラミックコンデンサ(B特性)の特性、黒四角印でプロットされた二点鎖線で示される特性線は積層セラミックコンデンサ(F特性)の特性を表す。   For example, as shown in the graph of FIG. 4, when an aluminum electrolytic capacitor or a tantalum electrolytic capacitor is used as the capacitor 6, the capacitance value does not change even when the applied voltage changes, but a multilayer ceramic capacitor is used. In this case, the capacitance value greatly changes depending on the applied voltage. In the graph, the horizontal axis represents the voltage applied to the capacitor [V], and the vertical axis represents the capacitance change rate [%] of the capacitor expressed as a percentage. In addition, the characteristic line indicated by the solid line in which the measurement points are plotted with black circles is the characteristic of the aluminum electrolytic capacitor, the characteristic line indicated by the dotted line plotted with the x is the characteristic of the tantalum electrolytic capacitor, and is plotted with the black triangles The characteristic line indicated by the alternate long and short dash line indicates the characteristic of the multilayer ceramic capacitor (B characteristic), and the characteristic line indicated by the two-dot chain line plotted with black square marks indicates the characteristic of the multilayer ceramic capacitor (F characteristic).

このため、図3に示す内部抵抗計測回路において、コンデンサ6としてアルミ電解コンデンサやタンタル電解コンデンサを用いればよいのだが、これらのコンデンサは、容量の経年変化が大きいとか、寿命が短いなどの問題がある。一方、積層セラミックコンデンサは、これらの問題もなく、経年変化が少なく、周波数特性や低発熱、耐電圧等総合的に優れた特性を有しているので好ましい。しかし、積層セラミック(B特性)や積層セラミック(F特性)等を用いた場合、コンデンサ6の静電容量値変化により回路のインピーダンスが変化し、内部抵抗計測器3で計測される蓄電素子4の内部インピーダンスは変化してしまう。従って、このような回路で蓄電素子4の内部インピーダンスを計測する内部抵抗計測器3を、基準抵抗器5を用いた図2に示す計測値校正回路で校正した場合には、内部抵抗計測器3で計測される蓄電素子4の内部抵抗値が実際の内部抵抗値と異なり、誤差が生じてしまう問題が起きる。   For this reason, in the internal resistance measuring circuit shown in FIG. 3, an aluminum electrolytic capacitor or a tantalum electrolytic capacitor may be used as the capacitor 6. However, these capacitors have problems such as large change over time and short life. is there. On the other hand, a multilayer ceramic capacitor is preferable because it has no such problems, has little secular change, and has excellent characteristics such as frequency characteristics, low heat generation, and withstand voltage. However, when a multilayer ceramic (B characteristic), a multilayer ceramic (F characteristic), or the like is used, the impedance of the circuit changes due to a change in the capacitance value of the capacitor 6, and the electric storage element 4 measured by the internal resistance measuring device 3. The internal impedance will change. Therefore, when the internal resistance measuring instrument 3 that measures the internal impedance of the storage element 4 with such a circuit is calibrated by the measurement value calibration circuit shown in FIG. 2 using the reference resistor 5, the internal resistance measuring instrument 3 The internal resistance value of the electricity storage element 4 measured in step (1) is different from the actual internal resistance value, causing a problem that an error occurs.

本発明はこのような課題を解決するためになされたもので、
電位を有する蓄電素子に交流電流を通電する交流電流発生器と、
交流電流発生器により通電された交流電流によって蓄電素子に発生する交流電圧を計測する交流電圧計と
を備えて構成される内部抵抗計測器により計測される蓄電素子の内部抵抗計測値を校正する、交流電流発生器および交流電圧計に校正用の基準抵抗器が並列に接続されて構成される計測値校正回路において、
内部抵抗計測器により蓄電素子の内部抵抗を計測する際に蓄電素子および交流電圧計間に接続される交流結合素子が基準抵抗器および交流電圧計間に接続され、蓄電素子が有する電位と同等の電位を交流結合素子に与える電位付与手段を備えたことを特徴とする。
The present invention has been made to solve such problems,
An alternating current generator for passing an alternating current to a storage element having a potential;
Calibrating the internal resistance measurement value of the storage element measured by the internal resistance measuring instrument configured to include an AC voltmeter that measures an AC voltage generated in the storage element by the alternating current supplied by the alternating current generator; In the measurement value calibration circuit configured by connecting a reference resistor for calibration in parallel to the AC current generator and AC voltmeter,
When measuring the internal resistance of the storage element with the internal resistance meter, an AC coupling element connected between the storage element and the AC voltmeter is connected between the reference resistor and the AC voltmeter, and is equivalent to the potential of the storage element. A potential applying means for applying a potential to the AC coupling element is provided.

本構成によれば、基準抵抗器を用いた内部抵抗計測器の校正時、基準抵抗器および交流電圧計間に接続された交流結合素子に、蓄電素子が有する電位と同等の電位が電位付与手段によって与えられる。従って、内部抵抗計測器を用いた蓄電素子の内部抵抗計測時に交流結合素子に印加される電位と同等の電位が、計測値校正回路における交流結合素子に与えられた状態で、基準抵抗器を用いた内部抵抗計測器の校正が行われる。このため、基準抵抗器を用いた内部抵抗計測器の校正時、交流結合素子への印加電位による交流結合素子の特性値変化は、内部抵抗計測器を用いた蓄電素子の実際の内部抵抗計測時の計測条件と同等となる。この結果、従来のように基準抵抗器のみを用いて内部抵抗計測器を校正する場合と比較して、交流結合素子への電位印加に起因する校正誤差を極めて少なくすることが出来る。   According to this configuration, when the internal resistance measuring instrument using the reference resistor is calibrated, the AC coupling element connected between the reference resistor and the AC voltmeter has a potential equivalent to the potential of the storage element. Given by. Therefore, the reference resistor is used in a state where a potential equivalent to the potential applied to the AC coupling element during measurement of the internal resistance of the storage element using the internal resistance measuring instrument is applied to the AC coupling element in the measurement value calibration circuit. Calibration of the internal resistance measuring instrument was performed. Therefore, when the internal resistance measuring instrument using the reference resistor is calibrated, the change in the characteristic value of the AC coupling element due to the potential applied to the AC coupling element is the same as when measuring the actual internal resistance of the storage element using the internal resistance measuring instrument. The measurement conditions are the same. As a result, compared with the conventional case where the internal resistance measuring instrument is calibrated using only the reference resistor, the calibration error due to the potential application to the AC coupling element can be extremely reduced.

また、本発明は、蓄電素子が有する電位と同等の電位を交流電流発生器に与える電位付与手段をさらに備えたことを特徴とする。   In addition, the present invention is further characterized by further comprising a potential applying means for applying a potential equivalent to the potential of the power storage element to the alternating current generator.

本構成によれば、基準抵抗器を用いた内部抵抗計測器の校正時、交流電流発生器にも蓄電素子が有する電位と同等の電位が電位付与手段によって与えられることで、計測条件は、内部抵抗計測器を用いた蓄電素子の実際の内部抵抗計測時の計測条件にさらに近いものとなる。このため、蓄電素子が有する電位と同等の電位が交流結合素子にのみ与えられる場合と比較して、校正誤差をさらに少なくすることが出来る。   According to this configuration, when the internal resistance measuring instrument using the reference resistor is calibrated, a potential equivalent to the potential of the storage element is also given to the alternating current generator by the potential applying means. This is closer to the measurement conditions for measuring the actual internal resistance of the electricity storage device using the resistance measuring instrument. For this reason, the calibration error can be further reduced as compared with the case where a potential equivalent to the potential of the storage element is applied only to the AC coupling element.

また、本発明は、電位付与手段が、電圧設定信号に応じた直流定電圧を発生する直流定電圧回路によって構成されることを特徴とする。   Further, the present invention is characterized in that the potential applying means is constituted by a DC constant voltage circuit that generates a DC constant voltage according to the voltage setting signal.

本構成によれば、蓄電素子が有する電位と同等の電位は、電圧設定信号に応じて直流定電圧回路により直流定電圧として生成される。従って、蓄電素子の種類に応じて電圧設定信号が設定されることで、蓄電素子が有する電位と同等の電位は、各蓄電素子が有する固有の電位に応じて直流定電圧回路により生成される。このため、基準抵抗器を用いた内部抵抗計測器の校正は、複数種類の蓄電素子について、同じ直流定電圧回路を用いた同じ計測値校正回路によって行え、校正作業の作業効率が向上する。   According to this configuration, a potential equivalent to the potential of the storage element is generated as a DC constant voltage by the DC constant voltage circuit according to the voltage setting signal. Therefore, by setting the voltage setting signal according to the type of the storage element, a potential equivalent to the potential of the storage element is generated by the DC constant voltage circuit according to the unique potential of each storage element. For this reason, the internal resistance measuring instrument using the reference resistor can be calibrated with the same measured value calibration circuit using the same DC constant voltage circuit for a plurality of types of power storage elements, and the working efficiency of the calibration work is improved.

本発明によれば、上記のように、基準抵抗器のみを用いて内部抵抗計測器を校正する従来の場合と比較して、交流結合素子への電位印加に起因する校正誤差を極めて少なくすることが出来る。   According to the present invention, as described above, the calibration error caused by the potential application to the AC coupling element is extremely reduced as compared with the conventional case where the internal resistance measuring instrument is calibrated using only the reference resistor. I can do it.

交流四端子計法を用いた蓄電素子の内部抵抗計測回路を示す図である。It is a figure which shows the internal resistance measurement circuit of the electrical storage element using alternating current four terminal meter method. 蓄電素子の内部抵抗計測器自体の計測値を校正する従来の計測値校正回路を示す図である。It is a figure which shows the conventional measured value calibration circuit which calibrates the measured value of internal resistance measuring device itself of an electrical storage element. 蓄電素子および交流電圧計間が交流結合された際の、交流四端子計法を用いた蓄電素子の内部抵抗計測回路を示す図である。It is a figure which shows the internal resistance measurement circuit of the electrical storage element using the alternating current four-terminal meter method when the electrical storage element and the alternating current voltmeter are AC-coupled. コンデンサの印加電圧による静電容量変化を示すグラフである。It is a graph which shows the electrostatic capacitance change by the applied voltage of a capacitor | condenser. 本発明の第1の実施形態による、蓄電素子の内部抵抗計測器自体の計測値を校正する計測値校正回路を示す図である。It is a figure which shows the measured value calibration circuit which calibrates the measured value of the internal resistance measuring device itself of an electrical storage element by the 1st Embodiment of this invention. 本発明の第2の実施形態による、蓄電素子の内部抵抗計測器自体の計測値を校正する計測値校正回路を示す図である。It is a figure which shows the measured value calibration circuit which calibrates the measured value of internal resistance measuring device itself of the electrical storage element by the 2nd Embodiment of this invention.

次に、蓄電素子の内部抵抗計測器自体の計測値を校正する、本発明の第1の実施形態による計測値校正回路について説明する。     Next, the measured value calibration circuit according to the first embodiment of the present invention for calibrating the measured value of the internal resistance measuring instrument itself of the storage element will be described.

図5は、この第1の実施形態による計測値校正回路を示す図である。   FIG. 5 is a diagram showing a measured value calibration circuit according to the first embodiment.

内部抵抗計測器3は、交流電流発生器1および交流電圧計2から構成され、図示しない蓄電素子の内部抵抗rの計測時には、交流電流発生器1および交流電圧計2に並列に蓄電素子が接続される。蓄電素子は、電池などの電位を有する素子であり、交流電流発生器1により蓄電素子に交流電流iが通電され、この通電により蓄電素子に発生した起電力vが交流電圧計2で計測される。そして、交流電流発生器1により蓄電素子に通電した交流電流i、および交流電圧計2で計測された電圧vの各値から、演算式r=v÷iによって蓄電素子の内部抵抗rが求められるものである。   The internal resistance measuring device 3 includes an alternating current generator 1 and an alternating current voltmeter 2, and the storage element is connected in parallel to the alternating current generator 1 and the alternating current voltmeter 2 when measuring the internal resistance r of the unillustrated storage element. Is done. The storage element is an element having a potential such as a battery. An alternating current i is energized to the storage element by the alternating current generator 1, and an electromotive force v generated in the storage element by this energization is measured by the alternating current voltmeter 2. . Then, the internal resistance r of the storage element is obtained by the arithmetic expression r = v ÷ i from each value of the alternating current i supplied to the storage element by the alternating current generator 1 and the voltage v measured by the alternating current voltmeter 2. Is.

計測値校正回路は、同図に示すように、上記の内部抵抗計測器3を構成する交流電流発生器1および交流電圧計2に並列に基準抵抗器5が接続されて構成されている。基準抵抗器5および交流電圧計2間には一対のコンデンサ6が接続されている。このコンデンサ6は、内部抵抗計測器3により蓄電素子の内部抵抗rが上記のようにして計測される際に、蓄電素子および交流電圧計2間に接続されて、交流電圧計2を蓄電素子に交流結合させる交流結合素子として用いられるものである。   The measured value calibration circuit is configured by connecting a reference resistor 5 in parallel to an alternating current generator 1 and an alternating current voltmeter 2 that constitute the internal resistance measuring device 3 as shown in FIG. A pair of capacitors 6 is connected between the reference resistor 5 and the AC voltmeter 2. This capacitor 6 is connected between the storage element and the AC voltmeter 2 when the internal resistance r of the storage element is measured by the internal resistance measuring instrument 3 as described above, and the AC voltmeter 2 is used as the storage element. It is used as an AC coupling element for AC coupling.

また、基準抵抗器5および一方のコンデンサ6間には、直列に直流電圧源7が接続されている。この直流電圧源7は、電池などで構成され、内部抵抗計測器3によって内部抵抗rが計測される蓄電素子が有する電位と同等の直流電位v1を発生し、コンデンサ6に与える電位付与手段を構成している。   A DC voltage source 7 is connected in series between the reference resistor 5 and one capacitor 6. This DC voltage source 7 is constituted by a battery or the like, and constitutes a potential applying means that generates a DC potential v1 equivalent to the potential of the electric storage element whose internal resistance r is measured by the internal resistance measuring instrument 3 and applies it to the capacitor 6. is doing.

また、基準抵抗器5および交流電流発生器1間にも、直列に直流電圧源8が接続されている。この直流電圧源8も、電池などで構成され、内部抵抗計測器3によって内部抵抗rが計測される蓄電素子が有する電位と同等の直流電位v1を発生し、交流電流発生器1に与える電位付与手段を構成している。   A DC voltage source 8 is also connected in series between the reference resistor 5 and the AC current generator 1. This DC voltage source 8 is also constituted by a battery or the like, generates a DC potential v1 equivalent to the potential of the electric storage element whose internal resistance r is measured by the internal resistance measuring device 3, and applies a potential to the AC current generator 1. Means.

内部抵抗計測器3によって内部抵抗rが計測される蓄電素子が、例えば、鉛蓄電池の1セルである場合には、上記の直流電圧源7および8は、蓄電素子が有する電位と同等の直流電位v1として、2.0[V]を発生する1セルの鉛蓄電池をそれぞれ用いた。また、基準抵抗器5は例えば1[mΩ]の抵抗値に設定される。   When the storage element whose internal resistance r is measured by the internal resistance measuring instrument 3 is, for example, one cell of a lead storage battery, the DC voltage sources 7 and 8 have a DC potential equivalent to the potential of the storage element. As v1, a 1-cell lead storage battery generating 2.0 [V] was used. The reference resistor 5 is set to a resistance value of 1 [mΩ], for example.

このような本実施形態による計測値校正回路によれば、基準抵抗器5を用いた内部抵抗計測器3の校正時、基準抵抗器5および交流電圧計2間に接続されたコンデンサ6に、蓄電素子が有する電位と同等の電位v1が直流電圧源7によって与えられる。従って、内部抵抗計測器3を用いた蓄電素子の内部抵抗計測時にコンデンサ6に印加される電位と同等の電位v1が、計測値校正回路におけるコンデンサ6に与えられた状態で、基準抵抗器5を用いた内部抵抗計測器3の校正が行われる。このため、基準抵抗器5を用いた内部抵抗計測器3の校正時、コンデンサ6への印加電位によるコンデンサ6の特性値変化、つまり、静電容量値変化は、内部抵抗計測器3を用いた蓄電素子の実際の内部抵抗計測時の計測条件と同等となる。この結果、従来のように基準抵抗器5のみを用いて内部抵抗計測器3を校正する場合と比較して、コンデンサ6への電位印加に起因する校正誤差を極めて少なくすることが出来る。   According to such a measured value calibration circuit according to the present embodiment, when the internal resistance measuring instrument 3 using the reference resistor 5 is calibrated, the capacitor 6 connected between the reference resistor 5 and the AC voltmeter 2 is charged. A potential v1 equivalent to the potential of the element is applied by the DC voltage source 7. Therefore, in the state where the potential v1 equivalent to the potential applied to the capacitor 6 at the time of measuring the internal resistance of the storage element using the internal resistance measuring device 3 is applied to the capacitor 6 in the measured value calibration circuit, the reference resistor 5 is used. The used internal resistance measuring instrument 3 is calibrated. For this reason, when the internal resistance measuring instrument 3 using the reference resistor 5 is calibrated, a change in the characteristic value of the capacitor 6 due to the potential applied to the capacitor 6, that is, a change in the capacitance value is determined using the internal resistance measuring instrument 3. The measurement conditions are the same as when measuring the actual internal resistance of the storage element. As a result, the calibration error due to the potential application to the capacitor 6 can be extremely reduced as compared with the conventional case where the internal resistance measuring device 3 is calibrated using only the reference resistor 5.

また、本実施形態による計測値校正回路によれば、基準抵抗器5を用いた内部抵抗計測器3の校正時、交流電流発生器1にも蓄電素子が有する電位と同等の電位v1が直流電圧源8によって与えられることで、計測条件は、内部抵抗計測器3を用いた蓄電素子の実際の内部抵抗計測時の計測条件にさらに近いものとなる。このため、蓄電素子が有する電位と同等の電位v1がコンデンサ6にのみ与えられる場合と比較して、校正誤差をさらに少なくすることが出来る。   Further, according to the measured value calibration circuit according to the present embodiment, when the internal resistance measuring instrument 3 using the reference resistor 5 is calibrated, the alternating current generator 1 also has a potential v1 equivalent to the potential of the storage element. By being given by the source 8, the measurement condition becomes closer to the measurement condition at the time of measuring the actual internal resistance of the power storage element using the internal resistance measuring device 3. Therefore, the calibration error can be further reduced as compared with the case where the potential v1 equivalent to the potential of the power storage element is applied only to the capacitor 6.

次に、蓄電素子の内部抵抗計測器自体の計測値を校正する、本発明の第2の実施形態による計測値校正回路について説明する。   Next, a measured value calibration circuit according to the second embodiment of the present invention that calibrates the measured value of the internal resistance measuring instrument itself of the storage element will be described.

図6は、この第2の実施形態による計測値校正回路を示す図である。なお、同図において、図5と同一または相当する部分には同一符号を付してその説明は省略する。   FIG. 6 is a diagram showing a measured value calibration circuit according to the second embodiment. In the figure, parts that are the same as or correspond to those in FIG.

本実施形態による計測値校正回路は、内部抵抗計測器3によって内部抵抗rが計測される蓄電素子が有する電位と同等の電位v1が、直流定電圧回路7aおよび8aによって生成される点のみが、上述した第1の実施形態による計測値校正回路と異なる。これ以外の構成は、上述した第1の実施形態による計測値校正回路と同じである。   In the measured value calibration circuit according to the present embodiment, only the potential v1 equivalent to the potential of the power storage element whose internal resistance r is measured by the internal resistance measuring device 3 is generated by the DC constant voltage circuits 7a and 8a. This is different from the measurement value calibration circuit according to the first embodiment described above. The configuration other than this is the same as the measurement value calibration circuit according to the first embodiment described above.

直流定電圧回路7aおよび8aは、電圧設定信号に応じた直流定電圧v1を発生する。この直流定電圧v1は、直流定電圧回路7aおよび8aに入力される電圧設定信号に同期して可変される。例えば、蓄電素子が、鉛蓄電池1セルの2.0[V」でなく、3セル直列の6.0[V]や、6セル直列の12.0[V]などの、電位の異なる鉛蓄電池である場合、直流定電圧回路7aおよび8aから出力される直流定電圧は、入力される電圧設定信号に同期してこれら蓄電素子が有する電位と同等の電位v1の各値にそれぞれ可変される。   DC constant voltage circuits 7a and 8a generate DC constant voltage v1 according to the voltage setting signal. This DC constant voltage v1 is varied in synchronization with a voltage setting signal input to DC constant voltage circuits 7a and 8a. For example, the storage element is not 2.0 [V] of one lead storage battery, but a lead storage battery having a different potential, such as 6.0 [V] in three cells in series or 12.0 [V] in six cells in series. In this case, the DC constant voltage output from the DC constant voltage circuits 7a and 8a is varied to each value of the potential v1 equivalent to the potential of these storage elements in synchronization with the input voltage setting signal.

このような本実施形態による計測値校正回路によれば、蓄電素子が有する電位と同等の電位v1は、電圧設定信号に応じて直流定電圧回路7aおよび8aにより直流定電圧として生成される。従って、蓄電素子の種類に応じて電圧設定信号が設定されることで、蓄電素子が有する電位と同等の電位v1は、各蓄電素子が有する固有の電位に応じて直流定電圧回路7aおよび8aにより生成される。このため、基準抵抗器5を用いた内部抵抗計測器3の校正は、固有電位の異なる複数種類の蓄電素子について、同じ直流定電圧回路7aおよび8aを用いた同じ計測値校正回路によって行え、校正作業の作業効率が向上する。   According to such a measured value calibration circuit according to the present embodiment, the potential v1 equivalent to the potential of the storage element is generated as a DC constant voltage by the DC constant voltage circuits 7a and 8a according to the voltage setting signal. Therefore, by setting the voltage setting signal according to the type of the storage element, the potential v1 equivalent to the potential of the storage element is generated by the DC constant voltage circuits 7a and 8a according to the inherent potential of each storage element. Generated. For this reason, the internal resistance measuring instrument 3 using the reference resistor 5 can be calibrated by the same measured value calibration circuit using the same DC constant voltage circuits 7a and 8a for a plurality of types of power storage elements having different intrinsic potentials. Work efficiency is improved.

なお、本実施形態においては、基準抵抗器5と一方のコンデンサ6間および基準抵抗器5と交流電流発生器1間に各々直列に直流電圧源7、8や直流定電圧回路7a、8aを夫々接続した例を示したが、基準抵抗器5に直列に1つの直流電圧源や直流定電圧回路を接続し、これらの両端に交流電流発生器1と交流電圧計2を接続するようにしても良い。   In the present embodiment, DC voltage sources 7 and 8 and DC constant voltage circuits 7a and 8a are connected in series between the reference resistor 5 and one capacitor 6 and between the reference resistor 5 and the AC current generator 1, respectively. Although an example of connection is shown, one DC voltage source or a DC constant voltage circuit is connected in series to the reference resistor 5, and the AC current generator 1 and the AC voltmeter 2 are connected to both ends thereof. good.

上記の各実施形態では、鉛蓄電池などの電池の内部抵抗を計測する内部抵抗計測器を校正する計測値校正回路について説明した。しかし、電池に限らず、電気二重層コンデンサなどの、電位を有する他の蓄電素子の内部抵抗を計測する内部抵抗計測器に本発明による計測値校正回路を適用してもよい。このような蓄電素子の内部抵抗を計測する内部抵抗計測器に本発明による計測値校正回路を適用しても、上記の各実施形態と同様な作用効果が奏される。   In each of the above-described embodiments, the measurement value calibration circuit that calibrates the internal resistance measuring instrument that measures the internal resistance of a battery such as a lead storage battery has been described. However, the measured value calibration circuit according to the present invention may be applied not only to the battery but also to an internal resistance measuring instrument that measures the internal resistance of another electric storage element having a potential, such as an electric double layer capacitor. Even when the measured value calibration circuit according to the present invention is applied to such an internal resistance measuring instrument for measuring the internal resistance of the electric storage element, the same effects as those of the above embodiments can be obtained.

1…交流電流発生器
2…交流電圧計
3…内部抵抗計測器
4…蓄電素子
5…基準抵抗器
6…コンデンサ(交流結合素子)
7、8…直流電圧源
7a、8a…直流定電圧回路
DESCRIPTION OF SYMBOLS 1 ... AC current generator 2 ... AC voltmeter 3 ... Internal resistance measuring device 4 ... Power storage element 5 ... Reference resistor 6 ... Capacitor (AC coupling element)
7, 8 ... DC voltage source 7a, 8a ... DC constant voltage circuit

Claims (3)

電位を有する蓄電素子に交流電流を通電する交流電流発生器と、
前記交流電流発生器により通電された交流電流によって前記蓄電素子に発生する交流電圧を計測する交流電圧計と
を備えて構成される内部抵抗計測器により計測される前記蓄電素子の内部抵抗計測値を校正する、前記交流電流発生器および前記交流電圧計に校正用の基準抵抗器が並列に接続されて構成される計測値校正回路において、
前記内部抵抗計測器により前記蓄電素子の内部抵抗を計測する際に前記蓄電素子および前記交流電圧計間に接続される交流結合素子が前記基準抵抗器および前記交流電圧計間に接続され、前記蓄電素子が有する電位と同等の電位を前記交流結合素子に与える電位付与手段を備えたことを特徴とする計測値校正回路。
An alternating current generator for passing an alternating current to a storage element having a potential;
An internal resistance measurement value of the storage element measured by an internal resistance measuring instrument configured to include an AC voltmeter that measures an AC voltage generated in the storage element by an AC current energized by the AC current generator. In the measured value calibration circuit configured to calibrate, the reference resistor for calibration is connected in parallel to the AC current generator and the AC voltmeter,
An ac coupling element connected between the accumulator element and the ac voltmeter when measuring the internal resistance of the accumulator element by the internal resistance meter is connected between the reference resistor and the ac voltmeter, and the accumulator A measurement value calibration circuit comprising a potential applying means for applying a potential equivalent to a potential of the element to the AC coupling element.
前記蓄電素子が有する電位と同等の電位を前記交流電流発生器に与える電位付与手段をさらに備えたことを特徴とする請求項1に記載の計測値校正回路。   The measured value calibration circuit according to claim 1, further comprising a potential applying unit that applies a potential equivalent to a potential of the power storage element to the alternating current generator. 前記電位付与手段は、電圧設定信号に応じた直流定電圧を発生する直流定電圧回路によって構成されることを特徴とする請求項1または請求項2に記載の計測値校正回路。   3. The measured value calibration circuit according to claim 1, wherein the potential applying means is constituted by a DC constant voltage circuit that generates a DC constant voltage according to a voltage setting signal.
JP2011008438A 2011-01-19 2011-01-19 Internal resistance measurement value calibration circuit of charge element Pending JP2012149973A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011008438A JP2012149973A (en) 2011-01-19 2011-01-19 Internal resistance measurement value calibration circuit of charge element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011008438A JP2012149973A (en) 2011-01-19 2011-01-19 Internal resistance measurement value calibration circuit of charge element

Publications (1)

Publication Number Publication Date
JP2012149973A true JP2012149973A (en) 2012-08-09

Family

ID=46792352

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011008438A Pending JP2012149973A (en) 2011-01-19 2011-01-19 Internal resistance measurement value calibration circuit of charge element

Country Status (1)

Country Link
JP (1) JP2012149973A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102809739A (en) * 2012-08-23 2012-12-05 四川电力科学研究院 Method and device for checking storage battery internal resistance tester
JP2014103737A (en) * 2012-11-19 2014-06-05 Toyota Motor Corp Power storage device diagnostic system and power storage device diagnostic method
JP2019060767A (en) * 2017-09-27 2019-04-18 日本電産リード株式会社 Calibration method of resistance measuring device, resistance measuring device, substrate inspection device, and reference resistor
WO2019188246A1 (en) * 2018-03-30 2019-10-03 日本電産リード株式会社 Electrical standard
CN111289929A (en) * 2020-03-13 2020-06-16 深圳天溯计量检测股份有限公司 Calibration method of alternating current resistance tester

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102809739A (en) * 2012-08-23 2012-12-05 四川电力科学研究院 Method and device for checking storage battery internal resistance tester
JP2014103737A (en) * 2012-11-19 2014-06-05 Toyota Motor Corp Power storage device diagnostic system and power storage device diagnostic method
JP2019060767A (en) * 2017-09-27 2019-04-18 日本電産リード株式会社 Calibration method of resistance measuring device, resistance measuring device, substrate inspection device, and reference resistor
WO2019188246A1 (en) * 2018-03-30 2019-10-03 日本電産リード株式会社 Electrical standard
JPWO2019188246A1 (en) * 2018-03-30 2021-03-25 日本電産リード株式会社 Electrical standard
JP7281640B2 (en) 2018-03-30 2023-05-26 ニデックアドバンステクノロジー株式会社 electrical standard
CN111289929A (en) * 2020-03-13 2020-06-16 深圳天溯计量检测股份有限公司 Calibration method of alternating current resistance tester

Similar Documents

Publication Publication Date Title
JP5406614B2 (en) Insulation state detector
Kulkarni et al. Integrated diagnostic/prognostic experimental setup for capacitor degradation and health monitoring
JP2012149973A (en) Internal resistance measurement value calibration circuit of charge element
JP6044512B2 (en) Battery characteristics learning device
CN103158576A (en) Battery current measuring and calibrating method and system
CN108432082B (en) Method and apparatus for connectivity check using only one switch
US20160061874A1 (en) Abnormality detection circuit for power storage device, and power storage device including same
JP2019032198A (en) Power storage device inspection method and manufacturing method
JP4986104B2 (en) Fuel cell characteristic measuring method and characteristic measuring apparatus
JP6415566B2 (en) Voltage detector
JP4171049B2 (en) Apparatus and method for measuring individual cell voltages of cells of a cell stack of an energy store
KR20170034191A (en) Diagnosis Method for State of Health of Lithium Secondary Battery
US11811024B2 (en) BMS and battery system
CN108398598A (en) Device and method for the isolation resistance for measuring battery power supply system
US10884063B2 (en) Battery management system
CN113138341A (en) Measuring device and measuring method for electricity storage device
CN109416391B (en) Method for determining the internal resistance of a battery cell, battery module and device
JP2007066589A (en) Characteristic evaluation method and device of fuel cell
JP2007265885A (en) Characteristic measuring device and method of fuel cell
Ionescu et al. Accurate modeling of supercapacitors for DC operation regime
JP4061617B2 (en) Pulse generation circuit for calibration of partial discharge measuring circuit and operation confirmation method
JP6459914B2 (en) Battery characteristics learning device
Negroiu et al. Influence of temperature on supercapacitors behavior in series/parallel connections
JP2022183938A (en) Ground fault detection device
JP2017162573A (en) Method for measuring electrical characteristics of fuel battery cell, and method for diagnosing fuel battery cell stack