JP6958972B2 - オーステナイト系ステンレス鋼 - Google Patents

オーステナイト系ステンレス鋼 Download PDF

Info

Publication number
JP6958972B2
JP6958972B2 JP2017241254A JP2017241254A JP6958972B2 JP 6958972 B2 JP6958972 B2 JP 6958972B2 JP 2017241254 A JP2017241254 A JP 2017241254A JP 2017241254 A JP2017241254 A JP 2017241254A JP 6958972 B2 JP6958972 B2 JP 6958972B2
Authority
JP
Japan
Prior art keywords
stainless steel
present
cutting
test
austenitic stainless
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017241254A
Other languages
English (en)
Other versions
JP2018100449A (ja
Inventor
昌信 熊谷
一郎 吉野
小松 隆史
真弥 宮田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nachi Fujikoshi Corp
Komatsu Seiki Kosakusho Co Ltd
Original Assignee
Nachi Fujikoshi Corp
Komatsu Seiki Kosakusho Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nachi Fujikoshi Corp, Komatsu Seiki Kosakusho Co Ltd filed Critical Nachi Fujikoshi Corp
Publication of JP2018100449A publication Critical patent/JP2018100449A/ja
Application granted granted Critical
Publication of JP6958972B2 publication Critical patent/JP6958972B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Materials For Medical Uses (AREA)

Description

本発明は、高強度、高耐食性および優れた成形加工性を兼ね備えたオーステナイト系ステンレス鋼、特に医療生体用(医療用および生体用)の器具や産業用(時計用または耐海水用)の部品に用いられるオーステナイト系ステンレス鋼板に関するものである。
近年、産業分野や医療分野において製品の小型化に伴い部品の軽量化が要求されており、そのための有効手段の一つとして、高精度なマイクロ加工を必要とする高機能部品の開発が期待されている。部品の小型化に伴い、寸法精度や強度の低下が懸念されるが、近年合金添加元素無しで結晶粒の直径がサブミクロン程度の超微細粒鋼がマイクロナノ部品を製造をするための素材や部品の寸法安定性をもたらす素材として注目されている。
例えば、特許文献1ではステンレス鋼(SUS304材)を逆変態法により結晶粒を微細化加工したオリフィスプレートについて開示されている。プレス加工により平均結晶粒径が3μm以下の微細粒組織を有するステンレス鋼製のオリフィスプレートを成型し、燃料噴射インジェクターの先端に組み込むことで噴射される流量のばらつきを小さくできることが説明されている。
また、特許文献2および3では鋼中に窒素を1%程度添加する事により、耐食性、強度、成形性及び耐磨耗性を高めた生体へのインプラント等、皮膚や粘膜等と接触使用の装身具や食器類等の金属製品による、特にニッケルアレルギーを発症させず、しかも非磁性であることにより人体に影響を及ぼさない、高強度のニッケルフリー高窒素ステンレス鋼の創製方法について説明されている。
特開2010−264389号公報 特許4845109号公報 特開2006−52452号公報
しかし、特許文献1に開示されているステンレス鋼のように、単に結晶粒径を3μm以下にしただけでは、腐食の起点となる介在物が粒界近傍に露出する割合が増える為、特にClイオン、SO 2−イオン等の攻撃性アニオンが存在する環境において、金属同士または金属と非金属からなる隙間が存在する場合、隙間内が低pHになり且つ攻撃性のアニオンが濃縮する為、腐食の進行し易い環境になる事から、ステンレス鋼の耐食性低下による部材の劣化が懸念される。
また、特許文献2および3に開示されている高窒素ステンレス鋼において、ニッケルアレルギー対策として鋼中のニッケル固溶量をゼロにして、代替元素としてオーステナイト形成元素である窒素を1%固溶させており、例えば模擬生体環境において高窒素ステンレス鋼が腐食環境に晒されると、鋼中の窒素が界面に濃縮し、生成したプロトン(Hイオン)と反応する事により界面のpHを高める事により未固溶のものに比べ耐食性の向上を図っている。しかしながら、鋼中に窒素を固溶すると未固溶のものに比べ材料硬度が高くなるので、プレス加工や切削加工の際、加工性が低下する可能性がある。
そこで、本発明においては耐食性、材料強度、加工特性を向上させたオーステナイト系ステンレス鋼を提供することを課題とする。
前述した課題を解決するために、本発明は市販のオーステナイト系ステンレス鋼(SUS316L材)を基礎材料として種々の改良を行った。具体的には、本発明は質量%で、C:0.03%以下、Si:1.00%以下、Mn:2.00%以下、P:0.045%以下、S:0.030%以下、Ni:13.00〜14.00%、Cr:16.00〜18.00%、Mo:2.50〜3.00%、残部鉄および不可避不純物からなるオーステナイト系ステンレス鋼であって、当該オーステナイト系ステンレス鋼において全結晶粒の60%以上はその結晶粒径が3.0μm以下であり、そのステンレス鋼に含有される酸素量は質量%で0.0030%(30ppm)以下とした。

本発明に係るオーステナイト系ステンレス鋼とすることで、SUS316L材相当の耐食性(耐塩水および耐生体環境)を維持し、金型による成形後の面粗さに優れて、良好な切削加工性も併せ持つオーステナイト系ステンレス鋼とした。
したがって、本発明に係るオーステナイト系ステンレス鋼は、例えば、生体内に長期間埋め込まれて生理食塩水中および比較的に高強度が必要とされるSUS316L材製の医療用途や生体用途(動物用および人体用)材料として適用することもできる。
実施例3のアノード分極測定法において本発明材1および比較材3をそれぞれ作用電極とした際のアノード分極曲線である。 実施例4のアノード分極測定法において本発明材2および比較材4をそれぞれ作用電極とした際のアノード分極曲線である。 実施例5の切削加工試験後における本発明材2の試験片表面のSEM写真である。 実施例5の切削加工試験後における本発明材3の試験片表面のSEM写真である。 実施例5の切削加工試験後における本発明材4の試験片表面のSEM写真である。 実施例5の切削加工試験後における比較材1の試験片表面のSEM写真である。 実施例5の切削加工試験後における比較材2の試験片表面のSEM写真である。 実施例5の切削加工試験後における比較材4の試験片表面のSEM写真である。 図3に示す本発明材2のA−A線断面図(模式図)である。 図6に示す比較材1のB−B線断面図(模式図)である。 実施例5の本発明材4における切削抵抗値の動的成分(主分力差分ΔFy)の変化を示すグラフである。 実施例5の比較材1における切削抵抗値の動的成分(主分力差分ΔFy)の変化を示すグラフである。 実施例6における試験片の曲げ状態を示す模式図である。 実施例6における曲げ試験後の試験片の観察位置等を示す模式図である。 実施例6の本発明材2の表面状態(倍率:1500倍)である。 実施例6の本発明材3の表面状態(倍率:1500倍)である。 実施例6の本発明材4の表面状態(倍率:1500倍)である。 実施例6の比較材1の表面状態(倍率:1500倍)である。
本発明の実施形態の一例について説明する。本発明のオーステナイト系ステンレス鋼は、質量%で、Ni:13.00〜14.00%、Cr:16.00〜18.00%、Mo:2.50〜3.00%とする化学組成のステンレス鋼(いわゆるSUS316L相当材)に対して、組織中の結晶粒径や含有酸素濃度等を所定の数値に限定したステンレス鋼である。中でも、Moの含有量については、質量%で2.50〜3.00%とすることで塩化物イオン(Clイオン)の存在下、例えば海水または生体環境中での耐孔食性を向上させる点で有効である。
また、ニッケル(Ni)の含有量については質量%で13.50〜14.00%の範囲に限定することがより好ましい。これは、本発明のオーステナイト系ステンレス鋼が種々の加工により変形した際に加工誘起マルテンサイト(γ相)の発生を抑制するためである。言い換えると、組織中に加工誘起マルテンサイトが晶出することでステンレス鋼の引張強度および伸びが阻害されることを防ぐためである。
他の元素については、マンガン(Mn)の含有量については質量%で1.1〜2.0%とすることが前述した組織中における加工誘起マルテンサイト(γ相)の発生を抑制する観点からより好ましい。また、酸素(O)含有量については15〜27ppmとすることが基地組織の耐食性を向上させる観点からより好ましい。
さらに、本発明のオーステナイト系ステンレス鋼を形成する結晶粒については、その全結晶粒の60%以上が3.0μm以下とする。言い換えると、結晶粒径が3.0μm以下の結晶粒の数は、全結晶粒中に占める割合が60%以上である。本発明のオーステナイト系ステンレス鋼の結晶粒径の大きさ(上限値)とその占める割合を規定することで、素材たるオーステナイト系ステンレス鋼を曲げ加工する際に、曲げ加工特性が向上し、加工面の面粗れが発生することも抑制できる。合わせて、切削加工の際に切削性は向上、具体的には工具の振動が低減してチッピングが発生する頻度も低くなる。
また、本発明のオーステナイト系ステンレス鋼に含有される酸素(O)は30ppm以下とする。オーステナイト系ステンレス鋼に含有される酸素量の上限を30ppmに規定した理由は、オーステナイト系ステンレス鋼の酸素量が30ppmを超えると、オーステナイト系ステンレス鋼中の酸化物系介在物の量が増加し、ステンレス鋼の耐食性が低下するためである。
市販されているオーステナイト系ステンレス鋼(SUS316L材:比較材2〜4)と、当該比較材2〜4中の酸素量のみを低減させた材料(比較材1)と、当該比較材2〜4中の酸素量を低減させた上で組織中の結晶粒を微細化加工処理した材料(本発明材1〜4)について、それぞれの平均結晶粒径および全結晶粒に対して結晶粒径が3.0μm以下である結晶粒の割合を測定した。
本発明材1〜4および比較材1〜4の化学組成(単位:質量%)を表1、本発明材1〜4および比較材1〜4の平均結晶粒径および結晶粒径が3.0μm以下である割合の測定結果を表2にそれぞれ示す。なお、平均結晶粒径および結晶粒径が3.0μm以下である割合の測定については、電子線後方散乱回折装置(EBSD:ElectronBackScatterDiffraction(EDAX社製))を用いて行った。
Figure 0006958972
Figure 0006958972
まず、本発明材1〜4および比較材1は、表1に示すように市販のオーステナイト系ステンレス鋼(SUS316L)を用いて、含有する酸素量を質量%で0.0022%(22ppm)まで低減処理を施したものである。これに対して、比較材2〜4はすべて市販のSUS316L材とした。
また、本発明材1〜4に対しては、表2に示すように上述した酸素低減処理に加えて圧延加工することで組織中の結晶粒を微細化する加工(結晶粒の微細化加工)も施した。これに対して、酸素低減処理を施していない比較材2〜4については、表2に示すように比較材3および4のみについてのみ結晶粒の微細化加工を行った。
結晶粒の微細化加工を行った本発明材1〜4および比較材3、4について組織中の平均結晶粒径は、表2に示すように本発明材1、2および比較材3が1.5μm、比較材4が1.7μm、本発明材3が2.0μm、本発明材4が2.9μmであった。また、結晶粒径が3.0μm以下である割合は表2に示すように本発明材1〜4および比較材3、4はそれぞれ93%、95%、86%、63%、97%、91%であり、これらは全て60%以上であった。
これに対して、結晶粒の微細化加工を行なっていない比較材1および2は、表2に示すように組織中の平均結晶粒径が7.9μmおよび8.4μmであった。また、結晶粒径が3.0μm以下の割合はそれぞれ11%、5%であり、比較材1および2共に11%以下であった。
以上の結果より、ステンレス鋼中の酸素濃度に関わらず(酸素低減処理の有無に関係なく)結晶粒の微細化加工を行うことにより、結晶粒径が3.0μm以下である結晶粒の割合が60%以上になることが分かった。
次に、表1に示す本発明材1〜4および比較材1〜4の計種類の材料(試験片の厚さ:0.07〜0.10mm)の機械的強度を比較評価するために、引張試験を行って引張応力(単位:N/mm)および伸び(単位:%)を測定した。なお、同試験にはアムスラー型引張試験機(株式会社島津製作所社製)を用いて引張速度は5mm/minの条件で試験を行い、試験片が破断した時点で引張試験を終了した。引張試験時の引張応力と伸びの測定結果を表3に示す(上記測定結果は計3回の引張試験による試験結果の平均値である)。
Figure 0006958972
組織中の結晶粒の微細化加工を行った本発明材1および比較材3(板厚は共に0.10mm)は、表3に示すようにいずれも引張応力が790N/mm以上であり、伸びは37%以上であった。また、本発明材2〜4および比較材4(板厚は共に0.07mm)は、表3に示すようにいずれも引張応力が650N/mm以上であり、伸びは40%以上であった。
これに対して、組織中の結晶粒の微細化加工を行っていない比較材1および2は、伸びは50%以上であったが引張応力は共に660N/mm以下であった。以上の結果より、ステンレス鋼中の酸素濃度に関わらず(酸素低減処理の有無に関係なく)結晶粒の微細化加工を行うことにより、伸びは25%程度減少するが引張応力は25%程度増加することが分かった。
また、オーステナイト系ステンレス鋼の代表鋼種であるSUS304鋼の中でも組成加工時の機械的強度(強度と延性)のバランスが良いとされる、冷間圧延材のSUS304(1/2H)は、JIS G4313の規定により、引張強さ(引張応力)が780N/mm、伸びが6%以上と規定されている。
本実施例では本発明材1の引張応力が764N/mmであり、伸びは6%以上であったことから本発明材を上記規定に照らせば、既存のSUS304(1/2H)材相当の機械的強度を備えていると言える。したがって、引張応力が740N/mm以上の高強度でありながら柔軟性が要求される医療生体用の器具(例えばニードルなど)や時計部品(例えば地板やバンドなど)、耐海水部品(例えばバルブシールなど)には好適な材料であると言える。
次に、ステンレス鋼中の結晶粒の微細化加工を行った際に鋼中の酸素量の違いが耐食性におよぼす影響をアノード分極測定法(三電極法)により評価したので、その評価結果について図面を用いて説明する。本測定に際して三電極の作用極として本発明材1および比較材3のそれぞれ異なる電極を使用し、参照電極としては飽和カロメル電極(SCE:SaturatedColomelElectrode)、対極は白金をそれぞれ使用した。試験溶液は、ステンレス鋼部材が海洋大気環境下で使用されることを想定し、海水と同じ塩分濃度である3.5%NaCl水溶液を模擬海水として使用した(JIS G0577)。
他の試験条件としては、作用極表面の試験面積は直径0.6cmの円形部分を露出させて(露出面積:0.283cm)、残りの部分をテープで被覆することで当該水溶液と反応しないようにした。また、溶液温度は298K(25℃)に保持し、試験前に当該溶液をアルゴンガスで30分間通気し、置換処理をすることにより酸素低減処理を行った。アノード分極測定は、開回路電位から走査速度60mV/minで電位を貴な方向(プラス側)に挿引し、電流密度が100μA/cmに達した電位を孔食電位とした。
3.5%NaCl水溶液中に作用極として本発明材1および比較材3を用いた場合のアノード分極曲線を図1に示す。本発明材1と比較材3の開回路電位(作用極に電流を印加していない状態の電位であり、作用電極を用いた場合、参照電極を基準にした作用電極の電位差を示している)を比較すると、図1に示すように本発明材1では−238mV(SCE)、比較材3では−267mV(SCE)となり、本発明材1の開回路電位は比較材3の場合よりも約30mV(SCE)高いことががわかった。
また、開回路電位から電位を貴な方向にシフトさせると、電流密度が上昇した後、電流密度が一定となり不動態域に達して(ステンレス鋼表面に安定な不動態被膜が形成される)、電流密度は低い値で保たれた。特に、不動態域における電流密度を比較すると、本発明品1は比較材3よりも低いことがわかった。これは、本発明材1の酸素濃度が比較材3よりも低く、結果的にステンレス鋼中の介在物が低減化されたことによると思われる。
さらに、不動態域から電位を貴な方向にシフトさせると、鋼表面の不動態皮膜の一部が破壊して、局部腐食の一種で有る孔食が発生する。本発明材1と比較材3の孔食電位(電流密度が100μA/cmに達した際の電位)を比較すると、本発明材1では490mV(SCE)であったのに対し、比較材3の場合は398mV(SCE)であった。本発明材1の孔食電位は比較材3よりも約100mV(SCE)高いことから、本発明材1の耐食性は比較材3よりも高いことが確認できた。
以上より、結晶粒の微細化加工を行った際、ステンレス鋼中の酸素低減処理により酸素量の違いが耐食性に及ぼす影響について、ステンレス鋼が海洋大気環境下に暴露された事を想定した3.5%NaCl水溶液中(模擬海水)でアノード分極試験により評価した結果、ステンレス鋼中の酸素量が少ない方が耐食性が高いことから産業用材料(時計用または耐海水用)として好適であることが分かった。
次に、本発明材が生体内で使用されることを想定してステンレス鋼中の酸素量の違いが耐食性に及ぼす影響について、0.9%NaCl水溶液中におけるステンレス鋼のアノード分極測定を行い、評価した(JIS T0302に準拠)。測定時の溶液温度は310K(37℃)に保持し、測定前に溶液をアルゴンガスを30分間通気することにより脱気した。また、アノード分極測定は開回路電位から走査速度40mV/minで電位を貴な方向に挿引し、電流密度が100μA/cmに達した電位を孔食電位とした。
図2は、0.9%NaCl水溶液中(模擬生体環境)での本発明材2と比較材4のアノード分極曲線である。アノード分極測定は三電極法により実施し、作用極は本発明材2と比較材4、参照電極はSCE、対極は白金をそれぞれ使用した。なお、試験面積については作用極表面の直径0.6cmの円形部分を露出させ(露出面積:0.283cm)、残りの部分をテープで被覆することで当該水溶液と反応しないようにした。
本発明材2と比較材4の開回路電位を比較すると、図2に示すように本発明材2では−251mV(SCE)、比較材4では−250mV(SCE)となり、本発明材2の開回路電位は比較材4の場合と同じであった。また、開回路電位から電位を貴な方向にシフトさせると、電流密度が上昇した後、電流密度が一定となり不動態域に達し、電流密度は低い値で保たれた。不動態域における電流密度を比較すると、本発明材2と比較材4の電流密度を比較すると、2〜3μA/cmとなりほぼ同等であった。
さらに、不動態域から電位を貴な方向にシフトさせると、ステンレス鋼表面の不動態皮膜の一部が破壊され、本発明材2及び比較材4の試験片表面に局部腐食の一種で有る孔食が発生した。本発明材2と比較材4の孔食電位を比較すると、本発明材2では577mV(SCE)であったのに対し、比較材4の場合は537mV(SCE)であり、本発明材2の孔食電位は比較材4よりも40mV(SCE)高いことが分かった。
以上の結果より、模擬生体環境中(0.9%NaCl水溶液)における本発明材2の耐食性は比較材4よりも高いことが確認された。したがって、本発明のオーステナイト系ステンレス鋼は生体環境下において従来のオーステナイト系ステンレス鋼と同等以上の耐食性(防食性)を有しており、医療生体用材料としても好適であることがわかった。
次に、ステンレス鋼中の酸素濃度および結晶粒の微細化加工の違いが切削加工特性へ及ぼす影響を評価するために切削加工試験を行ったので、その試験結果について図面を用いて説明する。本切削試験は、板状試験片(長さ15mm×幅15mm)に対して切削工具を使用して切削深さを20μm、切削長さを1mmに設定して、圧電型切削動力計(キスラー社製)を用いて切削加工時の切削抵抗値を測定しながら行った。
また、切削加工試験の試験片として使用した材種は、本発明材2、3および4ならびに比較材1、2および4の計6種類とした。本発明材2、3および4ならびに比較材1、2および4の切削加工試験後の各々のSEM写真を図3〜8にそれぞれ示す。
結晶粒の微細化加工を行なった、本発明材2、3および4と比較材4の切削加工試験後の試験片の表面は、図3、図4、図5および図8に示すようにステンレス鋼中の酸素濃度の差異、すなわち酸素低減処理の有無に関わらず比較材1(図6)と比較材2(図7)の切削加工試験後の表面状態に比べて、切削加工痕の両側における表面が比較的に平滑な状態が保たれていた。
次に、切削加工試験後の切削加工痕付近の状態を確認するために本発明材2および比較材1について切削加工試験後の試験片断面を観察した。図3に示す本発明材2の試験片におけるA−A線の模式断面図を図9、図6に示す比較材1の試験片におけるB−B線の模式断面図を図10にそれぞれ示す。
切削加工試験後における比較材1の試験片の断面には、図10に示すようにV字状の切削加工痕付近の表面にいくらかの起伏が確認できた。これに対して、本発明材4の試験片の試験片の断面は、図9に示すようにV字状の切削加工痕付近における起伏が比較材1の場合に比べて抑制できていた。つまり、本発明材は切削加工後の試験片表面においてバリの発生を抑制できた。
これは、結晶粒の微細化加工を行なっていない比較材1を用いて打ち抜き加工などを行った場合に、加工面の周囲にバリが発生することを意味しており、そのような材種では後工程でバリを除去する必要が生じる。一方、結晶粒の微細化加工を行なった本発明材2は上述したように加工面の周囲にみられる表面の起伏が抑制されていることから、加工後のバリの発生を抑制できる効果がある。
最後に、本切削加工試験中に測定した切削抵抗値の測定結果について図面を用いて説明する。本発明材4(図5)と比較材1(図6)の各試験片における切削加工中の切削抵抗値の動的成分(主分力差分ΔFy)の変化を図11および図12にそれぞれ示す。図11および図12に示すグラフは、切削加工試験開始後に安定した水平切削加工時(6秒間)の信号を抜き出して、切削加工時間を横軸(単位:秒)、その間における振動成分を比較するために(平行切削部の)切削抵抗値の動的成分(主分力差分ΔFy)をグラフの縦軸とした。
本発明材4(平均結晶粒径:2.9μm)の切削抵抗値の変化は、図11に示すように水平切削加工時(6秒間)における切削工具の振動成分は0.016Nの振幅(図11中の両端矢印の大きさ)であった。これに対して、比較材1(平均結晶粒径:7.9μm)の切削抵抗値の変化は図12に示すように水平切削加工時(6秒間)における切削工具の振動成分は0.035Nの振幅(図12中の両端矢印の大きさ)であった。つまり、本発明材4の切削工具の振動成分は比較材1の振動成分に比べて半分以下の振幅になり、切削加工時の振動が小さく安定していた。
これは、本発明材が切削工具の振動を抑制することから切削工具のチッピングを防いで、前述の安定した切削加工面が得られて、バリの抑制にもつながっていることを示している。このような切削加工特性については、塑性変形と延性破壊によるためプレス加工においても同様の効果が得られると言える。
以上の試験結果より、本発明のオーステナイト系ステンレス鋼を切削やプレス加工(打ち抜き加工)により生体用部品や医療用器具を製作する場合に従来のオーステナイト系ステンレス鋼による切削やプレス加工後に必要であった打ち抜き加工後のバリ除去工程が不要もしくは大幅に削減できるため、プレス加工による生体用部品、医療用器具、時計用部品および耐海水用部品の製作工程を簡略化できる。
次に、本発明材および比較材の成形加工性を評価するために曲げ試験を行ったので、その試験結果について説明する。本曲げ試験には表1および2に示す本発明材2、3および4と比較材1の計4種類の試験片(長さ25mm×幅10mm)を用いた。これらの試験片に対して、JIS Z2248の金属材料曲げ試験方法に基づいて、各試験片をおおよそ170°まで一旦曲げた後、さらに曲げ荷重(500〜505N)を負荷して、最終的には180°までの密着曲げを行った。
各試験片に対して前述の密着曲げを行った後、その曲げ箇所を走査型電子顕微鏡(日立ハイテクノロジーズ社製:型番SU−70)を用いて、試験片の表面状態を観察した。同時に、非接触三次元測定器(alicona社製:型番INFINITE FOCUS G5)を用いて、各試験片の試験前の素地と試験後の曲げ箇所における表面粗さを測定した。曲げ試験における試験片の曲げ状態を図13、各試験片の曲げ箇所での表面観察位置および表面粗さ測定の位置を図14にそれぞれ示す。
本曲げ試験後の本発明材2、3および4の表面状態を図15〜17、比較材1の表面状態を図18にそれぞれ示す。また、曲げ試験前の材料素地の算術平均表面粗さRaと最大面粗さRzを表4、曲げ試験後の曲げ部について材料の圧延方向に沿って測定した算術平均表面粗さRaと最大面粗さRzを表5にそれぞれ示す。
Figure 0006958972
Figure 0006958972
曲げ試験後の本発明材2〜4の表面状態は、図15〜17に示すように比較的に凹凸が少なく、曲げ箇所の圧延方向での表面粗さRaは表5に示すように平均値でRa0.152〜0.194μm、Rz0.730〜1.537μmの範囲であった。
これに対して、比較材1の表面状態は図18に示すように本発明材2〜4と比較すると、表面の凹凸が比較的に多く発生していた。また、曲げ箇所の圧延方向での表面粗さも表5に示すように平均でRa0.269μm、Rz2.236μmとなり、本発明材2〜4の表面粗さおよび最大面粗さよりも大きくなった。
また、本発明材2〜4の中で比較した場合には、表4および表5に示すように本発明材4、本発明材3、本発明材2の順に表面粗さおよび最大面粗さが小さくなっていた。つまり、本発明材の中でもその試験片の平均結晶粒径が小さいほど、また結晶粒径が3μm以下である結晶粒の占める割合が多いほど、曲げ試験後の表面粗さおよび最大面粗さが小さくなることも確認できた。
本曲げ試験に使用した本発明材2、3および4と比較材1の化学成分は、表1に示すようにすべて同じである。このことから、本発明材2〜4と比較材1の間で曲げ試験後に表面状態の凹凸に違いが生じた要因は、試験片の結晶粒径、特に平均結晶粒径や結晶粒径が3.0μm以下である結晶粒が全体に占める割合の差異によると推測される。
以上の試験結果より、本発明材は比較材よりも弾性(または塑性)加工後の表面状態が良好であることから、例えば金型による成形加工後の表面成形加工性に優れている材料であることがわかった。特に、医療向け部品に表面については菌の繁殖や薬液の残留をなくすためにも素材の平滑面が要望されているため、その点を鑑みると本発明材は好適であると言える。

Claims (3)

  1. 質量%で、C:0.03%以下、Si:1.00%以下、Mn:2.00%以下、P:0.045%以下、S:0.030%以下、Ni:13.00〜14.00%、Cr:16.00〜18.00%、Mo:2.50〜3.00%、残部鉄および不可避不純物からなるオーステナイト系ステンレス鋼であって、前記オーステナイト系ステンレス鋼の結晶粒径が3.0μm以下の結晶粒の数は、全結晶粒中に占める割合が60%以上であり、前記オーステナイト系ステンレス鋼に含有される酸素量が質量%で0.0030%以下であることを特徴とするオーステナイト系ステンレス鋼。
  2. 前記オーステナイト系ステンレス鋼は、医療用途または生体用途のいずれかであることを特徴とする請求項1に記載のオーステナイト系ステンレス鋼。
  3. 前記オーステナイト系ステンレス鋼は、時計部品用途または耐海水部品用途のいずれかであることを特徴とする請求項1に記載のオーステナイト系ステンレス鋼。
JP2017241254A 2016-12-17 2017-12-16 オーステナイト系ステンレス鋼 Active JP6958972B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016244957 2016-12-17
JP2016244957 2016-12-17

Publications (2)

Publication Number Publication Date
JP2018100449A JP2018100449A (ja) 2018-06-28
JP6958972B2 true JP6958972B2 (ja) 2021-11-02

Family

ID=62715059

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017241254A Active JP6958972B2 (ja) 2016-12-17 2017-12-16 オーステナイト系ステンレス鋼

Country Status (1)

Country Link
JP (1) JP6958972B2 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020065397A1 (en) * 2018-09-28 2020-04-02 Komatsuseiki Kosakusho Co., Ltd. Metal material having biological properties
US20210298320A1 (en) * 2018-09-28 2021-09-30 Komatsuseiki Kosakusho Co., Ltd. Metal material, method of controlling response of fermentative microorganism, and method of producing fermented food product
JP6560427B1 (ja) * 2018-11-29 2019-08-14 株式会社特殊金属エクセル ステンレス鋼帯またはステンレス鋼箔及びその製造方法
EP3880379A4 (en) * 2019-03-22 2022-09-28 Komatsuseiki Kosakusho Co., Ltd. METALLIC MATERIAL AND ARTICLES MADE THEREOF HAVING BIOLOGICAL PROPERTIES
JP7466378B2 (ja) 2020-05-28 2024-04-12 日鉄ステンレス株式会社 オーステナイト系ステンレス鋼板及びその製造方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0694057B2 (ja) * 1987-12-12 1994-11-24 新日本製鐵株式會社 耐海水性に優れたオーステナイト系ステンレス鋼の製造方法
JPH05320756A (ja) * 1992-05-21 1993-12-03 Nippon Steel Corp 耐海水性に優れた高強度オーステナイト系ステンレス鋼の製造方法
JPH10204530A (ja) * 1997-01-20 1998-08-04 Sanyo Special Steel Co Ltd クリーンチューブ用鋼管の製造方法
JP3539120B2 (ja) * 1997-03-26 2004-07-07 住友金属工業株式会社 熱間加工性に優れたオーステナイト系ステンレス鋼
AT408762B (de) * 1999-10-22 2002-03-25 Boehler Bleche Gmbh Verwendung einer austenitischen stahllegierung

Also Published As

Publication number Publication date
JP2018100449A (ja) 2018-06-28

Similar Documents

Publication Publication Date Title
JP6958972B2 (ja) オーステナイト系ステンレス鋼
JP5021901B2 (ja) 耐粒界腐食性に優れるオーステナイト・フェライト系ステンレス鋼
CN103966522B (zh) 双相不锈钢及其制造方法和隔膜以及压力传感器和隔膜阀
CN106011689B (zh) 含臭氧水用双相不锈钢
Ha et al. Influences of Mn in solid solution on the pitting corrosion behaviour of Fe-23 wt% Cr-based alloys
Yoon et al. Effect of N and C on stress corrosion cracking susceptibility of austenitic Fe18Cr10Mn-based stainless steels
JP5109233B2 (ja) 溶接部耐食性に優れたフェライト・オーステナイト系ステンレス鋼
JP2006169622A (ja) 成形性に優れるオーステナイト・フェライト系ステンレス鋼
TW200606261A (en) A ferritic stainless steel wire and wire rod excellent in corrosion resistance, cold-rolling ability and toughness having reduced surface defects and magnetic property
KR20190121809A (ko) 2상 스테인리스강 및 그 제조 방법
JP2008127590A (ja) オーステナイト系ステンレス鋼
JP2009035782A (ja) 耐食性と加工性に優れたフェライト・オーステナイト系ステンレス鋼およびその製造方法
JP2002235153A (ja) 高強度高耐食非磁性ステンレス鋼
Tandon et al. Enhanced corrosion resistance of Cr-Mn ASS by low temperature salt bath nitriding technique for the replacement of convectional Cr-Ni ASS
KR102379904B1 (ko) 오스테나이트계 스테인리스강 및 그 제조 방법
Niederhofer et al. The impact of cold work and hard phases on cavitation and corrosion resistance of high interstitial austenitic FeCrMnMoCN stainless steels
JP4451919B1 (ja) 鋼薄板およびその製法ならびに無段変速機用スチールベルト
Jang et al. Effect of different Mo contents on tensile and corrosion behaviors of CD4MCU cast duplex stainless steels
JP2021188081A (ja) オーステナイト系ステンレス鋼板及びその製造方法
JP4368756B2 (ja) ステンレス鋼板及びその製造方法
Reclaru et al. Anisotropy of nickel release and corrosion in austenitic stainless steels
JP2021091923A (ja) Ce含有耐食鋼
JP4823534B2 (ja) 耐応力腐食割れ性に優れた低Niオーステナイト系ステンレス鋼材
JP2006028542A (ja) 非磁性オーステナイト系ステンレス鋼および非磁性ステンレス加工材
US20190010588A1 (en) Austenitic stainless steel having improved processability

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180131

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200918

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210531

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210604

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210630

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211001

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211005

R150 Certificate of patent or registration of utility model

Ref document number: 6958972

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150