JP6954527B2 - 検査対象物の状態評価装置および状態評価方法 - Google Patents

検査対象物の状態評価装置および状態評価方法 Download PDF

Info

Publication number
JP6954527B2
JP6954527B2 JP2017127953A JP2017127953A JP6954527B2 JP 6954527 B2 JP6954527 B2 JP 6954527B2 JP 2017127953 A JP2017127953 A JP 2017127953A JP 2017127953 A JP2017127953 A JP 2017127953A JP 6954527 B2 JP6954527 B2 JP 6954527B2
Authority
JP
Japan
Prior art keywords
amplitude value
waveform
unit
detection
microphone
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017127953A
Other languages
English (en)
Other versions
JP2019011993A (ja
Inventor
智美 添田
智美 添田
智洋 藤沼
智洋 藤沼
拓史 千葉
拓史 千葉
貴正 三上
貴正 三上
雄平 岸村
雄平 岸村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujita Corp
Tokyo Institute of Technology NUC
Original Assignee
Fujita Corp
Tokyo Institute of Technology NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujita Corp, Tokyo Institute of Technology NUC filed Critical Fujita Corp
Priority to JP2017127953A priority Critical patent/JP6954527B2/ja
Publication of JP2019011993A publication Critical patent/JP2019011993A/ja
Application granted granted Critical
Publication of JP6954527B2 publication Critical patent/JP6954527B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Description

本発明は、検査対象物の状態を評価する検査対象物の状態評価装置および状態評価方法に関する。
建物の外装材(外壁材)の剥離、剥落を未然に防止するため、建物の状態を診断する方法が種々提案されている。
特許文献1には、検査対象物の表面をハンマーで打撃した際に発生する打音をマイクを用いて検出し、マイクからの信号に基づいて打音検出波形を生成し、打音検出波形に発生する1周期分の波形の振幅に基づいて検査対象物の状態を評価する検査対象物の状態評価装置が提案されている。
特開2016−205900号公報
上記従来技術では、状態評価装置毎のばらつき、例えば、マイクの感度の個体差、ハンマーを駆動するアクチュエータの個体差などの影響を受けて、生成された打音検出波形の振幅がばらつくことが懸念される。
打音検出波形の振幅がばらつくと、同一の検査対象物であっても、状態評価装置によって状態の評価結果にばらつきが生じる不利がある。
本発明はこのような事情に鑑みなされたものであり、その目的は、検査対象物の状態の評価を正確に行なう上で有利な検査対象物の状態評価装置および状態評価方法を提供することにある。
上述の目的を達成するため、本発明は、検査対象物をハンマーで打撃する打撃部と、打音を検出するマイクと、前記マイクからの信号に基づいて打音検出波形を生成する波形生成部と、前記打音検出波形を構成する複数の1周期の波形のうちN番目(Nは1以上の自然数)の波形を第1の波形としたとき、前記第1の波形の振幅値を検出する振幅値検出部と、前記検査対象物とは別物で予め定められた標準試験体を前記ハンマーで打撃した場合に前記振幅値検出部で検出された前記振幅値を基準振幅値としたとき、前記振幅値検出部で検出された前記振幅値を前記基準振幅値で除すことによって正規化された正規化振幅値を算出する正規化振幅値算出部と、前記正規化振幅値に基づいて検査対象物の状態を評価する評価部とを備え、前記マイクは、前記ハンマーを中心にして当該中心から等距離で対称に配置された複数のマイクで構成され、前記波形生成部、前記振幅値検出部、前記正規化振幅値算出部は、前記各マイクに対応して1つずつ設けられ、前記各正規化振幅値算出部による前記正規化振幅値の算出は、前記各マイクに対応して検出された前記基準振幅値を用いてなされ、前記評価部による検査対象物の状態の評価は、前記各正規化振幅値算出部で算出された前記正規化振幅値に基づいてなされることを特徴とする。
本発明は、前記評価部は、前記正規化振幅値と予め定められた第1のしきい値との比較結果に基づいて前記検査対象物の内側の剥離の有無を判定することを特徴とする。
本発明は、前記ハンマーにより前記標準試験体を打撃して前記振幅値検出部による前記振幅値の検出を複数回行なうことで得られた複数の前記振幅値の平均値を前記基準振幅値として決定する基準振幅値決定部をさらに備えることを特徴とする。
本発明は、前記打撃部は、前記ハンマーと、前記ハンマーに打撃方向の駆動力を加えるアクチュエータと、前記アクチュエータを駆動する駆動部と、前記駆動部を制御して前記駆動力を調節する調整部とを備えることを特徴とする。
本発明は、前記ハンマーの打撃力を検出して打撃力検出波形を生成する打撃力波形生成部をさらに備え、前記波形生成部は、前記打音検出波形をサンプリングして波形データとしてサンプリングするサンプリング部を備え、前記打撃力検出波形のうち前記打音検出波形の前記第1の波形を発生させる1周期分の波形を第2の波形とし、前記第2の波形の最大値または最小値のうち時間的に早い方の値に対応する時刻を基準時刻としたとき、前記振幅値検出部による前記第1の波形の振幅値の検出は、前記サンプリング部によりサンプリングされた前記波形データのうち前記基準時刻よりも前の時点からサンプリングされた前記波形データに基づいてなされることを特徴とする。
本発明は、前記ハンマーの打撃力を検出して打撃力検出波形を生成する打撃力波形生成部をさらに備え、前記評価部は、前記打撃力検出波形の振幅が予め定められた第2のしきい値未満であるときに前記検査対象物の状態の評価を中止することを特徴とする。
本発明は、検査対象物をハンマーで打撃したときの打音を、前記ハンマーを中心にして当該中心から等距離で対称に配置された複数のマイクで検出し、前記複数のマイクからの信号に基づいて打音検出波形を前記各マイクに対応して生成し、前記各マイクに対応して生成された前記打音検出波形を構成する複数の1周期の波形のうちN番目(Nは1以上の自然数)の波形を第1の波形としたとき、前記第1の波形の振幅値を前記各マイクに対応して検出し、前記検査対象物とは別物で予め定められた標準試験体を前記ハンマーで打撃した場合に前記各マイクに対応して検出された前記振幅値に基づいて基準振幅値を前記各マイクに対応して決定し、前記各マイクに対応して前記検出された振幅値を前記各マイクに対応して決定された前記基準振幅値で除すことで正規化された正規化振幅値を前記各マイクに対応して算出し、前記各マイクに対応して算出された前記正規化振幅値に基づいて検査対象物の状態を評価することを特徴とする。
発明によれば、検査対象物をハンマーで打撃した際に発生する打音を検出して打音検出波形を生成し、打音検出波形を構成する複数の1周期の波形のうちN番目(Nは1以上の自然数)の波形を第1の波形としたとき、第1の波形の振幅値を検出し、この振幅値を、基準振幅値で除すことによって正規化された正規化振幅値を算出し、正規化振幅値に基づいて検査対象物の状態の評価を行なうようにした。
したがって、状態評価装置毎のばらつき、例えば、マイクの感度の個体差、ハンマーを駆動するアクチュエータの個体差などの影響を受けて、生成された打音検出波形の振幅がばらついたとしても、正規化振幅値はばらつきの影響を受けないので、検査対象物の状態の評価を正確に行なう上で有利となる。
発明によれば、検査対象物の内側の剥離の有無を簡単かつ確実に判定する上で有利となる。
発明によれば、基準振幅値の精度の向上を図れることから、正規化振幅値をより正確に得ることができ、検査対象物の状態の評価を正確に行なう上でより有利となる。
発明によれば、検査対象物の状態や材料に応じて適切な音圧の打音が得られるようにハンマーの打撃力を調整できるため、検査対象物の状態の評価を正確に行なう上でより有利となる。
発明によれば、第1の波形を正確に得ることができ、検査対象物の状態の評価を正確に行なう上で有利となる。
発明によれば、検査対象物の状態を誤って評価することを回避でき、検査対象物の状態の評価を正確に行なう上で有利となる。
発明によれば、各マイク毎に生成されたそれぞれの打音検出波形の第1の波形の振幅に対応する正規化振幅値を検査対象物の状態評価に用いるようにしたので、検査対象物の内部の剥離の有無及び健全部と剥離部と境界である剥離境界の評価判定を効率よく的確に行なう上で有利となる。
第1の実施の形態に係る検査対象物の状態評価装置の構成を示すブロック図である。 検査対象物の状態評価装置の検出ユニットの側面図である。 図2のA−A線矢視図である。 図2のB矢視図である。 (A)は標準試験体の平面図、(B)は(A)の断面図である。 外装材の状態と外装材の打音の音圧との関係を示す線図である。 標準試験体を用いた基準振幅値の決定処理を説明するフローチャートである。 第1の実施の形態に係る検査対象物の状態評価装置の動作フローチャートである。 第2の実施の形態に係る検査対象物の状態評価装置の構成を示すブロック図である。 検査対象物の状態評価装置の検出ユニットの側面図である。 図10のA−A線断面図である。 図10のB矢視図である。 標準試験体を用いた基準振幅値の決定処理を説明するフローチャートである。 (A)〜(D)は第1〜第4マイクと標準試験体の第1、第2中心線との位置関係を90°ずつ位相を変えて示した説明図である。 第2の実施の形態に係る検査対象物の状態評価装置の動作フローチャートである。 検出ユニットを建物外面部にタイルが貼り付けられている部分に位置させた状態を示す正面図である。 図16のA−A線断面図である。 (A)〜(D)は第1〜第4マイクに対応する4つの打音検出波形を示す波形図である。
(第1の実施の形態)
以下、本発明の実施の形態に係る検査対象物の状態評価装置(以下、状態評価装置という)について状態評価方法と共に図面を参照して説明する。
まず、図1を参照して、本実施の形態の状態評価装置10の構成について説明する。
本実施の形態では、状態評価装置10が、検査対象物である建物外面部の状態、すなわち、タイルなどの外装材の浮きや剥がれなどの接着状態を評価する場合について説明する。
なお、本明細書において、検査対象物とは建物や構造物であり、検査対象物が建物であった場合、検査対象物は、建物外面部の他、例えば、室内の床、天井、壁面、室内のコンクリート躯体などを広く含むものである。
また、本明細書において建物外面とは、建物の最も外側に位置する建物の外面をいい、建物外面部とは、タイルやモルタルなどの外装材が設けられていない場合には、建物外面に加え、この建物外面近くの内部の状態を含むものとする。また、建物外面部とは、タイルやモルタルなどの外装材が設けられている場合には、外装材の表面に加え、外装材の表面の内側の外装材部分や外装材の内側の建物躯体の表面や表面近くの内部を含むものとする。
状態評価装置10は、検出ユニット12と、本体ユニット14とで構成されている。
検出ユニット12は、作業者が把持して状態を評価すべき外装材2の表面に当て付けて使用されるものであり、本体ユニット14は、検出ユニット12で検出された打音や振動を表す信号に基づいて外装材2の状態を評価するものである。
検出ユニット12と本体ユニット14とは、前記の信号を伝送する不図示のケーブルによって接続されている。
図2から図4に示すように、検出ユニット12は、筐体16と、3個のローラ18A、18B、18Cと、ハンマー20と、アクチュエータ22と、第1マイク24Aと、第2マイク24Bと、打撃力センサ26とを含んで構成されている。
筐体16は、矩形状の底壁1602と、底壁1602の四辺から起立する4つの側壁1604、1606、1608、1610と、4つの側壁1604、1606、1608、1610の上部を接続する上壁1612とを備えている。
底壁1602には後述するハンマー20が出没する開口1620が設けられている。
3個のローラ18A、18B、18Cのうち、2個のローラ18A、18Bは、底壁1602の対向する一対の端面に回転可能に取着され、同軸上に配置されている。
残りの1個のローラ18Cは、側壁1608の下部に金具17を介して回転可能に取着され、平面視したときにローラ18Cは、2個のローラ18A、18Bの軸線と平行する軸線上に配置されている。
そして、3個のローラ18A、18B、18Cは、それら3個のローラ18A、18B、18Cの外周面が外装材2の表面に当接された状態で底壁1602の下面と外装材2の表面とが一定の間隔をおいて互いに平行するように設けられている。
図3に示すように、ハンマー20は検査対象物である外装材2を打撃するものであり、アクチュエータ22はハンマー20に打撃方向の駆動力を加えるものである。
本実施の形態では、アクチュエータ22としてソレノイド22Aを用いている。
ソレノイド22Aは、筐体16の内部に配置され1つの側壁1606に取着されている。
ソレノイド22Aは、コイルを備えるソレノイド本体2202、3個のローラ18A、18B、18Cが外装材2の表面に当接された状態で外装材2の表面と直交する方向に移動可能に設けられたプランジャ2204とを備えている。
プランジャ2204は、コイルに駆動電力が供給されることでソレノイド本体2202から突出する突出位置に移動され、駆動電力の供給が停止されることでソレノイド本体2202に没入する没入位置に移動されるように構成されている。
図3、図4に示すように、ハンマー20は、プランジャ2204の下端に設けられ、プランジャ2204の移動により底壁1602の開口1620を介して出没する。
3個のローラ18A、18B、18Cの外周面が外装材2の表面に当接された状態で、プランジャ2204が突出位置に移動することでハンマー20が外装材2の表面を打撃し、プランジャ2204が没入位置に移動することでハンマー20が外装材2の表面から離間する。
第1マイク24Aおよび第2マイク24Bは、ハンマー20が外装材2の表面を打撃したときに発生する打音を収音して打音に対応する検出信号を生成するものである。
図2、図3、図4に示すように、第1マイク24Aは、底壁1602の下面に取着され、第2マイク24Bは、側壁1610の外面の下部に防振ゴム23を介して取着されている。
本実施の形態では、第1マイク24A、第2マイク24Bの2つのマイクを備える場合について説明するがマイクの数は1つでも3つ以上であってもよい。
図3に示すように、打撃力センサ26は、ハンマー20に取着され、ハンマー20の外装材2への打撃によってハンマー20に発生する反力、言い換えるとハンマー20の打撃力を検出して打撃力に対応する検出信号を生成するものである。このような打撃力センサ26として圧電センサなど従来公知の様々なセンサが使用可能である。
打撃力センサ26は、ハンマー20に取着され、ハンマー20の外装材2への打撃によって発生するハンマー20の振動を検出して振動に対応する検出信号を生成するものである。このような打撃力センサ26として圧電センサなど従来公知の様々なセンサが使用可能である。
図1に示すように、本体ユニット14は、駆動部30と、操作部32と、調整部34と、検出回路36と、打撃力波形検出回路38と、サンプリング部40と、打撃力波形サンプリング部42と、振幅値検出部44と、正規化振幅値算出部46と、基準振幅値決定部48と、評価部50と、出力部52とを含んで構成されている。
駆動部30は、ソレノイド本体2202のコイルに駆動電力を供給するものである。
操作部32は、作業者によって操作されることで駆動部30に対してコイルへの駆動電力の供給を指示するものであり、押しボタンスイッチなどにより構成されている。
調整部34は、駆動部30を制御してハンマー20に与える駆動力を調節するものである。
本実施の形態では、調整部34は、作業者によって操作されることでソレノイド本体2202のコイルに供給する駆動電力の電圧を増減するものであり、例えば、回転ボリューム(可変抵抗器)などにより構成されている。
このようにハンマー20に与える駆動力を調節可能とすることで、検査対象物の状態や材料に応じて適切な音圧の打音が得られるようにハンマー20の打撃力を調整できるように図られている。
本実施の形態では、ハンマー20、アクチュエータ22、駆動部30、操作部32、調整部34によって特許請求の範囲の打撃部が構成されている。
検出回路36は、第1マイク24Aおよび第2マイク24Bで生成された検出信号をA/D変換して打音検出波形を生成するものである。
なお、本実施の形態では、検出回路36が第1マイク24Aおよび第2マイク24Bで検出された検出信号によって打音検出波形を生成する場合について説明するが、第1マイク24Aおよび第2マイク24Bの何れか一方のみを用いてもよい。しかしながら、本実施の形態のように2つのマイクを用いて検出信号を生成すると打音を確実に検出する上で有利となる。
また、マイクの数は1つであっても3つ以上であってもよい。
打撃力波形検出回路38は、打撃力センサ26で生成された検出信号をA/D変換して打撃力検出波形を生成するものである。
サンプリング部40は、検出回路36によって生成された打音検出波形を予め定められたサンプリング周期でサンプリングするものである。
本実施の形態では、検出回路36、サンプリング部40によって特許請求の範囲の波形生成部が構成されている。
打撃力波形サンプリング部42は、打撃力波形検出回路38によって生成された打撃力検出波形を予め定められたサンプリング周期でサンプリングするものである。
本実施の形態では、打撃力センサ26、打撃力波形検出回路38、打撃力波形サンプリング部42によって特許請求の範囲の打撃力波形生成部が構成されている。
振幅値検出部44は、サンプリング部40でサンプリングされた打音検出波形を構成する複数の1周期の波形のうちN番目(Nは1以上の自然数)の波形を第1の波形としたとき、この第1の波形の振幅値を検出するものである。
なお、第1の波形は、その振幅が大きいほど、振幅の値、あるいは、波長の値を正確に計測する上で有利となる。したがって、本実施の形態では、打音検出波形のうち最初に発生する1周期分の波形が2番目以降の波形に比較して振幅が大きく、そのため、打音検出波形のうち最初に発生する1周期分の波形を第1の波形とした場合について説明する。
しかしながら、第1マイク24A、第2マイク24B、検出回路36の特性、検出時の環境、あるいは、検査対象物の状態などの諸条件によっては、打音検出波形のうち2番目以降に発生する波形が最も振幅が大きなものとなる場合がある。
したがって、その場合は、2番目以降に発生する振幅が最も大きくなる波形を第1の波形とすればよい。
なお、本実施の形態では、第1の波形の振幅は、第1の波形の最大値と最小値との差分の絶対値とした。しかしながら、第1の波形の振幅は、振幅の基準値(0V)を基準として第1の波形の1周期のうち前半の波形のピーク値(極値)の絶対値としてもよく、あるいは、第1の波形の1周期のうち後半の波形のピーク値(極値)の絶対値としてもよい。
ここで、打撃力波形検出回路38で検出され打撃力波形サンプリング部42でサンプリングされた打撃力検出波形のうち、打音検出波形の第1の波形を発生させる1周期分の波形を第2の波形とし、第2の波形の最大値または最小値のうち時間的に早い方の値に対応する時刻を基準時刻とする。
本実施の形態では、打撃力検出波形のうち最初に発生する1周期分の波形を第2の波形とする。
振幅値検出部44は、打撃力波形サンプリング部42から供給される打撃力検出波形に基づいて前記の基準時刻を決定する。
振幅値検出部44による第1の波形の振幅値の検出は、サンプリング部40によりサンプリングされた波形データのうち基準時刻よりも前の時点からサンプリングされた波形データに基づいてなされる。
このようにすることで第1の波形を確実に検出する上で有利となる。
ここで、標準試験体と基準振幅値について説明する。
図5(A)、(B)に標準試験体の一例を示す。
標準試験体54は、本体部5402と、閉塞板5404とを含んで構成されている。
本体部5402は、平面視正方形の扁平な板状を呈しており、例えば、一辺の長さが300mm、高さが60mmである。
本体部5402の中央には、高さ方向に沿って円形の孔5406が貫通形成されており、例えば、孔5406の内径は160mmである。
本実施の形態では、本体部5402の材料としてコンクリートを用いたが、金属材料、合成樹脂材料など従来公知の様々なソリッドな材料が使用可能である。
閉塞板5404は、本体部5402の上面と同じ寸法の正方形のガラス板で構成され、例えば、閉塞板5404の厚さは10mmである。
本実施の形態では、閉塞板5404の材料としてガラスを用いたが、コンクリート、金属材料、合成樹脂材料など従来公知の様々なソリッドな材料が使用可能である。
閉塞板5404は、本体部5402と輪郭を合致させた状態で本体部5402の上面に重ね合わされた状態で閉塞板5404の下面と本体部5402の上面とが接着剤により接着され固定されている。
接着剤は、本体部5402の上面の全域と閉塞板5404の下面との間に介在している。
本実施の形態では、接着剤としてエポキシ系接着剤を用いたが、接着剤としてシリコーン樹脂系接着剤、変性シリコーン樹脂系接着剤、アクリル樹脂系接着剤、ウレタン樹脂系接着剤、ゴム系接着剤など従来公知の様々な接着剤が使用可能である。
閉塞板5404の上面には、閉塞板5404の対向する2辺の中央を延在し直交する2本の中心線CL1、CL2が表示されており、それら2本の中心線CL1、CL2の交差点が孔5406の中心軸と一致しており、交差点がハンマー20で打撃する打撃目標点5408となっている。
このように構成された標準試験体54によれば、閉塞板5404ががたつくことなく本体部5402にしっかりと固定されているので、状態評価装置10を用いてハンマー20により打撃目標点5408を打撃したときに閉塞板5404の箇所から発生する打音のばらつきが少なく、したがって、打音検出波形の振幅のばらつきが抑制されたものとなる。
このような標準試験体54を予め用意しておく。
基準振幅値決定部48は、ハンマー20により標準試験体54を打撃して振幅値検出部44による振幅値の検出を複数回行なうことで得られた複数の振幅値の平均値を基準振幅値として決定するものである。
すなわち、作業者が状態評価装置10を用いて標準試験体54の打撃目標点5408をハンマー20で打撃して振幅値検出部44で振幅値を検出する操作を複数回繰り返することで、複数の振幅値を得られる。
基準振幅値決定部48は、得られた複数の振幅値の平均値を算出し、平均値を基準振幅値として決定する。
正規化振幅値算出部46は、振幅値検出部44で検出された振幅値を、基準振幅値決定部48で決定された基準振幅値で除すことによって正規化された正規化振幅値を算出するものである。
正規化振幅値を用いる理由は以下の通りである。
状態評価装置10を構成するマイクは、感度に個体差があり、同一音圧の打音を検出しても出力する検出信号の大きさにばらつきがある。
そこで、振幅値検出部44で検出された振幅値を、基準振幅値で除すことによって正規化された正規化振幅値を求めると、マイクの感度のばらつきの影響を受けることなく、同一音圧の打音を検出すると同一の正規化振幅値を得ることができる。
評価部50は、正規化振幅値に基づいて検査対象物の状態を評価するものである。
詳細に説明すると、評価部50は、正規化振幅値と予め定められた第1のしきい値との比較結果に基づいて検査対象物すなわち外装材2の内側の剥離の有無を判定する。
ここで、第1の波形の振幅と外装材2の剥離の有無との関係について説明する。
図6は、外装材2の状態と外装材2の打音の音圧との関係を示す線図であり、言い換えると打音検出波形を示す。図6において、横軸は外装材2をハンマー20で打撃してからの経過時間(μs)を示し、縦軸は打音の音圧(Pa)を示す。
ハンマー20で打撃する外装材2の箇所として以下の4箇所を選んでいる。
なお、本明細書において、外装材2の健全部とは建物躯体に対する外装材2の接着状態が良好で剥離が無い部分を示し、外装材2の剥離部とは外装材2が部分的に建物躯体から剥離した部分を示す。
a:健全部
b:健全部きわ(健全部のうち外装材2が建物躯体から剥離した剥離部に近接した部分)
c:剥離部きわ(剥離部のうち健全部に近接した部分)
d:剥離部
図6から明らかなように、a健全部、b健全部きわの打音検出波形の振幅に対して、c剥離部きわ、d剥離部の打音検出波形の振幅が大きな値となっていることがわかる。
このような知見から第1の波形の振幅に対応する正規化振幅値と予め定められた第1のしきい値との比較結果に基づいて外装材2の剥離の有無を判定することが可能となる。
なお、第1のしきい値は、図6のように、外装材2の接着状態、言い換えると、外装材2の剥離の有無のそれぞれに対応した正規化振幅値を求め、外装材2の剥離を確実に判定するに足る第1のしきい値を設定すればよい。
あるいは、外装材2の健全部において正規化振幅値を求め、その正規化振幅値に予め定められた定数を乗算しあるいは定数を加算するなどして第1のしきい値を設定すればよい。
また、評価部50は、打撃力検出波形の振幅、言い換えると、最初に発生する打撃力検出波形の振幅が予め定められた第2のしきい値を下回ったときに外装材2の状態の評価を中止する。
すなわち、何らかの原因によってハンマー20による外装材2の表面に対する打撃がなされなかった場合(空打ち)か、打撃が不十分であった場合には、外装材2の状態の評価を中止することで、外装材2の状態の評価を正確に行なう上で有利となる。
なお、第2のしきい値は、ハンマー20により外装材2の表面を打撃した場合と、空打ちした場合とのそれぞれで検出された打撃力検出波形の振幅を実測し、外装材2に対して正確に打撃がなされた状態と、空打ちあるいは不十分な打撃がなされた状態とを確実に判定するに足る第2のしきい値を設定すればよい。
出力部52は、判定部による外装材2の剥離の有無の判定結果、および、判定部による空洞の位置検出結果を出力するものである。
出力部52として以下のものが例示される。
判定結果を表示するディスプレイ装置。
判定結果を印刷媒体に印刷するプリンタ装置。
判定結果を記録媒体に記録する記録装置。
判定結果を回線を介して各種端末装置やデータロガーに送信する通信装置。
なお、振幅値検出部44、正規化振幅値算出部46、基準振幅値決定部48、評価部50は、コンピュータによって構成することができる。
コンピュータは、CPU、ROM、RAM、ハードディスク装置、キーボード、マウス、ディスプレイ装置、入出力インターフェースなどを有している。
ROMは所定の制御プログラムなどを格納し、RAMはワーキングエリアを提供するものである。
ハードディスク装置は、振幅値検出部44、正規化振幅値算出部46、基準振幅値決定部48、評価部50を実現するための制御プログラムを格納している。
キーボードおよびマウスは、操作者による操作入力を受け付けるものである。
ディスプレイ装置は、画像を表示するものであり、例えば、液晶表示装置などで構成される。ディスプレイ装置は出力部52として機能させることができる。
次に状態評価装置10の動作について説明する。
まず、標準試験体54を用いた基準振幅値の決定について図7のフローチャートを参照して説明する。
まず、状態評価装置10の検出ユニット12を標準試験体54の閉塞板5404の上に載置し、ハンマー20が打撃目標点5408の直上に位置するように位置決めする(ステップS10)。
次に、作業者は、操作部32を操作し(ステップS12)、これによりハンマー20が閉塞板5404の打撃目標点5408を打撃する(ステップS14)。
ハンマー20が閉塞板5404の打撃目標点5408を打撃することで発生した打音は、第1マイク24A、第2マイク24Bによって検出され、それら2つのマイクから生成された検出信号に基づいて検出回路36により打音検出波形が生成され、生成された打音検出波形はサンプリング部40によってサンプリングされ、サンプリングされた波形データは振幅値検出部44に供給される(ステップS16)。
振幅値検出部44は、供給された波形データに基づいて第1の波形の振幅値を検出する(ステップS18)。
基準振幅値決定部48は、基準振幅値を決定するための振幅値検出部44による第1の振幅値の検出動作が所定回数なされたか否かを判定する(ステップS20)。
判定結果が否定であれば、基準振幅値決定部48は、操作部32の操作が必要である旨をディスプレイ装置に表示させ、これにより制御はステップS12に戻る。
判定結果が肯定であれば、基準振幅値決定部48は、振幅値の平均値を算出し基準振幅値を決定し、基準振幅値を正規化振幅値算出部46に供給する(ステップS22)。
以上で基準振幅値の決定動作が終了する。
次に、状態評価装置10を用いて検査対象物である建物外面部の状態、すなわち、タイルなどの外装材2の浮きや剥がれなどの接着状態を評価する場合について図8のフローチャートを参照して説明する。
まず、作業者は、検出ユニット12の3個のローラ18A、18B、18Cを診断対象となる外装材2の表面に当接させる(ステップS30)。
次に、作業者は、操作部32を操作し(ステップS32)、これにより打撃部20が外装材2の表面を打撃する(ステップS34)。
打撃部20が外装材2の表面を打撃することで発生した打音は、第1マイク24A、第2マイク24Bによって検出され、それら2つのマイクから生成された検出信号に基づいて検出回路36により打音検出波形が生成され、生成された打音検出波形はサンプリング部40によってサンプリングされ振幅値検出部44に供給される(ステップS36)。
また、打撃部20が外装材2の表面を打撃することでハンマー20で発生した打撃力は、打撃力センサ26によって検出され、打撃力センサ26から生成された検出信号に基づいて打撃力波形検出回路38により打撃力検出波形が生成され、打撃力検出波形は、打撃力波形サンプリング部42によってサンプリングされ、サンプリングされた波形データは振幅値検出部44に供給され、これにより振幅値検出部44は基準時刻を決定する(ステップS38)。
振幅値検出部44は、サンプリングされた打音検出波形に基づいて、言い換えると、サンプリング部40によりサンプリングされた波形データのうち基準時刻よりも前の時点からサンプリングされた波形データによって形成される第1の波形に基づいて振幅値を検出し正規化振幅値算出部46に供給する(ステップS40)。
正規化振幅値算出部46は、振幅値検出部44で検出された振幅値、すなわち、サンプリング部40によってサンプリングされた波形データを、基準振幅値で除すことによって正規化された正規化振幅値を算出し評価部50に供給する(ステップS42)。
評価部50は、打撃力検出波形の振幅が予め定められた第2のしきい値未満であるか否かを判定する(ステップS44)。
打撃力検出波形の振幅が予め定められた第2のしきい値未満であると判定された場合には、評価部50は、外装材2の状態の評価を中止し、出力部52から測定のやり直しを促す旨の報知を行なう(ステップS50)。このような報知は例えばディスプレイ装置により所定のやり直しを促す旨のコメントを表示することでなされる。
そして、ステップS30に移行する。
一方、ステップS44で打撃力検出波形の振幅が予め定められた第2のしきい値未満でないと判定された場合には、評価部50は、正規化振幅値と第1のしきい値との比較に基づいて外装材2の剥離の有無の判定を行なう(ステップS46)。
出力部52は、評価部50から供給された外装材2の剥離の有無の判定結果を出力し(ステップS48)、一連の動作を終了する。これ以降、次の診断対象となる外装材2について上記と同様の処理を繰り返して行なう。
なお、打撃力検出波形の振幅が予め定められた第2のしきい値未満であるか否かを判定する処理ステップ(ステップS44)と、打撃力検出波形の振幅が予め定められた第2のしきい値未満であると判定された場合には、評価部50は、外装材2の状態の評価を中止し、出力部52から測定のやり直しを促す旨の報知を行なう処理ステップ(ステップS50)とは、打撃力検出波形の検出後であればどの時点で行っても良い。
本実施の形態の状態評価装置10によれば、建物躯体に接着された外装材2の表面をハンマー20で打撃した際に発生する打音を検出して打音検出波形を生成し、打音検出波形を構成する複数の1周期の波形のうち1番目の波形を第1の波形としたとき、第1の波形の振幅値を検出し、この振幅値を、基準振幅値で除すことによって正規化された正規化振幅値を算出し、正規化振幅値に基づいて検査対象物の状態の評価を行なうようにした。
したがって、状態評価装置10毎のばらつき、例えば、マイクの感度の個体差、ハンマー20を駆動するアクチュエータ22の個体差などの影響を受けて、生成された打音検出波形の振幅がばらついたとしても、正規化振幅値はばらつきの影響を受けないので、検査対象物の状態の評価を正確に行なう上で有利となる。
また、本実施の形態によれば、正規化振幅値と予め定められた第1のしきい値との比較結果に基づいて検査対象物の内側の剥離の有無を判定するようにしたので、外装材2の剥離の有無を簡単かつ確実に判定する上で有利となる。
また、本実施の形態によれば、ハンマー20により標準試験体54を打撃して振幅値の検出を複数回行なうことで得られた複数の振幅値の平均値を基準振幅値として決定するようにしたので、基準振幅値の精度の向上を図れることから、正規化振幅値をより正確に得ることができ、検査対象物の状態の評価を正確に行なう上でより有利となる。
また、本実施の形態では、ハンマー20に加える打撃方向の駆動力を調節できるようにしたので、検査対象物の状態や材料に応じて適切な音圧の打音が得られるようにハンマー20の打撃力を調整できるため、検査対象物の状態の評価を正確に行なう上でより有利となる。
また、本実施の形態では、振幅値検出部44による第1の波形の振幅値の検出は、サンプリング部40によりサンプリングされた波形データのうち基準時刻よりも前の時点からサンプリングされた前波形データに基づいてなされる、
したがって、第1の波形を正確に得ることができ、外装材2の状態の診断を正確に行なう上で有利となる。
なお、駆動部30からソレノイド22Aに供給される駆動信号からトリガ信号を生成し、検出回路36によって生成された打音検出波形をサンプリング部40でトリガ信号に同期してサンプリングして第1の波形を得るようにしてもよいが、駆動信号は時間的なばらつきがあるため、第1の波形を安定して正確に得る上で不利となる。
これに対して、本実施の形態のようにすると、打撃力検出波形から生成された第2の波形から得た基準時刻よりも前の時点からサンプリングされた波形データによって第1の波形を得ることができるため、第1の波形を安定して正確に得る上でより有利となる。
また、本実施の形態では、打撃力検出波形の振幅が予め定められた第2のしきい値未満であるときに検査対象物の状態の評価を中止するようにした。
したがって、ハンマー20による外装材2の表面に対する打撃がなされなかった場合(空打ち)か、打撃が不十分であった場合には、外装材2の状態の評価を中止することにより、誤った評価を行なうことが回避でき、外装材2の状態の評価を正確に行なう上で有利となる。
(第2の実施の形態)
次に第2の実施の形態について説明する。
第1の実施の形態では、ハンマー20やアクチュエータ22の部分から発生する不要な音をマイク20A、20Bが検出しないようにするために、マイク20A、20Bをハンマー20の外装材2(例えばタイル)への打点から一定の距離(例えばタイル一枚分に相当する距離)離した位置に配置することが好ましい。
そのため、検査対象物が多数のタイルから構成されている場合は、以下のような点が懸念される。
すなわち、タイルの打点がタイルの剥離箇所であるにもかかわらず、音をピックアップするマイクの位置が剥離のない健全部の真上にある場合、マイク20A、20Bからは健全部と同等の打音検出信号、すなわち、健全部の場合と同程度に小さい振幅の打音検出信号しか出力されない場合がある。
その結果、タイルの剥離箇所を健全部と誤判定するおそれがあり、このような誤判定は、健全部と剥離部との境界付近で発生しやすい傾向となることから、剥離境界の様相をより正確に把握することで正確な検査対象物の状態評価を行なう必要がある。
そこで、第2の実施の形態では、検査対象物の表面をハンマー20で打撃した際に発生する打音を、ハンマー20による打撃点P1を中心に配置した複数のマイクにより検出して打音検出波形を各マイク毎に生成し、各マイク毎に打音検出波形をそれぞれ生成するようにした。
そして、第1の実施の形態と同様に各打音検出波形から検出される第1の波形の振幅値から正規化振幅値をそれぞれ求め、それら複数の正規化振幅値に基づいて検査対象物の状態の評価を行なうようにした。
なお、以下の実施の形態では、第1の実施の形態と同様の部分、部材については第1の実施の形態と同一の符号を付してその説明を省略し、異なる部分について重点的に説明する。
図9に示すように、第1の実施の形態と同様に、状態評価装置10Aは、検出ユニット12Aと、本体ユニット14Aとで構成されている。
図10から図12に示すように、検出ユニット12Aは、筐体16と、3個のローラ18A、18B、18Cと、ハンマー20と、アクチュエータ22と、第1〜第4マイク25A〜25Dと、打撃力センサ26とを含んで構成されている。
図11に示すように、アクチュエータ22は第1の実施の形態と同様にソレノイド22Aで構成され、ソレノイド22Aの本体部2202は、筐体16内の底壁1602上に設けられた台1614上に設置されている。
第1マイク25A、第2マイク25B、第3マイク25C及び第4マイク25Dは、ハンマー20が外装材2の表面を打撃したときに発生する打音を収音して打音に対応する検出信号を生成するもので、ハンマー20による外装材2への打撃点P1(図11参照)を中心にして当該中心から等距離(例えばタイル一枚分に相当する距離:53mm)離して対称に配置されている。具体的には、打撃点P1を中心とする半径53mmの円周上に互いに90°の角度をおいて点対称に配置されている。
なお、本実施の形態では、打撃点P1から各マイク25A〜25Dまでの距離を53mmとした場合について説明するが、これに限らず、100mm以内であればよい。
このように配置された第1マイク25A、第2マイク25B、第3マイク25C及び第4マイク25Dのうち、第1マイク25Aは、図10、図12に示すように、筐体16を構成する前面側の側壁1604の外面下部に防振ゴム23を介して取着されている。
第2マイク25Bは、図10、図12に示すように、筐体16を構成する後面側の側壁1606の外面下部に防振ゴム23を介して取着されている。
第3マイク25Cは、図11、図12に示すように、筐体16を構成する左面側の側壁1608の外面下部に防振ゴム23を介して取着されている。
第4マイク25Dは、図10、図11、図12に示すように、筐体16を構成する右面側の側壁1610の外面下部に防振ゴム23を介して取着されている。
本実施の形態では、第1マイク25A、第2マイク25B、第3マイク25C及び第4マイク25Dの4つのマイクを備える場合について説明するが、マイクの数は2つまたは6つ乃至それ以上であってもよい。
また、各マイク25A〜25Dの受音面は、外装材2の検査対象面である表面に対して正対するように配置されており、外装材2の表面から各マイク25A〜25Dまでの高さは5mm以内であることが望ましい。
図11に示すように、打撃力センサ26は、第1の実施の形態と同様にハンマー20に取着されている。
本体ユニット14Aは、図9に示すように、駆動部30と、操作部32と、調整部34と、第1〜第4検出回路36A〜36Dと、打撃力波形検出回路38と、第1〜第4サンプリング部40A〜40Dと、打撃力波形サンプリング部42と、第1〜第4振幅値検出部44A〜44Dと、第1〜第4正規化振幅値算出部46A〜46Dと、第1〜第4基準振幅値決定部48A〜48Dと、評価部50と、出力部52とを含んで構成されている。
駆動部30、操作部32、調整部34、打撃力波形検出回路38、打撃力波形サンプリング部42は、第1の実施の形態と同様に構成されている。
第1〜第4検出回路36A〜36Dは、第1〜第4マイク25A〜25Dで生成された検出信号をA/D変換してそれぞれ打音検出波形を生成するものである。
第1〜第4サンプリング部40A〜40Dは、第1〜第4検出回路36A〜36Dによって生成された打音検出波形を予め定められたサンプリング周期でサンプリングするものである。
本実施の形態では、第1〜第4検出回路36A〜36D、第1〜第4サンプリング部40A〜40Dが特許請求の範囲の波形生成部を構成している。
第1〜第4振幅値検出部44A〜44Dは、第1〜第4サンプリング部40A〜40Dでサンプリングされた各打音検出波形を構成する複数の1周期の波形のうちN番目(Nは1以上の自然数)の波形を第1の波形としたとき、この第1の波形の振幅値をそれぞれ検出するものである。
なお、第1〜第4振幅値検出部44A〜44Dによる第1の波形の振幅値の検出は、第1〜第4サンプリング部40A〜40Dによりサンプリングされたそれぞれの波形データのうち基準時刻よりも前の時点からサンプリングされた波形データに基づいてなされることは第1の実施の形態と同様である。
第1〜第4基準振幅値決定部48A〜48Dは、ハンマー20により標準試験体54を打撃して第1〜第4振幅値検出部44A〜44Dによる振幅値の検出を複数回行なうことで得られた複数の振幅値の平均値を基準振幅値として決定するものである。
すなわち、第1〜第4基準振幅値決定部48A〜48Dは、第1〜第4マイク25A〜25Dのそれぞれに対応して基準振幅値を決定するものであり、第1〜第4基準振幅値決定部48A〜48Dの動作は第1の実施の形態の基準振幅値決定部48と同様である。
第1〜第4正規化振幅値算出部46A〜46Dは、第1〜第4振幅値検出部44A〜44Dで検出されたそれぞれの振幅値を、第1〜第4基準振幅値決定部48A〜48Dで決定されたそれぞれの基準振幅値で除すことによって正規化された正規化振幅値をそれぞれ算出するものである。
すなわち、第1〜第4正規化振幅値算出部46A〜46Dは、第1〜第4マイク25A〜25Dのそれぞれに対応して正規化振幅値を算出するものであり、第1〜第4正規化振幅値算出部46A〜46Dの動作は第1の実施の形態の正規化振幅値算出部46と同様である。
評価部50は、第1〜第4正規化振幅値算出部46A〜46Dで算出された各正規化振幅値に基づいて検査対象物の状態を評価するものである。
図6で説明したように、健全部a、健全部きわb、剥離部きわc、剥離部dの打音検出波形をそれぞれ打音検出波形a、b、c、dとした場合、健全部aの打音検出波形a、健全部きわbの打音検出波形bの振幅に対して、剥離部きわcの打音検出波形c、剥離部dの打音検出波形dの振幅が大きな値となっていることがわかる。
このような知見から第1の波形の振幅に対応する正規化振幅値と予め定められた第1のしきい値との比較結果に基づいて、第1〜第4マイク25A〜25Dがそれぞれ対向する箇所の外装材2の剥離の有無の判定を行なうと共に、外装材2の健全部と剥離部の剥離境界を判定することが可能となる。
したがって、本実施の形態では、評価部50は、第1〜第4マイク25A〜25Dで検出された各打音検出波形に対応する正規化振幅値と、予め定められた第1のしきい値との比較結果に基づいて検査対象物の内側の剥離の有無を判定し、また、検査対象物の健全部と剥離部の剥離境界を判定する。
次に、標準試験体54を用いた基準振幅値の決定について図13のフローチャートを参照して説明する。
まず、状態評価装置10の検出ユニット12Aを標準試験体54の閉塞板5404の上に載置し、ハンマー20が打撃目標点5408の直上に位置するように位置決めする(ステップS60)。
この際、平面視した状態で第1〜第4マイク25A〜25Dが図14(A)に示す2本の中心線CL1、CL2と一致するように、検出ユニット12Aの位置決めを行なう。
なお、第1〜第4マイク25A〜25Dと、標準試験体54の第1、第2中心線CL1、CL2との位置関係は、図14(A)〜(D)に示すように、90°ずつ位相が異なる4種類の位置関係が存在する。
そこで、本実施の形態では、4種類の位置関係のそれぞれで第1〜第4マイク25A〜25Dのそれぞれから第1の波形の振幅値を得るようにする。
次に、作業者は、操作部32を操作し(ステップS62)、これによりハンマー20が閉塞板5404の打撃目標点5408を打撃する(ステップS64)。
ハンマー20が閉塞板5404の打撃目標点5408を打撃することで発生した打音は、第1〜第4マイク25A〜25Dによって検出され、それら4つのマイクから生成された検出信号に基づいて第1〜第4検出回路36A〜36Dにより打音検出波形がそれぞれ生成され、生成された各打音検出波形は第1〜第4サンプリング部40A〜40Dによってサンプリングされ、サンプリングされた各波形データは第1〜第4振幅値検出部44A〜44Dに供給される(ステップS66)。
第1〜第4振幅値検出部44A〜44Dは、供給された各波形データに基づいて第1〜第4マイク25A〜25Dに対応する第1の波形の振幅値をそれぞれ検出する(ステップS68)。
第1〜第4基準振幅値決定部48A〜48Dは、基準振幅値を決定するための第1〜第4振幅値検出部44A〜44Dによる第1の振幅値の検出動作が所定回数なされたか否かを判定する(ステップS70)。
判定結果が否定であれば、第1〜第4基準振幅値決定部48A〜48Dは、操作部32の操作が必要である旨をディスプレイ装置に表示させ、これにより制御はステップS62に戻る。
次に、作業者は、第1〜第4マイク25A〜25Dと、標準試験体54の第1、第2中心線CL1、CL2との4種類の位置関係の全てについて第1の振幅値の検出動作がなされたか否かを判定する(ステップS72)。
ステップS72の判定結果が否定であれば、検出ユニット12Aを90°回転させ(ステップS74)、ステップS62に戻る。
ステップS72の判定結果が肯定であれば、第1〜第4基準振幅値決定部48A〜48Dは、各振幅値の平均値を算出して第1〜第4のマイクのそれぞれに対応する基準振幅値を決定し、各基準振幅値を第1〜第4正規化振幅値算出部46A〜46Dに供給する(ステップS76)。
以上で基準振幅値の決定動作が終了する。
なお、本実施の形態では、第1〜第4マイク25A〜25Dと、標準試験体54の第1、第2中心線CL1、CL2との位置関係の位相を90°ずつ変えて第1の波形の振幅値を複数個得るとともに、マイク毎に第1の波形の振幅値を平均化して各基準振幅値を決定したので、標準試験体54の形状や構造の影響が抑制された基準振幅値を得る上で有利となる。
次に、状態評価装置10を用いて検査対象物である建物外面部の状態、すなわち、タイルなどの外装材2の浮きや剥がれなどの接着状態を評価する場合について図15のフローチャートを参照して説明する。
まず、作業者は、検出ユニット12Aの3個のローラ18A、18B、18Cを診断対象となる外装材2の表面に当接させる(ステップS80)。
次に、作業者は、操作部32を操作し(ステップS82)、これにより打撃部20が外装材2の表面を打撃する(ステップS84)。
打撃部20が外装材2の表面を打撃することで発生した打音は、第1〜第4マイク25A〜25Dによって検出され、それら4つのマイクから生成された検出信号に基づいて第1〜第4検出回路36A〜36Dによりそれぞれ打音検出波形が生成され、生成された各打音検出波形は第1〜第4サンプリング部40A〜40Dによってサンプリングされ第1〜第4振幅値検出部44A〜44Dに供給される(ステップS86)。
また、打撃部20が外装材2の表面を打撃することでハンマー20で発生した打撃力は、打撃力センサ26によって検出され、打撃力センサ26から生成された検出信号に基づいて打撃力波形検出回路38により打撃力検出波形が生成され、生成された打撃力検出波形は打撃力波形サンプリング部42によってサンプリングされ第1〜第4振幅値検出部44A〜44Dに供給される(ステップS88)。
第1〜第4振幅値検出部44A〜44Dは、サンプリングされた各打音検出波形に基づいて、言い換えると、第1〜第4サンプリング部40A〜40Dによりサンプリングされたそれぞれの波形データのうち基準時刻よりも前の時点からサンプリングされた波形データによって形成される第1の波形に基づいて第1〜第4マイク25A〜25Dに対応する振幅値をそれぞれ検出し第1〜第4正規化振幅値算出部46A〜46Dに供給する(ステップS90)。
第1〜第4正規化振幅値算出部46A〜46Dは、第1〜第4振幅値検出部44A〜44Dで検出された振幅値、すなわち、第1〜第4サンプリング部40A〜40Dによってサンプリングされた各波形データを、各基準振幅値で除すことによって正規化された正規化振幅値を算出し評価部50に供給する(ステップS92)。
評価部50は、打撃力検出波形の振幅が予め定められた第2のしきい値未満であるか否かを判定する(ステップS94)。
打撃力検出波形の振幅が予め定められた第2のしきい値未満であると判定された場合には、評価部50は、外装材2の状態の評価を中止し、出力部52から測定のやり直しを促す旨の報知を行なう(ステップS100)。
そして、ステップS80に移行する。
一方、ステップS94で打撃力検出波形の振幅が予め定められた第2のしきい値未満でないと判定された場合には、評価部50は、正規化振幅値と第1のしきい値との比較に基づいて外装材2の剥離の有無の判定と、健全部と剥離部の剥離境界の判定とを行なう(ステップS96)。
出力部52は、評価部50から供給された外装材2の剥離の有無の判定結果、健全部と剥離部の剥離境界の検出結果を出力し(ステップS98)、一連の動作を終了する。これ以降、次の診断対象となる外装材2について上記と同様の処理を繰り返して行なう。
次に、外装材の健全部と剥離部の剥離境界の判定について具体的に説明する。
図16は、建物外面部にタイルが貼り付けられている部分の正面図であり、検出ユニット12Aを4箇所の異なる位置P10〜P13に位置させた状態を示している。
より詳細に説明すると、建物のコンクリート躯体4の外表面には、外装材2が設けられている。
外装材2は、コンクリート躯体4の外表面に層状に設けられた下地モルタル202と、下地モルタル202の外表面に張り付け材204により張り付けられたタイル206とを備えている。
また、図16は、コンクリート躯体4の外表面と下地モルタル202との間に剥離部6が発生している場合を示しており、L1は剥離部と健全部との境界を表わす剥離境界線を示している。
図中、ハッチングが無い部分が健全部6であり、ハッチングが有る部分が剥離部8である。
図17は、図16のAA線断面図である。
図18(A)〜(D)は検出ユニット12Aの位置P10〜P13に対応して検出された第1〜第4マイク25A〜25Dに対応する4つの打音検出波形を示す波形図である。
なお、説明の都合上、図18(A)〜(C)に比較して図18(D)は時間軸(横軸)の単位距離当たりの時間(μs)を拡大して記載している。
また、図18(A)〜(C)では、4つの打音検出波形の振幅が非常に小さいため、4つの打音検出波形が重なり合って表示されている。
(1)検出ユニット12Aが位置P10に位置し、打撃点P1および第1〜第4マイク25A〜25Dの全てが健全部6に位置している場合、図18(A)に示すように、第1〜第4マイク25A〜25Dの打音検出波形は振幅が小さいものとなっている。
したがって、各マイクの打音検出波形から得られる正規化振幅値と第1のしきい値との比較に基づいて打撃点P1が健全部6に位置していることがわかる。
(2)検出ユニット12Aが位置P11に位置し、打撃点P1および第2〜第4マイク25B〜25Dが健全部6に位置し、第1マイク25Aが剥離部8きわに位置している場合、図18(B)に示すように、第2〜第4マイク25B〜25Dの打音検出波形は振幅が小さいものとなっており、第1マイク25Aの打音検出波形は他の3つのマイクの打音検出波形の振幅よりも僅かに振幅が大きくなっているものの、その差は無視できる程度である。
したがって、各マイクの打音検出波形から得られる正規化振幅値と第1のしきい値との比較に基づいて打撃点P1が健全部6に位置していることがわかる。
(3)検出ユニット12Aが位置P12に位置し、打撃点P1および第2〜第4マイク25B〜25Dが健全部6に位置し、第4マイク25Dが剥離部8きわに位置している場合、図18(C)に示すように、第1〜第3マイク25A〜25Cの打音検出波形は振幅が小さいものとなっており、第4マイク25Dの打音検出波形は他の3つのマイクの打音検出波形の振幅よりも僅かに振幅が大きくなっているものの、その差は無視できる程度である。
したがって、各マイクの打音検出波形から得られる正規化振幅値と第1のしきい値との比較に基づいて打撃点P1が健全部6に位置していることがわかる。
(4)検出ユニット12Aが位置P13に位置し、打撃点P1および第2、第3マイク25B、25Cが剥離部8に位置し、第1マイク25A、第4マイク25Dが健全部6に位置している場合、図18(D)に示すように、第1、第4マイク25A、25Dの打音検出波形の振幅に比較して、第2、第3マイク25B、25Cの打音検出波形の振幅が顕著に大きくなっており、振幅の差が明瞭にあらわれている。
したがって、各マイクの打音検出波形から得られる正規化振幅値と第1のしきい値との比較に基づいて打撃点P1が剥離部8に位置していることが判定される。
上述したように第2の実施の形態の状態評価装置10によれば、ハンマー20(打撃点P1)を中心にして当該中心から等距離で対称な位置に第1〜第4マイク25A〜25Dを配置することで、第1〜第4マイク25A〜25Dにより打音検出波形を各マイク毎に生成し、この各マイク毎に生成されたそれぞれの打音検出波形の第1の波形の振幅に対応する正規化振幅値を検査対象物の状態評価に用いるようにした。
言い換えると、第1〜第4マイク25A〜25Dの打音検出波形から得られる正規化振幅値と第1のしきい値との比較に基づいて、打撃点P1が健全部6、剥離部8の何れに位置しているか判定するようにした。
したがって、第1の実施の形態と同様の効果が奏されることは無論のこと、外装材2の剥離の有無及び外装材2の健全部6と剥離部8と境界である剥離境界の評価判定を効率よく的確に行なう上で有利となる。
なお、実施の形態では、検査対象物が建物であり、タイル206などの外装材2の浮きや剥がれなどの接着状態を評価する場合について説明したが、本発明は、タイル206やモルタルなどの外装材2が設けられていない場合には、建物外面に加え、この建物外面近くの内部の状態を評価する場合、また、タイル206やモルタルなどの外装材2が設けられている場合には、外装材2の表面に加え、外装材2の表面の内側の外装材2部分や外装材2の内側の建物躯体の表面や表面近くの内部を評価する場合に広く適用可能である。
さらに、本発明は、建物の室内の床、天井、壁面、室内のコンクリート躯体などを評価する場合に広く適用可能である。
また、本発明は、検査対象物が建物に限定されず、高架橋やダムなどの構造物などを評価する場合に広く適用可能である。
2 外装材(検査対象物)
10、10A 状態評価装置
20 ハンマー
22 アクチュエータ
24A 第1マイク
24B 第2マイク
25A 第1マイク
25B 第2マイク
25C 第3マイク
25D 第4マイク
26 打撃力センサ
30 駆動部
32 操作部
34 調整部
36 検出回路
36A 第1検出回路
36B 第2検出回路
36C 第3検出回路
36D 第4検出回路
38 打撃力波形検出回路
40 サンプリング部
40A 第1サンプリング部
40B 第2サンプリング部
40C 第3サンプリング部
40D 第4サンプリング部
42 打撃力波形サンプリング部
44 振幅値検出部
44A 第1振幅値検出部
44B 第2振幅値検出部
44C 第3振幅値検出部
44D 第4振幅値検出部
46 正規化振幅値算出部
46A 第1正規化振幅値算出部
46B 第2正規化振幅値算出部
46C 第3正規化振幅値算出部
46D 第4正規化振幅値算出部
48 基準振幅値決定部
48A 第1基準振幅値決定部
48B 第2基準振幅値決定部
48C 第3基準振幅値決定部
48D 第4基準振幅値決定部
50 評価部
52 出力部
54 標準試験体

Claims (7)

  1. 検査対象物をハンマーで打撃する打撃部と、
    打音を検出するマイクと、
    前記マイクからの信号に基づいて打音検出波形を生成する波形生成部と、
    前記打音検出波形を構成する複数の1周期の波形のうちN番目(Nは1以上の自然数)の波形を第1の波形としたとき、前記第1の波形の振幅値を検出する振幅値検出部と、
    前記検査対象物とは別物で予め定められた標準試験体を前記ハンマーで打撃した場合に前記振幅値検出部で検出された前記振幅値を基準振幅値としたとき、前記振幅値検出部で検出された前記振幅値を前記基準振幅値で除すことによって正規化された正規化振幅値を算出する正規化振幅値算出部と、
    前記正規化振幅値に基づいて検査対象物の状態を評価する評価部と、
    を備え
    前記マイクは、前記ハンマーを中心にして当該中心から等距離で対称に配置された複数のマイクで構成され、
    前記波形生成部、前記振幅値検出部、前記正規化振幅値算出部は、前記各マイクに対応して1つずつ設けられ、
    前記各正規化振幅値算出部による前記正規化振幅値の算出は、前記各マイクに対応して検出された前記基準振幅値を用いてなされ、
    前記評価部による検査対象物の状態の評価は、前記各正規化振幅値算出部で算出された前記正規化振幅値に基づいてなされる、
    ことを特徴とする検査対象物の状態評価装置。
  2. 前記評価部は、前記正規化振幅値と予め定められた第1のしきい値との比較結果に基づいて前記検査対象物の内側の剥離の有無を判定する、
    ことを特徴とする請求項1記載の検査対象物の状態評価装置。
  3. 前記ハンマーにより前記標準試験体を打撃して前記振幅値検出部による前記振幅値の検出を複数回行なうことで得られた複数の前記振幅値の平均値を前記基準振幅値として決定する基準振幅値決定部をさらに備える、
    ことを特徴とする請求項1または2記載の検査対象物の状態評価装置。
  4. 前記打撃部は、前記ハンマーと、前記ハンマーに打撃方向の駆動力を加えるアクチュエータと、前記アクチュエータを駆動する駆動部と、前記駆動部を制御して前記駆動力を調節する調整部と、
    を備えることを特徴とする請求項1〜3の何れか1項記載の検査対象物の状態評価装置。
  5. 前記ハンマーの打撃力を検出して打撃力検出波形を生成する打撃力波形生成部をさらに備え、
    前記波形生成部は、前記打音検出波形をサンプリングして波形データとしてサンプリングするサンプリング部を備え、
    前記打撃力検出波形のうち前記打音検出波形の前記第1の波形を発生させる1周期分の波形を第2の波形とし、前記第2の波形の最大値または最小値のうち時間的に早い方の値に対応する時刻を基準時刻としたとき、
    前記振幅値検出部による前記第1の波形の振幅値の検出は、前記サンプリング部によりサンプリングされた前記波形データのうち前記基準時刻よりも前の時点からサンプリングされた前記波形データに基づいてなされる、
    ことを特徴とする請求項1〜4の何れか1項記載の検査対象物の状態評価装置。
  6. 前記ハンマーの打撃力を検出して打撃力検出波形を生成する打撃力波形生成部をさらに備え、
    前記評価部は、前記打撃力検出波形の振幅が予め定められた第2のしきい値未満であるときに前記検査対象物の状態の評価を中止する、
    ことを特徴とする請求項1〜5の何れか1項記載の検査対象物の状態評価装置。
  7. 検査対象物をハンマーで打撃したときの打音を、前記ハンマーを中心にして当該中心から等距離で対称に配置された複数のマイクで検出し、
    前記複数のマイクからの信号に基づいて打音検出波形を前記各マイクに対応して生成し、
    前記各マイクに対応して生成された前記打音検出波形を構成する複数の1周期の波形のうちN番目(Nは1以上の自然数)の波形を第1の波形としたとき、前記第1の波形の振幅値を前記各マイクに対応して検出し、
    前記検査対象物とは別物で予め定められた標準試験体を前記ハンマーで打撃した場合に前記各マイクに対応して検出された前記振幅値に基づいて基準振幅値を前記各マイクに対応して決定し、
    前記各マイクに対応して前記検出された振幅値を前記各マイクに対応して決定された前記基準振幅値で除すことで正規化された正規化振幅値を前記各マイクに対応して算出し、
    前記各マイクに対応して算出された前記正規化振幅値に基づいて検査対象物の状態を評価する、
    ことを特徴とする検査対象物の状態評価方法。
JP2017127953A 2017-06-29 2017-06-29 検査対象物の状態評価装置および状態評価方法 Active JP6954527B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017127953A JP6954527B2 (ja) 2017-06-29 2017-06-29 検査対象物の状態評価装置および状態評価方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017127953A JP6954527B2 (ja) 2017-06-29 2017-06-29 検査対象物の状態評価装置および状態評価方法

Publications (2)

Publication Number Publication Date
JP2019011993A JP2019011993A (ja) 2019-01-24
JP6954527B2 true JP6954527B2 (ja) 2021-10-27

Family

ID=65227787

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017127953A Active JP6954527B2 (ja) 2017-06-29 2017-06-29 検査対象物の状態評価装置および状態評価方法

Country Status (1)

Country Link
JP (1) JP6954527B2 (ja)

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3029124U (ja) * 1996-03-19 1996-09-27 株式会社フジタ 壁面剥離診断機
JP3438525B2 (ja) * 1997-04-24 2003-08-18 三菱電機株式会社 打音判定装置
US5996413A (en) * 1997-10-31 1999-12-07 The Metropolitan Water District Of Southern California Method for testing a prestressed concrete conduit
JP2000131288A (ja) * 1998-10-23 2000-05-12 Mitsubishi Electric Corp 建築物の壁部の剥離判定装置
JP2002333437A (ja) * 2001-05-10 2002-11-22 Mitsubishi Heavy Ind Ltd 打撃検査装置
JP2003014709A (ja) * 2001-06-29 2003-01-15 Aoki Corp エネルギーの減衰に基づいた打撃によるコンクリートの欠陥探査方法
JP2004101413A (ja) * 2002-09-11 2004-04-02 Koden Electronics Co Ltd 固体内部の振動検査装置
JP2006078435A (ja) * 2004-09-13 2006-03-23 Okutekku:Kk 微小構造体の検査装置および微小構造体の検査方法
WO2013183314A1 (ja) * 2012-06-06 2013-12-12 日本電気株式会社 構造物の分析装置および構造物の分析方法
JP6685086B2 (ja) * 2015-04-17 2020-04-22 株式会社フジタ 検査対象物の状態評価装置

Also Published As

Publication number Publication date
JP2019011993A (ja) 2019-01-24

Similar Documents

Publication Publication Date Title
JP7329810B2 (ja) 状態評価装置
JP5426397B2 (ja) 打撃位置検出装置、打撃位置検出方法、及び打撃位置検出装置の製造方法
JP6805445B2 (ja) 検査対象物の状態評価装置
JP6685086B2 (ja) 検査対象物の状態評価装置
JP6954528B2 (ja) 検査対象物の状態評価装置および状態評価方法
US6598485B1 (en) Method and device for evaluating quality of concrete structures
JP6954527B2 (ja) 検査対象物の状態評価装置および状態評価方法
CN202230200U (zh) 带缆水下潜器超声波定位与轨迹监测系统
JP2829828B2 (ja) 仕上げ面の剥離診断装置
JP2016080592A (ja) 表面検査方法および表面検査装置
JPH0254903B2 (ja)
JP2010063863A (ja) ヘッドのフェース部背面に音響振動の異なるパイプまたは平板を複数設けた打点位置表示型ゴルフ練習用クラブとその製法
KR101667275B1 (ko) 작업면에 대해 수직으로 배향된 개구를 갖는 음향 검출기를 이용하는 디지털 전사 시스템
JP6805446B2 (ja) 検査対象物の状態評価装置
JP7334902B2 (ja) 検査対象物の状態評価装置および状態評価方法
JP7388644B2 (ja) 状態評価装置用の標準試験体
JP7414216B2 (ja) 検査対象物の状態評価装置および状態評価方法
JP2004144586A (ja) コンクリート系構造物の健全性診断方法
JP7018636B2 (ja) 検査対象物の状態評価装置
JP7029146B2 (ja) 検査対象物の状態評価装置
JP3834660B2 (ja) 構造物のひび割れ検知装置
JPH0658351B2 (ja) コンクリート構造物の空洞検知装置
JP2018163013A (ja) 打撃検査装置、打撃検査方法及びコンピュータプログラム
JP2022101779A (ja) 検査方法及び検査機構
CN201215470Y (zh) 地震灾后房屋裂纹断口的深度检测仪

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200528

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210310

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210406

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210512

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210706

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210823

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210907

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210916

R150 Certificate of patent or registration of utility model

Ref document number: 6954527

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150