JP6949510B2 - 基板処理装置および基板処理方法 - Google Patents

基板処理装置および基板処理方法 Download PDF

Info

Publication number
JP6949510B2
JP6949510B2 JP2017037563A JP2017037563A JP6949510B2 JP 6949510 B2 JP6949510 B2 JP 6949510B2 JP 2017037563 A JP2017037563 A JP 2017037563A JP 2017037563 A JP2017037563 A JP 2017037563A JP 6949510 B2 JP6949510 B2 JP 6949510B2
Authority
JP
Japan
Prior art keywords
substrate
processing
gas
liquid
spraying
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017037563A
Other languages
English (en)
Other versions
JP2018142678A (ja
Inventor
励 武明
励 武明
幸嗣 安藤
幸嗣 安藤
前川 直嗣
直嗣 前川
弘晃 石井
弘晃 石井
陽介 安武
陽介 安武
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Screen Holdings Co Ltd
Original Assignee
Screen Holdings Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Screen Holdings Co Ltd filed Critical Screen Holdings Co Ltd
Priority to JP2017037563A priority Critical patent/JP6949510B2/ja
Priority to CN201880008898.3A priority patent/CN110226217B/zh
Priority to PCT/JP2018/003029 priority patent/WO2018159193A1/ja
Priority to KR1020197022293A priority patent/KR102245342B1/ko
Priority to TW107103444A priority patent/TWI662649B/zh
Publication of JP2018142678A publication Critical patent/JP2018142678A/ja
Application granted granted Critical
Publication of JP6949510B2 publication Critical patent/JP6949510B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Weting (AREA)
  • Cleaning Or Drying Semiconductors (AREA)

Description

この発明は、基板処理装置および基板処理方法に関する。処理対象となる基板には、たとえば、半導体ウエハ、液晶表示装置用基板、プラズマディスプレイ用基板、FED(Field Emission Display)用基板、光ディスク用基板、磁気ディスク用基板、光磁気ディスク用基板、フォトマスク用基板、セラミック基板、太陽電池用基板などが含まれる。
半導体装置や液晶表示装置などの製造工程では、半導体ウエハや液晶表示装置用ガラス基板などの基板の外周部に対して処理液を用いた処理が行われる。基板を1枚ずつ処理する枚葉式の基板処理装置は、たとえば、基板を水平に保持して回転させるスピンチャックと、スピンチャックに保持されている基板の上面の外周部に向けて処理液を吐出する処理液ノズルとを備えている(下記特許文献1参照)。
このような基板処理装置では、基板を回転させながら、基板の上面の外周部における所定の着液位置に向けて処理液を吐出する。着液位置に供給された処理液は基板の回転に伴って基板の周方向の全域に広がり、これにより、基板の上面の外周部に所定の幅を有する環状の処理液が形成される。
特開2011−258925号公報
しかしながら、特許文献1のような構成では、処理時における基板の回転速度(処理回転速度)が遅いと、基板の回転による遠心力が弱いために、着液位置に着液した処理液が着液位置において膨らんで、基板の内側に広がるおそれがある。この場合には、基板の外周部において、処理液により処理される領域の幅(以下、「処理幅」という)が所期の幅より大きくなるおそれがある。すなわち、処理回転速度が遅いと、処理幅を精密に制御できないおそれがある。したがって、処理回転速度が遅くても、基板の外周部における処理幅を精密に制御することが求められている。
そこで、この発明の目的は、基板の回転速度によらずに、基板の外周部における処理幅を精密に制御することができる、基板処理装置および基板処理方法を提供することである。
この発明の一実施形態は、周端の少なくとも一部が円弧状をなす基板を保持する基板保持ユニットと、前記基板保持ユニットによって保持されている基板を、当該基板の中央部を通る回転軸線まわりに回転させるための基板回転ユニットと、前記基板保持ユニットによって保持されている基板の外周部に向けて処理液を吐出するための処理液ノズルと、前記基板における処理液の着液位置に着液した処理液に向けて、基板の回転半径方向の内側から気体を吹き付ける気体ノズルと、前記基板回転ユニットを制御して、前記基板を所定の処理回転速度で回転させる基板回転工程と、前記基板回転工程に並行して、前記基板の外周部に向けて前記処理液ノズルから処理液を吐出する処理液吐出工程と、前記基板回転工程および前記処理液吐出工程に並行して、前記基板における処理液の着液位置基板の回転半径方向の内側気体を吹き付ける気体吹き付け工程と、前記気体吹き付け工程に並行して、前記基板における気体の吹き付け位置および/または当該気体ノズルから前記基板に吹き付けられる気体の吹き付け流量を制御して、前記着液位置に着液している処理液の内周端の位置を、前記処理回転速度に対応する位置に調整する内周端位置調整工程とを実行する制御装置とを含む、基板処理装置を提供する。
この構成によれば、基板の外周部の着液位置に着液した処理液に向けて、基板の内側から気体が吹き付けられる。着液位置に着液している処理液の内周端の位置(以下、「着液処理液の内周端の位置」)は、基板の回転速度に依存している。基板の処理回転速度に応じて、基板における気体の吹き付け領域の位置(以下、「吹き付け位置」という場合がある)および/または基板に吹き付けられる気体の吹き付け流量を調整することにより、着液処理液の内周端の位置を、処理回転速度(処理時における基板の回転速度)に対応する位置に調整することができる。
着液処理液の内周端の位置を調整することにより、着液位置に着液している処理液の幅(以下、「着液位置液幅」という)を、処理回転速度に適した幅に調整することも可能であり、この場合には、基板の回転速度の如何によらずに着液位置液幅を精密に制御することも可能である。
以上により、基板の回転速度によらずに、基板の外周部における処理幅を精密に制御することができる。
前記気体ノズルは、前記基板保持ユニットによって保持されている基板の外周部における処理液の着液位置に対し前記基板の回転半径方向の内側に位置する前記吹き付け位置に向けて気体を吹き付けるためのノズルであってもよい。
前記基板回転工程は、前記基板保持ユニットに保持されている前記基板を前記基板回転ユニットによって前記回転軸線まわりに回転させる工程を含んでいてもよい。
前記気体吹き付け工程は、前記吹き付け位置に向けて前記気体ノズルから気体を吹き付ける工程を含んでいてもよい。
の発明の一実施形態では、前記基板処理装置は、前記気体ノズルを駆動する気体ノズル駆動ユニットをさらに含む。そして、前記制御装置は、前記内周端位置調整工程において、前記気体ノズル駆動ユニットを制御して、前記気体の吹き付け領域の位置を調整する工程を実行する。
この構成によれば、基板における気体の吹き付け領域の位置を変更することにより、着液処理液の内周端の位置を、処理回転速度に対応する位置に調整する。気体の吹き付け領域の位置は、着液処理液の内周端の位置に直接的に作用し、当該着液処理液の内周端の位置に大きな影響を与える。したがって、気体の吹き付け領域の位置を変更することにより、着液処理液の内周端の位置をより効果的に変更させることができる。この場合、着液位置液幅をより精密に制御することも可能である。
前記内周端位置調整工程は、前記処理回転速度の高低に基づいて、前記吹き付け位置を前記気体ノズル駆動ユニットによって制御する工程を含んでいてもよい。
前記内周端位置調整工程は、前記吹き付け位置を前記処理回転速度の低下に従って当該吹き付け位置が前記基板の回転半径方向の外側になるように配置する工程を含んでいてもよい。
の発明の一実施形態では、前記基板処理装置は、前記処理回転速度と、前記吹き付け位置との対応関係を規定する第1の対応関係規定情報を記憶する第1の情報記憶部をさらに含む。そして、前記制御装置は、前記第1の対応関係規定情報に基づいて前記内周端位置調整工程を実行する。
この構成によれば、第1の情報記憶部に記憶されている第1の対応関係規定情報によって規定されている、処理回転速度と気体の吹き付け領域の位置との対応関係に基づいて内周端位置調整工程が実行される。これにより、着液処理液の内周端の位置を、処理時における処理回転速度に対応する位置に、確実に制御することができる。
の発明の一実施形態では、前記基板処理装置は、前記気体の吹き付け流量を調整する吹き付け流量調整ユニットをさらに含む。そして、前記制御装置は、前記内周端位置調整工程において、前記吹き付け流量調整ユニットを制御して前記気体の吹き付け流量を調整する気体流量調整工程を実行する。
この構成によれば、基板における気体の吹き付け流量を調整することにより、着液処理液の内周端の位置を、処理回転速度に対応する位置に調整する。この場合、着液位置液幅をより精密に制御することも可能である。
前記内周端位置調整工程は、前記処理回転速度の高低に基づいて、前記気体ノズルから前記吹き付け位置に吹き付けられる気体の吹き付け流量を前記吹き付け流量調整ユニットによって制御する工程を含んでいてもよい。
前記内周端位置調整工程は、前記気体ノズルから前記吹き付け位置に吹き付けられる気体の前記吹き付け流量を前記処理回転速度の低下に従って多くなるように調整する工程を含んでいてもよい。
の発明の一実施形態では、前記基板処理装置は、前記処理回転速度と、前記吹き付け流量との対応関係を規定する第2の対応関係規定情報を記憶する第2の情報記憶部をさらに含む。そして、前記制御装置は、前記第2の対応関係規定情報に基づいて前記内周端位置調整工程を実行する。
この構成によれば、第2の情報記憶部に記憶されている第2の対応関係規定情報によって規定されている、処理回転速度と気体の吹き付け流量との対応関係に基づいて内周端位置調整工程が実行される。これにより、着液処理液の内周端の位置を、処理時における処理回転速度に対応する位置に、確実に制御することができる。
の発明の一実施形態では、前記制御装置は、前記処理回転速度が予め定める速度以上である場合に前記内周端位置調整工程を実行せず、前記処理回転速度が予め定める速度未満である場合に前記内周端位置調整工程を実行する。
処理回転速度が遅い場合には、着液位置に着液した処理液が着液位置において膨らんで、基板の内側に広がるおそれがある。その一方で、処理回転速度が速い場合には、着液位置に着液した処理液が基板の内側に広がるおそれはない。
この構成によれば、着液位置に着液した処理液が基板の内側に広がるおそれがある、処理回転速度が遅い場合のみ内周端位置調整工程を実行する。すなわち、必要なときのみ内周端位置調整工程を実行することができる。
の発明の一実施形態では、前記基板保持ユニットは、前記基板の外周部を支持せずに当該基板の中央部を支持して当該基板を保持するユニットを含む。そして、前記基板処理装置は、前記基板保持ユニットに保持されている基板の周方向の各周端位置を計測するための各周端位置計測ユニットをさらに含む。そして、前記制御装置は、前記基板保持ユニットに保持されている基板の、周方向の各周端位置を、前記各周端位置計測ユニットによって計測する各周端位置計測工程をさらに実行する。そして、前記制御装置は、さらに、前記着液位置に着液している処理液の内周端が、前記基板の周端のうち前記処理液ノズルが配置されている周方向位置の周端である配置位置周端の位置変化に追従して往復移動するように、前記着液位置に着液している処理液の内周端の位置を調整する工程(第2の内周端位置調整工程)を実行する。
この構成によれば、気体の吹き付け領域の位置および/または気体の吹き付け流量を調整することにより、着液位置に着液している処理液の内周端を、配置位置周端の位置変化に追従して往復移動させることができる。これにより、処理液の着液位置の往復移動によらずに、基板の外周部における処理幅の均一性を高く保つことができる。
の発明の一実施形態では、前記気体ノズルは、気体の吹き付け位置が前記基板の外周部に沿う帯状をなすような気体吐出口を有している。
この構成によれば、気体の吹き付け位置が基板の外周部に沿う帯状をなしているので、基板の外周部を流れる処理液が、基板の内側へ広がることを、より効果的に抑制することができる。ゆえに、基板の外周部における処理幅を、より一層精密に制御することができる。
の発明の一実施形態では、前記気体ノズルは、前記基板の外側かつ斜め下向きに気体を吐出する。
この構成によれば、気体ノズルは気体を斜め下方向に向けて吐出する。気体ノズルから吐出された気体は、基板の主面に沿って流れる。これにより、効率よく処理液の液膜の内周端押圧することができる。
前記制御装置は、前記内周端位置調整工程において、前記吹き付け位置を回転速度−吹き付け位置対応テーブルを基準として制御してもよい。前記制御装置は、前記内周端位置調整工程において、前記吹き付け流量を回転速度−吹き付け流量対応テーブルを基準として制御してもよい。前記制御装置は、前記内周端位置調整工程において、前記基板の回転半径方向の前記処理液の液膜の幅を予め定められた幅に調整してもよい。
この発明の一実施形態は、周端の少なくとも一部が円弧状をなす基板を、当該基板の中央部を通る回転軸線まわりに、所定の処理回転速度で回転させる基板回転工程と、前記基板回転工程に並行して、前記基板の外周部に向けて処理液ノズルから処理液を吐出する処理液吐出工程と、前記基板回転工程および前記処理液吐出工程に並行して、前記基板における処理液の着液位置に着液した処理液に向けて、基板の回転半径方向の内側から気体を吹き付ける気体吹き付け工程と、前記気体吹き付け工程に並行して、前記基板における気体の吹き付け位置および/または当該気体ノズルから前記基板に吹き付けられる気体の吹き付け流量を制御して、前記着液位置に着液している処理液の内周端の位置を、前記処理回転速度に対応する位置に調整する内周端位置調整工程とを含む、基板処理方法を提供する。
前記気体吹き付け工程は、前記基板の外周部における処理液の着液位置に対し気体ノズルから前記基板の回転半径方向の内側に位置する吹き付け位置に向けて気体を吹き付けてもよい。
の発明の一実施形態では、前記内周端位置調整工程は、前記気体の吹き付け領域の位置を調整する工程を含む。
前記内周端位置調整工程は、前記処理回転速度の高低に基づいて、前記吹き付け位置を制御する工程を含んでいてもよい。
前記内周端位置調整工程は、前記吹き付け位置を前記処理回転速度の低下に従って当該吹き付け位置が前記基板の回転半径方向の外側になるように配置する工程を含んでいてもよい。
の発明の一実施形態では、前記内周端位置調整工程は、前記気体の吹き付け流量を調整する気体流量調整工程を含む。
前記内周端位置調整工程は、前記処理回転速度の工程に基づいて、前記気体ノズルから前記吹き付け位置に吹き付けられる気体の吹き付け流量を制御する工程を含んでいてもよい。
前記内周端位置調整工程は、前記気体ノズルから前記吹き付け位置に吹き付けられる気体の前記吹き付け流量を前記処理回転速度の低下に従って多くなるように調整する工程を含んでいてもよい。
の発明の一実施形態では、前記内周端位置調整工程は、前記処理回転速度が予め定める速度以上である場合には実行されず、前記処理回転速度が予め定める速度未満である場合に実行される。
の発明の一実施形態では、前記基板処理方法は、前記基板の外周部を支持せずに当該基板の中央部を支持して当該基板を保持する基板保持ユニットを含む基板処理装置において実行される方法である。そして、前記基板処理方法は、前記基板保持ユニットに保持されている基板の、周方向の各周端位置を計測する各周端位置計測工程をさらに含む。そして、前記基板処理方法は、前記着液位置に着液している処理液の内周端が、前記基板の周端のうち前記処理液ノズルが配置されている周方向位置の周端である配置位置周端の位置変化に追従して往復移動するように、前記着液位置に着液している処理液の内周端の位置を調整する工程(第2の内周端位置調整工程)さらにむ。
前記内周端位置調整工程は、前記吹き付け位置を回転速度−吹き付け位置対応テーブルを基準として制御してもよい。前記内周端位置調整工程は、前記吹き付け流量を回転速度−吹き付け流量対応テーブルを基準として制御してもよい。前記内周端位置調整工程は、前記基板の回転半径方向の前記処理液の液膜の幅を予め定められた幅に調整してもよい。
図1は、本発明の第1の実施形態に係る基板処理装置の内部のレイアウトを説明するための図解的な平面図である。 図2は、前記基板処理装置に備えられた処理ユニットの構成例を説明するための図解的な図である。 図3Aは、処理位置に配置されている処理液ノズルおよび気体ノズルのそれぞれから処理液および気体を吐出している状態を示す断面図である。 図3Bは、参考例において、処理液ノズルから処理液を吐出している状態を示す断面図である。 図4は、処理位置に配置された状態における気体ノズルの平面図である。 図5は、基板が偏芯状態でスピンチャックに保持されている状態を示す模式的な図である。 図6は、基板が偏芯状態でスピンチャックに保持されている状態を示す模式的な図である。 図7は、参考処理例における基板の上面の外周領域の処理幅を示す平面図である。 図8は、前記基板処理装置の主要部の電気的構成を説明するためのブロック図である。 図9は、情報記憶部に記憶されている回転速度−吹き付け領域位置対応テーブルを説明するための図である。 図10は、前記処理ユニットによって実行される第1の基板処理例を説明するための流れ図である。 図11は、図10に示す各周端径方向位置計測工程の内容を説明するための流れ図である。 図12は、図10に示す外周部処理工程の内容を説明するための流れ図である。 図13は、前記外周部処理工程の内容を説明するための模式的な図である。 図14は、前記外周部処理工程の内容を説明するための模式的な図である。 図15Aは、前記外周部処理工程における処理液ノズルおよび気体ノズルの状態を模式的に示す図である。 図15Bは、前記外周部処理工程における処理液ノズルおよび気体ノズルの状態を模式的に示す図である。 図16は、前記第1の基板処理例における基板の上面の外周領域の処理幅を示す平面図である。 図17Aは、第2の基板処理例に係る外周部処理工程における処理液ノズルおよび気体ノズルの状態を模式的に示す図である。 図17Bは、前記外周部処理工程における処理液ノズルおよび気体ノズルの状態を模式的に示す図である。 図18は、情報記憶部に記憶されている回転速度−吹き付け領域位置対応テーブルを説明するための図である。 図19は、第2の実施形態に係る第3の基板処理例に係る外周部処理工程の内容を説明するための流れ図である。 図20Aは、第2の実施形態に係る第4の基板処理例に係る外周部処理工程における処理液ノズルおよび気体ノズルの状態を模式的に示す図である。 図20Bは、前記外周部処理工程における処理液ノズルおよび気体ノズルの状態を模式的に示す図である。
以下では、この発明の実施の形態を、添付図面を参照して詳細に説明する。
図1は、この発明の第1の実施形態に係る基板処理装置の内部のレイアウトを説明するための図解的な平面図である。基板処理装置1は、半導体ウエハなどの円板状の基板Wを、処理液や処理ガスによって一枚ずつ処理する枚葉式の装置である。基板処理装置1は、処理液を用いて基板Wを処理する複数の処理ユニット2と、処理ユニット2で処理される複数枚の基板Wを収容するキャリヤC1が載置されるロードポートLPと、ロードポートLPと処理ユニット2との間で基板Wを搬送する搬送ロボットIRおよびCRと、基板処理装置1を制御する制御装置3とを含む。搬送ロボットIRは、キャリヤC1と搬送ロボットCRとの間で基板Wを搬送する。搬送ロボットCRは、搬送ロボットIRと処理ユニット2との間で基板Wを搬送する。複数の処理ユニット2は、たとえば、同様の構成を有している。
図2は、処理ユニット2の構成例を説明するための図解的な図である。
処理ユニット2は、基板Wの外周部41(図3A等参照)を、より具体的には基板Wの上面(主面)の外周領域42(図3A等参照)および基板Wの周端面44(図3A等参照)を、処理液を用いて処理(トップサイド処理)するユニットである。この実施形態では、基板Wの外周部41とは、基板Wの上面の外周領域42、基板Wの下面(主面)の外周領域43(図3A等参照)、および基板Wの周端面44を含む部分をいう。また、外周領域42,43とは、たとえば、基板Wの周端縁からコンマ数ミリ〜数ミリメートル程度の幅を有する環状の領域をいう。
処理ユニット2は、内部空間を有する箱形の処理チャンバ4と、処理チャンバ4内で一枚の基板Wを水平な姿勢で保持して、基板Wの中心を通る鉛直な回転軸線A1まわりに基板Wを回転させるスピンチャック(基板保持ユニット)5と、スピンチャック5に保持されている基板Wの上面の外周領域42に処理液(薬液およびリンス液)を供給するための処理液供給ユニット6と、処理液供給ユニット6から外周領域42に着液した処理液に向けて、基板Wの回転半径方向(以下、径方向RD)の内側から外側に向けて気体の一例としての不活性ガスを吹き付ける気体吹き付けユニット7と、スピンチャック5に保持されている基板Wの上面中央部に、不活性ガスを供給するための第1の不活性ガス供給ユニット8と、スピンチャック5に保持されている基板Wの上面の外周領域42に、不活性ガスを供給するための第2の不活性ガス供給ユニット9と、スピンチャック5に保持されている基板Wの下面の外周領域43に、不活性ガスを供給するための第3の不活性ガス供給ユニット10と、スピンチャック5に保持されている基板Wの下面の外周領域43を加熱するためのヒータ11と、スピンチャック5を取り囲む筒状の処理カップ12とを含む。
処理チャンバ4は、箱状の隔壁13と、隔壁13の上部から隔壁13内(処理チャンバ4内に相当)に清浄空気を送る送風ユニットとしてのFFU(ファン・フィルタ・ユニット)14と、隔壁13の下部から処理チャンバ4内の気体を排出する排気装置(図示しない)とを含む。
FFU14は隔壁13の上方に配置されており、隔壁13の天井に取り付けられている。FFU14は、隔壁13の天井から処理チャンバ4内に清浄空気を送る。排気装置は、処理カップ12内に接続された排気ダクト15を介して処理カップ12の底部に接続されており、処理カップ12の底部から処理カップ12の内部を吸引する。FFU14および排気装置により、処理チャンバ4内にダウンフロー(下降流)が形成される。
スピンチャック5は、この実施形態では、真空吸着式のチャックである。スピンチャック5は、基板Wの下面中央部を吸着支持している。スピンチャック5は、鉛直な方向に延びたスピン軸16と、このスピン軸16の上端に取り付けられて、基板Wを水平な姿勢でその下面を吸着して保持するスピンベース17と、スピン軸16と同軸に結合された回転軸を有するスピンモータ(基板回転ユニット)18とを備えている。スピンベース17は、基板Wの外径よりも小さな外径を有する水平な円形の上面17aを含む。基板Wの裏面がスピンベース17に吸着保持された状態では、基板Wの外周部41が、スピンベース17の周端縁よりも外側にはみ出ている。スピンモータ18が駆動されることにより、スピン軸16の中心軸線まわりに基板Wが回転される。
処理液供給ユニット6は、処理液ノズル19と、処理液ノズル19に接続された薬液配管20と、薬液配管20に介装された薬液バルブ21と、処理液ノズル19に接続されたリンス液配管22と、リンス液配管22に介装されたリンス液バルブ23と、処理液ノズル19を移動させる第1のノズル移動機構24とを含む。処理液ノズル19は、たとえば、連続流の状態で液を吐出するストレートノズルである。薬液配管20には、薬液供給源からの薬液が供給されている。リンス液配管22には、リンス液供給源からのリンス液が供給されている。リンス液バルブ23が閉じられた状態で薬液バルブ21が開かれると、薬液配管20から処理液ノズル19に供給された連続流の薬液が、処理液ノズル19の下端に設定された処理液吐出口19a(図3A参照)から吐出される。また、薬液バルブ21が閉じられた状態でリンス液バルブ23が開かれると、リンス液配管22から処理液ノズル19に供給された連続流のリンス液が処理液吐出口19aから吐出される。第1のノズル移動機構24は、平面視で基板Wの上面(たとえば上面中央部)を通る軌跡に沿って処理液ノズル19を水平に移動させる。第1のノズル移動機構24は、処理液ノズル19から吐出された処理液(薬液およびリンス液)が基板Wの上面の外周領域42に供給される処理位置と、処理液ノズル19が平面視でスピンチャック5の側方に退避した退避位置との間で処理液ノズル19を移動させる。また、第1のノズル移動機構24は、処理液ノズル19からの処理液の着液位置45(図3A参照)が、基板Wの上面の外周領域42において、径方向RDに移動するように処理液ノズル19を移動させる。
薬液は、たとえば、基板Wをエッチングしたり、基板Wを洗浄したりするのに用いられる液である。薬液は、フッ酸、硫酸、酢酸、硝酸、塩酸、フッ酸、バッファードフッ酸(BHF)、希フッ酸(DHF)、アンモニア水、過酸化水素水、有機酸(たとえば、クエン酸、蓚酸等)、有機アルカリ(たとえば、TMAH:テトラメチルアンモニウムハイドロオキサイドなど)、有機溶剤(たとえばIPA(isopropyl alcohol)など)、界面活性剤、腐食防止剤のうちの少なくとも1つを含む液であってもよい。リンス液は、たとえば脱イオン水(DIW)であるが、DIWに限らず、炭酸水、電解イオン水、水素水、オゾン水および希釈濃度(たとえば、10ppm〜100ppm程度)の塩酸水のいずれかであってもよい。
気体吹き付けユニット7は、気体ノズル101と、気体ノズル101に接続された第1の気体配管102と、第1の気体配管102に介装された第1の気体バルブ103および気体流量調整バルブ(吹き付け流量調整ユニット)104と、気体ノズル101を移動させる第2のノズル移動機構105とを含む。図示はしないが、気体流量調整バルブ104は、弁座が内部に設けられたバルブボディと、弁座を開閉する弁体と、開位置と閉位置との間で弁体を移動させるアクチュエータとを含む。第1の気体配管102には、不活性ガス供給源からの不活性ガスが供給されている。第1の気体バルブ103が開かれると、第1の気体配管102から気体ノズル101に供給された不活性ガスが、気体ノズル101の下端に設定された気体吐出口101a(図3A参照)から吐出される。気体吐出口101aから吐出された気体(不活性ガス)は、処理液供給ユニット6から外周領域42に着液した処理液に向けて、径方向RDの内側から外側に向けて吹き付けられる。第2のノズル移動機構105は、気体ノズル101から吐出された気体が基板Wの上面の外周領域42に供給される処理位置と、気体ノズル101が平面視でスピンチャック5の側方に退避した退避位置との間で、気体ノズル101を移動させる。気体としての不活性ガスは、たとえば、窒素ガスであるが、窒素ガスに限らず、空気やヘリウムガス、アルゴンガスなどの他の不活性ガスであってもよい。
第2のノズル移動機構105は、平面視で基板の上面(たとえば上面中央部)を通る軌跡に沿って気体ノズル101を水平に移動させる。第2のノズル移動機構105は、気体ノズル101から吐出された処理液(薬液およびリンス液)が基板Wの上面の外周領域42に吹き付けられる処理位置と、気体ノズル101が平面視でスピンチャック5の側方に退避した退避位置との間で気体ノズル101を移動させる。また、第2のノズル移動機構105は、気体ノズル101からの気体の吹き付け領域106が、基板Wの上面の外周領域42において径方向RDに移動するように気体ノズル101を移動させる。
第1の不活性ガス供給ユニット8は、スピンチャック5に保持されている基板Wの上面の中央部に不活性ガスを供給するための気体吐出ノズル27と、気体吐出ノズル27に不活性ガスを供給する第2の気体配管28と、第2の気体配管28を開閉する第2の気体バルブ29と、気体吐出ノズル27を移動させるための第3のノズル移動機構30とを含む。基板Wの上面中央部の上方に設定された処理位置において第2の気体バルブ29が開かれると、気体吐出ノズル27から吐出される不活性ガスによって、中央部から外周部41に向けて流れる放射状気流が基板Wの上方に形成される。
第2の不活性ガス供給ユニット9は、基板Wの上面の外周領域42に対して不活性ガスを吐出するための上外周部気体ノズル31と、上外周部気体ノズル31に不活性ガスを供給する第3の気体配管32と、第3の気体配管32を開閉する第3の気体バルブ33と、上外周部気体ノズル31を移動させるための第4のノズル移動機構34とを含む。基板Wの上面の外周領域42に対向する処理位置において第3の気体バルブ33が開かれると、上外周部気体ノズル31は、基板Wの上面の外周領域42の吹き付け領域に対し、径方向RDの内側から、外側かつ斜め下向きに不活性ガスを吐出する。これにより、基板Wの上面の外周領域42における処理液の処理幅を制御することができる。
第3の不活性ガス供給ユニット10は、基板Wの下面の外周領域43に対して不活性ガスを吐出するための下外周部気体ノズル36と、下外周部気体ノズル36に不活性ガスを供給する第4の気体配管37と、第4の気体配管37を開閉する第4の気体バルブ38とを含む。基板Wの下面の外周領域43に対向する処理位置において第4の気体バルブ38が開かれると、下外周部気体ノズル36は、基板Wの下面の外周領域43の吹き付け領域に対し、径方向RDの内側から外側斜め上向きに(たとえば水平面に対し45°)不活性ガスを吐出する。
ヒータ11は、円環状に形成されており、基板Wの外径と同等の外径を有している。ヒータ11は、スピンチャック5に保持された基板Wの下面の外周領域43に対向する上端面を有している。ヒータ11は、セラミックや炭化ケイ素(SiC)を用いて形成されており、その内部に加熱源(図示しない)が埋設されている。加熱源の加熱によりヒータ11が温められて、ヒータ11が基板Wを加熱する。ヒータ11によって基板Wの外周部41を下面側から加熱することにより、基板Wの上面の外周領域42における処理レートを向上させることができる。
処理カップ12は、スピンチャック5に保持されている基板Wよりも外方(回転軸線A1から離れる方向)に配置されている。処理カップ12は、スピンベース17の側方を取り囲んでいる。スピンチャック5が基板Wを回転させている状態で、処理液が基板Wに供給されると、基板Wに供給された処理液が基板Wの周囲に振り切られる。処理液が基板Wに供給されるとき、上向きに開いた処理カップ12の上端部12aは、スピンベース17よりも上方に配置される。したがって、基板Wの周囲に排出された薬液や水などの処理液は、処理カップ12によって受け止められる。そして、処理カップ12に受け止められた処理液は排液処理される。
また、処理ユニット2は、スピンチャック5によって保持されている基板Wの周端の径方向RDの位置(以下、単に「径方向位置」という)を検出するための径方向位置センサ(各周端位置計測ユニット)47を含む。径方向位置センサ47は、基板Wの周端面44のうち所定の計測対象位置について、その径方向位置を検出している。
図3Aは、処理位置に配置されている処理液ノズル19および気体ノズル101のそれぞれから処理液および気体を吐出している状態を示す断面図である。図3Bは、参考例において、処理液ノズル19から処理液を吐出している状態を示す断面図である。図3Bは、気体ノズル101を処理位置に配置していない(すなわち、気体ノズル101を設けていない)点において、図3Aと相違している。
基板Wは、デバイス形成面を上方に向けた状態でスピンチャック5(図2参照)に保持されている。処理液ノズル19が、基板Wの上面の外周領域42に対向する処理位置に配置された状態で、薬液バルブ21(図2参照)およびリンス液バルブ23(図2参照)が選択的に開かれると、処理液ノズル19は、基板Wの上面の外周領域42の着液位置(以下、単に「着液位置45」という)に対し、径方向RDの内側から外側斜め下向きに処理液(薬液またはリンス液)を吐出する。径方向RDの内側から着液位置45に向けて処理液が吐出される。
基板Wの上面(デバイス形成面)は外周領域42を除き、半導体デバイスが形成されたデバイス形成領域である。処理液ノズル19から径方向RDの内側から斜め下向きに処理液が吐出されるので、デバイス形成領域である基板Wの上面中央部への処理液の液跳ねをある程度抑制できる。このとき、処理液吐出口19aからの処理液の吐出方向は、径方向RDに沿う方向であり、かつ基板Wの上面に対して所定角度で入射するような方向である。入射角θ1は、たとえば約30°〜約80°であり、好ましくは約45°であるである。
図3Aおよび図3Bに示すように、着液位置45に着液した処理液は、着液位置45の周囲において処理液の液膜LFを形成し、着液位置45に対し、基板Wの回転方向Rにかつ径方向RDの外側に向けて流れる。そのため、基板Wの上面の外周領域42には、処理液が環状に保持される。このときの処理液の液膜LFの幅W1(以下、「着液位置液幅W1」という。着液位置45における処理液の幅)が、処理幅になる。
図3Aに示すように、気体ノズル101が、基板Wの上面の外周領域42に対向する処理位置に配置される。このとき、気体ノズル101の気体吐出口101aからの気体の吐出方向は、径方向RDに沿う方向であり、かつ基板Wの上面に対して所定角度で入射するような方向である。入射角θ2は、たとえば約20 °〜約80°であり、好ましくは約45°であるである。
この状態で、第1の気体バルブ103(図2参照)が開かれると、気体ノズル101は、着液位置45に対し、径方向RDの内側に位置する吹き付け領域106に対し、径方向RDの内側から外側斜め下向きに気体を吐出する。気体ノズル101の気体吐出口101aから吐出された気体は、吹き付け領域106に吹き付けられた後、基板Wの上面に沿って径方向RDの外側に向けて流れ、処理液の液膜LFに衝突する(吹き付けられる)。図3Aに示すように、処理液の液膜LFに対し、径方向RDの内側から気体が吹き付けられることにより処理液の液膜LFの内周端301の位置を精度良く制御することができる。
図3Bのように気体の吹き付けを行わない場合には、処理液の液膜LFの内周端301の位置を精度良く制御できず、着液位置液幅W1を細くすることができないため、処理幅を約1mm以下にすることは困難である。これに対し、図3Aに示すように、本実施形態では、処理液の液膜LFの内周端301の位置を精度良く制御できるから、着液位置液幅W1を細幅に調整することも可能である。具体的には、このような気体の吹き付けを行うことにより、処理幅をコンマ数ミリという細幅に調整することもできる。
また、処理液の液膜LF(着液位置45に着液した処理液)に対し、径方向RDの内側から気体が吹き付けられるので、着液位置45に着液した処理液が、径方向RDの内側に向けて飛散することを抑制できる。これにより、デバイス形成領域に処理液が進入することを、より効果的に抑制することができる。
また、着液位置液幅W1(液膜LFの幅)の広狭(すなわち、処理液の液膜LFの内周端301の位置)は、処理回転速度(処理時における基板Wの回転速度)に依存している。処理回転速度が速いと、基板Wの回転による遠心力が増大するから着液位置液幅W1が狭くなる。一方、処理回転速度が遅いと、基板Wの回転による遠心力が減少するから着液位置液幅W1が広くなる。
図4は、処理位置に配置された状態における気体ノズル101の平面図である。図4では、処理液ノズル19の図示を省略している。気体ノズル101の下面には、平面視で円弧スリット状の気体吐出口101aが形成されている。気体吐出口101aは、基板Wの周方向に所定の幅W2を有している。気体ノズル101が処理位置に配置された状態で、気体吐出口101aから吐出された気体は、基板Wの上面に吹き付けられて、基板Wの外周領域42に沿う帯状(この実施形態では円弧状)をなす。基板Wの回転速度が遅い場合には、基板Wの上面の外周領域42に作用する遠心力が小さいから、着液位置45(図3A参照)に着液した処理液が回転方向Rに向けて流れる過程で内側に広がるおそれもある。しかしながら、この実施形態では、吹き付け領域106が基板Wの外周領域42に沿う帯状(円弧状)をなしているので、基板Wの内側への処理液の広がりをより効果的に抑制することができる。
図5は、基板Wが偏芯状態でスピンチャック5に保持されている状態を示す模式的な図である。図6は、基板Wが偏芯状態でスピンチャック5に保持されている状態を示す模式的な図である。図7は、参考処理例における基板Wの上面の外周領域42の処理幅を示す平面図である。
スピンチャック5は、基板Wの中央部を支持するタイプのものである。このようなタイプのスピンチャックは基板Wの外周部41を支持しない。そのため、基板Wの保持状態において、図5および図6に示すように、基板Wの中心がスピンチャック5による基板Wの回転軸線A1からずれる(すなわち、スピンチャック5に対して基板Wが偏芯している)おそれがある。
基板Wの外周部に対する処理では、回転軸線A1回りに基板Wを回転させるため、スピンチャック5に対して基板Wが偏芯していると、基板Wの回転角度位置に応じて、基板Wの周端のうち処理液ノズル19の処理位置に対応する周方向位置の周端(処理液ノズル19が配置されている周方向位置の周端。以下、「配置位置周端46(図3A参照)」という)と回転軸線A1との間の距離が変化する。処理液ノズル19がスピンチャック5に対して静止姿勢にある場合には、処理液の着液位置45と配置位置周端46との間の距離が基板Wの回転角度位置に伴って変化する。換言すると、回転軸線A1に対する配置位置周端46の径方向位置が、基板Wの回転角度位置に伴って変化する。
その結果、図7に示すように、基板Wの上面の外周領域42の処理幅が、周方向の各位置でばらつきが生じることになる。処理幅に大きなばらつきがあると、それを見込んで中央のデバイス領域を狭く設定しなければならなくなる。そのため、処理幅には高い精度が要求される。
図8は、基板処理装置1の主要部の電気的構成を説明するためのブロック図である。
制御装置3は、たとえばマイクロコンピュータを用いて構成されている。制御装置3はCPU等の演算ユニット51、固定メモリデバイス(図示しない)、ハードディスクドライブ等の記憶ユニット52、出力ユニット53および入力ユニット(図示しない)を有している。記憶ユニット52には、演算ユニット51が実行するプログラムが記憶されている。
記憶ユニット52は、電気的にデータを書き換え可能な不揮発性メモリからなる。記憶ユニット52は、基板Wに対する各処理の内容を規定するレシピを記憶するレシピ記憶部54と、スピンチャック5に保持されている基板Wの周方向の各周端位置における回転軸線A1に対する径方向RDの位置(以下、「各周端径方向位置」という。)に関する位置情報を記憶する各周端径方向位置記憶部59と、基板Wの回転速度と気体の吹き付け領域106(図3A等)の位置(吹き付け位置)との対応関係を規定する回転速度−吹き付け領域位置対応テーブル107(回転速度−吹き付け位置対応テーブル、第1の対応関係規定情報。図9参照)を記憶する情報記憶部(第1の情報記憶部)55とを含む。
制御装置3には、スピンモータ18、第1〜第4のノズル移動機構24,105,30,34、ヒータ11の加熱源、薬液バルブ21、リンス液バルブ23、第1の気体バルブ103、第2の気体バルブ29、第3の気体バルブ33、第4の気体バルブ38、流量調整バルブ104等が制御対象として接続されている。制御装置3は、スピンモータ18、第1〜第4のノズル移動機構24,105,30,34、およびヒータ11の動作を制御する。また、制御装置3は、バルブ21,23,103,29,33,38等を開閉する。また、制御装置3は、流量調整バルブ104の開度を調整する。
また、制御装置3には、径方向位置センサ47の検出出力が入力されるようになっている。
図9は、情報記憶部55に記憶されている回転速度−吹き付け領域位置対応テーブル107を説明するための図である。
回転速度−吹き付け領域位置対応テーブル107には、基板Wの回転速度(処理回転速度)と、各回転速度に対応する吹き付け領域106(図3A参照)の径方向RDの位置との対応関係が規定されている。回転速度−吹き付け領域位置対応テーブル107によって規定される「吹き付け領域106の位置」は、気体ノズル101の処理位置の径方向RDの位置情報そのものであってもよいし、気体ノズル101を駆動する第2のノズル移動機構105を構成するモータの駆動値であって、当該気体ノズル101の処理位置に対応する駆動値であってもよい。
一般的に、基板Wの回転速度が遅くなるに従って、着液位置液幅W1が広くなる傾向にある。また、各回転速度に対する気体ノズル101の処理位置(基準となる処理位置)の径方向RDの位置が径方向RDの外方に向かうに従って、処理液の液膜LFの内周端301を径方向RDの外方に向けて押す力が増大する。着液位置液幅W1が広くなることを阻止すべく、基板Wの回転速度が遅くなるに従って処理液の液膜LFの内周端301を径方向RDの外方に向けて押す力が増大するように、すなわち、基板Wの回転速度が遅くなるに従って吹き付け領域106が径方向RDの外方に移動するように、回転速度−吹き付け領域位置対応テーブル107は規定されている。
図10は、処理ユニット2によって実行される第1の基板処理例を説明するための流れ図である。図11は、各周端径方向位置計測工程(S4)の内容を説明するための流れ図である。図12は、外周部処理工程(S5,S6)の内容を説明するための流れ図である。図13および図14は、外周部処理工程(S5,S6)の内容を説明するための模式的な図である。図15A,15Bは、外周部処理工程(S5,S6)における処理液ノズル19および気体ノズル101の状態を模式的に示す図である。図16は、第1の基板処理例における基板Wの上面の外周領域42の処理幅を示す平面図である。
この第1の基板処理例について、図1、図2、図3A、図3B、および図8〜図10を参照しながら説明する。図11〜図16は適宜参照する。
まず、未処理の基板Wが、処理チャンバ4の内部に搬入される(図10のS1)。具体的には、基板Wを保持している搬送ロボットCRのハンドHを処理チャンバ4の内部に進入させることにより、基板Wがデバイス形成面を上方に向けた状態でスピンチャック5に受け渡される。
その後、基板Wの下面中央部が吸着支持されると、スピンチャック5によって基板Wが保持される(基板保持工程。図10のS2)。この実施形態では、センタリング機構を用いた、スピンチャック5に対する基板Wの芯合わせは行わない。
スピンチャック5に基板Wが保持された後、制御装置3はスピンモータ18を制御して、基板Wを回転開始させる(図10のS3)。
次いで、制御装置3は、スピンチャック5に保持されている基板Wの各周端径方向位置を計測する各周端径方向位置計測工程(図10のS4)を実行する。図11を併せて参照しながら、各周端径方向位置計測工程(S4)について説明する。
各周端径方向位置計測工程(S4)では、制御装置3は、基板Wの回転速度を、所定の計測回転速度(次に述べる液処理速度よりも遅い速度。たとえば約50rpm)まで上昇させ、その計測回転速度に保つ(図11のS11)。基板Wの回転が計測回転速度に達すると(S11でYES)、制御装置3は、径方向位置センサ47を用いて各周端径方向位置を計測開始する(図11のS12)。具体的には、制御装置3は、スピンモータ18を制御して基板Wを回転軸線A1まわりに回動させながら、径方向位置センサ47によって、基板Wの周端面44のうち所定の計測対象位置の径方向位置を検出させる。径方向位置センサ47による検出開始後、基板Wが少なくとも一周(360°)回動し終えると(図11のS13でYES)、全ての各周端径方向位置を検出したとして(YES)、計測が終了する(図11のS14)。これにより、スピンチャック5に対する基板Wの偏芯状態を検出することができる。制御装置3は、計測された各周端径方向位置に基づいて、着液位置45の往復移動に関する情報(たとえば、往復移動の振幅、周期および位相)を算出する(図11のS15)。算出された情報は、各周端径方向位置記憶部59に記憶される(図11のS16)。その後、各周端径方向位置計測工程(S4)は、終了する。各周端径方向位置計測工程(S4)の実行時間は、たとえば約5秒間である。
各周端径方向位置計測工程(S4)の終了後、次いで、制御装置3は、基板Wの外周部41を、薬液を用いて処理する外周部薬液処理工程(外周部処理工程。図10のS5)を実行する。外周部薬液処理工程(S5)は、基板Wの回転が所定の回転速度(約300rpm〜約1300rpmの所定の速度)にある状態で実行される。また、外周部薬液処理工程(S5)に並行して、制御装置3は、基板Wの上面の外周領域42における薬液の着液位置45を、基板Wの回転角度位置に伴う配置位置周端46の径方向位置変化に追従して径方向RDに往復移動させる着液位置往復移動工程(第2の内周端位置調整工程)を実行する。また、外周部薬液処理工程(S5)に並行して、制御装置3は、薬液の着液位置45の径方向RD移動に同伴して、吹き付け領域106を往復移動させる吹き付け領域往復移動工程を実行する。なお、この明細書において、「着液位置45を往復移動」および「吹き付け領域106を往復移動」とは、基板Wを基準とした往復移動ではなく、静止状態にある物体(たとえば処理チャンバ4の隔壁13)を基準した往復移動のことをいう。
図12を併せて参照しながら、外周部薬液処理工程(S5)について説明する。
外周部薬液処理工程(S5)では、制御装置3は、スピンモータ18を制御して基板Wの回転速度を、所定の処理回転速度(すなわち、外周部薬液処理工程(S5)における基板Wの回転速度)に設定する(図12のS30)。また、処理液ノズル19が退避位置にある場合には、制御装置3は、第1のノズル移動機構24を制御して、処理液ノズル19を、上面の処理位置(図3Aに示す位置)に配置する(図12のS31)。
また、制御装置3の演算ユニット51は、情報記憶部55に記憶されている回転速度−吹き付け領域位置対応テーブル107(図9参照)を参照して、当該処理回転速度に対応する気体ノズル101の処理位置(径方向RDの位置)を決定する(図12のS32)。そして、制御装置3は、決定した処理位置(径方向RDの位置)に気体ノズル101を配置する(図12のS33)。
基板Wの回転が処理回転速度に達すると、制御装置3は、リンス液バルブ23を閉じながら薬液バルブ21を開くことにより、処理液ノズル19の処理液吐出口19aから薬液を吐出開始させる(図12のS34)。また、制御装置3は、第1の気体バルブ103を開くことにより、気体ノズル101の気体吐出口101aから気体を吐出開始させる(図12のS34)。気体の吐出開始前の状態において、流量調整バルブ104は予め定める開度に調整されている。これにより、図3Aに示すように、基板Wの上面の外周領域42に薬液が着液して薬液の液膜LFが形成され、かつ薬液の液膜LFに対し、径方向RDの内側から気体が吹き付けられる。これにより、着液位置液幅W1を良好に制御できる。
なお、気体ノズル101からの気体の吐出開始は、処理液ノズル19からの薬液の吐出開始よりも先立って開始されてもよい。
制御装置3は、図13および図14に示すように、前述の着液位置往復移動工程(図12のS35)を実行する。具体的には、制御装置3は、各周端径方向位置記憶部59に記憶されている情報(振幅、周期よび位相(各周端径方向位置計測工程(S4)の計測結果))に基づいて、配置位置周端46の位置変化と同じ振幅、同じ周期、かつ同じ位相で着液位置45が移動するように処理液ノズル19を移動させる。
さらに、制御装置3は、着液位置往復移動工程に並行して、吹き付け領域往復移動工程(S35)を実行する。図15A,15Bに示すように、偏芯している基板Wの回転に伴って、配置位置周端46が図15Aに示す実線で位置(図15Bに破線で示す位置)と、図15Bに実線で示す位置との間で移動している。制御装置3は、気体ノズル101を、着液位置45と吹き付け領域106との径方向RDの距離が一定に保ちながら、処理液ノズル19の移動に同期させて気体ノズル101を往復移動させる。これにより、着液位置45の往復移動によらずに、着液位置液幅W1を、基板Wの回転速度に対応する一定の幅に保つことができる。その結果、図16に示すように、基板Wの上面の外周領域42における処理幅の均一性を高く保つことができる
薬液の吐出開始から予め定める期間が経過すると(図12のS36でYES)、制御装置3は、薬液バルブ21および第1の気体バルブ103をそれぞれ閉じる。これにより、処理液ノズル19からの薬液の吐出が停止(終了)し、かつ気体ノズル101からの気体の吐出が停止(終了)する(図12のS37)。
また、外周部薬液処理工程(S5)では、ヒータ11の熱源がオンされて、ヒータ11によって、基板Wの下面の外周領域43が加熱される。これにより、外周部薬液処理の処理速度を高めている。また、外周部薬液処理工程(S5)では、処理位置に配置される気体吐出ノズル27から吐出される不活性ガスによって、中央部から外周部41に向けて流れる放射状気流が基板Wの上方に形成される。この放射状気流によって、デバイス形成領域である基板Wの上面中央部が保護される。また、外周部薬液処理工程(S5)では、基板の上面の外周領域42において、気体ノズル101の処理位置とは異なる周方向位置に設定された処理位置に位置する上外周部気体ノズル31から基板Wの上面の外周領域42の吹き付け位置に対し不活性ガスが吹き付けられる。この不活性ガスの吹き付けにより、基板Wの上面の外周領域42における薬液の処理幅を、基板Wの周方向の複数位置において制御することができる。また、外周部薬液処理工程(S5)では、処理位置に位置する下外周部気体ノズル36から基板Wの下面の外周領域43の吹き付け位置に対し不活性ガスが吹き付けられる。この不活性ガスの吹き付けにより、基板Wの下面への薬液の回り込みを防止することができる。
外周部薬液処理工程(S5)の終了後、次いで、制御装置3は、基板Wの外周部41を、リンス液を用いて処理する外周部リンス液処理工程(外周部処理工程。図10のS6)を実行する。外周部リンス液処理工程(S6)は、基板Wの回転が所定の回転速度(約300rpm〜約1300rpmの所定の速度)にある状態で実行される。また、外周部リンス液処理工程(S6)に並行して、制御装置3は、基板Wの上面の外周領域42におけるリンス液の着液位置45を、基板Wの回転角度位置に伴う配置位置周端46の径方向位置変化に追従して径方向RDに往復移動させる着液位置往復移動工程を実行する。図13を併せて参照しながら、外周部リンス液処理工程(S6)について説明する。
外周部リンス液処理工程(S6)では、制御装置3は、スピンモータ18を制御して基板Wの回転速度を、所定の処理回転速度(すなわち、外周部リンス液処理工程(S6)における基板Wの回転速度)に設定する(S30)。また、処理液ノズル19が退避位置にある場合には、制御装置3は、第1のノズル移動機構24を制御して、処理液ノズル19を、上面の処理位置(図3Aに示す位置)に配置する(S31)。
また、制御装置3の演算ユニット51は、情報記憶部55に記憶されている回転速度−吹き付け領域位置対応テーブル107(図9参照)を参照して、当該処理回転速度に対応する気体ノズル101の処理位置(径方向RDの位置)を決定する(S32)。そして、制御装置3は、決定した処理位置(径方向RDの位置)に気体ノズル101を配置する(S33)。
基板Wの回転が処理回転速度に達すると、制御装置3は、薬液バルブ21を閉じながらリンス液バルブ23を開くことにより、処理液ノズル19の処理液吐出口19aからリンス液を吐出開始させる(S34)。また、制御装置3は、第1の気体バルブ103を開くことにより、気体ノズル101の気体吐出口101aから気体を吐出開始させる(S34)。これにより、図3Aに示すように、基板Wの上面の外周領域42にリンス液が着液してリンス液の液膜LFが形成され、かつ薬液の液膜LFに対し、径方向RDの内側から気体が吹き付けられる。これにより、着液位置液幅W1を良好に制御できる。
また、制御装置3は、図13および図14に示すように、前述の着液位置往復移動工程(S33)を実行する。また、制御装置3は、図15Aおよび図15Bに示すように、着液位置往復移動工程に並行して、吹き付け領域往復移動工程(S33)を実行する。着液位置往復移動工程および吹き付け領域往復移動工程については、外周部薬液処理工程(S5)において説明済みであるので、その説明を省略する。
リンス液の吐出開始から予め定める期間が経過すると(S36でYES)、制御装置3は、リンス液バルブ23を閉じ、かつ第1の気体バルブ103を閉じる。これにより、処理液ノズル19からのリンス液の吐出が停止(終了)し、かつ気体ノズル101からの気体の吐出が停止(終了)する(S37)。
また、外周部リンス液処理工程(S6)では、処理位置に位置する気体吐出ノズル27から吐出される不活性ガスによって、中央部から外周部41に向けて流れる放射状気流が基板Wの上方に形成される。また、外周部リンス液処理工程(S6)では、処理位置に位置する上外周部気体ノズル31から基板Wの上面の外周領域42の吹き付け位置に対し不活性ガスが吹き付けられる。また、外周部リンス液処理工程(S6)では、処理位置に位置する下外周部気体ノズル36から基板Wの下面の外周領域43の吹き付け位置に対し不活性ガスが吹き付けられる。外周部リンス液処理工程(S6)では、ヒータ11の熱源がオンされて、基板Wの下面の外周領域43が、ヒータ11によって加熱されてもよいし、加熱されなくてもよい。
その後、制御装置3は、第1のノズル移動機構24を制御して、処理液ノズル19をスピンチャック5の側方の退避位置へと戻す。
次いで、基板Wを乾燥させるスピンドライ(図10のS7)が行われる。具体的には、制御装置3はスピンモータ18を制御して、各処理工程S2〜S6における回転速度よりも大きい乾燥回転速度(たとえば数千rpm)まで基板Wを加速させ、その乾燥回転速度で基板Wを回転させる。また、これにより、大きな遠心力が基板W上の液体に加わり、基板Wの外周部に付着している液体が基板Wの周囲に振り切られる。このようにして、基板Wの外周部から液体が除去され、基板Wの外周部が乾燥する。
基板Wの高速回転の開始から所定期間が経過すると、制御装置3は、スピンモータ18を制御することにより、スピンチャック5による基板Wの回転を停止させる。
その後、処理チャンバ4内から基板Wが搬出される(図10のS8)。具体的には、制御装置3は、搬送ロボットCRのハンドを処理チャンバ4の内部に進入させる。そして、制御装置3は、搬送ロボットCRのハンドにスピンチャック5上の基板Wを保持させる。その後、制御装置3は、搬送ロボットCRのハンドを処理チャンバ4内から退避させる。これにより、処理後の基板Wが処理チャンバ4から搬出される。
以上により、この第1の実施形態によれば、基板Wの上面の外周領域42の着液位置45に着液した処理液に向けて、基板Wの径方向RDの内側から気体が吹き付けられる。処理液の液膜LFの内周端301の位置は、基板Wの回転速度に依存している。基板Wの処理回転速度に応じて基板Wにおける気体の吹き付け領域106の位置を調整すること(内周端位置調整工程の実行)により、処理液の液膜LFの内周端301の位置を、外周部処理工程(S5,S6)における処理回転速度に対応する位置に調整することができる。そして、処理液の液膜LFの内周端301の位置を調整することにより、着液位置液幅W1を、処理回転速度に適した幅に調整することも可能である。そのため、基板Wの回転速度の如何によらずに、着液位置液幅W1を精密に制御することができる。これにより、基板Wの回転速度によらずに、基板Wの上面の外周領域42における処理幅を精密に制御することができる。
また、吹き付け領域106の径方向RDの位置を変更することにより、処理液の液膜LFの内周端301の位置を、処理回転速度に対応する位置に調整することができる。吹き付け領域106の径方向RDの位置は、処理液の液膜LFの内周端301の位置に直接的に作用し、当該処理液の液膜LFの内周端301の位置に大きな影響を与える。したがって、気体の吹き付け領域の位置を変更することにより、処理液の液膜LFの内周端301の位置をより効果的に変更させることができる。これにより、着液位置液幅W1を、より精密に制御できる。
図17Aおよび図17Bは、第1の実施形態に係る第2の基板処理例の外周部処理工程(S5,S6)における処理液ノズル19および気体ノズル101の状態を模式的に示す図である。
この第2の基板処理例が、前述の第1の基板処理例と異なる点は、外周部処理工程(S5,S6)において、着液位置往復移動工程(処理液ノズル19の往復移動)を行わずに、吹き付け領域往復移動工程によって、処理液の液膜LFの内周端301を、配置位置周端46の位置変化に追従して往復移動させている点である。偏芯している基板Wの回転に伴って、配置位置周端46が図17Aに示す実線で位置(図17Bに破線で示す位置)と、図17Bに実線で示す位置との間で移動する。この場合、制御装置3は、各周端径方向位置記憶部59(図8参照)に記憶されている情報(振幅、周期よび位相(各周端径方向位置計測工程(S4)の計測結果))に基づいて、配置位置周端46の位置変化と同じ振幅、同じ周期、かつ同じ位相で処理液の液膜LFの内周端301が移動するように気体ノズル101を往復移動させる。これにより、処理液ノズル19を移動させることなく、処理液の液膜LFの内周端301と配置位置周端46との距離を一定に保つことができる。その結果、基板Wの偏芯状態によらずに、基板Wの上面の外周領域42における処理幅の均一性を高く保つことができる。
次に第2の実施形態について説明する。図18は、第2の実施形態に係る情報記憶部(第2の情報記憶部)55に記憶されている回転速度−吹き付け流量対応テーブル(第2の対応関係規定情報)207を説明するための図である。
回転速度−吹き付け流量対応テーブル207には、基板Wの回転速度(処理回転速度)と、各回転速度に対応する、気体ノズル101から吹き付け領域106に吹き付けられる気体の吹き付け流量との対応関係が規定されている。回転速度−吹き付け流量対応テーブル207によって規定される「気体の吹き付け流量」は、吹き付け流量そのものであってもよいし、当該吹き付け流量に対応する流量調整バルブ104の開度であってもよい。
一般的に、基板Wの回転速度が遅くなるに従って、着液位置液幅W1が広くなる傾向にある。また、吹き付け領域106に吹き付けられる気体の吹き付け流量が多量になるに従って、処理液の液膜LFの内周端301が径方向RDの外方に向けて押し付けられる。着液位置液幅W1が広くなることを阻止すべく、基板Wの回転速度が遅くなるに従って処理液の液膜LFの内周端301を径方向RDの外方に向けて押す力が増大するように、すなわち、基板Wの回転速度が遅くなるに従って気体の吹き付け流量が増大するように、回転速度−吹き付け流量対応テーブル207は規定されている。
図19は、第2の実施形態に係る第3の基板処理例に係る外周部処理工程(S5,S6)の内容を説明するための流れ図である。第2の実施形態に係る第3の基板処理例は、外周部薬液処理工程(S5)において、第1の実施形態に係る第1の基板処理例と相違する。第3の基板処理例に係る外周部薬液処理工程(S5)について、図2、図8および図19を参照しながら説明する。第3の基板処理例に係る外周部リンス液処理工程(S6)についての説明は省略する。
外周部薬液処理工程(S5)では、制御装置3は、基板Wの回転速度を処理回転速度に設定し(S40)。また、処理液ノズル19が退避位置にある場合には、制御装置3は、処理液ノズル19を、上面の処理位置(図3Aに示す位置)に配置する(S31)。S40およびS41は、それぞれ図12にS30およびS31に相当する。また、制御装置3は、予め定める処理位置に気体ノズル101を配置する。
また、制御装置3の演算ユニット51は、情報記憶部55に記憶されている回転速度−吹き付け流量対応テーブル207(図18参照)を参照して、当該処理回転速度に対応する気体の吹き付け流量(気体ノズル101からの吐出流量)を決定する(S42)。そして、制御装置3は、気体流量調整バルブ104を制御して、決定された吹き付け流量が気体吐出口101aから吐出されるように、気体流量調整バルブ104の開度を調整する(S43)。
基板Wの回転が処理回転速度に達すると、制御装置3は、リンス液バルブ23を閉じながら薬液バルブ21を開くことにより、処理液ノズル19の処理液吐出口19aから薬液を吐出開始させる(S44)。また、制御装置3は、第1の気体バルブ103を開くことにより、気体ノズル101の気体吐出口101aから気体を吐出開始させる(S44)。これにより、図3Aに示すように、基板Wの上面の外周領域42に薬液が着液して薬液の液膜LFが形成され、かつ薬液の液膜LFに対し、径方向RDの内側から気体が吹き付けられる。これにより、着液位置液幅W1を良好に制御できる。
制御装置3は、図13および図14に示すように、着液位置往復移動工程(S45)を実行する。着液位置往復移動工程(S45)は、図12のS35の着液位置往復移動工程と同等の工程である。さらに、制御装置3は、着液位置往復移動工程に並行して、吹き付け領域往復移動工程(S45)を実行する。吹き付け領域往復移動工程(S45)も、図12のS35の吹き付け領域往復移動工程と同等の工程である。
薬液の吐出開始から予め定める期間が経過すると(S46でYES)、制御装置3は、薬液バルブ21および第1の気体バルブ103をそれぞれ閉じる。これにより、処理液ノズル19からの薬液の吐出が停止(終了)し、かつ気体ノズル101からの気体の吐出が停止(終了)する(S47)。
以上により、この第2の実施形態によれば、基板Wの処理回転速度に応じて、吹き付け領域106に吹き付けられる気体の吹き付け流量を調整することにより、処理液の液膜LFの内周端301の位置を、外周部処理工程(S5,S6)における処理回転速度に対応する位置に調整することができる。処理液の液膜LFの内周端301の位置を調整することにより、着液位置液幅W1を、処理回転速度に適した幅に調整することも可能である。そのため、基板Wの回転速度の如何によらずに、着液位置液幅W1を精密に制御することができる。これにより、基板Wの回転速度によらずに、基板Wの上面の外周領域42における処理幅を精密に制御することができる。
図20Aおよび図20Bは、第2の実施形態に係る第4の基板処理例の外周部処理工程(S5,S6)における処理液ノズル19および気体ノズル101の状態を模式的に示す図である。
この第4の基板処理例が、前述の第3の基板処理例と異なる点は、外周部処理工程(S5,S6)において、着液位置往復移動工程(処理液ノズル19の往復移動)および吹き付け領域往復移動工程を行わずに、気体ノズル101からの気体の吹き付け流量を変化させることにより、処理液の液膜LFの内周端301を、配置位置周端46の位置変化に追従して往復移動させている点である。偏芯している基板Wの回転に伴って、配置位置周端46が図20Aに示す実線で位置(図20Bに破線で示す位置)と、図20Bに実線で示す位置との間で移動する。この場合、制御装置3は、各周端径方向位置記憶部59(図8参照)に記憶されている情報(振幅、周期よび位相(各周端径方向位置計測工程(S4)の計測結果))に基づいて、配置位置周端46の位置変化と同じ振幅、同じ周期、かつ同じ位相で処理液の液膜LFの内周端301が移動するように、気体流量調整バルブ104を制御して、気体ノズル101の気体吐出口101aから吐出される気体の流量を調整する。これにより、処理液ノズル19を移動させることなく、処理液の液膜LFの内周端301と配置位置周端46との距離を一定に保つことができる。その結果、基板Wの偏芯状態によらずに、基板Wの上面の外周領域42における処理幅の均一性を高く保つことができる。ゆえに、処理液の液膜LFの内周端301と配置位置周端46との距離を一定に保つことができる。
以上、この発明の2つの実施形態について説明したが、この発明は他の形態で実施することもできる。
たとえば、処理液の液膜LFへの気体の吹き付けによる、処理液の液膜LFの内周端301の位置の制御(内周端位置調整工程)を、外周部処理工程(S5,S6)における基板Wの処理回転速度が、予め定める速度(たとえば1300rpm)未満である場合にのみ実行し、当該処理回転速度が、予め定める速度(たとえば1300rpm)以上である場合には、処理液の液膜LFの内周端301に対する気体の吹き付けを実行しないようにしてもよい。処理回転速度が1300rpm未満である場合には、着液位置45に着液した処理液が着液位置45において膨らんで、基板Wの内側に広がるおそれがある。その一方で、処理回転速度が1300rpm以上である場合には、着液位置45に着液した処理液は、基板Wの内側には広がらない。そのため、処理液の液膜LFの内周端301に対する気体の吹き付けを、必要なときのみ実行してもよい。
また、前述の各実施形態において、情報記憶部55に、回転速度−吹き付け領域位置対応テーブル107や回転速度−吹き付け流量対応テーブル207を記憶するとして説明したが、処理回転速度と吹き付け領域106の位置との対応関係や、吹き付け領域106への気体の吹き付け流量との対応関係を表すマップを情報記憶部55に記憶し、このマップに基づいて、処理液の液膜LFの内周端301に対する気体の吹き付けを実行するようにしてもよい。
また、前述の各実施形態において、気体吐出口101aが、円弧状のスリットではなく、たとえば直線状のスリットを用いて構成されていてもよい。また、気体吐出口101aが複数の吐出穴によって構成されていてもよい。
また、気体ノズル101が、基板Wの上面の中央部に間隔を空けて対向する対向部材(たとえば気体吐出ノズル27(図2参照))の外周部に一体的に設けられていてもよい。
また、内周端位置調整工程において、気体の吹き付け領域106の位置および吹き付け流量の双方を調整するようにしてもよい。
たとえば、周端位置計測工程として、各周端径方向位置計測工程(S4)に代えて、基板Wの周方向の各周端位置における高さ位置である各周端高さ位置を計測する各周端高さ位置計測工程が実行されてもよい。この場合、スピンチャック5によって保持されている基板Wの周端の高さ位置を検出するための高さ位置センサ(位置センサ)が設けられており、高さ位置センサの検出出力に基づいて、各周端高さ位置が計測されるようになっていてもよい。また、位置センサに限られず、CCDカメラを用いて、基板Wの周方向の各周端位置を計測するようにしてもよい。
また、前述の各実施形態では、基板処理装置が円板状の基板Wを処理する装置である場合について説明したが、基板Wは周端の少なくとも一部が円弧状をなしていれば足り、必ずしも真円である必要はない。
また、ノズル駆動機構として、処理液ノズル19および気体ノズル101を、円弧軌跡を描きながら移動させるスキャンタイプのものを例に挙げたが、処理液ノズル19および気体ノズル101として、直線状に移動させる直動タイプのものが採用されていてもよい。
また、前述の各実施形態では、基板Wの偏芯状態に拘りなく、基板Wの上面の外周領域42における処理幅を均一にすべく、外周部処理工程(S5,S6)において配置位置周端46の位置変化に追従して、処理液の着液位置45や、処理液の液膜LFの内周端301を往復移動させるようにした。しかしながら、本発明は、処理液の着液位置45や、処理液の液膜LFの内周端301を往復移動させるものに限られない。すなわち、処理幅を細幅に調整することを目的として、処理液の液膜LFに対し径方向RDの内側から気体を吹き付けて着液位置液幅W1を細くするものであってもよい。
また、処理液ノズル19は、薬液およびリンス液の双方を吐出するものを例に挙げて説明したが、薬液を吐出するための処理液ノズル(薬液ノズル)と、リンス液を吐出するための処理液ノズル(リンス液ノズル)とが個別に設けられていてもよい。
その他、特許請求の範囲に記載された事項の範囲で種々の設計変更を施すことが可能で
ある。
1 :基板処理装置
2 :処理ユニット
3 :制御装置
5 :スピンチャック(基板保持ユニット)
18 :スピンモータ(基板回転ユニット)
19 :処理液ノズル
41 :外周部
45 :着液位置
46 :配置位置周端
47 :径方向位置センサ(各周端位置計測ユニット)
55 :情報記憶部(第1の情報記憶部、第2の情報記憶部)
101 :気体ノズル
101a :気体吐出口
104 :気体流量調整バルブ(吹き付け流量調整ユニット)
105 :第2のノズル移動機構(気体ノズル駆動ユニット)
106 :吹き付け領域
107 :回転速度−吹き付け領域位置対応テーブル(回転速度−吹き付け位置対応テーブル、第1の対応関係規定情報)
207 :回転速度−吹き付け流量対応テーブル(2の対応関係規定情報)
301 :内周端
A1 :回転軸線
W :基板
W1 :着液位置液幅

Claims (16)

  1. 周端の少なくとも一部が円弧状をなす基板を保持する基板保持ユニットと、
    前記基板保持ユニットによって保持されている基板を、当該基板の中央部を通る回転軸線まわりに回転させるための基板回転ユニットと、
    前記基板保持ユニットによって保持されている基板の外周部に向けて処理液を吐出するための処理液ノズルと、
    前記基板保持ユニットによって保持されている基板の外周部における処理液の着液位置に対し前記基板の回転半径方向の内側に位置する吹き付け位置に向けて気体を吹き付けるための気体ノズルと、
    前記気体ノズルを駆動するための気体ノズル駆動ユニットと、
    前記吹き付け位置に吹き付けられる気体の流量を調整するための吹き付け流量調整ユニットと、
    前記基板回転ユニット、ならびに前記気体ノズル駆動ユニットおよび前記吹き付け流量調整ユニットの少なくとも一方を制御して、前記基板保持ユニットに保持されている前記基板を前記基板回転ユニットによって前記回転軸線まわりに所定の処理回転速度で回転させる基板回転工程と、前記基板回転工程に並行して、前記基板の外周部に向けて前記処理液ノズルから処理液を吐出する処理液吐出工程と、前記基板回転工程および前記処理液吐出工程に並行して、前記吹き付け位置に向けて前記気体ノズルから気体を吹き付ける気体吹き付け工程と、前記気体吹き付け工程に並行して、前記処理回転速度の高低に基づいて、記吹き付け位置を前記気体ノズル駆動ユニットによって制御しておよび/または前記気体ノズルから前記吹き付け位置に吹き付けられる気体の吹き付け流量を前記吹き付け流量調整ユニットによって制御して、前記着液位置に着液している処理液の内周端の位置を、前記処理回転速度に対応する位置に調整する内周端位置調整工程とを実行する制御装置とを含み、
    前記内周端位置調整工程は、前記吹き付け位置を、前記処理回転速度の低下に従って当該吹き付け位置が前記基板の回転半径方向の外側になるように配置する工程、および/または前記気体ノズルから前記吹き付け位置に吹き付けられる気体の前記吹き付け流量を前記処理回転速度の低下に従って多くなるように調整する工程を含む、基板処理装置。
  2. 記制御装置は、前記内周端位置調整工程において、前記気体ノズル駆動ユニットを制御して、前記吹き付け位置を、前記処理回転速度の低下に従って当該吹き付け位置が前記基板の回転半径方向の外側になるように配置する工程を実行する、請求項1に記載の基板処理装置。
  3. 前記処理回転速度と、前記吹き付け位置との対応関係を規定する第1の対応関係規定情報を記憶する第1の情報記憶部をさらに含み、
    前記制御装置は、前記第1の対応関係規定情報に基づいて前記内周端位置調整工程を実行する、請求項2に記載の基板処理装置。
  4. 記制御装置は、前記内周端位置調整工程において、前記吹き付け流量調整ユニットを制御して、前記吹き付け流量を前記処理回転速度の低下に従って多くなるように調整する気体流量調整工程を実行する、請求項1〜3のいずれか一項に記載の基板処理装置。
  5. 前記処理回転速度と、前記吹き付け流量との対応関係を規定する第2の対応関係規定情報を記憶する第2の情報記憶部をさらに含み、
    前記制御装置は、前記第2の対応関係規定情報に基づいて前記内周端位置調整工程を実行する、請求項4に記載の基板処理装置。
  6. 周端の少なくとも一部が円弧状をなす基板を保持する基板保持ユニットと、
    前記基板保持ユニットによって保持されている基板を、当該基板の中央部を通る回転軸線まわりに回転させるための基板回転ユニットと、
    前記基板保持ユニットによって保持されている基板の外周部に向けて処理液を吐出するための処理液ノズルと、
    前記基板保持ユニットによって保持されている基板の外周部における処理液の着液位置に対し前記基板の回転半径方向の内側に位置する吹き付け位置に向けて気体を吹き付けるための気体ノズルと、
    前記基板回転ユニットを制御して、前記基板保持ユニットに保持されている前記基板を前記回転軸線まわりに所定の処理回転速度で回転させる基板回転工程と、前記基板回転工程に並行して、前記基板の外周部に向けて前記処理液ノズルから処理液を吐出する処理液吐出工程と、前記基板回転工程および前記処理液吐出工程に並行して、前記吹き付け位置に向けて前記気体ノズルから気体を吹き付ける気体吹き付け工程と、前記気体吹き付け工程に並行して、前記吹き付け位置または前記吹き付け位置に吹き付けられる気体の吹き付け流量を制御して、前記着液位置に着液している処理液の内周端の位置を、前記処理回転速度に対応する位置に調整する内周端位置調整工程とを実行する制御装置とを含み、
    前記制御装置は、前記内周端位置調整工程において、
    前記吹き付け位置を回転速度−吹き付け位置対応テーブルを基準として制御し、前記吹き付け流量を回転速度−吹き付け流量対応テーブルを基準として制御し、
    前記基板の回転半径方向の前記処理液の液膜の幅を予め定められた幅に調整する、基板処理装置。
  7. 前記制御装置は、前記処理回転速度が予め定める速度以上である場合に前記内周端位置調整工程を実行せず、前記処理回転速度が予め定める速度未満である場合に前記内周端位置調整工程を実行する、請求項1〜のいずれか一項に記載の基板処理装置。
  8. 前記基板保持ユニットは、前記基板の外周部を支持せずに当該基板の中央部を支持して当該基板を保持するユニットを含み、
    前記基板処理装置は、前記基板保持ユニットに保持されている基板の周方向の各周端位置を計測するための各周端位置計測ユニットをさらに含み、
    前記制御装置は、前記基板保持ユニットに保持されている基板の、周方向の各周端位置を、前記各周端位置計測ユニットによって計測する各周端位置計測工程と、前記着液位置に着液している処理液の内周端が、前記基板の周端のうち前記処理液ノズルが配置されている周方向位置の周端である配置位置周端の位置変化に追従して往復移動するように、前記着液位置に着液している処理液の内周端の位置を調整する第2の内周端位置調整工程さらに実行する、請求項1〜のいずれか一項に記載の基板処理装置。
  9. 前記気体ノズルは気体の前記吹き付け位置が前記基板の外周部に沿う帯状をなすような気体吐出口を有している、請求項1〜のいずれか一項に記載の基板処理装置。
  10. 前記気体ノズルは、前記基板の外側かつ斜め下向きに気体を吐出する、請求項1〜のいずれか一項に記載の基板処理装置。
  11. 周端の少なくとも一部が円弧状をなす基板を、当該基板の中央部を通る回転軸線まわりに、所定の処理回転速度で回転させる基板回転工程と、
    前記基板回転工程に並行して、前記基板の外周部に向けて処理液ノズルから処理液を吐出する処理液吐出工程と、
    前記基板回転工程および前記処理液吐出工程に並行して、前記基板の外周部における処理液の着液位置に対し前記基板の回転半径方向の内側に位置する吹き付け位置に向けて気体ノズルから気体を吹き付ける気体吹き付け工程と、
    前記気体吹き付け工程に並行して、前記処理回転速度の高低に基づいて、記吹き付け位置および/または前記気体ノズルから前記吹き付け位置に吹き付けられる気体の吹き付け流量を制御して、前記着液位置に着液している処理液の内周端の位置を、前記処理回転速度に対応する位置に調整する内周端位置調整工程とを含み、
    前記内周端位置調整工程は、前記吹き付け位置を、前記処理回転速度の低下に従って当該吹き付け位置が前記基板の回転半径方向の外側になるように配置する工程、および/または前記気体ノズルから前記吹き付け位置に吹き付けられる気体の前記吹き付け流量を前記処理回転速度の低下に従って多くなるように調整する工程を含む、基板処理方法。
  12. 前記内周端位置調整工程は、前記吹き付け位置を、前記処理回転速度の低下に従って当該吹き付け位置が前記基板の回転半径方向の外側になるように配置る工程を含む、請求項11に記載の基板処理方法。
  13. 前記内周端位置調整工程は、前記気体の前記吹き付け流量を前記処理回転速度の低下に従って多くなるように調整する気体流量調整工程を含む、請求項11または12に記載の基板処理方法。
  14. 周端の少なくとも一部が円弧状をなす基板を、当該基板の中央部を通る回転軸線まわりに、所定の処理回転速度で回転させる基板回転工程と、
    前記基板回転工程に並行して、前記基板の外周部に向けて処理液ノズルから処理液を吐出する処理液吐出工程と、
    前記基板回転工程および前記処理液吐出工程に並行して、前記基板の外周部における処理液の着液位置に対し前記基板の回転半径方向の内側に位置する吹き付け位置に向けて気体ノズルから気体を吹き付ける気体吹き付け工程と、
    前記気体吹き付け工程に並行して、前記吹き付け位置または前記気体ノズルから前記吹き付け位置に吹き付けられる気体の吹き付け流量を制御して、前記着液位置に着液している処理液の内周端の位置を、前記処理回転速度に対応する位置に調整する内周端位置調整工程とを含み、
    前記内周端位置調整工程は、
    前記吹き付け位置を回転速度−吹き付け位置対応テーブルを基準として制御し、
    前記吹き付け流量を回転速度−吹き付け流量対応テーブルを基準として制御し、
    前記基板の回転半径方向の前記処理液の液膜の幅を予め定められた幅に調整する、基板処理方法。
  15. 前記内周端位置調整工程は、前記処理回転速度が予め定める速度以上である場合には実行されず、前記処理回転速度が予め定める速度未満である場合に実行される、請求項1114のいずれか一項に記載の基板処理方法。
  16. 前記基板処理方法は、前記基板の外周部を支持せずに当該基板の中央部を支持して当該基板を保持する基板保持ユニットを含む基板処理装置において実行される方法であり、
    前記基板処理方法は、
    前記基板保持ユニットに保持されている基板の、周方向の各周端位置を計測する各周端位置計測工程
    記着液位置に着液している処理液の内周端が、前記基板の周端のうち前記処理液ノズルが配置されている周方向位置の周端である配置位置周端の位置変化に追従して往復移動するように、前記着液位置に着液している処理液の内周端の位置を調整する第2の内周端位置調整工程さらに含む、請求項1115のいずれか一項に記載の基板処理方法。
JP2017037563A 2017-02-28 2017-02-28 基板処理装置および基板処理方法 Active JP6949510B2 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2017037563A JP6949510B2 (ja) 2017-02-28 2017-02-28 基板処理装置および基板処理方法
CN201880008898.3A CN110226217B (zh) 2017-02-28 2018-01-30 基板处理装置以及基板处理方法
PCT/JP2018/003029 WO2018159193A1 (ja) 2017-02-28 2018-01-30 基板処理装置および基板処理方法
KR1020197022293A KR102245342B1 (ko) 2017-02-28 2018-01-30 기판 처리 장치 및 기판 처리 방법
TW107103444A TWI662649B (zh) 2017-02-28 2018-01-31 基板處理裝置以及基板處理方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017037563A JP6949510B2 (ja) 2017-02-28 2017-02-28 基板処理装置および基板処理方法

Publications (2)

Publication Number Publication Date
JP2018142678A JP2018142678A (ja) 2018-09-13
JP6949510B2 true JP6949510B2 (ja) 2021-10-13

Family

ID=63526847

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017037563A Active JP6949510B2 (ja) 2017-02-28 2017-02-28 基板処理装置および基板処理方法

Country Status (1)

Country Link
JP (1) JP6949510B2 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7232710B2 (ja) * 2019-05-29 2023-03-03 株式会社Screenホールディングス 基板処理方法および基板処理装置
JP7341825B2 (ja) * 2019-09-27 2023-09-11 東京エレクトロン株式会社 基板処理装置および基板処理方法
KR102622277B1 (ko) * 2022-05-19 2024-01-08 세메스 주식회사 기체 분사유닛 및 기판처리장치

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5891085B2 (ja) * 2012-03-27 2016-03-22 株式会社Screenホールディングス 基板処理装置および基板処理方法
JP6100487B2 (ja) * 2012-08-20 2017-03-22 株式会社Screenホールディングス 基板処理装置
JP6475071B2 (ja) * 2015-04-24 2019-02-27 株式会社Screenホールディングス 基板処理装置および基板処理方法

Also Published As

Publication number Publication date
JP2018142678A (ja) 2018-09-13

Similar Documents

Publication Publication Date Title
US9508568B2 (en) Substrate processing apparatus and substrate processing method for performing cleaning treatment on substrate
JP6480009B2 (ja) 基板液処理装置、基板液処理方法および記憶媒体
JP6949510B2 (ja) 基板処理装置および基板処理方法
WO2017029862A1 (ja) 基板処理方法および基板処理装置
KR102245342B1 (ko) 기판 처리 장치 및 기판 처리 방법
JP6642868B2 (ja) 基板処理方法および基板処理装置
JP2019134073A (ja) 基板処理方法および基板処理装置
TW202025280A (zh) 基板處理方法以及基板處理裝置
JP6842952B2 (ja) 基板処理装置および基板処理方法
JP6949508B2 (ja) 基板処理装置および基板処理方法
JP6949509B2 (ja) 基板処理装置および基板処理方法
JP4988621B2 (ja) 基板処理装置
JP6726430B2 (ja) 基板処理装置および基板処理方法
JP2018037490A (ja) 基板処理方法
JP7232710B2 (ja) 基板処理方法および基板処理装置
JP2009194090A (ja) 基板処理方法および基板処理装置
JP7453020B2 (ja) 基板処理方法
JP6771080B2 (ja) 基板処理装置および基板処理方法
JP2023104709A (ja) 基板処理装置および基板処理方法
JP2018029216A (ja) 基板処理装置および基板処理方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191223

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210128

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20210326

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210430

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210909

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210922

R150 Certificate of patent or registration of utility model

Ref document number: 6949510

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150