JP6939562B2 - 非水系二次電池 - Google Patents

非水系二次電池 Download PDF

Info

Publication number
JP6939562B2
JP6939562B2 JP2017553813A JP2017553813A JP6939562B2 JP 6939562 B2 JP6939562 B2 JP 6939562B2 JP 2017553813 A JP2017553813 A JP 2017553813A JP 2017553813 A JP2017553813 A JP 2017553813A JP 6939562 B2 JP6939562 B2 JP 6939562B2
Authority
JP
Japan
Prior art keywords
secondary battery
current collecting
positive electrode
aqueous secondary
electrode current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017553813A
Other languages
English (en)
Other versions
JPWO2017094598A1 (ja
Inventor
辰也 畑中
辰也 畑中
佑紀 柴野
佑紀 柴野
卓司 吉本
卓司 吉本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Chemical Corp
Original Assignee
Nissan Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Chemical Corp filed Critical Nissan Chemical Corp
Publication of JPWO2017094598A1 publication Critical patent/JPWO2017094598A1/ja
Application granted granted Critical
Publication of JP6939562B2 publication Critical patent/JP6939562B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/665Composites
    • H01M4/667Composites in the form of layers, e.g. coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/24Conductive material dispersed in non-conductive organic material the conductive material comprising carbon-silicon compounds, carbon or silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0568Liquid materials characterised by the solutes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0569Liquid materials characterised by the solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/136Electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/5825Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/661Metal or alloys, e.g. alloy coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/571Methods or arrangements for affording protection against corrosion; Selection of materials therefor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • H01M2300/0028Organic electrolyte characterised by the solvent
    • H01M2300/0037Mixture of solvents
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Composite Materials (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Dispersion Chemistry (AREA)
  • Cell Electrode Carriers And Collectors (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

本発明は、非水系二次電池に関し、さらに詳述すると、導電性保護層を設けた集電基板を用いた電極と、集電基板に対する腐食性を有するスルホニルイミド系電解質を含む電解液とを備える非水系二次電池に関する。
スマートフォンやデジタルカメラ、携帯ゲーム機などの携帯電子機器の小型軽量化や高機能化の要求に伴い、近年、高性能電池の開発が積極的に進められており、充電により繰り返し使用できる二次電池の需要が大きく伸びている。
中でも、リチウムイオン二次電池は、高エネルギー密度、高電圧を有し、また充放電時におけるメモリー効果が無いことなどから、現在最も精力的に開発が進められている二次電池である。
リチウムイオン二次電池は、リチウムを吸蔵および放出できる正極と負極と、これらの間に介在するセパレータを容器内に収容し、その中に電解液(リチウムイオンポリマー二次電池の場合は液状電解液の代わりにゲル状または全固体型の電解質)を満たした構造を有する。
正極および負極は、一般的に、リチウムを吸蔵、放出できる活物質と、主に炭素材料からなる導電材、さらにバインダー樹脂を含む組成物からなる層を、銅箔やアルミニウム箔などの集電基板上に形成して作製される。このバインダーは、活物質と導電材、さらにこれらと金属箔を接着するために用いられる材料であり、このような材料として、ポリフッ化ビニリデン(PVdF)等のN−メチルピロリドン(NMP)に可溶なフッ素系樹脂や、オレフィン系重合体の水分散体などが市販されている。
ところで、近年の環境問題への取り組みから、電気自動車の開発が活発に進められており、リチウムイオン二次電池はその動力源としての応用も期待されている。
このため、リチウムイオン二次電池には、これまで以上のサイクル特性や、安全性、容量、出力特性および低コスト化などが求められている。
この点、リチウムイオン二次電池の非水電解質として、スルホニルイミド系電解質を使用することで、熱的安定性および化学的安定性の高い電池が作製できることが知られている。この理由は、リチウムイオン二次電池の電解質として汎用されているヘキサフルオロリン酸リチウム(LiPF6)に比べ、スルホニルイミド系電解質の熱安定性および加水分解安定性が高いためである。
しかし、スルホニルイミド系電解質を用いた場合、電池の作動電圧範囲内において、電極集電基板として汎用されるアルミニウム箔が腐食され、その結果、電池のサイクル特性および容量が低下してしまうという問題が生じる。
このため、スルホニルイミド系電解質は、一般的に用いられていない。
この腐食の問題を解決すべく、特許文献1では、スルホニルイミド系電解質を含む非水系電解液に、LiPF6や、LiBF4等のリチウム塩を添加する技術が報告され、これにより、高温使用時や高温保存時に電池特性が低下するのを抑制しつつ、正極の集電基板に相当するアルミニウム芯体の腐食を防止できることが開示されている。
この技術で、アルミニウム芯体の腐食を防止できる理由は、電池の充放電に伴い添加されているLiPF6やLiBF4がアルミニウム芯体表面上に不導体被膜を形成し、スルホニルイミド系電解質とアルミニウム芯体の直接的な接触を抑制するためである。
しかし、このような集電基板上に不導体被膜を形成する添加剤を用いる場合、充放電の繰り返しにより抵抗体である不導体被膜が徐々に成長してしまうため、集電基板と活物質の界面における抵抗が大きくなり、電池の出力特性が低下するという問題がある。
また、LiPF6を添加剤とした場合、その熱的安定性および化学的安定性の低さから、電池の熱的安定性および化学的安定性の改善は不十分となるという問題がある。一方、LiBF4を添加剤とした場合、生じるBF4 -のイオン半径が小さくリチウムイオンとの相互作用が大きくなるため、電解液中でのイオンの解離度が低下し、その結果、電池の内部抵抗が大きくなるという問題がある。
また、特許文献2では、AlF3被膜が表面に形成されたアルミニウム成形体を集電基板として用いることで、スルホニルイミド系電解質とアルミニウムとの反応を抑制できることが報告されている。
しかし、AlF3被膜だけでは、アルミニウムとスルホニルイミド系電解質との反応を十分に抑制できないため、この場合も、集電基板の腐食が徐々に進んで電池容量が低下することは避けられない。
さらに、特許文献3では、集電基板上に、フッ化リチウムや炭酸リチウム等のリチウム化合物を蒸着して保護層を設けることで、スルホニルイミド系電解質と集電基板との反応を抑制できることが報告されているが、この手法では、蒸着プロセスの生産性が低く、高コストであるという問題がある。
また、特許文献4では、貴金属、合金、導電性セラミックス、半導体、有機半導体、または導電性ポリマー等からなる保護層を集電基板上に設けることで、スルホニルイミド系電解質による集電基板の腐食を抑制できることが報告されている。
この場合、貴金属等の保護層の作製には蒸着等の生産性が低く高コストなプロセスが必要であるが、導電性ポリマーの保護層は、生産性が高く低コストである塗布プロセスで作製できる。
しかし、導電性ポリマー自体の酸化還元耐性や熱化学的安定性が低いため、これを保護層とした場合、電池容量の低下の抑制効果が十分に得られない傾向がある。
これら導電性ポリマーの利点および欠点に鑑み、特許文献5に開示されているように、熱的安定性や化学的安定性が高く、低コストである導電性炭素材料が分散された導電性保護層を、集電基板表面に形成する手法が検討されている。
しかし、導電性炭素またはグラファイトを用いた導電性保護層では、アルミニウム集電基板の腐食を十分に抑制できず、集電基板上に不導体被膜を形成することで腐食を抑制するLiBOB、LiFOB、LiPF6等の添加剤を併用する必要があることが開示されている。このような集電基板上に不導体被膜を形成する添加剤を用いる場合には、充放電の繰り返しにより抵抗体である不導体被膜が徐々に成長してしまうため、集電基板と活物質の界面における抵抗が大きくなり、電池の出力特性が低下するという問題がある。
一方、リン酸鉄リチウム(LiFePO4)は、熱的安定性に優れており、理論容量も170mAh/gと大きく、リチウムの挿入脱離反応が約3.4V(vs.Li/Li+)という高い電位で進行するため、次世代の正極活物質として大きく期待されている。
しかし、正極活物質としてLiFePO4を用いたリチウムイオン二次電池は、十分なサイクル特性を発揮することができない傾向があることが知られている。
特開平11−185807号公報 特開平6−231754号公報 国際公開第2012/093616号 特開2002−203562号公報 特表2013−546137号公報
本発明は、上記事情に鑑みてなされたものであり、スルホニルイミド系電解質を含む非水電解液を用いているにもかかわらず、サイクル特性が良好であり、出力特性も高い非水系二次電池を提供することを目的とする。
本発明者らは、上記目的を達成するために鋭意検討を重ねた結果、集電基板表面にカーボンナノチューブやカーボンブラック等の導電性炭素材料が分散した緻密な導電性保護層を形成することで、スルホニルイミド系電解質を含む非水電解液を用いた場合にも、集電基板の腐食が抑えられる結果、サイクル特性に優れるうえに、高速放電時の容量減少が大幅に抑制可能な二次電池が得られることを見出し、本発明を完成した。
すなわち、本発明は、
1.正極集電基板およびその上に形成されたリチウムを吸蔵・放出可能な正極活物質層を備える正極と、負極集電基板およびその上に形成されたリチウムを吸蔵・放出可能な負極活物質層を備える負極と、これら正負極間に介在するセパレータと、非水系電解液とを備えて構成される非水系二次電池であって、前記非水系電解液が、スルホニルイミド系電解質と、非水系有機溶媒とを含み、前記正極集電基板および負極集電基板のいずれか一方または双方の表面上に、バインダー樹脂中に導電性炭素材料が分散してなる導電性保護層が形成されていることを特徴とする非水系二次電池、
2.前記正極集電基板の表面上に前記導電性保護層が形成されている1の非水系二次電池、
3.前記正極活物質層が、正極活物質としてリン酸鉄リチウムを含む1または2の非水系二次電池、
4.前記導電性炭素材料が、カーボンナノチューブおよびカーボンブラックから選ばれる少なくとも1種である1〜3のいずれかの非水系二次電池、
5.前記スルホニルイミド系電解質が、リチウムビス(フルオロスルホニル)イミドである1〜3のいずれかの非水系二次電池、
6.前記非水系有機溶媒が、非プロトン性極性溶媒であり、前記リチウムビス(フルオロスルホニル)イミドが前記非プロトン性極性溶媒に溶解している5の非水系二次電池、
7.前記正極集電基板および負極集電基板のいずれか一方または双方が、アルミニウムを含む1〜6のいずれかの非水系二次電池、
8.前記正極集電基板が、アルミニウム箔である1〜7のいずれかの非水系二次電池、
9.前記導電性保護層の厚みが、0.001〜1μmである1〜8のいずれかの非水系二次電池、
10.前記バインダー樹脂が、酸性ポリマーを含む1〜9のいずれかの非水系二次電池、
11.前記酸性ポリマーが、カルボキシル基またはスルホ基を有するポリマーである10の非水系二次電池
を提供する。
本発明の非水系二次電池は、導電性保護層の作用により、腐食性の高いスルホニルイミド系電解質を用いた場合でも、集電基板の腐食が抑制される結果、スルホニルイミド系電解質を問題なく利用できるため、高速放電時の容量減少を大幅に抑制して、サイクル特性が良好となる。
以上のような特性を有する本発明の非水系二次電池は、サイクル寿命が長いうえ、特に電気自動車用途など瞬間的に大電流が必要な用途において電圧降下を起こすことなく電流を取り出すことができるという利点を有する。
以下、本発明についてさらに詳しく説明する。
本発明に係る非水系二次電池は、正極集電基板およびその上に形成されたリチウムを吸蔵・放出可能な正極活物質層を備える正極と、負極集電基板およびその上に形成されたリチウムを吸蔵・放出可能な負極活物質を備える負極と、これら正負極間に介在するセパレータと、非水系電解液とを備えて構成され、非水系電解液が、スルホニルイミド系電解質と、非水系有機溶媒とを含むとともに、正極集電基板および負極集電基板のいずれか一方または双方の表面上に、バインダー樹脂中に導電性炭素材料が分散してなる導電性保護層が形成されている。
本発明における非水系二次電池としては、リチウム二次電池、リチウムイオン二次電池等のリチウム系二次電池が挙げられる。
本発明で用いられる導電性保護層には、熱的安定性や化学的安定性が高く、低コストである導電性炭素材料が含まれる。
この導電性炭素材料としては、特に限定されるものではないが、繊維状導電性カーボン材料、層状導電性カーボン材料、粒子状導電性カーボン材料が好ましい。なお、これらの導電性炭素材料は、それぞれ単独で、または2種以上混合して用いることができる。
繊維状導電性カーボン材料の具体例としては、カーボンナノチューブ(CNT)、カーボンナノファイバー(CNF)等が挙げられるが、導電性、分散性、入手性などの観点からCNTが好ましい。
CNTは、一般的に、アーク放電法、化学気相成長法(CVD法)、レーザー・アブレーション法等によって作製されるが、本発明で使用されるCNTはいずれの方法で得られたものでもよい。また、CNTには1枚の炭素膜(グラフェン・シート)が円筒状に巻かれた単層CNT(以下、SWCNTとも略記する)と、2枚のグラフェン・シートが同心円状に巻かれた2層CNT(以下、DWCNTとも略記する)と、複数のグラフェン・シートが同心円状に巻かれた多層CNT(MWCNT)とがあるが、本発明においては、SWCNT、DWCNT、MWCNTをそれぞれ単体で、または複数を組み合わせて使用できる。
なお、上記の方法でSWCNT、DWCNTまたはMWCNTを作製する際には、ニッケル、鉄、コバルト、イットリウムなどの触媒金属も残存することがあるため、この不純物を除去するための精製を必要とする場合がある。不純物の除去には、硝酸、硫酸などによる酸処理とともに超音波処理が有効である。しかし、硝酸、硫酸などによる酸処理ではCNTを構成するπ共役系が破壊され、CNT本来の特性が損なわれてしまう可能性があるため、適切な条件で精製して使用することが望ましい。
層状導電性カーボン材料の具体例としては、グラファイト、グラフェン等が挙げられる。グラファイトについては、特に制限はなく、市販の各種グラファイトを用いることができる。
グラフェンは、1原子の厚さのsp2結合炭素原子のシートであって、炭素原子とその結合からできた蜂の巣のような六角形格子構造をとっており、その厚さは、0.38nm程度と言われている。また、市販の酸化グラフェンの他に、グラファイトをHummers法により処理して得られる酸化グラフェンを用いてもよい。
粒子状導電性カーボン材料の具体例としては、ファーネスブラック、チャンネルブラック、アセチレンブラック、サーマルブラック等のカーボンブラックなどが挙げられる。カーボンブラックについては、特に制限はなく、市販の各種カーボンブラックを用いることができ、その粒子径は5〜500nmが好ましい。
本発明で用いる導電性炭素材料としては、薄く緻密な導電性保護層を作製できるという点から、1次粒子径の小さいものが好適であり、特に、CNT、カーボンブラックが好ましく、CNTがより好ましい。
一方、導電性保護層を構成するバインダー樹脂としては、緻密性の高い導電性保護層を形成することを考慮すると、導電性炭素材料の分散能を有しているものが好ましく、また、集電基板と活物質層との間に介在して、両者の結着力を高めるという点から、集電基板に対して高い密着性を有しているものが好ましく、さらに、使用する電解液に溶解しないものが好ましい。
このようなバインダー樹脂としては、例えば、ポリフッ化ビニリデン(PVdF)、ポリテトラフルオロエチレン、テトラフルオロエチレン−ヘキサフルオロプロピレン共重合体、フッ化ビニリデン−ヘキサフルオロプロピレン共重合体〔P(VDF−HFP)〕、フッ化ビニリデン−塩化3フッ化エチレン共重合体〔P(VDF−CTFE)〕等のフッ素系樹脂、ポリビニルピロリドン、エチレン−プロピレン−ジエン三元共重合体、国際公開第2015/029949号記載の側鎖にオキサゾリン基を有するビニル系ポリマー(オキサゾリン基含有高分子)、PE(ポリエチレン)、PP(ポリプロピレン)、EVA(エチレン−酢酸ビニル共重合体)、EEA(エチレン−アクリル酸エチル共重合体)等のポリオレフィン系樹脂;PS(ポリスチレン)、HIPS(ハイインパクトポリスチレン)、AS(アクリロニトリル−スチレン共重合体)、ABS(アクリロニトリル−ブタジエン−スチレン共重合体)、MS(メタクリル酸メチル−スチレン共重合体)、スチレン−ブタジエンゴム、ポリスチレンスルホン酸等のポリスチレン系樹脂;ポリカーボネート樹脂;塩化ビニル樹脂;ポリアミド樹脂;ポリイミド樹脂;ポリアクリル酸、PMMA(ポリメチルメタクリレート)等の(メタ)アクリル樹脂;PET(ポリエチレンテレフタレート)、ポリブチレンテレフタレート、ポリエチレンナフタレート、ポリブチレンナフタレート、PLA(ポリ乳酸)、ポリ−3−ヒドロキシ酪酸、ポリカプロラクトン、ポリブチレンサクシネート、ポリエチレンサクシネート/アジペート等のポリエステル樹脂;ポリフェニレンエーテル樹脂;変性ポリフェニレンエーテル樹脂;ポリアセタール樹脂;ポリスルホン樹脂;ポリフェニレンサルファイド樹脂;ポリビニルアルコール樹脂;ポリグルコール酸;変性でんぷん;酢酸セルロース、カルボキシメチルセルロース、三酢酸セルロース;キチン、キトサン;リグニン等の熱可塑性樹脂や、ポリアニリンおよびその半酸化体であるエメラルジンベース;ポリチオフェン;ポリピロール;ポリフェニレンビニレン;ポリフェニレン;ポリアセチレン等の導電性高分子、国際公開第2014/04280号記載のトリアリールアミン系高分岐ポリマー;さらにはエポキシ樹脂;ウレタンアクリレート;フェノール樹脂;メラミン樹脂;尿素樹脂;アルキド樹脂等の熱硬化性樹脂や光硬化性樹脂などが挙げられ、これらは、それぞれ単独で、または2種以上混合して用いることができる。
これらの中でも、導電性炭素材料の分散性および集電基板への密着性を高めることを考慮すると、少なくとも酸素原子を10質量%以上含む樹脂が好ましく、酸素原子を10質量%以上含む酸性ポリマーや、熱により酸性ポリマーを生じる酸性ポリマーの有機塩または無機塩がより好ましく、特に、カルボン酸基および/またはスルホ基を含む酸性ポリマーや、その有機塩または無機塩がより一層好ましい。具体的には、ポリスチレンスルホン酸、ポリアクリル酸、アルギン酸、国際公開第2014/04280号記載のスルホ基含有トリアリールアミン系高分岐ポリマーおよびこれらのアンモニウム塩等が好ましい。
また、本発明で用いる導電性保護層は、後述のとおり、溶媒として水を用いた組成物を集電基板上に塗布して形成することが好ましいことから、バインダー樹脂としても水溶性のもの、例えば、ポリスチレンスルホン酸、ポリアクリル酸、アルギン酸、オキサゾリン基含有高分子、水溶性セルロース、ポリビニルアルコール、およびそれらの有機塩または無機塩等が好ましく、ポリスチレンスルホン酸、ポリアクリル酸、オキサゾリン基含有高分子、水溶性セルロース樹脂、およびそれらの有機塩や無機塩がより好ましい。
上述したバインダー樹脂は、市販品として入手することもでき、そのような市販品としては、例えば、ポリアクリル酸ナトリウム(和光純薬工業(株)製、重合度2,700〜7,500)、カルボキシメチルセルロースナトリウム(和光純薬工業(株)製)、アルギン酸ナトリウム(関東化学(株)製、鹿1級)、メトローズSHシリーズ(ヒドロキシプロピルメチルセルロース、信越化学工業(株)製)、メトローズSEシリーズ(ヒドロキシエチルメチルセルロース、信越化学工業(株)製)、JC−25(完全ケン化型ポリビニルアルコール、日本酢ビ・ポバール(株)製)、JM−17(中間ケン化型ポリビニルアルコール、日本酢ビ・ポバール(株)製)、JP−03(部分ケン化型ポリビニルアルコール、日本酢ビ・ポバール(株)製)、ポリスチレンスルホン酸(Aldrich社製、固形分濃度18質量%、水溶液)、オキサゾリン基含有高分子であるエポクロスWS−300((株)日本触媒製、固形分濃度10質量%、水溶液)、エポクロスWS−700((株)日本触媒製、固形分濃度25質量%、水溶液)、エポクロスWS−500((株)日本触媒製、固形分濃度39質量%、水/1−メトキシ−2−プロパノール溶液)、Poly(2−ethyl−2−oxazoline)(Aldrich)、Poly(2−ethyl−2−oxazoline)(AlfaAesar)、Poly(2−ethyl−2−oxazoline)(VWRInternational,LLC)等が挙げられる。
なお、溶液として市販されている場合、そのまま使用しても、目的とする溶媒に置換してから使用してもよい。
本発明で用いる導電性保護層は、導電性炭素材料と、バインダー樹脂と、溶媒とを含む導電性保護層形成用組成物(分散液)を用いて作製することができる。
溶媒としては、例えば、水;テトラヒドロフラン(THF)、ジエチルエーテル、1,2−ジメトキシエタン(DME)等のエーテル類;塩化メチレン、クロロホルム、1,2−ジクロロエタン等のハロゲン化炭化水素類;N,N−ジメチルホルムアミド(DMF)、N,N−ジメチルアセトアミド(DMAc)、N−メチル−2−ピロリドン(NMP)等のアミド類;アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン等のケトン類;メタノール、エタノール、イソプロパノール、n−プロパノール等のアルコール類;n−ヘプタン、n−ヘキサン、シクロヘキサン等の脂肪族炭化水素類;ベンゼン、トルエン、キシレン、エチルベンゼン等の芳香族炭化水素類;エチレングリコールモノエチルエーテル、エチレングリコールモノブチルエーテル、プロピレングリコールモノメチルエーテル等のグリコールエーテル類;エチレングリコール、プロピレングリコール等のグリコール類等の有機溶媒が挙げられ、これらの溶媒は、それぞれ単独で、または2種以上混合して用いることができる。
特に、導電性炭素材料の孤立分散の割合を向上させ得るという点から、水、NMP、DMF、THF、メタノール、イソプロパノールが好ましい。さらに、用いる溶媒によっては、組成物の成膜性を向上し得る添加剤として、エチレングリコールモノエチルエーテル、エチレングリコールモノブチルエーテル、プロピレングリコールモノメチルエーテル等のグリコールエーテル類;アセトン、メチルエチルケトン、シクロヘキサノン等のケトン類、プロピレングリコール、イソプロパノール、NMPなどを少量含むことが望ましい。
近年、脱有機溶媒化の潮流から溶媒として水を用いた材料が求められていることから、本発明の導電性保護層形成用組成物においても、親水性溶媒と水との混合溶媒や水単独溶媒を用いることが好ましく、水単独溶媒が最適である。
上記組成物(分散液)の調製法は任意であり、導電性炭素材料、バインダー樹脂および溶媒を任意の順序で混合すればよい。
この際、バインダー樹脂、導電性炭素材料および溶媒からなる混合物を分散処理することが好ましく、この処理により、導電性炭素材料の分散割合をより向上させることができる。分散処理としては、機械的処理である、ボールミル、ビーズミル、ジェットミル等を用いる湿式処理や、バス型やプローブ型のソニケータを用いる超音波処理が挙げられる。
上記組成物(分散液)における、バインダー樹脂と導電性炭素材料との混合比率は、緻密な保護層を作製できる限り任意であるが、本発明においては、質量比で100:1〜1:100程度とすることができる。
また、組成物(分散液)中におけるバインダー樹脂の濃度は、導電性炭素材料を溶媒に分散させ得る濃度であれば特に限定されるものではないが、本発明においては、分散液中に30質量%以下とすることが好ましく、20質量%以下とすることがより好ましい。
さらに、組成物(分散液)中における導電性炭素材料の濃度は、少なくとも導電性炭素材料の一部が孤立分散する限りにおいて任意であるが、本発明においては、分散液中に30質量%以下とすることが好ましく、20質量%以下とすることがより好ましく、10質量%以下とすることがより一層好ましい。
なお、上記組成物(分散液)は、上述した溶媒に可溶な追加のバインダー樹脂や、架橋剤を含んでいてもよい。追加のバインダー樹脂としては上述のバインダー樹脂のいずれをも使用できる。
架橋剤としては、バインダー樹脂と架橋反応を起こす化合物、自己架橋する化合物のどちらでもよいが、得られる薄膜の耐溶剤性をより高めるという点から、バインダー樹脂と反応して架橋構造を形成する架橋剤が好ましい。
バインダー樹脂と反応して架橋構造を形成する架橋剤としては、例えば、水酸基に対してアルデヒド基、エポキシ基、ビニル基、イソシアネート基、アルコキシ基、カルボキシル基に対してアルデヒド基、アミノ基、イソシアネート基、エポキシ基、オキサゾリン基に対してカルボキシル基、カルボン酸アンモニウム、水酸基、チオール基、アミノ基、スルフィン酸基、エポキシ基、アミノ基に対してイソシアネート基、アルデヒド基等の、バインダー樹脂が有する官能基と反応して架橋構造を形成し得る架橋性官能基を有している化合物や、バインダー樹脂が有する官能基と同一の官能基で、当該官能基同士で反応する水酸基(脱水縮合)、メルカプト基(ジスルフィド結合)、エステル基(クライゼン縮合)、シラノール基(脱水縮合)、ビニル基、アクリル基等を有している化合物などが挙げられ、それぞれ単独で用いても、2種以上組み合わせて用いてもよい。
例えば、トリアリールアミン系高分岐ポリマーの架橋剤としては、メラミン系、置換尿素系、またはそれらのポリマー系等が挙げられ、これら架橋剤は、それぞれ単独で、または2種以上混合して用いることができる。なお、好ましくは、少なくとも2個の架橋形成置換基を有する架橋剤であり、CYMEL(登録商標)、メトキシメチル化グリコールウリル、ブトキシメチル化グリコールウリル、メチロール化グリコールウリル、メトキシメチル化メラミン、ブトキシメチル化メラミン、メチロール化メラミン、メトキシメチル化ベンゾグアナミン、ブトキシメチル化ベンゾグアナミン、メチロール化ベンゾグアナミン、メトキシメチル化尿素、ブトキシメチル化尿素、メチロール化尿素、メトキシメチル化チオ尿素、ブトキシメチル化チオ尿素、メチロール化チオ尿素等の化合物、およびこれらの化合物の縮合体が例として挙げられる。
また、オキサゾリンポリマーの架橋剤としては、カルボキシル基、水酸基、チオール基、アミノ基、スルフィン酸基、エポキシ基等のオキサゾリン基との反応性を有する官能基を2個以上有する化合物であれば特に限定されるものではないが、カルボキシル基を2個以上有する化合物が好ましい。なお、薄膜形成時の加熱や、酸触媒の存在下で上記官能基が生じて架橋反応を起こす官能基、例えば、カルボン酸のナトリウム塩、カリウム塩、リチウム塩、アンモニウム塩等を有する化合物も架橋剤として用いることができる。
オキサゾリン基と架橋反応を起こす化合物の具体例としては、酸触媒の存在下で架橋反応性を発揮する、ポリアクリル酸やそのコポリマー等の合成高分子およびカルボキシメチルセルロースやアルギン酸といった天然高分子の金属塩、加熱により架橋反応性を発揮する、上記合成高分子および天然高分子のアンモニウム塩等が挙げられるが、特に、酸触媒の存在下や加熱条件下で架橋反応性を発揮するポリアクリル酸ナトリウム、ポリアクリル酸リチウム、ポリアクリル酸アンモニウム、カルボキシメチルセルロースナトリウム、カルボキシメチルセルロースリチウム、カルボキシメチルセルロースアンモニウム等が好ましい。
このようなオキサゾリン基と架橋反応を起こす化合物は、市販品として入手することもでき、そのような市販品としては、例えば、ポリアクリル酸ナトリウム(和光純薬工業(株)製、重合度2,700〜7,500)、カルボキシメチルセルロースナトリウム(和光純薬工業(株)製)、アルギン酸ナトリウム(関東化学(株)製、鹿1級)、アロンA−30(ポリアクリル酸アンモニウム、東亞合成(株)製、固形分濃度32質量%、水溶液)、DN−800H(カルボキシメチルセルロースアンモニウム、ダイセルファインケム(株)製)、アルギン酸アンモニウム((株)キミカ製)等が挙げられる。
また、自己架橋する架橋剤としては、例えば、水酸基に対してアルデヒド基、エポキシ基、ビニル基、イソシアネート基、アルコキシ基、カルボキシル基に対してアルデヒド基、アミノ基、イソシアネート基、エポキシ基、アミノ基に対してイソシアネート基、アルデヒド基などの、互いに反応する架橋性官能基を同一分子内に有している化合物や、同じ架橋性官能基同士で反応する水酸基(脱水縮合)、メルカプト基(ジスルフィド結合)、エステル基(クライゼン縮合)、シラノール基(脱水縮合)、ビニル基、アクリル基などを有している化合物などが挙げられる。
自己架橋する架橋剤の具体例としては、酸触媒の存在下で架橋反応性を発揮する多官能アクリレート、テトラアルコキシシラン、ブロックイソシアネート基を有するモノマーおよび水酸基、カルボン酸、アミノ基の少なくとも1つを有するモノマーのブロックコポリマーなどが挙げられる。
このような自己架橋する架橋剤は、市販品として入手することもでき、そのような市販品としては、例えば、多官能アクリレートでは、A−9300(エトキシ化イソシアヌル酸トリアクリレート、新中村化学工業(株)製)、A−GLY−9E(Ethoxylatedglycerinetriacrylate(EO9mol)、新中村化学工業(株)製)、A−TMMT(ペンタエリスリトールテトラアクリレート、新中村化学工業(株)製)、テトラアルコキシシランでは、テトラメトキシシラン(東京化成工業(株)製)、テトラエトキシシラン(東横化学(株)製)、ブロックイソシアネート基を有するポリマーでは、エラストロンシリーズE−37、H−3、H38、BAP、NEWBAP−15、C−52、F−29、W−11P、MF−9、MF−25K(第一工業製薬(株)製)等が挙げられる。
さらに、上記組成物(分散液)には、架橋反応を促進するための触媒として、p−トルエンスルホン酸、トリフルオロメタンスルホン酸、ピリジニウムp−トルエンスルホン酸、サリチル酸、スルホサリチル酸、クエン酸、安息香酸、ヒドロキシ安息香酸、ナフタレンカルボン酸等の酸性化合物、および/または2,4,4,6−テトラブロモシクロヘキサジエノン、ベンゾイントシレート、2−ニトロベンジルトシレート、有機スルホン酸アルキルエステル等の熱酸発生剤を添加してもよい。
架橋剤等を用いる場合、組成物(分散液)の調製方法としては、少なくとも導電性炭素材料、バインダー樹脂、溶媒を混合したものに、機械的処理としてのボールミル、ビーズミル、ジェットミルなどを用いた湿式処理や、バス型やプローブ型のソニケータを用いる超音波処理をし、これに架橋剤および必要に応じて追加のバインダー樹脂、触媒を加えて調製することができる。
なお、追加のバインダー樹脂、架橋剤および触媒は、先に述べた機械的処理を行う前に加えてもよい。
本発明では、以上で説明した組成物(分散液)を集電基板の少なくとも活物質層が形成される面に塗布し、これを自然または加熱乾燥し、導電性保護層を形成し、集電基板と導電性保護層とからなる複合集電基板を作製することが好ましい。
集電基板としては、従来、非水系二次電池の電極集電基板として用いられているものから適宜選択すればよく、例えば、銅、アルミニウム、ニッケル、金、銀およびそれらの合金やカーボン材料、金属酸化物、導電性高分子等の薄膜を用いることができるが、少なくとも正極集電基板および負極集電基板のいずれかがアルミニウムを含むことが好ましく、特に、正極集電基板がアルミニウムを含むことがより好ましく、正極集電基板がアルミニウム箔であることがより一層好ましい。
集電基板の厚みは特に限定されるものではないが、本発明においては、1〜100μmが好ましい。
また、導電性保護層の厚みも、特に限定されるものではないが、内部抵抗を低減することを考慮すると、0.001〜1μmが好ましく、0.01〜0.8μmがより好ましく、0.03〜0.5μmがより一層好ましい。
上記組成物(分散液)の塗布方法としては、例えば、スピンコート法、ディップコート法、フローコート法、インクジェット法、スプレーコート法、バーコート法、グラビアコート法、スリットコート法、ロールコート法、フレキソ印刷法、転写印刷法、刷毛塗り、ブレードコート法、ナイフコート法等が挙げられるが、作業効率等の点から、グラビアコート法、スリットコート法、ナイフコート法が好適である。
加熱乾燥する場合の温度も任意であるが、50〜200℃程度が好ましく、80〜150℃程度がより好ましい。
本発明で用いる正負極のいずれか一方または双方は、上記導電性保護層上に、活物質層を形成して作製することができる。
ここで、活物質としては、従来、リチウム系二次電池の電極に用いられている各種活物質を用いることができる。
正極活物質としては、リチウムイオンを吸着・離脱可能なカルコゲン化合物またはリチウムイオン含有カルコゲン化合物、ポリアニオン系化合物、硫黄単体およびその化合物等を用いることができる。
このようなリチウムイオンを吸着・離脱可能なカルコゲン化合物としては、例えば、FeS2、TiS2、MoS2、V26、V613、MnO2等が挙げられる。
リチウムイオン含有カルコゲン化合物としては、例えば、LiCoO2、LiMnO2、LiMn24、LiMo24、LiV38、LiNiO2、LixNiy1-y2(但し、Mは、Co、Mn、Ti、Cr、V、Al、Sn、Pb、およびZnから選ばれる少なくとも1種以上の金属元素を表し、0.05≦x≦1.10、0.5≦y≦1.0)などが挙げられる。
ポリアニオン系化合物としては、例えば、リン酸鉄リチウム(LiFePO4)等が挙げられる。
硫黄化合物としては、例えば、Li2S、ルベアン酸等が挙げられる。
これらの中でも、本発明の非水系二次電池の正極活物質としては、LiFePO4を含むものを用いることが好ましい。
一方、負極電極を構成する負極活物質としては、アルカリ金属、アルカリ合金、リチウムイオンを吸蔵・放出する周期表4〜15族の元素から選ばれる少なくとも1種の単体、酸化物、硫化物、窒化物、またはリチウムイオンを可逆的に吸蔵・放出可能な炭素材料を使用することができる。
アルカリ金属としては、Li、Na、K等が挙げられ、アルカリ金属合金としては、例えば、金属Li、Li−Al、Li−Mg、Li−Al−Ni、Na、Na−Hg、Na−Zn等が挙げられる。
リチウムイオンを吸蔵放出する周期表4〜15族の元素から選ばれる少なくとも1種の元素の単体としては、例えば、ケイ素やスズ、アルミニウム、亜鉛、砒素等が挙げられる。
同じく酸化物としては、例えば、スズケイ素酸化物(SnSiO3)、リチウム酸化ビスマス(Li3BiO4)、リチウム酸化亜鉛(Li2ZnO2)、リチウム酸化チタン(Li4Ti512)等が挙げられる。
同じく硫化物としては、リチウム硫化鉄(LixFeS2(0≦x≦3))、リチウム硫化銅(LixCuS(0≦x≦3))等が挙げられる。
同じく窒化物としては、リチウム含有遷移金属窒化物が挙げられ、具体的には、LixyN(M=Co、Ni、Cu、0≦x≦3、0≦y≦0.5)、リチウム鉄窒化物(Li3FeN4)等が挙げられる。
リチウムイオンを可逆的に吸蔵・放出可能な炭素材料としては、グラファイト、カーボンブラック、コークス、ガラス状炭素、炭素繊維、カーボンナノチューブ、またはこれらの焼結体等が挙げられる。
なお、本発明で用いる電極には、上記活物質の他に、導電助剤を添加することもできる。導電助剤としては、例えば、カーボンブラック、ケッチェンブラック、アセチレンブラック、カーボンウイスカー、カーボンナノチューブ、炭素繊維、天然黒鉛、人造黒鉛、酸化チタン、酸化ルテニウム、アルミニウム、ニッケル等が挙げられる。
活物質層は、例えば、以上で説明した活物質、バインダー樹脂および必要に応じて溶媒を含む電極スラリーを、導電性保護層上に塗布し、自然または加熱乾燥して形成することができる。
バインダー樹脂としては、公知の材料から適宜選択して用いることができ、例えば、ポリフッ化ビニリデン(PVdF)、ポリビニルピロリドン、ポリテトラフルオロエチレン、テトラフルオロエチレン−ヘキサフルオロプロピレン共重合体、フッ化ビニリデン−ヘキサフルオロプロピレン共重合体〔P(VDF−HFP)〕、フッ化ビニリデン−塩化3フッ化エチレン共重合体〔P(VDF−CTFE)〕、ポリビニルアルコール、ポリイミド、エチレン−プロピレン−ジエン三元共重合体、スチレン−ブタジエンゴム、カルボキシメチルセルロース(CMC)、ポリアクリル酸(PAA)、ポリアニリン等の導電性高分子などが挙げられる。
なお、バインダー樹脂の添加量は、活物質100質量部に対して、0.1〜20質量部、特に、1〜10質量部が好ましい。
溶媒としては、上記導電性保護層形成用組成物で例示した溶媒が挙げられ、それらの中から、バインダーの種類に応じて適宜選択すればよいが、PVdF等の非水溶性のバインダーの場合はNMPが好適であり、PAA等の水溶性のバインダーの場合は水が好適である。
電極スラリーの塗布方法としては、上述した導電性保護層形成用組成物と同様の手法が挙げられる。
また、加熱乾燥する場合の温度も任意であるが、50〜200℃程度が好ましく、80〜150℃程度がより好ましい。
正負極間に介在させて用いられるセパレータとしては、例えば、セルロース系セパレータ、ポリオレフィン系セパレータなどが挙げられる。
さらに、本発明では、非水系電解質として、スルホニルイミド系電解質が用いられる。
スルホニルイミド系電解質としては、リチウムビス(トリフルオロメタンスルホニル)イミド、リチウムビス(ペンタフルオロエタンスルホニル)イミド、リチウムビス(フルオロスルホニル)イミド等が挙げられるが、特に、イオン伝導性、熱的安定性および化学的安定性に優れたリチウムビス(フルオロスルホニル)イミドが好ましい。
なお、上記スルホニルイミド系電解質に加え、リチウム系二次電池に使用されるその他の電解質を併用してもよい。
その他の電解質としては、塩化リチウム、臭化リチウム、ヨウ化リチウム、4フッ化硼酸リチウム、6フッ化リン酸リチウム、過塩素酸リチウム、トリフルオロメタンスルホン酸リチウム等のリチウム塩等が挙げられる。
その他の電解質を使用する場合、電解質全体における上記スルホニルイミド系電解質は50質量%を超える量であることが好ましい。
上記電解質とともに用いられる非水系有機溶媒としては、プロピレンカーボネート、エチレンカーボネート、ブチレンカーボネート等のアルキレンカーボネート;ジメチルカーボネート、メチルエチルカーボネート、ジエチルカーボネート等のジアルキルカーボネート;アセトニトリル等のニトリル類、ジメチルホルムアミド等のアミド類などの非プロトン性極性溶媒が挙げられる。
なお、非水系電解液中で、上記スルホニルイミド系電解質は均一に溶解していることが好ましい。
本発明の非水系二次電池の形態は特に限定されるものではなく、円筒型、扁平巻回角型、積層角型、コイン型、扁平巻回ラミネート型、積層ラミネート型等の従来公知の各種形態のセルを採用することができる。
例えば、コイン型のリチウムイオン二次電池は、コインセルのワッシャーとスペーサーが溶接されたフタに、所定形状に打ち抜いたリチウム箔を所定枚数設置し、その上に、スルホニルイミド系電解質を含む非水系電解液を含浸させた同形状のセパレータを重ね、さらに上から、活物質層を下にして正極を重ね、ケースとガスケットを載せて、コインセルかしめ機で密封して作製することができる。なお、この場合、リチウム箔が負極集電基板を兼ねている。
以下、実施例および比較例を挙げて、本発明をより具体的に説明するが、本発明は下記の実施例に限定されるものではない。なお、使用した測定装置は以下のとおりである。
(1)GPC1
装置:東ソー(株)製型番:HLC−8220GPC
カラム:Shodex製OHpakSB803−HQ、およびOHpakSB804−HQ
カラム温度:40℃
溶媒:ジメチルホルムアミド/LiBr・H2O(29.6mM)/H3PO4(29.6mM)/THF(0.1wt%)
流量:1.0mL/分
検出器:UV(254nm)
検量線:標準ポリスチレン
(2)GPC2
装置:東ソー(株)製型番:HLC−8220GPC
カラム:Shodex製KF−804L、およびKF−805L
カラム温度:40℃
溶媒:テトラヒドロフラン
流量:1.0mL/分
検出器:UV(254nm)
検量線:標準ポリスチレン
(3)プローブ型超音波照射装置(分散処理)
装置:HielscherUltrasonics社製UIP1000
(4)ワイヤーバーコーター(薄膜作製)
装置:(株)エスエムテー製PM−9050MC
(5)セレクトローラー
松尾産業(株)製OSP−30
(6)充放電測定装置(二次電池評価)
装置:北斗電工(株)製HJ1001SM8A
(7)マイクロメーター(バインダー、活性層の膜厚測定)
装置:(株)ミツトヨ製IR54
(8)ホモディスパー(電極スラリーの混合)
装置:T.K.ロボミックス(ホモディスパー2.5型(φ32)付き)(プライミクス(株)製)
(9)薄膜旋回型高速ミキサー(電極スラリーの混合)
装置:フィルミクス40型(プライミクス(株)製)
(10)ロールプレス装置(電極の圧縮)
装置:超小型卓上熱ロールプレス機HSR−60150H(宝泉(株)製)
[1]バインダー樹脂の合成
[合成例1]ポリアミド酸溶液の調製
p−フェニレンジアミン(p−PDA)20.261g(187mmol)と4,4−ジアミノ−p−ターフェニル(DATP)12.206g(47mmol)とをNMP617.4gに溶解させた。得られた溶液を15℃に冷却し、そこへピロメリット酸二無水物(PMDA)50.112g(230mmol)を加え、窒素雰囲気下、50℃まで昇温し、48時間反応させてポリアミド酸溶液を得た。得られたポリマーの重量平均分子量(以下Mwと略す)をGPC1の条件で測定した結果、8.2×104であった。
[合成例2]高分岐ポリマーPTPA−PBAの合成
窒素下、1L四口フラスコに、トリフェニルアミン(東京化成工業(株)製)80.1g(326mmol)、4−フェニルベンズアルデヒド(三菱ガス化学(株)製)119.0g(653mmol、トリフェニルアミンに対して2.0当量)、パラトルエンスルホン酸一水和物(江南化工(株)製)12.4g(65mmol、トリフェニルアミンに対して0.2当量)、および1,4−ジオキサン(純正化学(株)製)160gを仕込んだ。この混合物を撹拌しながら85℃まで昇温して溶解させ、重合を開始した。6時間反応させた後、反応混合物を60℃まで放冷した。この反応混合物にTHF560gおよび28質量%アンモニア水80gを加え、得られた反応溶液をアセトン2000gおよびメタノール400gの混合溶液へ投入して再沈殿させた。析出した沈殿物をろ過し、50℃で6時間、130℃で10時間減圧乾燥し、下記式[A]で表される繰り返し単位を有する高分岐ポリマーPTPA−PBA115.1gを得た。
得られたPTPA−PBAのMwをGPC2の条件で測定した結果、16,700であった。
Figure 0006939562
(・は、隣接する繰り返し単位との結合部を示す。)
[合成例3]高分岐ポリマーPTPA−PBA−SO3Hの合成
窒素下、500mL四口フラスコに、合成例2で得られたPTPA−PBA5.0gおよび硫酸(関東化学(株)製)50gを仕込んだ。この混合物を25℃で1時間の撹拌後、40℃まで昇温し、3時間撹拌してスルホン化反応を完了した。この反応混合物を、純水250gへ投入して再沈殿させ、25℃で3時間の撹拌をした後に減圧ろ過し、これに純水50gをかけ洗いをして、ろ物を回収した。ろ物と純水100gを200mL四口フラスコに仕込み、25℃で3時間の撹拌をした後に減圧ろ過し、純水50gをかけ洗いをして、ろ物を回収した。さらにもう一度、このろ物と純水100gを200mL四口フラスコに仕込み、25℃で3時間の撹拌をした後に減圧ろ過し、純水50gをかけ洗いをして、ろ物を回収した。このろ物を80℃で9時間減圧乾燥して、下記式[B]で表される繰り返し単位を有する高分岐ポリマーPTPA−PBA−SO3H(以下、単にPTPA−PBA−SO3Hという)5.8gを紫色粉末として得た。
イオウ定量分析から算出したPTPA−PBA−SO3Hのイオウ原子含有量は6.6質量%であった。この結果から求めたPTPA−PBA−SO3Hのスルホ基含有量は、高分岐ポリマーPTPA−PBAの1繰り返し単位当り1個であった。
Figure 0006939562
(・は、隣接する繰り返し単位との結合部を示し、A1〜A5のいずれか1つがスルホ基である。)
[2]導電性保護層形成用組成物の調製
[製造例1−1]
オキサゾリン基含有高分子を含む水溶液であるエポクロスWS−700((株)日本触媒製、固形分濃度25質量%、Mw4×104、オキサゾリン基量4.5mmol/g)2.0gと、純水47.5gとを混合し、さらにそこへ多層CNT(Nanocyl社製“NC7000”)0.5gを混合した。得られた混合物に対して、プローブ型超音波照射装置を用いて室温で30分間超音波処理を行い、さらにそこへ、ポリアクリル酸アンモニウム(PAA−NH4)を含む水溶液であるアロンA−30(東亞合成(株)、固形分濃度31.6質量%)0.7gとアルギン酸ナトリウム(関東化学(株)製)の3%水溶液6.7gとを純水42.6gに溶解させたものを混合して、導電性保護層形成用組成物1−1を得た。
[製造例1−2]
多層CNT(Nanocyl社製“NC7000”)の代わりに、アセチレンブラック(AB、電気化学工業(株)製、デンカブラック)を用いた以外は、製造例1−1と同様の方法で導電性保護層形成用組成物1−2を得た。
[製造例1−3]
ポリスチレンスルホン酸水溶液(Aldrich製、固形分濃度18質量%、Mw〜7.5×104)2.78gと、純水46.72gとを混合し、さらにそこへ多層CNT(Nanocyl社製“NC7000”)0.5gを混合した。得られた混合物に対して、プローブ型超音波照射装置を用いて室温で30分間超音波処理を行い、導電性保護層形成用組成物1−3を得た。
[製造例1−4]
多層CNT(Nanocyl社製“NC7000”)の代わりに、アセチレンブラック(AB、電気化学工業(株)製、デンカブラック)を用いた以外は、製造例1−3と同様の方法で導電性保護層形成用組成物1−4を得た。
[製造例1−5]
合成例1で得られたポリアミド酸溶液(固形分濃度11.8質量%、Mw8.2×104)4.24gと、純水12.25gと、NMP33.01gとを混合し、さらにそこへ多層CNT(Nanocyl社製“NC7000”)0.5gを混合した。得られた混合物に対して、プローブ型超音波照射装置を用いて室温で30分間超音波処理を行い、導電性保護層形成用組成物1−5を得た。
[製造例1−6]
多層CNT(Nanocyl社製“NC7000”)の代わりに、アセチレンブラック(AB、電気化学工業(株)製、デンカブラック)を用いた以外は、製造例1−5と同様の方法で導電性保護層形成用組成物1−6を得た。
[製造例1−7]
合成例3で得られたPTPA−PBA−SO3H0.5gと、2−プロパノール(IPA)(純正化学(株)製)41.5gと、純水7.5gとを混合し、さらにそこへ多層CNT(Nanocyl社製“NC7000”)0.5gを混合した。得られた混合物に対して、プローブ型超音波照射装置を用いて室温で30分間超音波処理を行い、さらにそこへ、ポリアクリル酸(PAA)を含む水溶液であるアロンA−10H(東亞合成(株)、固形分濃度25.7質量%)3.88gを純水46.1gに溶解させたものを混合して、導電性保護層形成用組成物1−7を得た。
[3]導電性保護層の形成(複合集電基板の作製)
[製造例2−1]
製造例1−1で得られた導電性保護層形成用組成物1−1を、アルミ箔(厚み20μm)上にワイヤーバーコーター(セレクトローラー:OSP−30、ウェット膜厚30μm)で均一に展開した後、150℃で20分乾燥して導電性保護層(膜厚0.2μm)を形成し、アルミ箔および導電性保護層の積層体からなる複合集電基板2−1を得た。
[製造例2−2]
導電性保護層形成用組成物1−1の代わりに、導電性保護層形成用組成物1−2を用いた以外は、製造例2−1と同様の方法で導電性保護層(膜厚0.2μm)を形成し、複合集電基板2−2を得た。
[製造例2−3,2−4]
導電性保護層形成用組成物1−1の代わりに、導電性保護層形成用組成物1−3,1−4をそれぞれ用いた以外は、製造例2−1と同様の方法で各導電性保護層(膜厚0.25μm)を形成し、複合集電基板2−3,2−4を得た。
[製造例2−5,2−6]
導電性保護層形成用組成物1−1の代わりに、導電性保護層形成用組成物1−5,1−6をそれぞれ用い、150℃で20分乾燥後、200℃で30分真空乾燥をした以外は、製造例2−1と同様の方法で各導電性保護層(膜厚0.25μm)を形成し、複合集電基板2−5,2−6を得た。
[製造例2−7]
導電性保護層形成用組成物1−1の代わりに、導電性保護層形成用組成物1−7を用いた以外は、製造例2−1と同様の方法で導電性保護層(膜厚0.25μm)を形成し、複合集電基板2−7を得た。
[4]電極の作製
[製造例3−1]
活物質としてリン酸鉄リチウム(LFP、TATUNGFINECHEMICALS製)17.3g、バインダーとしてPVdFのNMP溶液(12質量%)12.8g、導電助剤としてアセチレンブラック(AB、電気化学工業(株)製、デンカブラック、0.384g)、およびNMP9.54gを混合し、T.K.ロボミックス(ホモディスパー2.5型(φ32)付き)(プライミクス(株)製)を用い、3,500rpmで1分間処理を行った。次いで、薄膜旋回型高速ミキサー(フィルミクス40型、プライミクス(株)製)を用いて周速20m/秒で60秒間の混合処理をし、電極スラリー(固形分濃度48質量%、LFP:PVdF:AB=90:8:2(質量比))を作製した。
製造例2−1で作製した複合集電基板2−1の上に、ドクターブレード法により、先に調製した電極スラリーを均一(ウェット膜厚200μm(乾燥後膜厚55μm))に展開後、80℃で30分、次いで120℃で30分乾燥して導電性保護層上に活物質層を形成し、これをロールプレス機にて圧着して電極3−1を作製した。
[製造例3−2〜3−7]
複合集電基板2−1の代わりに、複合集電基板2−2〜2−7をそれぞれ用いた以外は、製造例3−1と同様の方法で各電極3−2〜3−7を作製した。
[比較製造例3−1]
複合集電基板2−1の代わりに、集電基板であるアルミ箔(厚み20μm)のみを用いた以外は、製造例3−1と同様の方法で電極を作製した。
[5]リチウムイオン電池の作製
[実施例1−1]
製造例3−1で得られた電極3−1を、直径10mmの円盤状に打ち抜き、質量を測定した後、100℃で15時間真空乾燥し、アルゴンで満たされたグローブボックスに移した。ワッシャーとスペーサーを溶接した2032型のコインセル(宝泉(株)製)のキャップにガスケットを載せ、直径14mmに打ち抜いたリチウム箔(本荘ケミカル(株)製、厚み0.17mm)を6枚重ねたものを設置し、その上に、電解液A(富山薬品工業(株)製:エチレンカーボネート:ジエチルカーボネート=3:7(体積比)1Lに1molのLiFSIを溶解させたもの)を24時間以上染み込ませた、直径16mmに打ち抜いたセパレータ(セルガード(株)製、2400)を一枚重ねた。さらに上から、活物質を塗布した面を下にして先に円盤状に打ち抜いた電極3−1を重ねた。電解液Aを1滴滴下した後、ケースを載せて、コインセルかしめ機で密封した。その後24時間静置し、二次電池を作製した。
[実施例1−2〜1−7]
電極3−1の代わりに、電極3−2〜3−7を用いた以外は、実施例1−1と同様の方法で二次電池を作製した。
[比較例1−1]
電解液Aの代わりに、電解液B(キシダ化学(株)製、エチレンカーボネート:ジエチルカーボネート=1:1(体積比)、電解質であるリチウムヘキサフルオロホスフェートを1mol/L含む)を用いた以外は、実施例1−1と同様の方法で二次電池を作製した。
[比較例1−2〜1−7]
電解液Aの代わりに、比較例1−1の電解液Bを用いた以外は、実施例1−2〜1−7と同様の方法で二次電池を作製した。
[比較例1−8]
電極3−1の代わりに、比較製造例3−1で作製した電極を用いた以外は、実施例1−1と同様の方法で二次電池を作製した。
(1)二次電池の特性評価1
実施例1−1および比較例1−8で作製二次電池の特性を評価した。
具体的には、スルホニルイミド系電解質が集電基板を腐食することによる容量劣化を導電性保護層により抑制できるかを評価することを目的とし、以下の条件で充放電試験を行った。初期放電容量およびサイクル特性試験後の容量維持率を表1に示す。
〔充放電試験条件〕
・電流:0.5C定電流充放電(LFPの容量を170mAh/g)
・カットオフ電圧:4.50V−2.00V
・温度:室温
・初期放電容量:5サイクル目の放電容量(mAh/g)
・サイクル特性試験後の容量維持率:
100サイクル目の放電容量(mAh/g)÷5サイクル目の放電容量(mAh/g)×100(%)
Figure 0006939562
表1に示されるように、実施例1−1と比較例1−8で作製した各電池の5サイクル目の放電容量は同等であるが、100サイクル時では、比較例1−8の電池では著しい容量劣化により容量維持率が低く、実施例1−1の電池では容量劣化は見られず容量維持率は100%であった。
この理由としては、比較例1−8の電池では、スルホニルイミド系電解質を用いた場合には100サイクルという少ない充放電回数であっても、集電基板が激しく腐食されることにより二次電池が高抵抗化し、容量劣化が起こったためと考えられる。これに対して実施例1−1の電池では、導電性保護層により集電基板の腐食が抑制され、二次電池の安定性が劇的に向上している。
このことからスルホニルイミド系電解質による集電基板の腐食は、導電性保護層により抑制することができ、これによりサイクル特性や安全性の高い二次電池を作製できることがわかる。
(2)二次電池の特性評価2
次に、実施例1−1〜1−7および比較例1−1〜1−8で作製した二次電池の特性を評価した。
具体的には、スルホニルイミド系電解質が集電基板を腐食することによる容量劣化を導電性保護層により抑制できるかを評価することと同時に、高い熱的安定性、化学的安定性および移動度を示すスルホニルイミド系電解質による二次電池の容量、出力特性への影響を評価することを目的として、以下の条件で充放電試験を行った。放電レート10Cでの放電容量および放電レート5Cでのサイクル特性試験後の容量維持率を表2に示す。
〔充放電試験条件〕
・電流:0.5C定電流充電、0.5C、3C、5C、10C、0.5Cの順に5サイクルずつ定電流放電(LFPの容量を170mAh/g)後、5Cで300サイクルまで定電流放電
・カットオフ電圧:4.50V−2.00V
・温度:室温
・放電レート10Cでの放電容量:18サイクル目の放電容量(mAh/g)
・放電レート5Cでのサイクル特性試験後の容量維持率:
300サイクル目の放電容量(mAh/g)÷5Cでの初期放電容量(13サイクル目、(mAh/g))×100(%)
Figure 0006939562
表2に示されるように、実施例1−1〜1−7で作製した電池は、比較例1−8で作製した電池と比較して大きな放電容量と容量維持率を示した。上述のとおり、比較例1−8の電池は、スルホニルイミド系電解質により集電基板が腐食されることで二次電池が高抵抗化し、10Cという高レートでは発現容量が低下してしまい、さらに300サイクルもの充放電に伴う腐食により二次電池が高抵抗化することによって容量劣化が起こったと考えられる。これに対して実施例1−1〜1−7の電池では、導電性保護層により腐食を抑制することができるため容量維持率が極めて高く、さらに低抵抗であることにより10Cという高レートでも大きい発現容量を示したと推測される。
また、実施例1−1〜1−7で作製した電池は、比較例1−1〜1−7で作製した電池と比較して約2倍の放電容量と容量維持率を示した。これはLiFSIによる集電基板の腐食が導電性保護層によって抑制される結果、LiFSIが有するLiPF6よりも高いイオン移動度、熱的安定性、化学的安定性によって、電池のサイクル特性、安全性、容量、出力特性を向上させたためである。
以上のことから、本発明の二次電池では、基材に塗布するだけで容易にスルホニルイミド系電解質による集電基板の腐食を抑制できる導電性保護層が作製でき、これによって集電基板の腐食が抑制されるため、スルホニルイミド系電解質の高いイオン移動度、熱的安定性、化学的安定性により電池のサイクル特性、安全性、容量、出力特性を向上させることができる。特にリチウムイオン二次電池の正極として用いることで、良好な特性を有する二次電池を得ることができ、電気自動車用途など瞬間的に大電流が必要な用途において電圧降下を起こすことなく電流を取り出すことができると同時に、サイクル寿命が長く安全性の高い二次電池を作製できる。

Claims (11)

  1. 正極集電基板およびその上に形成されたリチウムを吸蔵・放出可能な正極活物質層を備える正極と、負極集電基板およびその上に形成されたリチウムを吸蔵・放出可能な負極活物質層を備える負極と、これら正負極間に介在するセパレータと、非水系電解液とを備えて構成される非水系二次電池であって、
    前記非水系電解液が、スルホニルイミド系電解質と、非水系有機溶媒とを含み、イオン液体を含まず、かつ、前記正極および負極集電基板の上に不導体被膜を形成することで腐食を抑制するLiBOB、LiFOB、LiPF 6 等の添加剤を含まず、
    前記正極集電基板および負極集電基板のいずれか一方または双方の表面上に、バインダー樹脂中に導電性炭素材料が分散してなる導電性保護層が形成され
    前記導電性炭素材料が、繊維状導電性カーボン材料および粒子状導電性カーボン材料から選ばれる少なくとも1種であることを特徴とする非水系二次電池。
  2. 前記正極集電基板の表面上に前記導電性保護層が形成されている請求項1記載の非水系二次電池。
  3. 前記正極活物質層が、正極活物質としてリン酸鉄リチウムを含む請求項1または2記載の非水系二次電池。
  4. 前記導電性炭素材料が、カーボンナノチューブおよびカーボンブラックから選ばれる少なくとも1種である請求項1〜3のいずれか1項記載の非水系二次電池。
  5. 前記スルホニルイミド系電解質が、リチウムビス(フルオロスルホニル)イミドである請求項1〜3のいずれか1項記載の非水系二次電池。
  6. 前記非水系有機溶媒が、非プロトン性極性溶媒であり、前記リチウムビス(フルオロスルホニル)イミドが前記非プロトン性極性溶媒に溶解している請求項5記載の非水系二次電池。
  7. 前記正極集電基板および負極集電基板のいずれか一方または双方が、アルミニウムを含む請求項1〜6のいずれか1項記載の非水系二次電池。
  8. 前記正極集電基板が、アルミニウム箔である請求項1〜7のいずれか1項記載の非水系二次電池。
  9. 前記導電性保護層の厚みが、0.001〜1μmである請求項1〜8のいずれか1項記載の非水系二次電池。
  10. 前記バインダー樹脂が、酸性ポリマーを含む請求項1〜9のいずれか1項記載の非水系二次電池。
  11. 前記酸性ポリマーが、カルボキシル基またはスルホ基を有するポリマーである請求項10記載の非水系二次電池。
JP2017553813A 2015-12-01 2016-11-25 非水系二次電池 Active JP6939562B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2015234730 2015-12-01
JP2015234730 2015-12-01
PCT/JP2016/084898 WO2017094598A1 (ja) 2015-12-01 2016-11-25 非水系二次電池

Publications (2)

Publication Number Publication Date
JPWO2017094598A1 JPWO2017094598A1 (ja) 2018-09-20
JP6939562B2 true JP6939562B2 (ja) 2021-09-22

Family

ID=58796702

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017553813A Active JP6939562B2 (ja) 2015-12-01 2016-11-25 非水系二次電池

Country Status (7)

Country Link
US (1) US10658696B2 (ja)
EP (1) EP3386021B1 (ja)
JP (1) JP6939562B2 (ja)
KR (1) KR20180083371A (ja)
CN (1) CN108475806B (ja)
TW (1) TWI712196B (ja)
WO (1) WO2017094598A1 (ja)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190288292A1 (en) * 2016-12-02 2019-09-19 Nissan Chemical Corporation Undercoat layer for energy storage device, and undercoat foil for energy storage device electrode
JP7004969B2 (ja) * 2017-11-10 2022-01-21 国立研究開発法人産業技術総合研究所 リチウムイオン二次電池用電極
CN111886718A (zh) * 2018-03-29 2020-11-03 日产化学株式会社 储能器件的底涂层形成用组合物
JP7281934B2 (ja) * 2019-03-25 2023-05-26 三洋化成工業株式会社 リチウムイオン電池
CN111081998B (zh) * 2019-11-25 2021-04-06 成都工业职业技术学院 一种新能源汽车动力电池正极材料及制备方法
JP7485643B2 (ja) * 2021-11-25 2024-05-16 プライムプラネットエナジー&ソリューションズ株式会社 レーザー加工された正極の製造方法
CN116925586A (zh) * 2023-07-26 2023-10-24 江阴纳力新材料科技有限公司 光固化干法涂碳浆料和涂碳集流体及其制备方法和用途

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3263466B2 (ja) 1993-02-05 2002-03-04 三洋電機株式会社 非水系電解液二次電池
JP4056117B2 (ja) 1997-12-17 2008-03-05 三洋電機株式会社 リチウム二次電池
JP2002203562A (ja) 2000-12-28 2002-07-19 Toshiba Corp 非水電解質二次電池
JP5678539B2 (ja) * 2009-09-29 2015-03-04 三菱化学株式会社 非水系電解液電池
US9263731B2 (en) * 2010-11-12 2016-02-16 A123 Systems Llc High performance lithium or lithium ion cell
JP5609616B2 (ja) * 2010-12-16 2014-10-22 ダイキン工業株式会社 非水二次電池などの集電積層体の導電性保護層形成用ペースト
US20130280599A1 (en) 2011-01-07 2013-10-24 Nec Corporation Electricity storage device
FR2975694B1 (fr) * 2011-05-24 2013-08-02 Arkema France Procede de preparation de bis(fluorosulfonyl)imidure de lithium
CN102856530B (zh) * 2011-06-30 2015-01-21 清华大学 锂离子电池
CN103858254B (zh) * 2011-08-31 2016-10-12 Nec能源元器件株式会社 非水电解液二次电池
TW201330350A (zh) * 2011-11-01 2013-07-16 Hitachi Maxell Energy Ltd 鋰蓄電池
WO2013129033A1 (ja) * 2012-03-02 2013-09-06 日本電気株式会社 二次電池
US10193160B2 (en) * 2012-09-14 2019-01-29 Nissan Chemical Industries, Ltd. Composite current collector for energy storage device electrode, and electrode
JP6070067B2 (ja) * 2012-10-30 2017-02-01 ソニー株式会社 電池、電極、電池パック、電子機器、電動車両、蓄電装置および電力システム
CN106663838A (zh) * 2014-08-01 2017-05-10 宇部兴产株式会社 非水电解液及使用了该非水电解液的蓄电设备
JP2016149189A (ja) * 2015-02-10 2016-08-18 日立化成株式会社 リチウムイオン二次電池
CN105098193A (zh) * 2015-09-24 2015-11-25 宁德时代新能源科技有限公司 正极片以及包括该正极片的锂离子电池

Also Published As

Publication number Publication date
US10658696B2 (en) 2020-05-19
US20180337420A1 (en) 2018-11-22
JPWO2017094598A1 (ja) 2018-09-20
TW201740603A (zh) 2017-11-16
CN108475806A (zh) 2018-08-31
EP3386021B1 (en) 2023-05-31
CN108475806B (zh) 2021-10-22
TWI712196B (zh) 2020-12-01
EP3386021A4 (en) 2018-11-07
WO2017094598A1 (ja) 2017-06-08
EP3386021A1 (en) 2018-10-10
KR20180083371A (ko) 2018-07-20

Similar Documents

Publication Publication Date Title
US11326010B2 (en) Agent for dispersing electrically conductive carbon material, and dispersion of electrically conductive carbon material
JP6939562B2 (ja) 非水系二次電池
JP6962200B2 (ja) エネルギー貯蔵デバイス用電極
EP3401982B1 (en) Electrode for energy storage devices
JP7110986B2 (ja) 導電性組成物
JP7359156B2 (ja) 活物質複合体形成用組成物、活物質複合体、および活物質複合体の製造方法
JP7192853B2 (ja) 導電性炭素材料分散液
WO2023282246A1 (ja) 電極形成用組成物
CN117501469A (zh) 用于形成储能器件电极用薄膜的组合物
JPWO2019188540A1 (ja) エネルギー貯蔵デバイスのアンダーコート層形成用組成物
JPWO2019188547A1 (ja) 導電性薄膜形成用分散液
JP7318638B2 (ja) エネルギー貯蔵デバイスのアンダーコート層形成用組成物
JP7318637B2 (ja) エネルギー貯蔵デバイスのアンダーコート層形成用組成物
WO2023282248A1 (ja) 電極形成用組成物

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190926

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201110

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20210107

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210128

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20210330

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210621

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20210621

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20210629

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20210706

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210803

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210816

R151 Written notification of patent or utility model registration

Ref document number: 6939562

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151