JP6933109B2 - 二次電池の劣化状態推定方法および二次電池システム - Google Patents

二次電池の劣化状態推定方法および二次電池システム Download PDF

Info

Publication number
JP6933109B2
JP6933109B2 JP2017229072A JP2017229072A JP6933109B2 JP 6933109 B2 JP6933109 B2 JP 6933109B2 JP 2017229072 A JP2017229072 A JP 2017229072A JP 2017229072 A JP2017229072 A JP 2017229072A JP 6933109 B2 JP6933109 B2 JP 6933109B2
Authority
JP
Japan
Prior art keywords
secondary battery
current
frequency range
change width
frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017229072A
Other languages
English (en)
Other versions
JP2019100754A (ja
Inventor
崇礼 副島
崇礼 副島
寛 浜口
寛 浜口
亮 金田
亮 金田
伸烈 芳賀
伸烈 芳賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2017229072A priority Critical patent/JP6933109B2/ja
Priority to US16/186,670 priority patent/US11193983B2/en
Priority to CN201811438699.4A priority patent/CN109839601B/zh
Publication of JP2019100754A publication Critical patent/JP2019100754A/ja
Application granted granted Critical
Publication of JP6933109B2 publication Critical patent/JP6933109B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/16Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to battery ageing, e.g. to the number of charging cycles or the state of health [SoH]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/3644Constructional arrangements
    • G01R31/3648Constructional arrangements comprising digital calculation means, e.g. for performing an algorithm
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/382Arrangements for monitoring battery or accumulator variables, e.g. SoC
    • G01R31/3842Arrangements for monitoring battery or accumulator variables, e.g. SoC combining voltage and current measurements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/389Measuring internal impedance, internal conductance or related variables
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/392Determining battery ageing or deterioration, e.g. state of health
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/28Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the electric energy storing means, e.g. batteries or capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/545Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/547Voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/549Current
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/367Software therefor, e.g. for battery testing using modelling or look-up tables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M2010/4271Battery management systems including electronic circuits, e.g. control of current or voltage to keep battery in healthy state, cell balancing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Power Engineering (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Electrochemistry (AREA)
  • Secondary Cells (AREA)
  • Tests Of Electric Status Of Batteries (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Description

本開示は、二次電池の劣化状態推定方法および二次電池システムに関し、より特定的には、車両に搭載された二次電池の劣化状態を推定するための二次電池の劣化状態推定方法、および、車両に搭載されて用いられる二次電池システムに関する。
近年、走行用の二次電池が搭載された車両の普及が進んでいる。これらの車両に搭載された二次電池は、使用方法または使用環境に伴い、あるいは時間の経過に伴い劣化し得るため、二次電池の劣化状態を高精度に推定することが求められている。そこで、二次電池のインピーダンス(内部抵抗)に基づいて二次電池の劣化状態を推定する方法が提案されている。
たとえば、特開2005−221487号公報(特許文献1)に開示された方法によれば、周期性を持たない多様な波形の充放電電流が二次電池を流れる状態で電流値および電圧値が測定される。そして、測定された電流値および電圧値のフーリエ変換を行なうことにより、フーリエ変換後の電流値および電圧値から周波数毎のインピーダンス成分が算出される。
特開2005−221487号公報
本発明者らは、前述のように測定された電流値をフーリエ変換して周波数毎の電流値を求める際に、ある周波数域における電流値について所定の条件(後述)が成立すると、周波数毎の電流値の算出精度が低下し得ることに着目した。周波数毎の電流値の算出精度が低下すると、インピーダンスを高精度に算出することができなくなる可能性がある。その結果、二次電池の劣化状態の推定精度が低下してしまう可能性がある。
本開示は上記課題を解決するためになされたものであって、その目的は、車両に搭載された二次電池の劣化状態を推定するための劣化状態推定方法において、二次電池の劣化状態の推定精度を向上させることである。
また、本開示の他の目的は、車両に搭載可能に構成された二次電池システムにおいて、二次電池の劣化状態の推定精度を向上させることである。
(1)本開示のある局面に従う二次電池の劣化状態推定方法は、車両に搭載された二次電池について制御装置により実行される。二次電池の劣化状態推定方法は、第1〜第5のステップを含む。第1のステップは、二次電池の電圧値および電流値を所定期間に複数回取得してメモリに格納するステップである。第2のステップは、メモリに格納された二次電池の複数回の電圧値および電流値の周波数変換を行なうことにより、二次電池の電圧値および電流値を周波数毎に算出するステップである。第3のステップは、周波数毎に算出された二次電池の電流値について第1および第2の条件が成立するか否かを判定するステップである。第4のステップは、第1および第2の条件のうちの少なくとも一方が不成立である場合に二次電池の周波数域毎のインピーダンス成分を算出する一方で、第1および第2の条件がいずれも成立する場合には二次電池の周波数域毎のインピーダンス成分の算出を行なわないステップである。第5のステップは、算出された周波数域毎のインピーダンス成分を用いて、各周波数域に応じた劣化モードの二次電池の劣化状態を推定するステップである。第1の条件は、第1の周波数域における二次電池の電流値が第1の基準値よりも大きいとの条件である。第2の条件は、第1の周波数域よりも高い第2の周波数域における二次電池の電流値が第2の基準値よりも小さいとの条件である。第2の基準値は、第1の基準値よりも小さい。
詳細については後述するが、第1および第2の条件が成立している場合には、相対的に高い周波数域(後述する周波数域F2,F3)における電流バラつきが大きくなりやすい。そのため、上記(1)の方法によれば、第1および第2の電流条件が成立している場合のデータ(電圧値および電流値)は周波数域毎のインピーダンス成分の算出には用いられず、第1および第2の電流条件のうちの少なくとも一方が不成立している場合のデータを用いて周波数域毎のインピーダンス成分が算出される。このように、第1および第2の条件が成立しており、相対的に高い周波数域における電流バラつきが大きくなりやすい場合のデータはインピーダンス成分の算出に用いないことで、二次電池の劣化状態の推定精度を向上させることができる。
(2)好ましくは、二次電池の劣化状態推定方法は、第6および第7のステップをさらに含む。第6のステップは、所定期間における、二次電池の電流変化幅、二次電池の温度変化幅および二次電池のSOC変化幅を算出するステップである。第7のステップは、所定期間における二次電池の温度、電流またはSOC毎に定められた、電流変化幅の許容上限を示す許容電流変化幅、温度変化幅の許容上限を示す許容温度変化幅、および、SOC変化幅の許容上限を示す許容SOC変化幅を二次電池の温度、電流またはSOCから取得するステップである。二次電池の周波数域毎のインピーダンス成分を算出するステップ(第4のステップ)は、電流変化幅が許容電流変化幅を下回るとの電流条件、温度変化幅が許容温度変化幅を下回るとの温度条件、および、SOC変化幅が許容SOC変化幅を下回るとのSOC条件がいずれも成立する場合に実行される。
上記(2)の方法によれば、二次電池のインピーダンスが電流依存性、温度依存性およびSOC依存性を有する点に着目し、所定期間(後述するデータ取得期間)中に二次電池の電流、温度またはSOCが大きく変化した場合には、その使用期間中に取得されたデータ(電圧および電流)は周波数変換(フーリエ変換)の対象から外され、インピーダンスの算出には用いられない。所定期間中に二次電池の電流、温度およびSOCがいずれも大きく変化していない場合にインピーダンスが算出される。これにより、二次電池のインピーダンスの算出結果に電流依存性、温度依存性およびSOC依存性を適切に反映させることが可能になるので、二次電池の劣化状態の推定精度を一層向上させることができる。
(3)本開示の他の局面に従う二次電池システムは、車両に搭載されて用いられる。二次電池システムは、二次電池と、二次電池の劣化状態を推定するように構成された制御装置とを備える。制御装置は、メモリを含む。制御装置は、所定期間に複数回取得された二次電池の電圧値および電流値の周波数変換を行なうことにより、二次電池の電圧値および電流値を周波数毎に算出し、周波数毎に算出された二次電池の電流値について第1および第2の条件が成立するか否かを判定する。推定装置は、第1および第2の条件のうちの少なくとも一方が不成立である場合に二次電池の周波数域毎のインピーダンス成分を算出し、周波数域毎のインピーダンス成分を用いて、各周波数域に応じた劣化モードの二次電池の劣化状態を推定する。一方、推定装置は、第1および第2の条件がいずれも成立する場合には二次電池の周波数域毎のインピーダンス成分の算出を行なわない。第1の条件は、第1の周波数域における二次電池の電流値が第1の基準値よりも大きいとの条件である。第2の条件は、第1の周波数域よりも高い第2の周波数域における二次電池の電流値が第2の基準値よりも小さいとの条件である。第2の基準値は、第1の基準値よりも小さい。
上記(3)の構成によれば、上記(1)の方法と同様に、二次電池の劣化状態の推定精度を向上させることができる。
本開示によれば、二次電池の劣化状態の推定精度を向上させることができる。
実施の形態1に係る二次電池システムが搭載された車両の全体構成を概略的に示す図である。 バッテリおよび監視ユニットの構成をより詳細に示す図である。 車両の走行中におけるバッテリの電流、温度およびSOCの時間変化の一例を示す図である。 バッテリのインピーダンス成分を説明するための図である。 バッテリのインピーダンス成分の周波数依存性を説明するための図である。 フーリエ変換による周波数域毎のインピーダンス成分の算出手法を説明するための概念図である。 インピーダンス成分の算出結果の一例を示す図である。 第1および第2の電流条件が成立する場合におけるフーリエ変換後の電流成分の一例を示す図である。 第1および第2の電流条件が成立しない場合におけるフーリエ変換後の電流成分の一例を示す図である。 フーリエ変換対象の信号の一例を示す図である。 実施の形態1におけるバッテリの劣化状態の判定方法を示すフローチャートである。 比較例および実施の形態1における抵抗成分の算出結果を比較するための図である。 データ取得期間におけるデータの時間変化の一例を示す図である。 実施の形態2におけるバッテリの劣化状態の判定方法を示すフローチャートである。 マップMPの一例を示す図である。
以下、本開示の実施の形態について、図面を参照しながら詳細に説明する。なお、図中同一または相当部分には同一符号を付してその説明は繰り返さない。
[実施の形態1]
<二次電池システムの構成>
図1は、実施の形態1に係る二次電池システムが搭載された車両の全体構成を概略的に示す図である。図1を参照して、車両1は、ハイブリッド車両である。しかし、本開示に係る電池システムが搭載可能な車両はハイブリッド車両(プラグインハイブリッド車を含む)に限られない。本開示に係る電池システムは、二次電池システムから供給される電力を用いて駆動力を発生させる車両全般に搭載可能である。そのため、車両1は、電気自動車またな燃料電池車であってもよい。
車両1は、二次電池システム2と、パワーコントロールユニット(PCU:Power Control Unit)30と、モータジェネレータ41,42と、エンジン50と、動力分割装置60と、駆動軸70と、駆動輪80とを備える。二次電池システム2は、バッテリ10と、監視ユニット20と、電子制御装置(ECU:Electronic Control Unit)100とを備える。
エンジン50は、空気と燃料との混合気を燃焼させたときに生じる燃焼エネルギーをピストンおよびロータなどの運動子の運動エネルギーに変換することによって動力を出力する内燃機関である。
動力分割装置60は、たとえば、サンギヤ、キャリア、リングギヤの3つの回転軸を有する遊星歯車機構(図示せず)を含む。動力分割装置60は、エンジン50から出力される動力を、モータジェネレータ41を駆動する動力と、駆動輪80を駆動する動力とに分割する。
モータジェネレータ41,42の各々は、交流回転電機であり、たとえば、ロータに永久磁石(図示せず)が埋設された三相交流同期電動機である。モータジェネレータ41は、主として、動力分割装置60を経由してエンジン50により駆動される発電機として用いられる。モータジェネレータ41が発電した電力は、PCU30を介してモータジェネレータ42またはバッテリ10に供給される。
モータジェネレータ42は、主として電動機として動作し、駆動輪80を駆動する。モータジェネレータ42は、バッテリ10からの電力およびモータジェネレータ41の発電電力の少なくとも一方を受けて駆動され、モータジェネレータ42の駆動力は駆動軸70に伝達される。一方、車両の制動時や下り斜面での加速度低減時には、モータジェネレータ42は、発電機として動作して回生発電を行なう。モータジェネレータ42が発電した電力は、PCU30を介してバッテリ10に供給される。
バッテリ10は、複数のセルを含んで構成される組電池である。各セル12は、たとえばリチウムイオン二次電池またはニッケル水素電池などの二次電池である。バッテリ10は、モータジェネレータ41,42を駆動するための電力を蓄え、PCU50を通じてモータジェネレータ41,42へ電力を供給する。また、バッテリ10は、モータジェネレータ41,42の発電時にPCU30を通じて発電電力を受けて充電される。
監視ユニット20は、電圧センサ21と、電流センサ22と、温度センサ23とを含む。電圧センサ21は、バッテリ10の電圧VBを検出する。電流センサ22は、バッテリ10に入出力される電流IBを検出する。温度センサ23は、バッテリ10の温度TBを検出する。各センサは、その検出結果を示す信号をECU100に出力する。なお、バッテリ10および監視ユニット20の構成については図2にて、より詳細に説明する。
PCU30は、ECU100からの制御信号に従って、バッテリ10とモータジェネレータ41,42との間で双方向の電力変換を実行する。PCU30は、モータジェネレータ41,42の状態を別々に制御可能に構成されており、たとえば、モータジェネレータ41を回生状態(発電状態)にしつつ、モータジェネレータ42を力行状態にすることができる。PCU30は、たとえば、モータジェネレータ41,42に対応して設けられる2つのインバータと、各インバータに供給される直流電圧をバッテリ10の出力電圧以上に昇圧するコンバータ(いずれも図示せず)とを含んで構成される。
ECU100は、CPU(Central Processing Unit)101と、メモリ(ROM(Read Only Memory)およびRAM(Random Access Memory))101と、各種信号が入出力される入出力ポート(図示せず)とを含んで構成される。ECU100は、各センサから受ける信号ならびにメモリ102に記憶されたプログラムおよびマップに基づいて、車両1を所望の状態に制御するための各種処理を実行する。
より具体的には、ECU100は、エンジン50およびPCU30を制御することによってバッテリ10の充放電を制御する。また、ECU100は、バッテリ10のSOC(State Of Charge)を推定する。SOCの推定には、電流積算法、OCV−SOCカーブを用いる手法など公知の手法を用いることができる。さらに、ECU100は、バッテリ10のインピーダンス(内部抵抗)を算出する。バッテリ10のインピーダンスは、電圧VBと電流IBとの比(=VB/IB)から算出することができる。インピーダンスの算出については後に詳細に説明する。
図2は、バッテリ10および監視ユニット20の構成をより詳細に示す図である。図1および図2を参照して、バッテリ10は、直列接続されたM個のブロック11を含む。各ブロック11は、並列接続されたN個のセル12を含む。M,Nは、2以上の自然数である。
電圧センサ21は、各ブロック11の電圧を検出する。電流センサ22は、すべてのブロック11を流れる電流IBを検出する。温度センサ23は、バッテリ10の温度を検出する。ただし、電圧センサの監視単位はブロックに限定されず、セル12毎であってもよいし、隣接する複数(ブロック内のセル数未満の数)のセル12毎であってもよい。また、温度センサ23の監視単位も特に限定されず、たとえばブロック毎(あるいはセル毎)の温度が検出されてもよい。
このようなバッテリ10の内部構成および監視ユニット20の監視単位は例示に過ぎず、特に限定されるものではない。したがって、以下では、複数のブロック11を互いに区別したり複数のセル12を互いに区別したりせず、単にバッテリ10と包括的に記載する。また、監視ユニット20は、バッテリ10の電圧VB,電流IBおよび温度TBを監視すると記載する。
<車両走行中における電流変化>
以上のように構成された車両1の走行中においては、バッテリ10の電圧VB、電流IB、温度TBおよびSOCが時間経過とともに変化し得る。なお、車両1の「走行中」とは、車両1がイグニッションオンされて走行可能な状態であればよく、車両1が一時停止した状態が含まれていてもよい。
図3は、車両1の走行中におけるバッテリ10の電流IB、温度TBおよびSOCの時間変化の一例を示す図である。図3および後述する図12において、横軸は経過時間を示す。縦軸は、上から順に、電流IB、温度TBおよびSOCを示す。なお、電圧VBも電流IBと同様に不規則に変化し得るが、図面が煩雑になるのを防ぐため、以下では電圧VBについては図示を省略する。
図3を参照して、温度TBおよびSOCの変化にはある程度の時間を要し、温度TBおよびSOCは比較的滑らかに変化する場合が多い。これに対し、車両1の走行中には、モータジェネレータ42が発生させる駆動力が調整されるのに伴いバッテリからの放電電流が変動したり、モータジェネレータ42の回生発電に伴いバッテリ10に充電電流が流れたりすることで、電流IBが不規則に変化する可能性がある。このように不規則に変化する電流IBに基づいてバッテリ10のインピーダンスを算出する際に、本実施の形態では以下に説明するように、インピーダンス成分の周波数依存性が考慮される。
<インピーダンスの算出>
図4は、バッテリ10のインピーダンス成分を説明するための図である。図4には、バッテリ10(より詳細には各セル12)の正極、負極およびセパレータの等価回路図の一例が示されている。一般に、二次電池のインピーダンス成分は、直流抵抗RDCと、反応抵抗Rと、拡散抵抗Rとに大別される。
直流抵抗RDCとは、正極と負極との間でのイオンおよび電子の移動に関連するインピーダンス成分である。直流抵抗RDCは、二次電池に高負荷が印加された場合(高電圧が印加されたり大電流が流れたりした場合)の電解液の塩濃度分布等の偏りによる増加する。直流抵抗RDCは、図4に示す等価回路図において、正極の活物質抵抗Ra1、負極の活物質抵抗Ra2およびセパレータの電解液抵抗R3として表される。
反応抵抗Rとは、電解液と活物質界面との界面(正極活物質および負極活物質の表面)における電荷の授受(電荷移動)に関連するインピーダンス成分である。反応抵抗Rは、高SOC状態の二次電池が高温環境下にある場合に活物質/電解液界面に被膜が成長することなどにより増加する。反応抵抗Rは、等価回路図において、正極の抵抗成分Rc1および負極の抵抗成分Rc2として表される。
拡散抵抗Rとは、電解液中での塩または活物質中の電荷輸送物質の拡散に関連するインピーダンス成分である。拡散抵抗Rは、高負荷印加時の活物質割れなどにより増加する。拡散抵抗Rは、正極に発生する平衡電圧Veq1と、負極に発生する平衡電圧Veq2と、セル内に発生する塩濃度過電圧Vov3(セパレータ内で活物質の塩濃度分布が生じることに起因する過電圧)とから定まる。
バッテリ10のインピーダンスには上記のような様々なインピーダンス成分が含まれるところ、電流IBの変化に対する応答時間がインピーダンス成分毎に異なる。応答時間が相対的に短いインピーダンス成分は、電圧VBの高周波数での変化に追従可能である。一方、応答時間が相対的に長いインピーダンス成分は、高周波数での電圧VBの変化には追従することができない。したがって、以下に説明するように、低周波域、中周波域および高周波域の周波数域毎に、その周波数域において支配的なバッテリ10のインピーダンス成分が存在する。
図5は、バッテリ10のインピーダンス成分の周波数依存性を説明するための図である。図5において、横軸は電流IB(または電圧VB)の周波数を示し、縦軸はバッテリ10のインピーダンスを示す。
以下では、電流IBの周波数が高周波域に含まれる場合に測定されるインピーダンスを「高周波インピーダンス成分」と称する。電流IBの周波数が中周波域に含まれる場合に測定されるインピーダンスを「中周波インピーダンス成分」と称する。電流IBの周波数が低周波域に含まれる場合に測定されるインピーダンスを「低周波インピーダンス成分」と称する。
図5に示すように、高周波インピーダンス成分には、主としてバッテリ10の直流抵抗RDCが反映されている。中周波インピーダンス成分には、主としてバッテリ10の反応抵抗Rと直流抵抗RDCとが反映されている。そのため、中周波インピーダンス成分と高周波インピーダンス成分との差分から反応抵抗Rを求めることができる。低周波インピーダンス成分には、バッテリ10の反応抵抗R、直流抵抗RDCおよび拡散抵抗Rがいずれも反映されている。そのため、低周波インピーダンス成分と中周波インピーダンス成分との差分から拡散抵抗Rを求めることができる。
このように、周波数域毎にインピーダンス成分を算出することにより、直流抵抗RDC、反応抵抗Rおよび拡散抵抗Rの各抵抗を切り分けることができる。そして、これらの各抵抗は、バッテリ10の異なる劣化の要因(劣化モード)に対応する。したがって、現時点での抵抗(直流抵抗RDC、反応抵抗Rおよび拡散抵抗Rのいずれか)がバッテリ10の初期状態における抵抗からどの程度増加したかを求めることによって、バッテリ10の劣化の要因を推定したり、要因毎の劣化の進行度合いを推定したりすることができる。つまり、バッテリ10の劣化状態を高精度に推定することが可能になる。
<フーリエ変換>
本実施の形態においては、前述のような周波数域毎のインピーダンス成分の算出にフーリエ変換が用いられる。
図6は、フーリエ変換による周波数域毎のインピーダンス成分の算出手法を説明するための概念図である。図6に示すように、電流IB(および電圧VB)にフーリエ変換を施すことにより、電流IBを低周波成分と中周波成分と高周波成分とに分解することができる。このように分解された電圧VBおよび電流IBに基づいて、周波数域毎にインピーダンス成分を算出することができる。
なお、以下では、電圧VBおよび電流IBに対して高速フーリエ変換(FFT:Fast Fourier Transform)を実施することによりインピーダンス成分を算出する例について説明する。ただし、フーリエ変換のアルゴリズムはFFTに限定されず、離散フーリエ変換(DFT:Discrete Fourier Transform)であってもよい。
図7は、インピーダンス成分の算出結果の一例を示す図である。図7において、横軸は、周波数を対数目盛りで示す。低周波域は、たとえば0.001Hz以上かつ0.1Hz未満の周波数域である。中周波域は、たとえば1Hz以上かつ10Hz未満の周波数域である。高周波域は、たとえば100Hz以上かつ1kHz未満の周波数域である。図7の縦軸は、インピーダンスを示す。
図7に示すように、各周波数域において、周波数が異なる多数のインピーダンス成分が算出される。そのため、ECU100は、低周波域、中周波域および高周波数域の各々について、多数のインピーダンス成分から代表値を決定する。
たとえばインピーダンス成分の最大値を代表値とする場合には、ECU100は、低周波域におけるインピーダンス成分の最大値を低周波インピーダンス成分ZLに決定する。また、ECU100は、中周波域におけるインピーダンス成分の最大値を中周波インピーダンス成分ZMに決定するとともに、高周波域におけるインピーダンス成分の最大値を高周波インピーダンス成分ZHに決定する。なお、最大値を代表値とすることは一例であり、各周波数域内におけるインピーダンス成分の平均値を代表値としてもよいし中間値を代表値としてもよい。
<データの選別>
FFTの精度を確保するためには、サンプリング周期毎に繰り返し取得されたデータ(電圧VBおよび電流IB)を、ある程度の期間、ECU100のメモリ102に蓄積した上でFFTを実施することが求められる。このようにデータを蓄積する期間を「データ取得期間」とも記載する。なお、データ取得期間は、本開示に係る「所定期間」に相当する。
本発明者らは、データ取得期間に蓄積された電流値にFFTを実施して周波数毎の電流値を求める際に、ある周波数域における電流値に関する条件が成立すると、電流値の算出精度(フーリエ変換精度)が低下し得ることに着目した。この条件とは、以下に説明する第1および第2の電流条件(本開示に係る「第1および第2の条件」に相当)である。
図8は、第1および第2の電流条件が成立する場合におけるFFT後の電流成分の一例を示す図である。図9は、第1および第2の電流条件が成立しない場合におけるFFT後の電流成分の一例を示す図である。図8および図9において、横軸は電流の周波数を対数目盛で示す。縦軸は、電流の大きさを対数目盛で示す。
図8を参照して、周波数を周波数域F1〜F3に区分した場合に、第1の電流条件とは、最も低周波数である周波数域F1(第1の周波数域)における電流成分が基準値REF1(第1の基準値)よりも大きいとの条件である。具体的には、周波数域F1に基準値REF1よりも大きい電流成分が含まれている場合に、第1の電流条件が成立しているとすることができる。
第2の電流条件とは、中程度の周波数域F2(第2の周波数域)における電流成分が基準値REF2(第2の基準値)よりも小さいとの条件である。周波数域F2に基準値REF2よりも小さい電流成分が含まれている場合に、第2の電流条件が成立しているとすることができる。
このように、第1および第2の電流条件が成立する場合、言い換えると、周波数域F1の電流成分が周波数域F2,F3の電流成分に対して支配的である場合(別の表現では、周波数域F1の電流成分が周波数域F2,F3の電流成分よりも有意に大きい場合)には、図8に示すように、周波数域F2,F3の電流バラつきが大きくなりやすい。一方、第1および第2の電流条件が成立していない図9では、図8と対比して、周波数域F2,F3(図9では特にF3)における電流バラつきが小さいことが分かる。
なお、図9には、第1および第2の電流条件が両方とも成立していない場合の例が示されているが、第1および第2の電流条件のうちのいずれが一方したとしても中周波域または高周波域における電流バラつきは比較的小さいことが本発明者らにより確認されている。
第1および第2の電流条件の成立に起因して周波数域F2,F3における電流バラつきが大きくなる理由について以下に説明する。一般に、フーリエ変換では、変換対象とする信号が周期的であることが仮定される。もし、周期的でない信号波形をフーリエ変換により解析した場合には、データ取得期間外においても同様の形状の信号波形が繰り返されているとの前提の下での解析結果が得られる。
図10は、フーリエ変換対象の信号の一例を示す図である。図10において、横軸は経過時間を示し、縦軸は信号強度(たとえば電流の大きさ)を示す。
図10(A)は、ある信号波形の実際の形状を示す。このような信号波形に対して、比較的短いデータ取得期間が設定された状況を想定する。信号が周期的であるとの仮定の下では、図10(B)に示すように、あるデータ取得期間の終端と、次のデータ取得期間の先端との間で信号波形が接続されたものとしてフーリエ変換が行なわれる。そうすると、データ取得期間の接続部分において、信号が急激に変動するものとして解析が行なわれ得る。その結果、フーリエ変換の解析結果には、高い周波数成分が含まれてしまう可能性がある。
本実施の形態において、周波数域F1は、たとえば数十ミリHz〜数百ミリHzの範囲(一例として、30mHz〜200mHz)である。このとき、周波数域F1の電流成分の周期は、数秒〜数十秒程度のオーダーである。このような場合に、一例として、サンプリング周期を0.1秒に設定して256回のサンプリングを行なうとすると、データ取得期間の長さは、25.6秒に設定されることとなる。つまり、周波数域F1の電流成分の周期と、データ取得期間の長さとが同程度になる。
このように、電流成分の周期がデータ取得期間の長さに対して同程度であるか相対的に長い場合には、電流成分が周期的であるとの仮定からの乖離が大きくなる。そうすると、特に、周波数域F1の電流成分が周波数域F2,F3の電流成分よりも有意に大きい場合には、前述したデータ取得期間の端部(データ取得期間の接続部分)における信号の急変の影響が顕著になる。その結果、フーリエ変換の解析結果に含まれる高周波数成分の影響により、周波数域F2,F3の電流バラつきが大きくなりやすい。
このように、第1および第2の電流条件の両方が成立して電流値のフーリエ変換精度が低下すると、バッテリ10のインピーダンス成分を高精度に算出することができなくなる。より詳細に説明すると、周波数域F2,F3における電流バラつきが大きいと、FFT後の電圧成分と電流成分との比(=電圧成分/電流成分)から算出されるインピーダンス成分についても異常値が生じ得る。一例として、電流バラつきの影響で電流成分が過度に小さく検出された場合には、インピーダンス成分が過度に高く算出されることとなる。その結果として、バッテリ10の劣化状態の推定精度が低下してしまう可能性がある。
そこで、実施の形態1においては、第1および第2の電流条件が成立する場合(図8参照)の電流成分については、インピーダンス成分の算出に用いない構成を採用する。言い換えると、第1および第2の電流条件のうちの少なくとも一方が成立しない場合のFFT後の電流成分(図9参照)に基づいて、インピーダンス成分が算出される。これにより、バッテリ10のインピーダンス成分の算出精度が向上する。その結果として、バッテリ10の劣化状態の推定精度を向上させることが可能になる。
<バッテリの劣化状態の判定フロー>
図11は、実施の形態1におけるバッテリ10の劣化状態の判定方法を示すフローチャートである。図11および後述する図14に示すフローチャートは、車両1の走行中に所定周期が経過する度にメインルーチンから呼び出されて実行される。各ステップ(Sと略す)は、基本的にはECU100によるソフトウェア処理によって実現されるが、ECU100内に作製された電子回路によるハードウェア処理によって実現されてもよい。
図11を参照して、ECU100は、あるデータ取得期間P(nは自然数)において、バッテリ10の監視ユニット20内の各センサから予め定められたサンプリング周期で電圧VBおよび電流IBを取得する(S110)。ECU100により取得されたすべてのデータ(電圧VBおよび電流IBの取得結果)は、メモリ102に一時的に格納される。なお、データ取得期間Pの長さは、たとえば数秒〜数十秒程度に設定することができる。サンプリング周期は、たとえばミリ秒オーダー〜数百ミリ秒オーダーに設定することができる。
S120において、ECU100は、メモリ102に蓄積されたデータ(電圧VBおよび電流IB)に対してFFTを実施する。そして、FFT後の電流成分について、第1および第2の電流条件が成立しているか否かを判定する。詳細には、ECU100は、周波数域F1におけるFFT後の電流成分が基準値REF1よりも大きいか否かを判定する(第1の電流条件)。また、ECU100は、周波数域F2におけるFFT後の電流成分が基準値REF2よりも小さいか否かを判定する(第2の電流条件)。
周波数域F1におけるFFT後の電流成分が基準値REF1以下であるか(S130においてNO)、周波数域F2におけるFFT後の電流成分が基準値REF2以上である場合(S140においてNO)、すなわち、第1および第2の電流条件のうちの少なくとも一方が成立しない場合、図9にて説明したように、周波数域F2,F3における電流バラつきは比較的小さい。したがって、ECU100は、FFT後の電圧成分および電流成分に基づいて、周波数毎にインピーダンス成分を算出する(S150)。各周波数域のインピーダンス成分は、その周波数域の電圧VBと電流IBとの比(VB/IB)により算出することができる(インピーダンス成分の詳細な算出式については、たとえば特許文献1を参照)。
S160において、ECU100は、周波数域毎のインピーダンス成分からバッテリ10の直流抵抗RDC、反応抵抗Rおよび拡散抵抗Rを算出する。この算出手法については図5にて詳細に説明したため、ここでは説明は繰り返さない。その後、ECU100は、メモリ102に蓄積されたデータ(電圧VBおよび電流IBの取得結果)を破棄する(S170)。
これに対し、S130,S140にて周波数域F1におけるFFT後の電流成分が基準値REF1よりも大きく(S130においてYES)、かつ、周波数域F2におけるFFT後の電流成分が基準値REF2よりも小さい場合(S140においてYES)、すなわち、第1および第2の電流条件の両方が成立する場合、ECU100は、インピーダンス成分および抵抗成分の算出処理(S150,S160)を実行することなく処理をS170に進め、メモリ102に蓄積されたデータを破棄する。
S180において、ECU100は、S160にて算出された各抵抗成分(直流抵抗RDC、反応抵抗Rおよび拡散抵抗R)に基づいて、バッテリ10の劣化状態を推定する。具体的には、ECU100は、直流抵抗RDCと許容値XHとを比較し、反応抵抗Rと許容値XMとを比較し、拡散抵抗Rと許容値XLとを比較する。そして、少なくとも1つの抵抗成分が許容値よりも高い場合(S180においてYES)、ECU100は、バッテリ10の劣化が進行していると判定する(S190)。一方、すべての抵抗成分が許容値以下である場合(S180においてNO)には、ECU100は、バッテリ10の劣化は進行していないと判定する(S195)。
なお、バッテリ10の劣化状態の推定処理(S180〜S195の処理)は、別フローにて実行されてもよい。つまり、S150,S160における抵抗成分の算出結果がある程度蓄積されるまで図10のフローチャートの処理を繰り返し実行し、抵抗成分の算出結果が蓄積されてからバッテリ10の劣化状態を推定してもよい。
図11のフローチャートに示された一連の処理が所定のサンプリング周期毎に実行される。これにより、今回のデータ取得期間Pの以降のデータ取得期間Pn+1,Pn+2,・・・においても同様の処理が繰り返し実行されることになる。
なお、S190にてバッテリ10の劣化が進行していると判定された場合、ECU100は、バッテリ10の充放電を抑制することができる。具体的には、ECU100は、バッテリ10の充放電電力の制限上限値(充電電力制御上限値および放電電力制御上限値)を低く設定する。これにより、バッテリ10の劣化のさらなる進行を抑制したり、バッテリ10の劣化速度を低減したりすることができる。また、ECU100は、バッテリ10の充放電を速やかに停止するための制御を実行してもよい。たとえば、ECU100は、車両1をフェールセーフモードへと遷移させ、ディーラ(あるいは修理工場等)へと車両1を持ち込んで適切な点検を受けるように車両1のユーザに報知する。
図12は、比較例および実施の形態1における抵抗成分の算出結果を比較するための図である。図12において、横軸は経過時間を示す。縦軸は、バッテリ10の反応抵抗Rを示す。
図12(A)には、比較例における反応抵抗Rの算出結果、すなわち、第1および第2の電流条件を考慮せずに、すべてのデータに基づいて算出された反応抵抗Rが示されている。一方、図12(B)には、図11にて説明したように、第1および第2の電流条件が成立した場合のデータは用いずに破棄し、第1および第2の電流条件の少なくとも一方が不成立の場合のデータに基づいて算出された反応抵抗Rが示されている。
この比較に用いたバッテリ10は劣化しておらず、バッテリ10の反応抵抗Rは、実際には許容値XMを下回っている。しかし、図12(A)に示す比較例では、反応抵抗Rが許容値XMを上回っていると誤って算出される場合がある。一方、本実施の形態では、図12(B)に示すように、すべての算出結果で反応抵抗Rが許容値XMを下回っており、比較例のような誤算出は起こっていないことが分かる。
以上のように、実施の形態1においては、第1および第2の電流条件が成立している場合のデータ(VB,IB)は周波数域毎のインピーダンス成分の算出には用いられず、第1および第2の電流条件のうちの少なくとも一方が不成立している場合のデータを用いて周波数域毎のインピーダンス成分が算出される。第1および第2の電流条件が成立しており、周波数域F1の電流成分が支配的である場合には、周波数域F1よりも高い周波数域F2,F3の電流バラつきが大きくなりやすい。したがって、そのような場合のデータはインピーダンス成分の算出に用いないことで、バッテリ10の劣化状態の推定精度を向上させることができる。
なお、実施の形態1では、ハイブリッド車である車両1の走行中に生じる不規則な電流波形(および電圧波形)を用いてバッテリ10のインピーダンス成分を算出する構成について説明した。図示しないが、車両1がプラグインハイブリッド車または電気自動車である場合、すなわち、車両外部に設けられた電源(外部電源)から供給される電力によりバッテリ10を充電可能な構成(いわゆる外部充電が可能な構成)を車両1が有する場合には、外部充電時に外部電源から供給される電流波形によりインピーダンス成分を算出してもよい。外部電源からの一定の電流波形の電力を供給するのに代えて、周波数域が低周波域〜高周波域に亘る電流波形(サイン波、矩形波または三角波など)とすることによって、各周波数域におけるインピーダンス成分を算出することが可能になる。
[実施の形態2]
バッテリ10のインピーダンス(各周波数域のインピーダンス成分)は、電流依存性、温度依存性およびSOC依存性を有し得る。そのため、あるデータ取得期間中にバッテリ10の電流IB、温度TBおよびSOCのいずれかが過度に変化した場合には、そのデータ取得期間中のある期間(変化前の期間)と別の期間(変化後の期間)とでは依存性(電流依存性、温度依存性またはSOC依存性)の影響が異なるにもかかわらず一括してフーリエ変換(FFT)が実施されることになるので、高精度にインピーダンスを算出することができなくなる可能性がある。
このような事情に鑑み、実施の形態2においては、FFTの対象とするデータには、データ取得期間中にバッテリ10の電流IB、温度TBおよびSOCがいずれも大きく変化していないとの条件を課すこととする。この条件が成立しているか否かは、電流変化幅ΔIB、温度変化幅ΔTBおよびSOC変化幅ΔSOCに基づいて判定される。
図13は、データ取得期間におけるデータの時間変化の一例を示す図である。図13を参照して、電流変化幅ΔIBは、データ取得期間Pにおけるバッテリ10の充電方向および放電方向の両方向を考慮した上で、電流IBの変化幅(充電方向の最大電流と放電方向の最大電流との差)から算出することができる。温度変化幅ΔTBは、データ取得期間Pにおける最高温度(温度TBの最高値)と最低温度(温度TBの最低値)との差分から算出することができる。SOC変化幅ΔSOCは、データ取得期間Pにおける最高SOCと最低SOCとの差分から算出することができる。
図14は、実施の形態2におけるバッテリ10の劣化状態の判定方法を示すフローチャートである。図14を参照して、S210において、ECU100は、あるデータ取得期間Pにおいて、バッテリ10の監視ユニット20内の各センサから予め定められたサンプリング周期で電圧VB、電流IBおよび温度TBを取得する。また、ECU100は、所定の周期でバッテリ10のSOCを推定する。そして、ECU100は、すべてのデータ(電圧VB、電流IB、温度TBの取得結果およびSOCの算出結果)をメモリ102に一時的に格納する。
S212において、ECU100は、データ取得期間Pにおける電流IBの変化幅を示す電流変化幅ΔIBを算出する。また、ECU100は、データ取得期間Pにおける温度TBの変化幅を示す温度変化幅ΔTBを算出する。さらに、ECU100は、データ取得期間Pにおけるバッテリ10のSOCの変化幅を示すSOC変化幅ΔSOCを算出する。
S214において、ECU100は、メモリ102に予め不揮発的に記憶されたマップMPを参照することによって許容電流変化幅ΔIBmaxを取得する。許容電流変化幅ΔIBmaxとは、S210にてメモリ102に蓄積されたデータをインピーダンス算出に使用するか否かの判定基準となるパラメータであり、電流変化幅ΔIBの許容上限を示すものである。さらに、ECU100は、温度変化幅ΔTBおよびSOC変化幅ΔSOCについても同様に、マップMPを参照することによって許容温度変化幅ΔTBmaxおよび許容SOC変化幅ΔSOCmaxをそれぞれ取得する。
図15は、マップMPの一例を示す図である。図15に示すように、マップMPにおいては、データ取得期間Pにおけるバッテリ10の平均温度TBaveの範囲毎に、データ取得期間中Pにおける許容電流変化幅ΔIBmax、許容温度変化幅ΔTBmaxおよび許容SOC変化幅ΔSOCmaxが定められている。
ただし、平均温度TBaveに代えて、たとえば最高温度または最低温度を用いてもよいし、温度TBの最頻値を用いてもよい。さらに、温度TB(平均温度TBave、最高温度、最低温度または最頻温度)に代えて、電流IB(たとえば平均電流、最高電流、最低電流)またはSOC(たとえば平均SOC、最高SOC、最低SOC)を用いてもよい。
なお、ここではマップMPを用いる例について説明するが、マップに代えて、たとえば関数または変換式を用いてもよい。また、図15に示した具体的な数値は、マップMPの理解を容易にするための例示に過ぎないことに留意すべきである。
図14に戻り、S216において、ECU100は、電流変化幅ΔIBが許容電流変化幅ΔIBmax未満であるか否かを判定する。さらに、ECU100は、温度変化幅ΔTBが許容温度変化幅ΔTBmax未満であるか否かを判定するとともに、SOC変化幅ΔSOCが許容SOC変化幅ΔSOCmax未満であるか否かを判定する。
電流変化幅ΔIB、温度変化幅ΔTBおよびSOC変化幅ΔSOCがいずれも対応する許容変化幅未満である場合、すなわち、ΔIB<ΔIBmaxとの電流条件が成立し、かつ、ΔTB<ΔTBmaxとの温度条件が成立し、かつΔSOC<ΔSOCmaxとのSOC条件が成立する場合(S216においてYES)、ECU100は、S102にてメモリ102に蓄積されたデータ(電圧VBおよび電流IB)に対してFFTを実施する(S220)。S230以降の処理は、実施の形態1における対応する処理(破線内に示す劣化推定処理)と同等であるため、詳細な説明は繰り返さない。
以上のように、実施の形態2によれば、バッテリ10のインピーダンスが電流依存性、温度依存性およびSOC依存性を有する点に着目し、データ取得期間中にバッテリ10の電流IB、温度TBおよびSOCがいずれも大きく変化していない場合にインピーダンスが算出される。言い換えれば、データ取得期間中にバッテリ10の電流IB、温度TBおよびSOCのうちの少なくとも1つが対応する許容変化幅(ΔIBmax,ΔTBmax,ΔSOCmax)よりも大きく変化した場合には、そのデータ取得期間に取得されたデータ(電圧VBおよび電流IB)はFFTの対象から外され、インピーダンスの算出には用いられない。これにより、バッテリ10のインピーダンスの算出結果に電流依存性、温度依存性およびSOC依存性を適切に反映させることが可能になるので、バッテリ10の劣化状態の推定精度を向上させることができる。
今回開示された実施の形態は、すべての点で例示であって制限的なものではないと考えられるべきである。本開示の範囲は、上記した実施の形態の説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
1 車両、2 二次電池システム、10 バッテリ、11 ブロック、12 セル、20 監視ユニット、21 電圧センサ、22 電流センサ、23 温度センサ、30 PCU、41,42 モータジェネレータ、50 エンジン、60 動力分割装置、70 駆動軸、80 駆動輪、100 ECU、101 CPU、102 メモリ。

Claims (3)

  1. 車両に搭載された二次電池について制御装置により実行される、二次電池の劣化状態推定方法であって、
    前記二次電池の電圧値および電流値を所定期間に複数回取得してメモリに格納するステップと、
    前記メモリに格納された前記複数回の電圧値および電流値の測定結果に対して周波数変換を行なうことにより、前記二次電池の電圧値および電流値を周波数毎に算出するステップと、
    周波数毎に算出された前記二次電池の電流値について第1および第2の条件が成立するか否かを判定するステップと、
    前記第1および第2の条件のうちの少なくとも一方が不成立である場合に、周波数変換された電圧値および電流値から前記二次電池の周波数域毎のインピーダンス成分を算出する一方で、前記第1および第2の条件がいずれも成立する場合には、前記二次電池の周波数域毎のインピーダンス成分の算出を行なわないステップと、
    算出された周波数域毎のインピーダンス成分を用いて、各周波数域に応じた劣化モードの前記二次電池の劣化状態を推定するステップとを含み、
    前記第1の条件は、第1の周波数域における前記二次電池の電流値が第1の基準値よりも大きいとの条件であり、
    前記第2の条件は、前記第1の周波数域よりも高い第2の周波数域における前記二次電池の電流値が第2の基準値よりも小さいとの条件であり、
    前記第2の基準値は、前記第1の基準値よりも小さい、二次電池の劣化状態推定方法。
  2. 前記所定期間における、前記二次電池の電流変化幅、前記二次電池の温度変化幅および前記二次電池のSOC変化幅を算出するステップと、
    前記所定期間における前記二次電池の温度、電流またはSOC毎に定められた、前記電流変化幅の許容上限を示す許容電流変化幅、前記温度変化幅の許容上限を示す許容温度変化幅、および、前記SOC変化幅の許容上限を示す許容SOC変化幅を前記二次電池の温度、電流またはSOCから取得するステップとをさらに含み、
    前記第1および第2の条件のうちの少なくとも一方が不成立である場合に、周波数変換された電圧値および電流値から前記二次電池の周波数域毎のインピーダンス成分を算出する一方で、前記第1および第2の条件がいずれも成立する場合には、前記二次電池の周波数域毎のインピーダンス成分の算出を行なわないステップは、前記電流変化幅が前記許容電流変化幅を下回るとの電流条件、前記温度変化幅が前記許容温度変化幅を下回るとの温度条件、および、前記SOC変化幅が前記許容SOC変化幅を下回るとのSOC条件がいずれも成立するとの条件下において実行される、請求項1に記載の二次電池の劣化状態推定方法。
  3. 車両に搭載可能に構成された二次電池システムであって、
    二次電池と、
    メモリを含み、前記二次電池の劣化状態を推定するように構成された制御装置とを備え、
    前記制御装置は、
    前記二次電池の電圧値および電流値を所定期間に複数回取得して前記メモリに格納し、
    前記メモリに格納された前記複数回の電圧値および電流値の測定結果に対して周波数変換を行なうことにより、前記二次電池の電圧値および電流値を周波数毎に算出し、
    周波数毎に算出された前記二次電池の電流値について第1および第2の条件が成立するか否かを判定し、
    前記第1および第2の条件のうちの少なくとも一方が不成立である場合に、周波数変換された電圧値および電流値から前記二次電池の周波数域毎のインピーダンス成分を算出する一方で、前記第1および第2の条件がいずれも成立する場合には、前記二次電池の周波数域毎のインピーダンス成分の算出を行なわず、
    算出された周波数域毎のインピーダンス成分を用いて、各周波数域に応じた劣化モードの前記二次電池の劣化状態を推定し、
    記第1の条件は、第1の周波数域における前記二次電池の電流値が第1の基準値よりも大きいとの条件であり、
    前記第2の条件は、前記第1の周波数域よりも高い第2の周波数域における前記二次電池の電流値が第2の基準値よりも小さいとの条件であり、
    前記第2の基準値は、前記第1の基準値よりも小さい、二次電池システム。
JP2017229072A 2017-11-29 2017-11-29 二次電池の劣化状態推定方法および二次電池システム Active JP6933109B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2017229072A JP6933109B2 (ja) 2017-11-29 2017-11-29 二次電池の劣化状態推定方法および二次電池システム
US16/186,670 US11193983B2 (en) 2017-11-29 2018-11-12 Method of estimating deterioration state of secondary battery and secondary battery system
CN201811438699.4A CN109839601B (zh) 2017-11-29 2018-11-28 二次电池的劣化状态推定方法和二次电池系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017229072A JP6933109B2 (ja) 2017-11-29 2017-11-29 二次電池の劣化状態推定方法および二次電池システム

Publications (2)

Publication Number Publication Date
JP2019100754A JP2019100754A (ja) 2019-06-24
JP6933109B2 true JP6933109B2 (ja) 2021-09-08

Family

ID=66632238

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017229072A Active JP6933109B2 (ja) 2017-11-29 2017-11-29 二次電池の劣化状態推定方法および二次電池システム

Country Status (3)

Country Link
US (1) US11193983B2 (ja)
JP (1) JP6933109B2 (ja)
CN (1) CN109839601B (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020169932A (ja) * 2019-04-05 2020-10-15 トヨタ自動車株式会社 電池診断システム

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6958392B2 (ja) * 2018-01-30 2021-11-02 トヨタ自動車株式会社 二次電池システムおよび二次電池の劣化状態推定方法
JP6969464B2 (ja) * 2018-03-19 2021-11-24 トヨタ自動車株式会社 二次電池システムおよび二次電池の劣化状態推定方法
JP6973334B2 (ja) * 2018-08-30 2021-11-24 トヨタ自動車株式会社 二次電池の劣化状態推定方法および二次電池システム
KR20200132002A (ko) * 2019-05-15 2020-11-25 에스케이이노베이션 주식회사 Bms 장치 및 그 제어 방법
DE102019211142A1 (de) * 2019-07-26 2021-01-28 Siemens Mobility GmbH Verfahren zum Betreiben eines Schienenfahrzeugs und Schienenfahrzeug
JP2022007515A (ja) * 2020-06-26 2022-01-13 株式会社デンソー 電池診断システム
JP7395540B2 (ja) * 2021-06-01 2023-12-11 株式会社東芝 電池の劣化判定方法、電池の劣化判定装置、電池の管理システム、電池搭載機器、及び、電池の劣化判定プログラム

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000021455A (ja) 1998-07-03 2000-01-21 Nissan Motor Co Ltd ハイブリッド車両用電池の内部抵抗検出方法
JP4360621B2 (ja) 2004-02-09 2009-11-11 古河電気工業株式会社 二次電池の内部インピーダンス測定方法、二次電池の内部インピーダンス測定装置、二次電池劣化判定装置及び電源システム
JP5220269B2 (ja) * 2005-09-16 2013-06-26 古河電気工業株式会社 蓄電池の劣化状態・充電状態の検知方法及びその装置
EP1933158B1 (en) * 2005-09-16 2018-04-25 The Furukawa Electric Co., Ltd. Secondary cell degradation judgment method, secondary cell degradation judgment device, and power supply system
US9575135B2 (en) * 2011-06-01 2017-02-21 Datang Nxp Semiconductors Co., Ltd. Battery monitoring circuit, apparatus and method
JP5924516B2 (ja) * 2011-07-28 2016-05-25 横河電機株式会社 電池インピーダンス測定装置
JP6182588B2 (ja) * 2013-02-19 2017-08-16 古河電気工業株式会社 二次電池劣化判定方法及び二次電池劣化判定装置
CN104391252B (zh) * 2014-12-04 2017-02-22 上海理工大学 一种汽车铅酸蓄电池健康状态检测方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020169932A (ja) * 2019-04-05 2020-10-15 トヨタ自動車株式会社 電池診断システム
JP7259499B2 (ja) 2019-04-05 2023-04-18 トヨタ自動車株式会社 電池診断システム

Also Published As

Publication number Publication date
US20190162796A1 (en) 2019-05-30
US11193983B2 (en) 2021-12-07
CN109839601A (zh) 2019-06-04
CN109839601B (zh) 2021-10-26
JP2019100754A (ja) 2019-06-24

Similar Documents

Publication Publication Date Title
JP6933109B2 (ja) 二次電池の劣化状態推定方法および二次電池システム
JP6973334B2 (ja) 二次電池の劣化状態推定方法および二次電池システム
JP6881154B2 (ja) 二次電池の劣化状態推定方法および二次電池システム
JP5482798B2 (ja) 車両および車両の制御方法
JP5656415B2 (ja) 二次電池の状態判定装置及び制御装置
US9428071B2 (en) Impedance based battery parameter estimation
JP6947014B2 (ja) 二次電池システムおよび二次電池の制御方法
JP6969464B2 (ja) 二次電池システムおよび二次電池の劣化状態推定方法
JP2009264962A (ja) 二次電池の残存容量推定方法及び装置
JP7259499B2 (ja) 電池診断システム
JPWO2011061810A1 (ja) 車両および車両の制御方法
JP6958392B2 (ja) 二次電池システムおよび二次電池の劣化状態推定方法
JP2018189398A (ja) 電池システム
JP6927000B2 (ja) 二次電池の劣化状態推定方法
JP7070251B2 (ja) 二次電池システム
JP7040408B2 (ja) 二次電池システム
KR20110104257A (ko) 자동차의 베터리센서 진단 시스템 및 방법
JP2021125423A (ja) リチウムイオン二次電池の制御装置及びリチウムイオン二次電池の制御方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200226

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210209

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210303

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210720

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210802

R151 Written notification of patent or utility model registration

Ref document number: 6933109

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151