JP6932694B2 - 二次電池の製造方法 - Google Patents

二次電池の製造方法 Download PDF

Info

Publication number
JP6932694B2
JP6932694B2 JP2018519544A JP2018519544A JP6932694B2 JP 6932694 B2 JP6932694 B2 JP 6932694B2 JP 2018519544 A JP2018519544 A JP 2018519544A JP 2018519544 A JP2018519544 A JP 2018519544A JP 6932694 B2 JP6932694 B2 JP 6932694B2
Authority
JP
Japan
Prior art keywords
active material
positive electrode
material layer
electrode plate
tab portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018519544A
Other languages
English (en)
Other versions
JPWO2017204184A1 (ja
Inventor
政雄 福永
政雄 福永
倉本 護
護 倉本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Sanyo Electric Co Ltd
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Sanyo Electric Co Ltd
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Sanyo Electric Co Ltd, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Publication of JPWO2017204184A1 publication Critical patent/JPWO2017204184A1/ja
Application granted granted Critical
Publication of JP6932694B2 publication Critical patent/JP6932694B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0585Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/043Processes of manufacture in general involving compressing or compaction
    • H01M4/0435Rolling or calendering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/661Metal or alloys, e.g. alloy coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/70Carriers or collectors characterised by shape or form
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • H01M50/54Connection of several leads or tabs of plate-like electrode stacks, e.g. electrode pole straps or bridges
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)
  • Cell Electrode Carriers And Collectors (AREA)

Description

本発明は、二次電池の製造方法に関する。
電気自動車(EV)やハイブリッド電気自動車(HEV、PHEV)等の駆動用電源において、非水電解質二次電池等の二次電池が使用されている。
これらの二次電池は、金属箔からなる芯体の表面に活物質を含んだ活物質層が形成された正極板及び負極板を備える。電気自動車(EV)やハイブリッド電気自動車(HEV、PHEV)等に用いられる二次電池には、更なる体積エネルギー密度の増加が求められている。二次電池の体積エネルギー密度を増加させる方法として、活物質層の充填密度を更に高くする方法が考えられる。これにより、電池ケース内に含まれる活物質の量を増加させ、体積エネルギー密度を向上させることができる。活物質層の充填密度を更に高くする方法としては、例えば、芯体上に活物質層を設けた後、活物質層をロールプレス等により圧縮処理する際、より強い力で圧縮することにより、活物質層の充填密度をより高くすることが考えられる。
しかしながら、芯体上に形成された活物質層をより強い力で圧縮処理した場合、活物質層のみでなく、表面に活物質層が形成された芯体も強く圧縮されるため、芯体が圧延される。ここで、電極板の端部に活物質層が形成されていない芯体露出部が存在すると、芯体露出部は活物質層が形成された部分に比べ厚みが小さいため、芯体露出部には圧縮処理の荷重が加わらない。よって、電極板について圧延処理を行った場合、芯体において活物質層が形成された部分は圧延されるものの、芯体露出部は圧延されない。このため、芯体において活物質層が形成された部分と芯体露出部では長さに差が生じる。そして、生じた長さの差により、芯体に皺が発生したり、電極板が湾曲するという課題が存在する。
このような課題を解決するため、下記特許文献1においては、電極板の芯体露出部を予め延伸させた後、電極板をロールプレスする技術が提案されている。
特許第5390721号公報
本願発明は、より信頼性の高い電極板及びそれを用いた二次電池を提供することを目的とする。
本発明の一様態の二次電池の製造方法は、
複数枚の第1電極板と複数枚の第2電極板を含む積層型電極体を備え、
前記第1電極板は、芯体、前記芯体上に形成された活物質層、及び前記活物質層が形成されていない芯体露出部からなるタブ部を有する二次電池の製造方法であって、
前記第1電極板において前記タブ部の根元であって、前記活物質層が形成された領域に切り欠きを設ける切り欠き形成工程と、
前記切り欠き形成工程の後、前記活物質層を圧縮する圧縮工程と、を有する。
上述の構成により、信頼性の高い二次電池を提供することが可能となる。
芯体の両面に活物質層が形成され、端部にタブ部としての芯体露出部が設けられた電極板の製造手順として、以下の手順が考えられる。
(1)帯状の芯体の両面に、芯体の長手方向に沿って芯体露出部が形成されるように、活物質層を形成する。
(2)芯体露出部を所定形状に裁断し、タブ部を形成する。
(3)タブ部が形成された帯状の電極板をプレス処理し、活物質層を圧縮する。
発明者らは、このような手順で電極板を製造する場合、活物質層の充填密度をより高くするため、電極板のプレス処理におけるプレス圧をより大きくすると、タブ部の根元部分に斜め方向に延びる亀裂が生じる場合があることを見出した。このような課題が生じる原因は以下のように考えられる。
通常、芯体露出部を所定形状に裁断しタブ部を形成した後、電極板をプレス処理すると、プレス処理において、芯体において活物質層が形成された部分と芯体露出部で、長さの差が生じたとしても電極板に皺、湾曲、あるいは亀裂等は生じ難いと考えられていた。即ち、芯体露出部が一定の間隔で切断されているため、プレス処理により芯体において活物質層が形成された部分と芯体露出部で長さの差が生じたとしても、芯体露出部が切断される位置においてその歪が開放されるため、電極板に皺、湾曲、あるいは亀裂等は生じ難いと考えられていた。
しかしながら、発明者らが開発を行うなかで、芯体露出部を所定形状に裁断しタブ部を形成した後電極板をプレス処理した場合であっても、タブ部の根元に亀裂が生じる場合が生じた。このような課題は、圧縮処理後の活物質層の充填密度が3.58g/cm以上であり、タブ部の幅が10mm以上である場合、顕著に現れることを見出した。
なお、タブ部の幅を10mmよりも小さくすることによりタブ部の根元に亀裂が生じることをある程度抑制できるものの、タブ部の幅が小さくなりすぎると電気抵抗値が大きくなる恐れがあるため好ましくない。
発明者らは、電極板においてタブ部の根元であって、活物質層が形成された領域に切り欠きを設けた後、活物質層を圧縮する処理を行うことにより、電極体のタブ部の根元に亀裂が生じることを効果的に抑制できることを見出した。
本発明によれば、より信頼性の高い二次電池を提供することができる。
裁断前の正極板の平面図である。 図1におけるII−II線に沿った正極板の断面図である。 タブ部形成後の正極板の平面図である。 図3におけるタブ部近傍の拡大図である。 正極板の圧縮工程を示す図である。 裁断後の正極板及び裁断後の負極板の平面図である。 角形二次電池の断面図である。 変形例1に係る正極板におけるタブ部近傍の拡大図である。 変形例2に係る正極板におけるタブ部近傍の拡大図である。
本発明に係る実施形態を非水電解質二次電池の製造方法を例に説明する。なお、本発明は以下の形態に限定されない。
まず、正極板の製造方法を説明する。
[正極活物質層スラリーの作製]
正極活物質としてのリチウムニッケルコバルトマンガン複合酸化物、結着剤としてのポリフッ化ビニリデン(PVdF)、導電剤としての炭素材料、及び分散媒としてのN−メチル−2−ピロリドン(NMP)をリチウムニッケルコバルトマンガン複合酸化物:PVdF:炭素材料の質量比が97.5:1:1.5となるように混練し、正極活物質層スラリーを作製する。なお、正極活物質層中の正極活物質の含有割合は95質量%以上とすることが好ましく、99質量%以下とすることが好ましい。また、正極活物質層中の結着剤の含有割合は0.5質量%以上とすることが好ましく、3質量%以下とすることが好ましい。
[保護層スラリーの作製]
アルミナ粉末、導電剤としての黒鉛、結着剤としてのポリフッ化ビニリデン(PVdF)と分散媒としてのN−メチル−2−ピロリドン(NMP)を、アルミナ粉末:黒鉛:PVdFの質量比が83:3:14 となるように混練し、保護層スラリーを作製する。なお、保護層中の結着剤の含有割合は、5質量%以上であることが好ましく、8質量%以上であることがより好ましく、10質量%以上であることが更に好ましい。保護層は結着剤のみから構成されてもよいが、アルミナ、ジルコニア、チタニア及びシリカ等のセラミック粒子を含むことが好ましい。保護層には正極活物質が含まれないことが好ましい。保護層に正極活物質が含まれる場合であっても、その含有割合は5質量%以下とすることが好ましく、1質量%以下とすることがより好ましい。
[活物質層形成工程・保護層形成工程]
正極芯体としての厚さ15μmのアルミニウム箔の両面に、上述の方法で作製した正極活物質層スラリー及び保護層スラリーをダイコータにより塗布する。このとき、正極芯体の幅方向の中央に正極活物質層スラリーが塗布され、正極活物質層スラリーが塗布される領域の幅方向の両端に保護層スラリーが塗布されるようにする。なお、一つのダイコータのダイヘッド内部の吐出口近傍において正極活物質層スラリー及保護層スラリーを合流させ、正極活物質層スラリーと保護層スラリーを同時に正極芯体上に塗布することができる。但し、正極活物質層スラリーと保護層スラリーを同時に正極芯体上に塗布する必要はない。
正極活物質層スラリー及び保護層スラリーが塗布された正極芯体を乾燥させ、スラリー中のNMPを除去する。これにより正極活物質層及び保護層が形成される。
図1は、上述の方法で作製された圧縮処理前の正極板1の平面図である。図2は図1におけるII−II線に沿った正極板1の断面図である。図1及び図2に示すように、正極芯体1aの両面には、正極芯体1aの長手方向に沿って正極活物質層1bが形成されている。正極芯体1aにおいて、正極活物質層1bが形成された領域の幅方向の両端部には保護層1cが形成されている。そして、正極板1の幅方向の両端部には、正極板1の長手方向に沿って正極芯体露出部1dが形成されている。ここで、正極活物質層1bの厚みは、保護層1cの厚みよりも大きい。
なお、図1及び図2に示された正極板1は、図2におけるC−C線に沿って裁断される。
[タブ部形成工程・切り欠き形成工程]
図1及び図2に示す正極板1において、正極芯体露出部1d部分にレーザ等のエネルギー線を照射することにより、正極芯体露出部1dを所定形状に切断し、正極タブ部1eを形成する。このとき、タブ部の形成と同時に、タブ部の根元であって正極活物質層1b及び保護層1cが設けられた領域にレーザ等のエネルギー線を照射することにより、切り欠き1fを設ける。
図3は、正極タブ部1e及び切り欠き1fが設けられた正極板1を示す図である。図3に示すように、正極タブ部1eは正極板1の端部に形成されている。また、正極タブ部1eは正極芯体1aにおいて正極活物質層1bが形成された領域から突出するように設けられている。
なお、タブ部の形成と、切り欠きの形成はそれぞれ別々に行うことも可能である。また、タブ部の形成と、切り欠きの形成はそれぞれ異なる方法により形成することも可能である。例えば、タブ部の形成をプレス打ち抜き加工で行い、その後、切り欠きの形成をエネルギー線の照射により行うこともできる。
[圧縮工程]
図5に示すように、正極タブ部1e及び切り欠き1fが設けられた正極板1を、一対のプレスローラ30の間を通し、正極活物質層1bを圧縮する。これにより、正極活物質層1bの充填密度を大きくする。なお、正極活物質層1bの充填密度は、3.58g/cm以上とすることが好ましい。
その後、圧縮処理を行った正極板1を所定形状に裁断し、図6の(a)に示す正極板1が完成する。図3における破線は、正極板1を裁断する位置を示している。
上述の方法で正極板1を作製すると、正極板1において正極タブ部1eの根元であって、正極活物質層1bが形成された領域に切り欠き1fを設けた後、正極活物質層1bを圧縮する処理を行うため、圧縮処理により正極板1における正極タブ部1eの根元に亀裂が生じることを防止できる。このような効果が得られる理由は次のように考えられる。
正極芯体において正極活物質層が形成された領域は、圧延処理によって圧延される。正極活物質層が形成されていないタブ部は、正極活物質層が存在する部分に比べて厚みが小さい。したがって、圧縮処理においてタブ部は圧延されない。ここで、正極活物質層が形成された正極芯体において、タブ部に隣接する部分は圧延されないタブ部に固定された状態となる。これに対し、タブ部から少し離れた部分については圧延され、左右方向(正極芯体の長手方向)に引っ張られる状態となる。
正極板1は、正極タブ部1eの根元であって、正極活物質層1bが形成された領域に切り欠き1fが設けられている。したがって、上述の亀裂の起点となる部分が取り除かれた状態となっており、亀裂が生じることを防止できる。
図4に示すように、切り欠き1fは、正極板1の正極タブ部1eの側辺1xの延長線と、正極板1において正極活物質層1bが形成された領域の上辺1y(正極タブ部1eが突出する辺)の延長線との交差点を含む領域に形成されることが好ましい。これにより、圧縮処理により正極板1における正極タブ部1eの根元に亀裂が生じることをより効果的に防止できる。
なお、図4に示すように、切り欠き1fは正極活物質層1bが形成された領域に形成されていることが好ましい。これにより、切り欠き1fの縁部が正極活物質層1bにより補強されることにより、正極板1を作製した後、切り欠き1fを起点に正極板1に亀裂が生じたり破断したりすることを効果的に防止できる。また、切り欠き1fにおける第1エッジE1が正極活物質層1bにより被覆されているため、第1エッジE1がセパレータを貫通して負極板2に接触することを確実に防止できる。
また、図4に示すように、正極タブ部1eの両側の根元に切り欠き1fが設けられ、これらの切り欠き1f間を最短距離で繋ぐ直線上に正極活物質層1bが形成されていることが好ましい。これにより二つの切り欠き1f間を最短距離で繋ぐ部分が正極活物質層1bにより補強されることにより、正極板1を作製した後、切り欠き1fを起点に正極板1に亀裂が生じたり破断したりすることを効果的に防止できる。
図4に示すように、切り欠き1fが、保護層1cが形成された領域に形成されていることが好ましい。これにより、切り欠き1fの縁部が保護層1cにより補強されることにより、正極板1を作製した後、切り欠き1fを起点に正極板1に亀裂が生じたり破断したりすることを効果的に防止できる。また、切り欠き1fにおける第2エッジE2が保護層1cにより被覆されているため、第2エッジE2がセパレータを貫通して負極板2に接触することを確実に防止できる。
なお、正極タブ部1eの突出方向において、第2エッジE2が第1エッジE1よりも正極タブ部1eの先端側に位置し、第2エッジE2は保護層1cが形成されており、保護層1cの導電性が正極活物質層1bの導電性よりも小さいことが好ましい。第2エッジE2には第1エッジE1よりもセパレータを貫通しやすいため、第2エッジE2上に形成される層がより導電性の低い保護層1cであることにより、より安全性が高くなる。
図4に示すように、切り欠き1fの縁部全体が、正極活物質層1bが形成された領域ないし保護層1cが形成された領域に配置されることが好ましい。これにより、切り欠き1fの縁部に亀裂の起点が生じることを効果的に防止できる。
切り欠き1fは、レーザ等のエネルギー線の照射により形成されることが好ましい。これにより、切り欠き1fの縁部が尖った形状となることを防止し、より丸みのある形状となるため、亀裂の起点が生じることをより確実に防止できる。また、正極芯体1aにおいて、切り欠き1fの縁部の厚みが、他の領域よりも厚くなるようにすることが好ましい。
切り欠き1fの形状は特に限定されないが、切り欠き1fは円弧形状であることが好ましい。これにより、亀裂の起点が生じることを抑制できる。例えば切り欠きは、直径が1〜10mmの円の一部であるようにすることが好ましい。
図4に示すように正極タブ部1eの幅方向において、切り欠き1fの正極タブ部1eの中央側の端部は、正極タブ部1eの幅方向の端部よりも正極タブ部1eの中央側に位置することが好ましい。これにより、正極板1をプレス加工する際に電極板に裂けが生じることをより効果的に抑制できる。
正極タブ部1eの幅W1は12mm〜30mmであることが好ましい。正極板1の圧縮工程時に生じる亀裂は、正極タブ部1eの幅W1が小さい程生じ難くなる。しかしながら、正極タブ部1eの幅W1が小さい場合、電気抵抗が大きくなるため好ましくない。本発明によると、電気抵抗の増大を抑制し、且つ亀裂の生じ難い正極板1を提供することができる。
図4に示すように、正極タブ部1eの根元の両側に切り欠き1fが設けられていることが好ましい。この場合、一対の切り欠き1f間を最短距離で結ぶ部分の幅W2は、タブ部の幅W1に対して1/2〜4/5であることが好ましい。切り欠き間を最短距離で結ぶ部分の幅W2が小さい場合、抵抗値が大きくなり溶断する恐れがあるため好ましくない。但し、切り欠き間を最短距離で結ぶ部分が活物質層が形成されている部分とすることで溶断を抑制できるため好ましい。
なお、一枚の正極板1において、正極タブ部1eは一つのみ設けられることが好ましい。また、正極板1において正極活物質層1bが形成された領域が平坦な状態を保って電極体が作製されることが好ましいため、積層型電極体を備える電池に使用されることが好ましい。
切り欠き1fは円の一部であり、当該円の中心が正極活物質層1bの形成部に位置する(即ち、正極活物質層1bが形成された領域の上辺1yの延長線よりも下方に位置する)ように設けることが好ましい。
[角形二次電池の製造方法]
上述の方法で作製した正極板1を用いた角形二次電池20の製造方法について説明する。
[負極板の作製]
負極活物質としての黒鉛、結着剤としてのスチレンブタジエンゴム(SBR)、増粘剤としてのカルボキシメチルセルロース(CMC)、及び水を含む負極活物質層スラリーを作製する。この負極活物質層スラリーを、負極芯体としての厚さ8μmの矩形状の銅箔の両面に塗布する。そして、これを乾燥させることにより、負極活物質層スラリー中の水を取り除き、負芯体上に負極活物質層を形成する。その後、負極活物質層を所定厚みになるように圧縮処理を行う。このようにして得られた負極板を、所定の形状に裁断し、図6の(b)に示すような負極板を作成する。
[電極体の作製]
上述の方法で作成した複数枚の正極板1と複数枚の負極板2を、ポリオレフィン製のセパレータを介して積層し、積層型電極体3を作製する。ここで、各正極板1及び各負極板2はそれぞれ湾曲せず、平坦な形状となっている。積層型電極体3においては、一方の端部から積層された正極タブ部1e及び積層された負極タブ部2cが突出する。なお、積層型電極体3において、セパレータの形状は特に限定されない。平坦なセパレータを複数枚用いてもよい。また、一方の電極板を内部に配置する袋状のセパレータを複数用いても良い。あるいは、セパレータを九十九折状とすることもできる。
[封口体の組立て]
図7に示すように、封口板5は正極端子取り付け孔5a及び負極端子取り付け5bを有する。正極端子取り付け孔5aの周囲であって電池内部側に絶縁部材10及び正極集電体6を配置する。また、正極端子取り付け孔5aの周囲であって電池外部側に絶縁部材11を配置する。そして、絶縁部材11、絶縁部材10及び正極集電体6のそれぞれに設けられた貫通孔に、電池外部側から正極端子7を挿入し、正極端子7の先端を正極集電体6上にかしめ固定する。なお、正極端子7のかしめ部を正極集電体6に溶接することが好ましい。
負極端子取り付け孔5bの周囲であって電池内部側に絶縁部材12及び負極集電体8を配置する。また、負極端子取り付け孔5bの周囲であって電池外部側に絶縁部材13を配置する。そして、絶縁部材13、絶縁部材12及び負極集電体8のそれぞれに設けられた貫通孔に、電池外部側から負極端子9を挿入し、負極端子9の先端を負極集電体8上にかしめ固定する。なお、負極端子9のかしめ部を負極集電体8に溶接することが好ましい。
[タブ部と集電体の接続]
積層型電極体3の積層された正極タブ部1eを正極集電体6に溶接接続し、積層型電極体3の積層された負極タブ部2cを負極集電体8に溶接接続する。なお、溶接接続としては、抵抗溶接、レーザ溶接、超音波溶接等を用いることができる。
[二次電池の組立て]
絶縁シート17で覆われた積層型電極体3を有底角筒状の外装体4に挿入する。その後、外装体4と封口板5の間を溶接接続し、外装体4の開口を封口する。その後、封口板5に設けられた電解液注液孔15より電解質及び溶媒を含む非水電解液を外装体4内に注入する。その後、電解液注液孔15を封止栓16により封止する。
封口板5には、電池内部の圧力が所定値以上となったときに破断し、電池内部のガスを外部へ排出するガス排出弁14が設けられている。なお、正極板1と正極端子7の間の導電経路又は負極板と負極端子9の間の導電経路に、電流遮断機構を設けることができる。電流遮断機構は、電池内部の圧力が所定値以上となったときに作動し、導電経路を切断するものが好ましい。なお、電流遮断機構の作動圧は、ガス排出弁の作動圧よりも低く設定する。
上記実施形態においては、正極板1に切り欠き1fを設ける例を示したが、負極板2の負極タブ部2cの根元であって負極活物質層2bが形成された部分に切り欠きを設けることもできる。
上記実施形態においては、正極板1に保護層1cを設ける例を示したが、保護層1cは必須の構成ではなく、保護層1cを設けなくてもよい。
次に変形例について説明する。
[変形例1]
図8は変形例1に係る正極板1の平面図である。変形例1に係る正極板1は、切り欠き1fの形成位置が異なるのみで、その他の構成・製造手順については上述の実施形態における正極板1と同じである。
変形例1に係る正極板1は、上述の実施例における正極板1について、切り欠き1fを円の一部と考えたとき、円の中心を正極タブ部1eの中心から離れる方向にし、且つ円の中心をタブ部の突出方向にずらしたものである。変形例1に係る正極板1は、正極タブ部1eの幅方向において、切り欠き1fの正極タブ部1eの中心側の端部が、正極タブ部1eの端部と一致する。
[変形例2]
図9は変形例2に係る正極板1の平面図である。変形例2に係る正極板1は、切り欠き1fの形成位置が異なるのみで、その他の構成・製造手順については上述の実施形態における正極板1と同じである。
変形例2に係る正極板1は、正極タブ部1eの幅方向の一方側の根元のみに切り欠き1fが設けられている。このような場合、圧延処理における正極板1の上流側(先にプレスされる側)に切り欠き1fが設けられることが好ましい。正極板1の圧縮処理時に生じる正極タブ部1eの根元に生じる亀裂は、圧延処理における正極板1の上流側に生じ易い。したがって、変形例2の構成によると、電池容量の低下を最小限としながら品質の高い正極板1が得られる。
<その他>
本発明は、正極板及び負極板のいずれに対しても適用可能である。但し、本願発明は正極板に適用することが特に有効である。また、圧縮処理後の充填密度が3.58g/cm以上の正極活物質層を有する正極板に適用することが特に有効である。
本発明における芯体は非多孔性の金属箔であることが好ましい。正極芯体であれば、アルミニウム箔あるいはアルミニウム合金箔であることが好ましい。負極芯体であれば、銅箔あるいは銅金属箔であることが好ましい。
本発明における電極体は、平坦な複数の正極板と、平坦な複数の負極板を複数枚含む積層型電極体であることが好ましい。なお、正極板と負極板の間に配置されるセパレータの形状は特に限定されない。各正極板と負極板の間に平坦なセパレータを配置することもできる。また、セパレータを袋状とし、内部に正極板を配置するようにしてもよい。あるいは、セパレータを九十九折とし、その間に正極板、負極板を配置してもよい。
本発明における正極活物質としては、リチウム遷移金属複合酸化物が好ましい。特にニッケル、コバルト及びマンガンの少なくとも一種を含有するリチウム遷移金属複合酸化物が好ましい。
本発明における負極活物質としてはリチウムイオンの吸蔵・放出が可能な材料を用いることができる。リチウムイオンの吸蔵・放出が可能な材料としては、黒鉛、難黒鉛性炭素、易黒鉛性炭素、繊維状炭素、コークス及びカーボンブラック等の炭素材料が挙げられる。非炭素系材料としては、シリコン、スズ、及びそれらを主とする合金や酸化物などが挙げられる。 炭素材料と非炭素材料を混合することもできる。
電極板の活物質層及び保護層に含まれる結着剤としては、ポリフッ化ビニリデン(PVDF)、ポリテトラフルオロエチレン、ポリエチレン、ポリプロピレン、アラミド樹脂、ポリアミド、ポリイミド、ポリアミイミド、ポリアクリルニトリル、ポリアクリル酸、ポリアクリル酸メチル、ポリアクリル酸エチル、ポリアクリル酸ヘキシル、ポリメタクリル酸、ポリメタクリル酸メチル、ポリメタクリル酸エチル、ポリメタクリル酸ヘキシル、ポリ酢酸ビニル、ポリビニルピロリドン、ポリエーテル、ポリエーテルサルフォン、ヘキサフルオロポリプロピレン、スチレンブタジエンゴム、カルボキシメチルセルロース、アクリルゴム、アクリレート系結着剤(アクリル酸のエステル又は塩)等を用いることができる。なお、これらを単独で用いてもよいし、2種以上を組み合わせて用いてもよい。活物質層に含まれる結着剤と保護層に含まれる結着剤は同じであってもよいし、異なるものであっても良い。また、結着剤は樹脂製であることが好ましい。
保護層中に含まれる結着剤の保護層に対する質量割合は、5質量%以上とすることが好ましく、10質量%以上とすることがより好ましい。保護層中に含まれる結着剤の保護層に対する質量割合は、95質量%以下であることが好ましい。但し、保護層が結着剤のみから構成されてもよい。但し、保護層は、セラミック粒子として、アルミナ、ジルコニア、チタニア及びシリカの少なくとも一つを含有することが好ましい。
<他の発明>
他の発明の二次電池用の電極板の製造方法は、
金属箔からなる芯体と、前記芯体上に形成された活物質を含有する活物質層を有し、表面に前記活物質層が形成されていない前記芯体がタブ部として設けられ、前記タブ部の根元側であって前記活物質層と隣接する部分の前記芯体上にセラミック粒子及びバインダーを含む保護層が形成された二次電池用の電極板の製造方法であって、
前記タブ部の根元であって、前記活物質層及び前記保護層が形成された部分に切り欠きを設ける切り欠き形成工程と、
前記切り欠き形成工程の後、前記活物質層を圧縮する圧縮工程を有する。
その他の発明に係る電極体の製造方法によると、電極板の圧縮処理する際にタブ部の根元に亀裂が生じることをより効果的に抑制できる。また、芯体において活物質層及び保護層が形成された領域に形成されているため、切り欠きの縁部が活物質層及び保護層により補強されている。したがって、切り欠きを基点に電極板に亀裂が生じることを効果的に防止できる。また、切り欠きのエッジが活物質層及び保護層により覆われているため、エッジがセパレータを貫通し、対向する電極板に接触することを防止できる。
なお、その他の発明に係る電極板は、正極板及び負極板の少なくとも一方として用いることができる。また、その他の発明に係る電極板を用いて巻回型の電極体を作製することも可能であり、積層型の電極体を作製することも可能である。
1・・・正極板
1a・・・正極芯体
1b・・・正極活物質層
1c・・・保護層
1d・・・正極芯体露出部
1e・・・正極タブ部
1f・・・切り欠き

2・・・負極板
2b・・・負極活物質層
2c・・・負極タブ部(負極芯体露出部)

3・・・積層型電極体
4・・・外装体
5・・・封口板
5a・・・正極端子取り付け孔
5b・・・負極端子取り付け孔
6・・・正極集電体
7・・・正極端子
8・・・負極集電体
9・・・負極端子
10・・・絶縁部材
11・・・絶縁部材
12・・・絶縁部材
13・・・絶縁部材
14・・・ガス排出弁
15・・・電解液注液孔
16・・・封止栓
17・・・絶縁シート

20・・・角形二次電池
30・・・プレスローラ

Claims (8)

  1. 複数枚の第1電極板と複数枚の第2電極板を含む積層型電極体を備え、
    前記第1電極板は、芯体、前記芯体上に形成された活物質層、及び前記活物質層が形成されていない芯体露出部からなるタブ部を有する二次電池の製造方法であって、
    前記第1電極板において前記タブ部の根元であって、前記活物質層が形成された領域に切り欠きを設ける切り欠き形成工程と、
    前記切り欠き形成工程の後、前記活物質層を圧縮する圧縮工程と、
    を有し、
    前記切り欠き形成工程において、エネルギー線を用いて前記切り欠きを設ける二次電池の製造方法。
  2. 前記第1電極板は正極板であり、前記第2電極板は負極板であり、
    前記芯体はアルミニウム箔又はアルミニウム合金箔であり、
    前記正極板における圧縮工程後の前記活物質層の充填密度は、3.58g/cm以上である請求項1に記載の二次電池の製造方法。
  3. 前記タブ部の幅方向において、
    前記切り欠きの前記タブ部の中央側の端部は、
    前記タブ部における、前記タブ部の幅方向の端部よりも中央側に位置する請求項1または2に記載の二次電池の製造方法。
  4. 前記タブ部の幅方向において、前記タブ部の両側の根元に前記切り欠きが設けられている請求項1〜のいずれかに記載の二次電池の製造方法。
  5. 前記切り欠き形成工程より前に、前記タブ部にセラミック粒子及びバインダーを含む保護層を形成し、
    前記保護層が形成された領域にも前記切り欠きが形成される請求項1〜のいずれかに記載の二次電池の製造方法。
  6. 複数枚の第1電極板と複数枚の第2電極板を含む積層型電極体を備え、
    前記第1電極板は、芯体、前記芯体上に形成された活物質層、及び前記活物質層が形成されていない芯体露出部からなるタブ部を有する二次電池の製造方法であって、
    前記第1電極板において前記タブ部の根元であって、前記活物質層が形成された領域に切り欠きを設ける切り欠き形成工程と、
    前記切り欠き形成工程の後、前記活物質層を圧縮する圧縮工程と、
    を有し、
    前記第1電極板は正極板であり、前記第2電極板は負極板であり、
    前記芯体はアルミニウム箔又はアルミニウム合金箔であり、
    前記正極板における圧縮工程後の前記活物質層の充填密度は、3.58g/cm 以上である二次電池の製造方法。
  7. 複数枚の第1電極板と複数枚の第2電極板を含む積層型電極体を備え、
    前記第1電極板は、芯体、前記芯体上に形成された活物質層、及び前記活物質層が形成されていない芯体露出部からなるタブ部を有する二次電池の製造方法であって、
    前記第1電極板において前記タブ部の根元であって、前記活物質層が形成された領域に切り欠きを設ける切り欠き形成工程と、
    前記切り欠き形成工程の後、前記活物質層を圧縮する圧縮工程と、
    を有し、
    前記タブ部の幅方向において、
    前記切り欠きの前記タブ部の中央側の端部は、
    前記タブ部における、前記タブ部の幅方向の端部よりも中央側に位置する二次電池の製造方法。
  8. 複数枚の第1電極板と複数枚の第2電極板を含む積層型電極体を備え、
    前記第1電極板は、芯体、前記芯体上に形成された活物質層、及び前記活物質層が形成されていない芯体露出部からなるタブ部を有する二次電池の製造方法であって、
    前記第1電極板において前記タブ部の根元であって、前記活物質層が形成された領域に切り欠きを設ける切り欠き形成工程と、
    前記切り欠き形成工程の後、前記活物質層を圧縮する圧縮工程と、
    を有し、
    前記切り欠き形成工程より前に、前記タブ部にセラミック粒子及びバインダーを含む保護層を形成し、
    前記保護層が形成された領域にも前記切り欠きが形成される二次電池の製造方法。
JP2018519544A 2016-05-27 2017-05-23 二次電池の製造方法 Active JP6932694B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2016106003 2016-05-27
JP2016106003 2016-05-27
PCT/JP2017/019111 WO2017204184A1 (ja) 2016-05-27 2017-05-23 二次電池の製造方法

Publications (2)

Publication Number Publication Date
JPWO2017204184A1 JPWO2017204184A1 (ja) 2019-03-22
JP6932694B2 true JP6932694B2 (ja) 2021-09-08

Family

ID=60411789

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018519544A Active JP6932694B2 (ja) 2016-05-27 2017-05-23 二次電池の製造方法

Country Status (4)

Country Link
US (1) US11456487B2 (ja)
JP (1) JP6932694B2 (ja)
CN (1) CN109155394B (ja)
WO (1) WO2017204184A1 (ja)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7008247B2 (ja) * 2017-12-06 2022-02-10 パナソニックIpマネジメント株式会社 電極板及び二次電池
CN112335071A (zh) * 2018-07-30 2021-02-05 松下知识产权经营株式会社 电池用电极、电池以及电池用电极的制造方法
JPWO2020218473A1 (ja) * 2019-04-26 2020-10-29
KR20210074827A (ko) * 2019-12-12 2021-06-22 주식회사 엘지에너지솔루션 전극조립체 및 이차전지 및 그의 제조방법
KR20210078957A (ko) * 2019-12-19 2021-06-29 주식회사 엘지에너지솔루션 이차 전지용 전극 및 이의 제조 방법
CN114447282A (zh) * 2020-10-30 2022-05-06 北京小米移动软件有限公司 极片及其加工方法、锂电池
JP7262436B2 (ja) * 2020-12-14 2023-04-21 プライムプラネットエナジー&ソリューションズ株式会社 正極板の製造方法、電池の製造方法およびレーザ切断用正極原反
JP7426363B2 (ja) * 2021-09-16 2024-02-01 プライムプラネットエナジー&ソリューションズ株式会社 二次電池
JP7485643B2 (ja) 2021-11-25 2024-05-16 プライムプラネットエナジー&ソリューションズ株式会社 レーザー加工された正極の製造方法
CN114824159B (zh) * 2022-04-20 2023-07-14 珠海冠宇电池股份有限公司 电极片和电芯
KR102636276B1 (ko) * 2022-11-17 2024-02-14 에스케이온 주식회사 이차전지용 음극, 이의 제조방법 및 이를 포함하는 리튬 이차전지

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3155219B2 (ja) * 1997-01-27 2001-04-09 三桜工業株式会社 電池用電極及びその製造方法
JPH10214616A (ja) * 1997-01-30 1998-08-11 Denso Corp 積層型電池用電極の製造方法
US7000297B2 (en) * 2001-11-28 2006-02-21 Wilson Greatbatch Technologies, Inc. Electrochemical cell current collector having openings of progressively larger sizes converging at a tab
JP4766057B2 (ja) * 2008-01-23 2011-09-07 ソニー株式会社 非水電解質電池および非水電解質電池の製造方法
TWI424604B (zh) * 2009-05-20 2014-01-21 Nec Energy Devices Ltd A method for producing a laminate type secondary battery and laminate type secondary batteries
JP5929897B2 (ja) 2011-03-23 2016-06-08 三洋電機株式会社 非水電解質二次電池用正極極板及びその製造方法、並びに非水電解質二次電池及びその製造方法
JP2012248282A (ja) * 2011-05-25 2012-12-13 Sanyo Electric Co Ltd 非水電解質二次電池
JP2013187077A (ja) 2012-03-08 2013-09-19 Panasonic Corp 捲回型およびスタック型電極電池
JP2014022102A (ja) * 2012-07-13 2014-02-03 Toyota Industries Corp 蓄電装置及び二次電池並びに電極の製造方法
DE102012106518A1 (de) * 2012-07-18 2014-01-23 H2 Solar Gmbh Beschichtung von Substraten mit Siliciden und deren Oxide
JP5390721B1 (ja) 2013-05-08 2014-01-15 株式会社日立パワーソリューションズ 電極材料のロールプレス方法及びロールプレス設備
CN103545559A (zh) * 2013-10-08 2014-01-29 宁德新能源科技有限公司 一种叠片式锂离子电池
JP6287508B2 (ja) * 2014-04-08 2018-03-07 株式会社豊田自動織機 電極製造装置及び電極製造方法

Also Published As

Publication number Publication date
US11456487B2 (en) 2022-09-27
CN109155394B (zh) 2022-02-01
CN109155394A (zh) 2019-01-04
US20200321658A1 (en) 2020-10-08
JPWO2017204184A1 (ja) 2019-03-22
WO2017204184A1 (ja) 2017-11-30

Similar Documents

Publication Publication Date Title
JP6932694B2 (ja) 二次電池の製造方法
US20190280287A1 (en) Secondary battery and method for manufacturing the same
JP5232875B2 (ja) 二次電池及び二次電池を備えた電池パック、並びに二次電池の製造方法
JP6766338B2 (ja) 電極板の製造方法及び二次電池の製造方法
CN106654149B (zh) 电极板的制造方法以及二次电池的制造方法
JP6838442B2 (ja) 電極板の製造方法及び二次電池の製造方法
JP7382569B2 (ja) 電池用電極、電池、および電池用電極の製造方法
JP7350051B2 (ja) 電極板及びその製造方法、二次電池及びその製造方法
JP7008247B2 (ja) 電極板及び二次電池
CN108666630B (zh) 方形二次电池的制造方法
US10090526B2 (en) Non-aqueous electrolyte secondary battery and method for producing the same
US10873068B2 (en) Secondary battery and method for manufacturing the same
JP7066450B2 (ja) 非水電解質二次電池
JP7356455B2 (ja) 二次電池用の電極板及びそれを用いた二次電池
CN111213278B (zh) 非水电解质二次电池的制造方法
JPWO2020129998A1 (ja) 二次電池用の電極板及びそれを用いた二次電池
JP7353302B2 (ja) 二次電池
JP7398392B2 (ja) 二次電池用の電極板及びそれを用いた二次電池
WO2023181853A1 (ja) 円筒形電池
WO2020137715A1 (ja) 電極板及びそれを用いた二次電池
JP2021093307A (ja) 二次電池の製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200406

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20200611

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20200611

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210518

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210628

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210720

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210818

R150 Certificate of patent or registration of utility model

Ref document number: 6932694

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150